
Automated Verification and Repair of Quantized Neural Networks

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Science and Engineering

2024

Xidan Song
Department of Computer Science

Contents

Contents 2

List of figures 5

List of tables 7

Abstract 9

Declaration of originality 11

Copyright statement 12

List of publications 13

Acknowledgements 14

Terms and abbreviations 15

1 Introduction 18
1.1 Research Motivation . 19
1.2 Research Questions . 21

1.2.1 RQ1: How to find vulnerabilities in Quantized Neural Network Models? . 22
1.2.2 RQ2: How to Repair Quantized Neural Network Models? 22
1.2.3 RQ3: How to Reach Trade-off Between Repairing Correctness and

Efficiency? . 22
1.3 Contributions . 22
1.4 Thesis Structure . 24

2 Background 27
2.1 Neural Networks (NNs) . 27

2.1.1 NN Implementations . 31
2.1.2 NN Quantization . 35
2.1.3 Adversarial Examples . 37

2.2 Bounded Model Checking . 37
2.2.1 Bounded Model Checking Tools . 39
2.2.2 Satisfiability Modulo Theories Backends 39

2

2.3 Neural Network Verification . 41
2.3.1 Verification Problem Statement . 41
2.3.2 Verification of Safety Properties . 42

2.4 Neural Network Repair . 46
2.4.1 Repair Problem Statement . 46
2.4.2 Mixed Integer Linear Optimization . 50

2.5 Chapter Summary . 51

3 Related Works 53
3.1 Verification Methods . 53

3.1.1 Exact Verification . 53
3.1.2 Approximate Verification . 54
3.1.3 Verification by Satisfiability Modulo Theories 57
3.1.4 Verification by Mixed-Integer Linear Programming 59
3.1.5 Quantization Aspect . 60
3.1.6 Comparison with QNNVerifier . 61

3.2 Repair Methods . 62
3.2.1 Repair by Retraining . 62
3.2.2 Repair by Adjusting Weights . 64
3.2.3 Repair by Attaching Repair Units . 66
3.2.4 Repair by Counterexamples . 67
3.2.5 Quantization Aspect . 69
3.2.6 Comparison with QNNRepair . 69

3.3 Chapter Summary . 70

4 QNNVerifier: Quantized Neural Network Verification 72
4.1 Chapter Introduction . 72
4.2 QNNVerifier Framework Overview . 73

4.2.1 Neural Network Code Conversion . 74
4.2.2 Discretization of Non-linear Activation Functions 76
4.2.3 Interval Analysis via Frama-C . 79
4.2.4 Assertion Language in ESBMC . 80
4.2.5 ESBMC Architecture . 81
4.2.6 Constant Folding and Slicing . 82

4.3 Evaluation . 84
4.3.1 Description of the QNNVerifier Benchmarks 84
4.3.2 Experiments Setup . 86
4.3.3 SMT Solvers Comparison . 87

4.3.3.1 Effects of Quantization on Verification Time and Memory 89
4.3.4 Comparison with State-of-the-art Verification Tools 92

3

4.4 Chapter Summary . 95

5 QNNRepair: Quantized Neural Network Repair 98
5.1 Chapter Introduction . 98
5.2 QNNRepair Methodology . 99

5.2.1 Neuron Importance Ranking . 100
5.2.2 Constraints-Solving Based Repairing . 102
5.2.3 QNNRepair Algorothm . 103

5.3 Evaluation . 104
5.3.1 Description of the QNNRepair Benchmarks 104
5.3.2 Experiments Setup . 105
5.3.3 Repair Results on Baselines . 106
5.3.4 Effects of Passing and Failing Tests in QNNRepair 108
5.3.5 Fault Localization Metrics in QNNRepair 108
5.3.6 Repair Efficiency . 111
5.3.7 Comparison with Data-free Quantization 112

5.4 Chapter Summary . 112

6 AIRepair: A Repair Platform for Neural Networks 114
6.1 Chapter Introduction . 114
6.2 AIRepair Framework . 116

6.2.1 Input . 117
6.2.2 Pre-processing . 119
6.2.3 Repair . 121
6.2.4 Evaluation and Output . 121
6.2.5 AIRepair Implementation . 122
6.2.6 Example Usage . 123

6.3 Evaluation . 125
6.3.1 Description of the AIRepair Benchmarks 125
6.3.2 Experiments Setup . 126
6.3.3 Train Baseline Models . 126
6.3.4 Compare Different Repair Tools on the Same Benchmark 127

6.4 Chapter Summary . 129

7 Conclusions and Future Works 131

References 133

Word count: 33477

4

List of Figures

1.1 Thesis structure. 26

2.1 A typical neural network, with an input layer, three hidden layers, and an output
layer, represented as a graph. 28

2.2 Geometry for ACAS Xu Horizontal Logic Table. 43
2.3 Depiction of the ACAS Xu neural network. 44
2.4 Illustration of properties ϕ1, ϕ3, and ϕ4. Angles and distances are not drawn to

true scale for clarity of the image. 45

3.1 The neural network model before and after repair. Left: the target DNN with buggy
inputs. Right: The REASSURE-repaired DNN with the patch network is shown in
red. 65

4.1 The proposed verification workflow for fixed- and floating-point DNNs. The inputs
are neural network models, and the outputs are models that can be used safely. . . . 73

4.2 Conversion from the neural network structure defined by Keras to the neural
network structure defined by C. This is a code snippet of resnet_block, the basic
unit in the ResNet (see Definition 2.1.5) model mentioned in Section 2.1.1 that will
be tested in the experimental section, which contains three convolutional layers as
well as an added layer, with the activation function chosen to be ReLU. 76

4.3 Comparison between the real sigmoid NSigm and its discretizations Ñ Sigm for
ϵ = 0.01 (N2 = 1001), ϵ = 0.1 (N2 = 101), ϵ = 1 (N2 = 11): (a) sigmoid
activation function together with its approximations within the range [−20, 20] and
(b) a zoom in to show the interval [−2, 2]. 79

4.4 The conversion from safety properties defined by VNN-LIB to safety properties
defined by ESBMC is an example of the conversion. 81

4.5 ESBMC architecture. 82
4.6 (a) A simple NN implemented in C, where variables “a”, “b”, and “c” range from

−3 to 2, 0 to 5, and 0 to 4, respectively. (b) The initial NN C program was converted
into SSA form. 84

4.7 Comparison of verification times with different SMT solvers for the fixed-point
ACAS Xu benchmarks: The unit of the verification time is seconds(s). 89

5

4.8 Comparison of average case, worst case time spent and maximum memory usage
of quantized networks with floating point networks, and verification time vs max
memory usage for different quantization bit-widths: from 2-bit to 32-bit. 91

4.9 Comparison of verification time among our methodology and SOTA tools on
Property 1 of ACAS Xu. The unit of the verification time is seconds (s). 93

4.10 Enlarged counterexamples for the GTSRB benchmarks 30 × 30 pixels image
resolutions generated by our method (with and without approximation) and alpha-
beta-crown, compared with the original image. 95

5.1 The QNNRepair Architecture. In order to obtain the information that the quantized
neural network is missing after quantization we need the original floating point
neural network, as well as to localize the faults by Successful/Failing the dataset.
The output of this method is the quantized neural network with high accuracy. . . . 100

5.2 Importance distribution regarding certain importance metrics on MobileNetV2. . . 110

6.1 The AIRepair Architecture. The input of the framework is the neural network to
be repaired, and the dataset used for training, AIRepair, automatically selects the
repair method as well as evaluates the repair effect, and the output is the repaired
neural network and the repair report. 116

6

List of Tables

2.1 Some of the most used fixed activation functions. 28
2.2 Input state variables used in ACAS Xu. 43
2.3 ACAS Xu Actions (Horizontal Collision Avoidance). 44
2.4 ACAS Xu Benchmark Open Loop Properties. 45

3.1 Comparison between QNNVerifier and SOTA, for the perspective of approxima-
tion, verification method, supported neuron type, datasets, and running environment. 61

3.2 Comparison between QNNRepair and SOTA, for the perspective of fault local-
ization, repair method, measurement, neuron type, and running environment.

. 69

4.1 The baseline models. Parameters include the trainable and non-trainable parameters
in the models; the unit is kilo (K). The two parameters are for the converted C file
model, including the capacity of the C file and the number of assignments in the
ESBMC procedure. 86

4.2 Command Line Options of ESBMC and Their Descriptions. 86
4.3 The time consumption (in seconds) in different phases of Bounded Model Checking

(BMC) tasks using different solvers . 87

5.1 Importance (i.e., fault localization) metrics used in experiments. 102
5.2 The baseline models. Parameters include the model’s trainable and non-trainable

parameters; the unit is million (M). The two accuracy values are for the original
floating point model and its quantized version, respectively. 105

5.3 QNNRepair results on CIFAR-10 models. The best repair outcome for each model,
w.r.t. the dense layer in that row, is in bold. We further highlight the best result
in blue if the repair result is even better than the floating point model and in red
if the repair result is worse than the original quantized model. Random means
that QNNRepair randomly selects neurons at the corresponding dense layer for
the repair, whereas Fault Localization refers to the selection of neurons based on
important metrics in QNNRepair. In All cases, all neurons in that layer are used
for repair. 'n/a'happens when the number of neurons in the repair is less than 100,
and '-'is for repairing the last dense layer of 10 neurons, and the result is the same
as the All case. 106

7

5.4 QNNRepair results on ImageNet model. 107
5.5 Effects of Failing Tests on Model Repair. FP model error means Failing tests

in which the floating point model is misclassified but the quantitative model is
classified correctly, and vice versa for QNN error.FP accuracy is the accuracy of
the floating point model on the test set, and the QNN accuracy we divide into
before fixing and after fixing are given respectively. 108

5.6 The results regarding importance metrics, including 7 fault localization metrics
and 1 random baseline. The number of images indicates how many inputs are in
the repair set. 109

5.7 The Gurobi solving time for constraints of each neuron in the dense-2 layer of the
VGGNet model. There are 512 neurons in total. 111

5.8 QNNRepair vs SQuant . 112

6.1 Definitions of keys used in the neural network model. 118
6.2 A summary table for all benchmarks used in the experiments. 126
6.3 AIRepair results: ’running’ means the experiment is still running. ’–’ means that

the tool does not apply to the model. The best accuracy (Acc.) and constraints
accuracy (Const.) improvement for each model are highlighted in % and %
separately. 127

8

Abstract

Developing secure and bug-free AI systems is extraordinarily challenging. Detecting vulnerabil-
ities in AI systems is particularly difficult due to the devastating effects that such vulnerabilities
can have on financial security or an individual’s well-being. The complexity of AI models and
their increasing deployment in critical applications necessitate robust methods for ensuring their
security and reliability.

To address these challenges, we present three significant novel contributions. Firstly, we in-
troduce QNNVerifier, a state-of-the-art neural network verification method based on the SMT
bounded model checker ESBMC. QNNVerifier is designed to identify vulnerabilities in quan-
tized neural network models, which use reduced precision to improve computational efficiency
and are susceptible to unique errors. It employs optimization algorithms to reduce verification
complexity and thoroughly analyzes models to pinpoint potential security flaws. Secondly, we
introduce QNNRepair, our innovative neural network repair method. Based on Mixed Inte-
ger Linear Programming and Gurobi as the backend, QNNRepair rectifies vulnerabilities and
increases robustness in neural network models by applying targeted modifications in neurons.
Thirdly, we introduce a comprehensive neural network repair platform, AIRepair, which inte-
grates our methods and ensures compatibility with mainstream frameworks like TensorFlow and
PyTorch.

We evaluate the effectiveness of QNNVerifier and QNNRepair within our AIRepair frame-
work using state-of-the-art benchmarks. Our results show that QNNVerifier effectively detects
vulnerabilities in quantized neural networks with high precision. Moreover, QNNRepair suc-
cessfully addresses these issues, enhancing model robustness without compromising accuracy
or performance. The AIRepair framework integrates these methods, streamlining the process of
identifying and fixing vulnerabilities in neural network models.

In conclusion, our contributions provide a comprehensive solution for enhancing the secu-
rity and reliability of AI systems. By combining advanced verification and repair techniques
with a user-friendly platform, we offer a valuable toolset for developing secure and resilient AI
systems, ultimately contributing to the safety and trustworthiness of AI technologies in critical
applications.

9

10

Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted in
support of an application for another degree or qualification of this or any other university or
other institute of learning.

11

Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The University
of Manchester certain rights to use such Copyright, including for administrative purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with licens-
ing agreements which the University has from time to time. This page must form part of
any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the the-
sis, for example graphs and tables (“Reproductions”), which may be described in this thesis,
may not be owned by the author and may be owned by third parties. Such Intellectual Prop-
erty and Reproductions cannot and must not be made available for use without the prior
written permission of the owner(s) of the relevant Intellectual Property and/or Reproduc-
tions.

iv Further information on the conditions under which disclosure, publication and commer-
cialisation of this thesis, the Copyright and any Intellectual Property and/or Reproduc-
tions described in it may take place is available in the University IP Policy (see http://
documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant The-
sis restriction declarations deposited in the University Library, The University Library’s
regulations (see http://www.library.manchester.ac.uk/about/regulations/) and
in The University’s policy on Presentation of Theses.

12

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

List of publications

Luiz Sena, Xidan Song, Erickson Alves, Iury Bessa, Edoardo Manino, and Lucas C.
Cordeiro. “Verifying quantized neural networks using SMT-based model checking,” arXiv
preprint arXiv:2106.05997, 2021. Correspond to Chapter 4.

João Batista P. Matos, Eddie de Lima Filho, Iury Bessa, Edoardo Manino, Xidan Song,
and Lucas C. Cordeiro, “Counterexample guided neural network quantization refinement,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023.
Correspond to Chapter 4.

Conference articles

Xidan Song, Youcheng Sun, Mustafa A. Mustafa, and Lucas C. Cordeiro, “QNNRepair:
Quantized neural network repair,” in International Conference on Software Engineering
and Formal Methods, Springer, 2023, pp. 320–339. Correspond to Chapter 5.

Xidan Song, Youcheng Sun, Mustafa A. Mustafa, and Lucas C. Cordeiro, “AIREPAIR:
A repair platform for neural networks,” in 2023 IEEE/ACM 45th International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion), IEEE, 2023, pp.
98–101. Correspond to Chapter 6.

Edoardo Manino, Danilo Carvalho, Yi Dong, Julia Rozanova, Xidan Song, Mustafa A.
Mustafa, Andre Freitas, Gavin Brown, Mikel Lujan, Xiaowei Huang and Lucas Cordeiro,
“Enncore: End-to-end conceptual guarding of neural architectures,” 2022.

13

https://arxiv.org/pdf/2106.05997
https://ieeexplore.ieee.org/iel7/43/6917053/10324349.pdf
https://pure.manchester.ac.uk/ws/files/274859548/2306.13793v2.pdf
https://pure.manchester.ac.uk/ws/files/274859548/2306.13793v2.pdf
https://pure.manchester.ac.uk/ws/portalfiles/portal/251545256/icse2023.pdf
https://pure.manchester.ac.uk/ws/portalfiles/portal/251545256/icse2023.pdf
https://eprints.soton.ac.uk/484423/1/paper_9.pdf

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor, Prof. Lucas
Cordeiro, for his unwavering support, insightful guidance, and constant encouragement through-
out my research journey. Your expertise and dedication have been invaluable to the completion
of this dissertation. Your patience, insights, and good humour were invaluable and very much
appreciated. I would also like to thank my co-supervisors, Dr. Mustafa A. Mustafa and Dr.
Youcheng Sun, for their guidance, assistance, and invaluable feedback.

I am also deeply grateful to my colleagues at the Systems and Software Security group, es-
pecially Edoardo Manino, Chenfeng Wei, and Tong Wu, for their support, camaraderie, and
stimulating discussions that have enriched my research experience.

A special thanks to the administrative and technical staff at the Department of Computer Sci-
ence, University of Manchester, for their assistance and for providing a conducive environment
for my research.

Thanks to the University of Manchester. The research community at the University of Manch-
ester helped make the PhD an enjoyable experience. The University of Manchester also offers
me the chance to work as a Teaching and Research Assistant.

On a personal note, I would like to express my deepest appreciation to my family. To my
parents, Mingrun and Qingzhi, for their unconditional love and support and for always believing
in me. They also generously fund my educational journey, enabling me to pursue my dreams
and acquire the knowledge and skills that have shaped my future.

14

Abbreviations

ACAS Airborne Collision Avoidance Systems

ACSL ANSI/ISO C Specification Language

ANN Artificial Neural Network

BMC Bounded Model Checking

CE Counterexample

CEGAR Counterexample-guided Abstraction Refinement

CIFAR Canadian Institute For Advanced Research

COC Clear-of-Conflict

CUDA Compute Unified Device Architecture

DNN Deep Neural Network

DRP Domain-wise Depair Problem

ESBMC Efficient SMT-based Bounded Model Checker

EVA Evolved Value Analysis

FFNN Feed-Forward Neural Network

GTSRB German Traffic Sign Recognition Benchmark

GLPK GNU Linear Programming Kit

HDF5 Hierarchical Data Format version 5

LP Linear Programming

MILP Mixed Integer Linear Programming

MNIST Modified National Institute of Standards and Technology database

NLP Natural Language Processing

15

PSO Particle Swarm Optimization

PWL Piecewise Linear

QNN Quantized Neural Network

ReLU Rectified Linear Unit

ResNet Residual Network

RNN Recurrent Neural Network

rDLM reduced Deep Learning Model

SAT Satisfiability Solver

SMT Satisfiability Modulo Theories

SRP Sample-wise DNN Repair Problem

SSA Static Single Assignment

TFLite TensorFlow Lite

VGGNet Visual Geometry Group Network

16

.

17

Chapter 1

Introduction

The widespread adoption of internet services and smart devices globally has driven significant
advancements in labor automation, device interconnectivity, and human-machine interaction,
leading to an exponential increase in available data compared to previous decades [1]. At the
core of transforming abundant data and computational resources into practical applications is
Machine Learning (ML), a field that intersects statistics and computer science [2]. ML’s data-
driven approach addresses complex problems that are difficult to model using rule-based systems
founded on human expertise. Such issues include image classification, spam email filtering, and
image segmentation [3].

Among ML, in particular, Deep Learning has demonstrated its strong performance and appli-
cation potential in image classification [4], object detection [5], and natural language processing
[6]. To elaborate, ML is a subset of Artificial Intelligence, whereas Deep Learning is a specific
approach within ML. This hierarchical relationship helps us to understand how advancements
in ML directly contribute to the broader field of Artificial Intelligence. For instance, in March
2016, AlphaGo [7], an artificial intelligence program developed by Google’s DeepMind, made
headlines worldwide by defeating Lee Sedol, one of the world’s top Go players, in a five-game
match. AlphaGo’s success is a testament to how sophisticated ML algorithms, particularly those
developed through Deep Learning techniques, can lead to groundbreaking achievements in Ar-
tificial Intelligence.

Neural networks are the core technology of deep learning, which mimic how the human brain
works by processing complex data through many layers and nodes. Due to these capabilities,
neural networks have also been widely used in safety-sensitive fields such as autonomous driv-
ing, facial recognition, and medical diagnosis [8]. For example, in autonomous driving, neural
networks identify road signs and obstacles; in medical diagnosis, they can help recognize disease
signs and perform pathology image analysis.

However, these advancements in AI introduce entirely new challenges, especially concern-

18

1.1. RESEARCH MOTIVATION

ing the security and robustness of the models [9]. This lack of robustness becomes especially
apparent in practical scenarios, where even minor modifications to road signs could mislead
automated driving systems, leading to potentially hazardous outcomes.

Neural network verification [10] aims to validate the behavior of a neural network model for
a specified range of inputs, either through complete or incomplete methods that approximate the
verification problem. However, due to neural networks’ intricate and opaque nature, deploying
verification on large models and interpreting the results pose significant challenges. Researchers
have explored various techniques to mitigate these challenges to simplify verification processes,
including linear relaxation and abstract interpretation [11].

While neural network verification identifies issues with model robustness, complete retrain-
ing does not always resolve these issues and can be resource-intensive. Consequently, researchers
have developed neural network repair methods [12]–[14] that address these vulnerabilities with-
out requiring full retraining or access to original data. However, due to the complexity of neural
network models, the repair process can be time-consuming and computationally demanding,
prompting further research into optimizing repair procedures.

The exponential increase in data and computational resources has catalyzed significant ad-
vancements in ML, particularly in deep learning, which has demonstrated remarkable capabil-
ities in various applications such as image classification [4], object detection [5], and natural
language processing [6]. The success of neural networks in safety-sensitive fields, such as
autonomous driving and medical diagnosis, highlights their potential and underscores the criti-
cal need for robust and secure models. Neural network verification and repair techniques have
emerged to address these challenges, aiming to ensure model reliability without complete retrain-
ing. However, these processes are often complex and resource-intensive, necessitating ongoing
research to enhance efficiency and effectiveness.

1.1 Research Motivation

Presently, a multitude of neural network training frameworks are prevalent, including Tensor-
Flow [15], PyTorch [16], Caffe [17], among others. Each of these frameworks employs distinct
formats for storing neural network models. However, existing neural network verification and
repair tools are often limited to supporting only a single file format. Consequently, determining
the optimal file format or category for repairing a neural network poses a challenge. Hence,
there arises a necessity for a unified platform encompassing both verification and repair func-
tionalities, facilitating format conversion and method comparison.

This challenge is further compounded by the inherent fragility and opacity of neural networks,
often considered hard-to-understand black-box systems. For instance, a 2022 study by Australian

19

1.1. RESEARCH MOTIVATION

researchers [18] analyzed three AI applications designed for mushroom identification and found
that, on average, these apps correctly identified wild mushrooms only about 50% of the time. In
some cases, the apps misidentified toxic mushrooms as edible, highlighting the potential dangers
of overreliance on AI technology [19]. This is just one example of how the vulnerabilities of
neural networks can lead to harmful outcomes.

Recent studies have revealed that Deep Neural Networks (DNNs) exhibit susceptibility to
manipulation, wherein slight alterations in input data can result in incorrect predictions [20]–
[22]. These alterations can take various forms, such as pixel-level perturbations [9], [20], [23],
or through natural variations in the input, such as image rotation or changes in illumination [22],
[24]. Natural variations pose a significant challenge as they can occur without malicious intent
and have severe consequences [21], [25]. Testing [21] is a natural idea to determine whether
a neural network is robust to such perturbations. Some scholars have developed the technique
of neural network testing, where a neural network is given either normal or adversarial inputs
against an attack and is allowed to make inferences [26]. The given neural network is judged
to be robust based on whether the neural network output is normal but cannot guarantee the
absence of failures.

In contrast to neural networks, there are already a variety of well-established methods and
processes for verifying and validating the behavior of autonomous systems before deployment.
This is particularly important for safety-critical systems, which can harm human life if not op-
erated properly. Examples of such problems have been seen in the self-driving features of auto-
mobiles, resulting in civilian deaths [27]. Verification is a process used to ensure that the system
of interest meets all requested requirements.

It is natural to think that we need neural network verification to find these defects in neural
networks. Still, the difference between verifying neural network models and traditional software
is safety properties and ideas. Traditional software verification [28] usually relies on explicit
requirements specifications and logical tests to ensure the software functions as intended. This
involves functional testing, performance testing, etc., to ensure that the stability and reliability
of the software. Neural network verification [10], however, focuses on the representativeness
of the data and the model’s ability to generalize, often by splitting the data set (e.g., training,
validation, and testing sets) to assess the model’s ability to predict new data. The uncertainty
and black-box nature of neural networks [29] also makes the verification process more focused
on statistical metrics and error analysis. Therefore, due to the different verification goals, we are
motivated to develop a new method for verifying quantized neural networks.

After identifying the vulnerabilities in neural network models, we must find a method to fix or
improve them. In traditional software development, vulnerability remediation is usually a well-
defined process that involves identifying bugs, analyzing the cause of the problem, writing the
patch, testing the patch to ensure that no new problems are introduced, and ultimately deploying

20

1.2. RESEARCH QUESTIONS

the patch [30]. This process relies on the understandability and operability of the code.

In neural network models, “repair” usually means modifying the network architecture, adjust-
ing the hyperparameters, or re-selecting the training data to improve the model’s performance
or reduce errors [31]. This kind of repair is not done by directly modifying the code. Still, im-
proving the learning algorithms and data inputs often requires a lot of experiments to find the
optimal configuration. Thus, we also need a new method to repair and fix the vulnerabilities in
neural network models.

Implemented in mobile devices, such as the mushroom recognition neural network, is a quan-
tized neural network model converted from a floating point model to minimize computational
requirements. Nonetheless, recent research on validating quantized neural networks is scarce,
with no existing work on rectifying them. Hence, this thesis introduces the quantized neural
network verification method QNNVerifier, the quantized neural network repair method QN-
NRepair, and the QNN repair platform AIRepair.

1.2 Research Questions

Today, neural network verification and repair tools are developed on various platforms. They
cannot be uniformly compared and used, nor can it be determined which verification or repair
method is best for a particular neural network. This type of repair does not require retraining or
adding additional repair units. For some specific neural networks, such as quantized neural net-
works, there is still a lack of research on verifying and repairing such networks. More precisely,
in this Ph.D. thesis, I ask the following fundamental research question:

Research Question. How to verify, repair and evaluate quantized neural networks?

Our starting point is to first use neural network verification to determine whether a given
neural network model is robust. If a given neural network violates a safety property, then neural
network repair methods should be utilized to bring the violating neural network into compliance
with the safety statute. The verification uses an SMT-based approach to ensure completeness,
with ESBMC as the backend, and the repair uses a linear programming approach to ensure
efficiency, with Gurobi as the backend.

In addressing this question, we are confronted with many practical design challenges. Now,
I divided this general research question into three sub-questions in this PhD thesis:

21

1.3. CONTRIBUTIONS

1.2.1 RQ1: How to find vulnerabilities in Quantized Neural Network Models?

Although there have been recent attempts to verify floating-point neural networks, converting
fixed-point neural networks into a constraint-solving problem is an important step toward an-
swering our research question. The question is, for a given trained model and a set of safety
properties, we translate them to a set of SMT inequalities. Then, this is the input to the SMT-
solver, which will give the result of neural network verification. During this procedure, the
verification time is of the most concern. We want to generate the most efficient formulas free of
search-space explosion and loops. This challenge and the following sub-challenges are tackled
in Chapter 4.

1.2.2 RQ2: How to Repair Quantized Neural Network Models?

There are certain technical difficulties in quantized model repair. Suppose we want to repair
quantized models by retraining or adding repair units. In that case, we need to find the original
floating point model, complete the repair operation, and quantify it due to the limitations of deep
learning platforms. For example, the TensorFlow framework’s TFlite stores quantized neural
network models [32]. Still, this format only supports inference, not retraining, as parameters
such as loss are omitted from the quantization process. However, the original model is difficult
to find and the cost required to retrain and re-quantize is prohibitive. This challenge is tackled
in Chapter 5.

1.2.3 RQ3: How to Reach Trade-off Between Repairing Correctness and Efficiency?

The main disadvantage of using an integrated framework of different tools is that they all share
the same computational resources. We must decide how many resources to allocate to each
tool for a single verification procedure. Thus, we developed the AIRepair tool. Generally, this
decision depends not only on the problem at hand but also on the partial results that we obtain
from the tools in the cooperative framework. Specifically, in our cooperative framework, we
combined the tools sequentially. We discuss a strategy to optimize our cooperative framework
in Chapter 6.

1.3 Contributions

The main contribution of this Ph.D. thesis is the development, implementation, and evaluation of
scalable methods to address vulnerabilities in quantized neural network (QNN) models, focusing

22

1.3. CONTRIBUTIONS

on their verification and repair. Specifically, the thesis introduces the following three major novel
contributions:

• QNNVerifier:

– Introduced a new, fully open-source quantized neural network verification method,
QNNVerifier, as detailed in [33], [34].

– Designed and evaluated a novel symbolic verification framework leveraging software
model checking (SMC) and satisfiability modulo theories (SMT) to detect vulnera-
bilities in artificial neural networks (ANNs).

– Proposed several ANN-specific optimizations for SMC, including:

∗ Invariant inference using interval analysis.

∗ Program slicing and expression simplifications.

∗ Discretization of non-piecewise-linear activation functions.

– Portions of this work are published in [33].

• QNNRepair:

– Presented QNNRepair, the first method in the literature dedicated to repairing quan-
tized neural networks (QNNs).

– Aimed at improving neural network performance post-quantization by addressing ac-
curacy degradation.

– Key features of QNNRepair include:

∗ Identification of neurons causing performance degradation using software fault
localization techniques.

∗ Formulation of the repair problem as a mixed-integer linear programming (MILP)
problem to adjust neuron weight parameters.

∗ Ensured repaired QNNs improve performance on failing tests while preserving
accuracy on passing tests.

– Portions of this work are published in [35].

• AIRepair:

– Proposed AIRepair, a comprehensive platform for neural network repair that builds
upon QNNRepair and QNNVerifier.

– Features integration of existing repair tools for fair comparison and evaluation of dif-
ferent repair techniques.

23

1.4. THESIS STRUCTURE

– Capabilities of AIRepair include:

∗ Support for trained models and their training datasets (if specified in the config-
uration).

∗ Pre-processing of benchmarks to ensure compatibility with various frameworks,
such as TensorFlow [15] and PyTorch [16].

∗ Isolation of different running environments for deep learning libraries.

∗ Automated collection and analysis of repair results, including outputs, logs, and
parameters.

∗ Presentation of results to help users decide on the most suitable repair tool.

– Outputs include the repaired model along with comprehensive logs and parameter
details.

– Portions of this work are published in [36].

1.4 Thesis Structure

The remainder of this thesis is arranged in the following structure; the thesis’s visual structure
is also illustrated in Figure 1.1.

Chapter 2 introduces the core concepts behind neural network verification and repair. First, it
introduces the concepts, applications, and security issues of neural networks. Then, it introduces
neural network vulnerabilities and the need for verification and repair. In addition, it presents
related work on neural network verification, reachability analysis, testing, and repair.

Chapter 4 introduces QNNVerifier, a quantized neural network verification method based on
SMT solving. This chapter describes the verification process of QNNVerifier, where we trans-
form quantized neural networks into C files and use ESBMC as a backend for SMT verification.
We also highlight the challenges in verifying quantized neural networks and how our approach
handles and solves them.

Chapter 5 describes QNNRepair, a quantized neural network repair method. In this method,
we first run neural network inference and then sort the neurons according to their importance.
Afterward, using the repair set, the neural network repair problem is converted to a linear pro-
gramming problem and solved using Gurobi as the backend.

24

1.4. THESIS STRUCTURE

Chapter 6 designs a platform AIRepair specialized for repairing neural networks.Firstly, it re-
ceives the models trained from different platforms and performs the model transformation. Then,
it automatically selects the repair method according to the characteristics of these models and
gives the repaired model with the repair report.

Chapter 7 summarizes the research contributions, highlighting the proposed framework’s sig-
nificance in verifying and repairing quantized neural network models, the evaluation, and future
work.

25

1.4. THESIS STRUCTURE

Chapter 1: Introduction

Chapter 2: Background

− Neural Networks
− Bounded Model Checking
− Neural Network Verification
− Neural Network Repair

Chapter 3: Related Works

− Literature on Neural Network Verification
− Research in Neural Network Repair
− Comparison with QNNVerifier and QNNRepair

Algorithm and Methodology Contributions

Chapter 4: QNNVerifier: Quantized Neural
Network Verification

Chapter 5: QNNRepair: Quantized Neural
Network Repair

QNNRepair Methodology

• Neuron Importance Ranking

• Constraints-Solving Based Repairing

• QNNRepair Algorithm

Evaluation

QNNVerifier Methodology

• Code Conversion and Discretization

• Interval Analysis and Assertion Language

• ESBMC Architecture

• Constant Folding and Slicing

Evaluation

Engineering Contribution

Chapter 6: AIRepair A Repair Platform
for Neural Networks

AIRepair Implementation

• Input and Pre-processing

• Repair and Output

• Example Usage

Evaluation

Chapter 7: Conclusion and future work

Publications [33] Publications [35]

Publications [37]

Figure 1.1. Thesis structure.

26

Chapter 2

Background

This chapter introduces the core concepts behind verifying and repairing neural networks. First,
it presents neural networks, applications, and security concerns. Then, it includes neural net-
work vulnerabilities and the necessity of neural network verification and repair, Bounded Model
Checking (BMC), Abstract Interpretation, and Satisfiability Module Theory (SMT). It also presents
related work in neural network verification, reachability analysis, testing, and repair.

2.1 Neural Networks (NNs)

A neural network consists of an input layer, an output layer, and one or more intermediate layers
called hidden layers [38]. Each layer is a collection of nodes called neurons. The neuron accepts
the signals entering it via the dendrites, performs a computation on those signals, and generates
a signal on the axon. These input and output signals are referred to as activations. Each neuron
is connected to other neurons by one or more directed edges.

Neural networks can be represented as graphs [39]. As Figure 2.1 shows, the edges (arrows)
represent the weights and biases of linear transformations between the layers. The circles repre-
sent the nonlinear activation functions performed by the neurons or units. The interior (colored)
layers are called hidden layers. Network architectures are described by their depth (number of
layers) and layer widths (number of units).

Deep Neural Networks (DNNs) are a class of artificial neural networks with multiple layers
between the input and output layers [40]. DNNs are a fundamental component of deep learning,
a subset of machine learning focusing on models with many layers (hence the term “deep”).

Let f : I → O be the neural network N with m layers. We use the most widely used neural
network for image classification as an example. For a given input x ∈ I, f(x) ∈ O calculates

27

2.1. NEURAL NETWORKS (NNS)

Figure 2.1. A typical neural network, with an input layer, three hidden layers, and an output layer, represented as
a graph.

the output of the DNN, which is the classification label of the input image. Specifically, we have
[40]:

f(x) = fN (. . . f2 (f1 (x;W1, b1) ;W2, b2) . . . ;WN , bN) (2.1)

In this equation, Wi and bi for i = 1, 2, . . . , N represent the weights and bias of the model,
which are trainable parameters. fi (zi−1;Wi−1, bi−1) is the layer function that maps the output
of layer (i− 1), i.e., zi−1, to the input layer i, which are mathematical functions that mimic the
behavior of biological neurons.

The most common activation functions include ReLU (Rectified Linear Unit) [41], Sigmoid
[42], tanh [43], and others [44], whose expressions are shown in Table 2.1.

Table 2.1. Some of the most used fixed activation functions.

Name Expression Range
Identity id(a) = a (−∞,+∞)

Step (Heavyside) H≥0(a) =

{︃
0 if a < 0
1 otherwise {0, 1}

Bipolar B(a) =

{︃
−1 if a < 0
+1 otherwise {−1, 1}

Sigmoid σ(a) = 1
1+e−a (0, 1)

Bipolar sigmoid σB(a) =
1−e−a

1+e−a (−1, 1)

Hyperbolic tangent tanh(a) (−1, 1)
Hard hyperbolic tangent tanhH(a) = max(−1,min(1, a)) [−1, 1]
Absolute value abs(a) = |a| [0,+∞)
Cosine cos(a) [−1, 1]

ReLU is the most widely used [45]. ReLU is a nonlinear activation function that allows neural
networks to learn complex features and patterns. Compared to traditional activation functions

28

2.1. NEURAL NETWORKS (NNS)

(such as sigmoid and tanh), ReLU is faster to compute [46]. This is because ReLU takes a
threshold on the input and does not involve complex mathematical operations. The existence
of nonlinear functions allows neural networks to approximate arbitrary functions [47], which
makes the neural network function more complex and, at the same time, increases the difficulty
of verification. Because common activation functions are nonlinear, this kind of verification
method does not scale in the case of large neural networks and suffers from the state-space
explosion. For example, for the piece-wise linear activation function Relu, each Relu node has
to be split into two linear constraints, i.e., if y = relu(x), then y = 0 when x < 0 and y = x

when x is positive. Therefore, solving a verification problem of a network of n Relu nodes leads
to solving 2n linear sub-problems [48].

A Feed-Forward Neural Network (FFNN) is the first and simplest type of artificial neural
network where connections between the nodes do not form a cycle. It consists of an input layer,
one or more hidden layers, and an output layer. The term “Feed-Forward” refers to how the
data moves through the model: it flows in one direction from the input layer, through the hidden
layers, and finally to the output layer. Here are some key points about FFNNs:

An example FFNN can be described as follows (notice that FFNN in the real world usually
contains thousands of neurons): The input layer receives the data, such as pixel values from an
image or feature vectors from a text. These inputs are passed to the first hidden layer, where
each node computes a weighted sum of its inputs, applies an activation function, and passes
the result to the next layer. This process continues through each hidden layer until the output
layer generates the final prediction, such as a class label or a numerical value. FFNNs are fun-
damental models in machine learning. Although they are simple compared to more advanced
neural network architectures, understanding FFNNs is essential for grasping the basics of deep
learning.

ACAS Xu [49] is a set of neural networks that consider the state of a drone aircraft and infor-
mation about an “intruder” aircraft, which are determined as sensor measurements. Formally,
for an FFNN N , we use n to denote the number of layers and si to denote the size of layer I
(i.e., the number of its nodes). Layer 1 is the input layer, layer n is the output layer, and layers
2, . . . , n − 1 are the hidden layers. The value of the j − th node of layer i is denoted vi,j and
the column vector [vi,1, . . . , vi,si]

T is denoted Vi. EvaluatingN entails calculating Vn for a given
assignment V1 of the input layer. This is performed by propagating the input values through the
network using predefined weights and biases and applying the activation functions – ReLUs, in
our case. Each layer 2 ≤ i ≤ n has a weight matrix Wi of size si × si−1 and a bias vector
Bi of size si, and its values are given by Vi = ReLU (WiVi−1 +Bi), with the ReLU function
being applied element-wise. This rule is applied repeatedly for each layer until Vn is calculated.
When the weight matrices W1, . . .Wn do not have any zero entries, the network is said to be
fully connected (see Fig. 2.1 for an illustration). An FFNN is said to be piecewise linear if it
contains only Piece-Wised Linear (PWL) activation functions.

29

2.1. NEURAL NETWORKS (NNS)

Definition 2.1.1 (Piece-Wised Linear (PWL) activation functions). A PWL activation function
typically has breakpoints or thresholds where the slope of the function changes abruptly. Each
segment between two breakpoints is a linear function defined as

f(x) = mix+ ci (2.2)

where mi is the slope and ci is the intercept of the i-th segment.

Before we give the key properties of neural networks, let us demonstrate the definition of
continuous function [50]:

Definition 2.1.2 (Continuous Function). The function f is continuous at some point c of its
domain if the limit of f(x), as x approaches c through the domain of f , exists and is equal to
f(c). In mathematical notation, this is written as

lim
x→c

f(x) = f(c) (2.3)

In detail, this means three conditions: first, f has to be defined at c (guaranteed by the re-
quirement that c is in the domain of f). Second, the limit of that equation has to exist. Third, the
value of this limit must equal f(c). Here, we have assumed that the domain of f has no isolated
points.

Baker demonstrated one of the key properties of neural networks demonstrated in [51] is
their ability to approximate any given function. Loosely speaking, given a function g, we can
construct a neural network f such that the distance between g and f is less than a given threshold.
The Universal Approximation Theorem formally captures this property.

Definition 2.1.3 (Universal Approximation Theorem). The Universal Approximation Theorem
states that let C (X,Rm) denote the set of continuous functions from a subset X of a Euclidean
Rn space to a Euclidean space Rm. Let σ ∈ C(R,R) be a continuous function. Note that
(σ ◦ x)i = σ (xi), meaning σ ◦ x denotes σ applied to each component of x.

Then σ is not polynomial if and only if for every n ∈ N,m ∈ N, compact K ⊆ Rn, f ∈
C (K,Rm) , ε > 0 there exist k ∈ N, A ∈ Rk×n, b ∈ Rk, C ∈ Rm×k such that

sup
x∈K

∥f(x)− g(x)∥ < ε (2.4)

where g(x) = C · (σ ◦ (A · x+ b)) [52].

30

2.1. NEURAL NETWORKS (NNS)

This theorem implies that neural networks can be used to approximate arbitrarily complex
functions with arbitrary approximation accuracy. Even though it does not specify how to choose
the neural network parameters (weights, number of neurons, number of neural layers, etc.) to
achieve the desired approximation of the objective function. The theorem explains why neural
networks seem to behave so intelligently, and understanding it is a critical step in developing a
deep understanding of neural networks. Machine learning researchers decide, based on intuition
and experience, how to construct a neural network architecture suitable for a given problem so
that it approximates the multidimensional space well, knowing that such a network exists but
also weighing computational performance.

For example, ACAS Xu was originally designed offline using dynamic programming and
Markov decision processes (MDPs) [53]. This traditional approach involved creating a large
rule table that defined the system’s behavior in various scenarios.

Then, the ACAS Xu system was enhanced by leveraging neural networks. The large rule table
was compressed by a factor of 1000 using a set of neural networks [54]. This transformation
significantly improved the system’s efficiency and scalability. By encoding the decision-making
rules into neural networks, the system reduced its memory footprint and increased its process-
ing speed. Neural networks offer superior generalization capabilities, allowing ACAS Xu to
perform robustly in a wider range of scenarios with greater accuracy. Additionally, the neural
network-based approach simplifies updates and maintenance, as new data can retrain the net-
work, enabling the system to adapt and improve over time. This demonstrates a clear advantage
of neural networks in enhancing the performance and practicality of complex decision-making
systems like ACAS Xu.

2.1.1 NN Implementations

Neural networks, inspired by the structure and function of the human brain [55], consist of in-
terconnected layers of nodes (neurons) that work together to process and learn from data. These
networks can model complex patterns and relationships within data, making them powerful tools
for a wide range of applications.

For example, Recurrent Neural Networks (RNNs) [56] excel in tasks requiring sequential
data analysis, such as time series prediction and natural language processing [57], [58]. Another
example is Generative Adversarial Networks (GANs), which generate synthetic data and images
by pitting two neural networks against each other in a competitive framework [20].

Among the various types of neural networks, Convolutional Neural Networks (CNNs) have
emerged as a particularly effective architecture for tasks involving spatial data [59]. A CNN
is a specialized form of feed-forward neural network designed to learn features autonomously
through optimized filters (kernels). It addresses challenges from earlier neural networks, such as

31

2.1. NEURAL NETWORKS (NNS)

vanishing or exploding gradients during back-propagation, by employing weight regularization
across fewer connections [60]. Originally introduced by LeCun [61], CNNs have emerged as
pivotal tools in computer vision, profoundly enhancing capabilities in tasks like image classifi-
cation, object detection, and image segmentation. A CNN typically consists of multiple layers,
each performing specific operations on the input data. These layers apply convolutional filters
(kernels) to the input data.

Definition 2.1.4 (Convolutional Neural Network (CNN)). For an input x and a filter w, the
convolution operation y is defined as:

y(i, j) = (x ∗ w)(i, j) =
∑︂
m

∑︂
n

x(i+m, j + n) · w(m,n)

Here, (i, j) denotes the spatial location in the output feature map, and (m,n) indexes the
positions within the filter.

After convolution, an activation function such as ReLU is applied to introduce non-linearity
into the model. These layers perform down-sampling operations to reduce the spatial dimensions
of the feature maps, thereby controlling overfitting and reducing computational load. The most
common pooling operation is max pooling, defined as:

y(i, j) = max
(m,n)∈P

x(i+m, j + n)

where P represents the pooling window.

These layers are typically used at the end of the network to perform high-level reasoning.
They connect every neuron in one layer to every neuron in the next layer.

CNNs have revolutionized the field of computer vision and are widely used in various appli-
cations, including:

• Image Classification: Classifying an image into predefined categories.

• Object Detection: Identifying and localizing objects within an image.

• Image Segmentation: Partitioning an image into segments or objects.

• Face Recognition: Identifying and verifying individuals in images.

In summary, CNNs are a powerful and flexible architecture for image-related tasks, capa-
ble of learning complex patterns through the hierarchical extraction of features, making them a
fundamental tool in modern deep learning implementations.

32

2.1. NEURAL NETWORKS (NNS)

Building upon the success of CNNs, researchers have continued to innovate and develop
new architectures to address the limitations of deep networks. One such notable advancement
is ResNet, short for Residual Network. Introduced by He et al. [62], ResNet is a deep learn-
ing architecture primarily designed to facilitate the training of very deep neural networks by
addressing the vanishing gradient problem.

A Residual Network (ResNet) is characterized by its use of residual blocks, which implement
shortcut (or skip) connections that bypass one or more layers. Formally, a residual block can be
described as follows:

Definition 2.1.5 (Residual Network). Let x be the input to a residual block and F(x, {Wi})
represent the residual mapping to be learned, where {Wi} are the weights of the layers within
the block. The output of the residual block, y, is given by:

y = F(x, {Wi}) + x

Here, x is directly added to the output of the residual function F(x, {Wi}). This addition
is element-wise and helps preserve the network’s gradient flow during back-propagation, effec-
tively mitigating the vanishing gradient problem.

The main motivation behind ResNet is to make it feasible to train extremely deep neural
networks by using residual learning. Traditional deep networks often suffer from the degradation
problem, where adding more layers results in higher training errors, which is counter-intuitive.
ResNet addresses this by reformulating the layers to learn residual functions concerning the layer
inputs rather than unreferenced functions.

The architecture of ResNet includes:

• Residual Blocks: These blocks contain a few convolutional layers with skip connections
that add the input of the block to its output.

• Bottleneck Architectures: For deeper networks, ResNet uses bottleneck layers (e.g., ResNet-
50, ResNet-101), which consist of three layers: 1x1, 3x3, and 1x1 convolutions, where the
1x1 layers are responsible for reducing and then restoring dimensions, making the network
more efficient.

• Identity Mapping: In some versions, identity mappings are used to ensure that the short-
cuts do not change the dimension of the input.

ResNet’s introduction has enabled the development of models with hundreds or even thou-
sands of layers, significantly advancing the state of the art in various computer vision tasks,

33

2.1. NEURAL NETWORKS (NNS)

including image classification, object detection, and segmentation. The success of ResNet has
also influenced the design of numerous subsequent deep-learning architectures.

Building upon the advancements made by architectures like ResNet, which enable the train-
ing of very deep networks to achieve high accuracy in image classification and other tasks,
MobileNet offers a different approach by focusing on efficiency and deployment on resource-
constrained devices.

MobileNet [5] is a family of neural network architectures designed for efficient performance
on mobile and embedded devices. Introduced by Google researchers in 2017, MobileNet models
aim to balance high accuracy and low computational cost, making them suitable for applications
where computational resources and power consumption are limited.

• Depthwise Separable Convolutions: MobileNet uses depth-wise separable convolutions,
which factorize a standard convolution into a depth-wise convolution followed by a point-
wise convolution. This reduces the number of parameters and computational complexity,
significantly improving efficiency without compromising accuracy.

• Width Multiplier: This hyper-parameter allows the model to be scaled regarding the num-
ber of channels in each layer, trading off between model size and accuracy to fit specific
resource constraints.

• Resolution Multiplier: This hyper-parameter allows the model to be scaled regarding input
image resolution, providing another way to balance computational cost and accuracy.

• Quantization: MobileNet models support quantization, which reduces the precision of the
numbers used to represent model parameters and activations from 32-bit floating point to
16-bit or 8-bit integers. This significantly reduces the model size and increases inference
speed, particularly on hardware optimized for lower-precision arithmetic, without greatly
sacrificing accuracy.

MobileNet has several versions, including MobileNetV2 [63] and MobileNetV3 [64], each
improving on the previous by incorporating advances in neural network architecture design.
These models have been widely adopted in applications such as image classification, object de-
tection, and segmentation, particularly in scenario deployment on resource-constrained devices.

These advancements in deep learning models have been further propelled by the use of pow-
erful hardware and efficient computational techniques. One of the key technologies that have
driven this progress is CUDA (Compute Unified Device Architecture) [65]. CUDA is crucial in
accelerating neural network computations, particularly in frameworks like TensorFlow and Py-
Torch [16]. These frameworks utilize CUDA to harness the massive parallel processing power
of NVIDIA GPUs, enabling faster training and inference of deep learning models.

34

2.1. NEURAL NETWORKS (NNS)

The Open Neural Network Exchange (ONNX) [66] format is an open-source format for rep-
resenting machine learning models. It allows developers to transfer trained models between
different learning frameworks with ease, making it possible to take advantage of the unique fea-
tures and strengths of each framework.

2.1.2 NN Quantization

The benefits of quantization extend beyond MobileNet to a wide range of Deep Neural Network
(DNN) models. Model quantization can reduce the size and inference time of DNN models
and their application to most models and different hardware devices [67]. The model’s stor-
age requirements and computational complexity can be significantly optimized by reducing the
number of bits per weight and activation. Typically, neural networks utilize floating-point num-
bers to represent weights and activations, demanding significant memory and computational re-
sources. To address this issue, especially in embedded systems, practitioners often convert these
floating-point numbers into fixed-point or integer representations, a process known as quantiza-
tion. Fixed-point representation, in essence, is a specific form of quantization where the decimal
point is fixed at a certain position. Hence, quantized neural networks essentially employ fixed-
point numbers to represent the weights and activations of the network. Jacob et al. [68] report
benchmark results on popular ARM CPUs for state-of-the-art MobileNet architectures and other
tasks, showing significant improvements in the latency-vs-accuracy trade-offs. In the following
formula, r is the true floating point value, q is the quantized fixed point value, Z is the quantized
fixed point value corresponding to the 0 floating point value, and S is the smallest scale that can
be represented after quantization of the fixed point. The formula for quantization from floating
point to fixed point is as follows:

r = S(q − Z)

q = round
(︁
r
S
+ Z

)︁ (2.5)

Quantized Neural Networks (QNNs) have the potential to find a wide range of applications in
safety-critical systems implemented on low-cost processors that support only integer arithmetic,
as well as powerful gas pedals such as GPUs and FPGAs [69]. Fixed-point arithmetic systems
are faster, consume less power and memory, and are less expensive because the computations can
be performed on low-cost integer-only processors [70]. As noted in previous work, quantization
is standard practice for deploying neural networks on real-time embedded devices. While it is
well known that networks implemented using fixed-point algorithms have little to no impact on
the accuracy of the network, they are not immune to malicious misclassification caused by ad-
versarial attacks, and the verification of real-valued neural networks is insufficient to determine
their correctness [71].

35

2.1. NEURAL NETWORKS (NNS)

Currently, INT8 quantization is a widely used technique in neural networks to convert weights
and activation values from 32-bit floating point (FP32) numbers to 8-bit integers (INT8) [67].
This process significantly reduces the model’s storage and computational requirements. Specif-
ically:

• Storage Space: Floating-point numbers require more memory compared to integers. An
FP32 value takes 4 bytes, while an INT8 value only takes 1 byte. Quantization can reduce
the model size by a factor of four.

• Computational Efficiency: Integer operations are typically faster and more energy-efficient
than floating-point operations. Hence, quantized models can make more efficient use of
hardware resources during inference.

Currently, Google’s TensorFlow Lite [72] and nVIDIA’s TensorRT [73] support the INT8
engine framework. QNNs decrease memory requirements and computational complexity, lead-
ing to faster inference times and lower power consumption while attempting to maintain model
accuracy. Hence, they are applied in many areas:

1. Mobile Computing: QNNs are extensively used in mobile applications, allowing for real-
time image and speech processing directly on smartphones and tablets without the need for
constant cloud connectivity [74].

2. Embedded Systems: In embedded systems like drones, robotics, and surveillance cam-
eras, QNNs enable sophisticated AI capabilities such as object detection, navigation, and
autonomous decision-making with limited hardware resources [75].

3. Internet of Things: IoT devices benefit from QNNs through enhanced data analytics and
intelligent decision-making capabilities at the edge, improving efficiency and responsive-
ness while reducing data transmission to the cloud. A study [76] explores the implemen-
tation and analysis of CNN-, QNN-, and BNN-based pattern recognition techniques on an
FPGA, highlighting their significance for IoT applications. This research emphasizes the
efficiency and lower power consumption achievable with QNNs in IoT devices, showcasing
the potential transformation in industrial applications through reduced processing latency
and power usage.

4. Automotive: In the automotive industry, QNNs are applied in advanced driver-assistance
systems (ADAS) for features like pedestrian detection, lane tracking, and traffic sign recog-
nition, enhancing safety while optimizing computational resources. As detailed in research
that focuses on training quantized models to handle real-world radar data [77] effectively
for noise reduction and signal clarity. This application is crucial for enhancing the perfor-
mance of driver assistance systems and ensuring safer automotive operations.

36

2.2. BOUNDED MODEL CHECKING

5. Wearable Devices: Wearable health monitoring devices use QNNs to process physiolog-
ical signals in real-time, providing immediate feedback on user health status and activity
levels without heavy battery usage. Recently, a study on “ECG-based real-time arrhyth-
mia monitoring using quantized deep neural networks” [78] showcases the application of
quantized neural networks in wearable devices for health monitoring, particularly for ECG
(electrocardiogram) analysis.

2.1.3 Adversarial Examples

Adversarial examples [23] represent a class of erroneous behavior. Suppose there is a neural
network classifier on ImageNet [79]. We can add noise to a correctly classified panda image and
then show the gibbon - at least according to the neural network. Humans still see the same picture
of a panda because we can’t detect the noise. The critical point is that adversarial aggression is a
subjective concept in the following sense. This depends on the inability of humans to distinguish
between the original image and the adversarial attack based on it. Thus, an adversarial attack is
usually defined as a differently categorized object close to the original object. I give the formal
definition of Adversarial example in the following:

Definition 2.1.6. (Adversarial Example) Given a (trained) deep neural network f : Rs1 → RsK ,
a human decision oracle H : Rs1 → RsK and a legitimate input x ∈ Rs1 with arg maxj fj(x) =

arg maxj Hj(x), an adversarial example of DNNs is defined as:

∃x̂ : arg max
j

Hj(x̂) = arg max
j

Hj(x)

∧ ∥x− x̂∥p ≤ d

∧ arg max
j
fj(x̂) ̸= arg max

j
fj(x)

(2.6)

where p ∈ N, p ≥ 1, d ∈ R and d > 0.

This proximity implicitly reflects the inability of humans to detect differences. However,
adversarial attacks depend on humans consistently declaring that adversarial attacks are mis-
classified. One of the representative methods, Goodfellow et al. [80], chose a faster method -
the Fast Gradient Symbology Method (FGSM) – to project the gradient onto the corners of a
hypercube of radius.

2.2 Bounded Model Checking

Model checking is an automatic verification technique designed for large state transition systems,
initially developed for finite-state concurrent systems. This method has been successfully applied

37

2.2. BOUNDED MODEL CHECKING

to debugging complex computer hardware, communication protocols, and software [81]. In
essence, Bounded Model Checking (BMC) symbolically executes a program up to a specified
bound k and encodes all obtained tracesC along with a given safety propertyP into an SAT/SMT
formula, expressed as C ∧ ¬P [82]. An automated theorem prover or solver, often used as a
decision procedure, checks this generated formula for satisfiability. If the formula is satisfiable,
it indicates a violation of the safety property and generates a witness (counterexample) [83].
Conversely, if the formula is unsatisfiable, it proves the program’s safety within the provided
bound k. Recently, model checking has also been applied to analyzing cyberphysical, biological,
and financial systems [84].

In BMC, a program is modeled as a state Transition System (TS) derived from its control
flow graph [85]. It is then transformed into a Static Single Assignment form (SSA). Each con-
trol graph node is transformed into an assignment, or a guard is created from a conditional
expression. From a conditional expression. Each edge indicates a change in the control position
of the program [86].

Kripke structure [87] is utilized as TSM = (S, T, S0)when modeling the program. A Kripke
is an abstract machine consisting of a collection of states S, initial states S0 ⊆ S, and transition
relation T ⊆ S × S. The collection of states is given as:

S = {s0, s1, . . . sn} : n ∈ N (2.7)

It includes all the states. Each state contains the values of all program variables and a program
counter pc. Each transition is represented by γ(si, si+1) ∈ T , where it represents a logical for-
mula encoding all the changes in variables and pc from si to si+1. Then, a Verification Condition
(VC) denoted by Ψ is computed.

The major challenge for the technique is a phenomenon called the State Explosion Problem.
The State Explosion Problem can consume much time and resources and detract from their
primary responsibility [88].

To further conquer the State Explosion Problem, Biere et al. [89] proposed the Bounded
Model Checking (BMC) using Boolean Satisfiability (SAT) solvers. The basic idea for BMC is
relatively straightforward. Given a finite-state transition system, a temporal logic property, and
a bound k (we assume k≥1), BMC generates a propositional logical formula whose satisfiability
implies the existence of a counterexample of length k and then passes this formula to an SAT
solver. This formula encodes the constraints on initial states, the transition relations for k steps,
and the negation of the given property.

BMC helps debug as an efficient method of detecting subtle counterexamples. To prove
correctness when a counterexample is not found using BMC, an upper bound on the number

38

2.2. BOUNDED MODEL CHECKING

of steps to reach all reachable states needs to be determined. It has been shown that a state
transfer system’s diameter (i.e., the shortest path between any two states) can be used as an
upper bound [89]. However, computing the diameter seems computationally difficult when the
state transfer system is implicitly given. Other methods for accomplishing BMC are based on
induction [90], cubic amplification [91], Craig interpolation [92], and circuit co-factorization
[93]. This problem is still a topic of active research.

2.2.1 Bounded Model Checking Tools

Over the past years, Bounded Model Checking has been successfully applied to verify concurrent
C programs. There are several state-of-the-art bounded model checkers available in the field,
such as ESBMC [94], NuSMV [95], LLBMC [96], JBMC [97] and CBMC [98].

• CBMC (C Bounded Model Checker): CBMC is a popular tool for verifying C and C++
programs.

• NuSMV (New Symbolic Model Verifier): A symbolic model checker handles both bounded
and unbounded model checking.

• LLBMC (Low-Level Bounded Model Checker): Focused on analyzing compiled code
at a low level.

• JBMC (Java Bounded Model Checker): An extension of CBMC designed for Java ap-
plications.

• ESBMC (Efficient SMT-based Context-Bounded Model Checker): A mature, permis-
sively licensed open-source context-bounded model checker for verifying single- and mul-
tithreaded C/C++, CUDA, CHERI, Kotlin, Python, and Solidity programs. It can automat-
ically verify predefined safety properties (e.g., bounds check, pointer safety, overflow) and
user-defined program assertions.

ESBMC also implements state-of-the-art incremental BMC and k-induction proof-rule al-
gorithms based on Satisfiability Modulo Theories (SMT) and Constraint Programming (CP)
solvers.

2.2.2 Satisfiability Modulo Theories Backends

Satisfiability modulo theory (SMT) [99] solving consists of deciding the satisfiability of a first-
order formula with unknowns and relations lying in certain theories. For instance, the following
formula has no solution x, y ∈ R :

39

2.2. BOUNDED MODEL CHECKING

(x ≤ 0 ∨ x+ y ≤ 0) ∧ y ≥ 1 ∧ x ≥ 1. (2.8)

The formula may contain negations (¬), conjunctions (∧), disjunctions (∨), and possibly
quantifiers (∃,∀). An SMT-solver reports whether a formula is satisfiable and, if so, may provide
a model of this satisfaction. For instance, if one omits x ≥ 1 in the preceding formula, its
solutions include (x = 0, y = 1). Other possible features of SMT-solvers include the dynamic
addition and retraction of constraints, the production of proofs and Craig interpolants [92], and
optimization capabilities. SMT-solving has major applications in formally verifying hardware,
software, and control systems.

Bounded Model Checking (BMC) relies on SMT solvers to handle the satisfiability problems
generated during the verification process. The SMT solver’s ability to deal with specific theories
and efficiently solve complex formulas is essential for BMC’s effectiveness. This synergy allows
for the practical verification of systems, ensuring their correctness up to a specified bound. ES-
BMC supports a variety of SMT solvers as backends, including Boolector [100], Z3 [101], and
Bitwuzla [102].

• Boolector [100] is an SMT (Satisfiability Modulo Theories) solver focused on the theories
of bit-vectors, arrays, and uninterpreted functions. Boolector is known for its efficiency
and performance in handling bit-precise problems, making it suitable for hardware and
software verification tasks. It uses techniques, including pre-processing, rewriting, and
bounded model checking, to solve complex SMT problems effectively.

• Z3 [101] is a high-performance SMT solver developed by Microsoft Research. It supports
many theories, including bit-vectors, arrays, arithmetic, and datatypes. Z3 is designed to be
highly versatile and is used in various domains such as formal verification, program anal-
ysis, and constraint solving. Its robust API and integration capabilities make it a popular
choice for both academic research and industrial applications. Z3’s development focuses
on providing an efficient and scalable solution for a broad spectrum of SMT problems.

• Bitwuzla [102] is a modern SMT solver specifically tailored for bit-vectors and arrays. It
is a successor to Boolector, developed by the same group led by Armin Biere. Bitwuzla
aims to enhance the performance and capabilities of Boolector by incorporating advanced
techniques such as SAT solving, bit-blasting, and optimization strategies. The solver is
designed to handle complex bit-vector problems efficiently, making it suitable for formal
methods, hardware verification, and software analysis tasks. Bitwuzla continues the legacy
of Boolector while pushing the boundaries of what can be achieved in SMT solving for bit-
precise domains.

This paper mainly uses the Boolector integrated in ESBMC as the SMT solver backend.

40

2.3. NEURAL NETWORK VERIFICATION

Still, we also compare the performance of different solvers for the same verification problem;
see Section 4.3.3.

2.3 Neural Network Verification

Neural network verification is the process of formally ensuring that a neural network meets cer-
tain specifications or properties. The goal is to provide guarantees about the network’s behavior
under various conditions and to identify potential failure modes.

2.3.1 Verification Problem Statement

Neural network verification is inspired by formal methods developed for general-purpose soft-
ware verification [103] and essentially aims at proving that a given neural network works as
expected. This means not only defending against adversarial attacks but also things like denois-
ing or correcting aircraft steering [49].

Moreover, at the technical level, it is not only robustness against adversarial attacks that can
be verified. We note that adversarial attacks are caused by the very unstable behavior of neural
networks. Therefore, the Lipschitz continuity [104] [49] [105] is explored and verified since it
limits the amount by which the neural network output varies with the input. In addition, security
properties can be encoded by so-called reachability analysis [106], which asks what the potential
outputs are for a given set of inputs. Sometimes, verification procedures are embedded in other
verification procedures. For example, one can use them to restrict the values of particularly
important ReLU neurons, thus refining the analysis of the actual neural network. In addition, one
can use smaller, more specialized neural networks within larger ones and validate the controllers,
assuming that the smaller neural networks work properly [107].

A severe verification caveat for programs is that they lack the scalability of large-scale neural
networks. Since the neural network verification problem is NP-Complete [108], it becomes com-
putationally intractable. However, the need to validate neural networks is certainly not limited
to small-scale neural networks. As a result, considerable effort has been put into speeding up the
verification procedure, resulting in different branches of research. This has further contributed
to the Verification of Neural Network Competition (VNN-COMP) [109] rewards the number
of verification instances that can be solved correctly. This again highlights that scalability is
seen as one of the main challenges in neural network verification. Below, we briefly discuss the
main approaches currently used and provide examples for each idea to speed up the verification
process

41

2.3. NEURAL NETWORK VERIFICATION

Formal verification proves or disproves that a system meets certain formal specifications and
properties. A verification problem is defined as:

M ⊨ P ? (2.9)

This is equivalent to answering the question: Does the system model M satisfy the property
P? Depending on the verification technique, the system has to be modeled (e.g., a state transi-
tion model), and the specifications need to be expressed respecting some specific syntax (e.g.,
temporal logic).

A verification technique aims to prove that P holds on M or generate a counterexample wit-
nessing the violation of P . Many verification techniques, such as model-checking, SAT/SMT,
abstract interpretation, and theorem proving, have been broadly and successfully applied to ver-
ify software-intensive systems [110].

2.3.2 Verification of Safety Properties

Exploring new verification methods for DNNs highlights a broader trend in formal verification
aimed at enhancing the reliability and safety of complex systems. As we transition from specific
solutions like those for fixed-point DNNs to more general verification challenges, it becomes
essential to focus on the foundational aspects of verification, such as safety properties. Safety
properties ensure the systems behave within their expected parameters under all conditions, thus
preventing any hazardous outcomes. Defining and verifying such properties becomes indispens-
able in the context of neural networks, particularly those utilized in safety-critical applications.
This necessity brings us to the broader domain of software verification, where safety proper-
ties are tailored based on deep domain knowledge and the specific behaviors that need to be
guaranteed safe.

In general, a safety property defines a condition that must not be violated as such an event will
eventually lead to undesired behavior. In traditional software verification, such properties are
usually defined by users according to their domain knowledge and actual requirements, which
allows him/her to state which program behaviors are safe.

Assuming that the network only contains ReLU activations between each layer, the satisfia-
bility problem to find a counterexample can be expressed as:

l0 ≤ x0 ≤ u0 (2.10)

x̂n ≤ 0 (2.11)

x̂i+1 = Wi+1xi + bi+1 ∀i ∈ {0, n− 1} (2.12)

42

2.3. NEURAL NETWORK VERIFICATION

xi = max(x̂i, 0) ∀i ∈ {1, n− 1}. (2.13)

Eq. (2.10) represents the constraints on the input, and Eq. (2.11) on the neural network
output. Eq. (2.12) encodes the linear layers of the network and Eq. (2.13) the ReLU activation
functions. If an assignment to all of the values can be found, this represents a counterexample.
If this problem is unsatisfiable, no counterexample can exist, implying that the property is True.
We emphasize that we must prove that no counter-examples can exist and not simply that none
could be found [111].

Network Functionality. The ACAS Xu system maps input variables to action advisories. Each
advisory is assigned a score, with the lowest score corresponding to the best action. The input
state is composed of dimensions: ρ, theta, psi, vown , vint (shown in Figure 2.2), which represent
information determined from sensor measurements (shown in Table 2.2) [53].

Figure 2.2. Geometry for ACAS Xu Horizontal Logic Table.

Table 2.2. Input state variables used in ACAS Xu.

Variable Units Description Tables NN
ρ ft distance between ownship and intruder Y Y
θ rad angle to intruder w.r.t ownship heading Y Y
ψ rad heading of intruder w.r.t. ownship heading Y Y
vown ft / s velocity of ownship Y Y
vint ft / s velocity of intruder Y Y
τ s time until loss of vertical separation Y N
aprev deg / s previous advisory Y N

Each network is denoted Nγ,β , where γ corresponds to the index (1 to 5) of a specific value
of previous advisory aprev ∈ {COC,WL,WR, SL, SR} and Developed in [54] and evaluated
in [112], 45 separate neural networks were used to compress the lookup table. Each network is
denoted Nγ,β , where γ corresponds to the index (1 to 5) of a specific value of previous advisory
aprev ∈ {COC,WL,WR,SL,SR} and β corresponds to the index (1 to 9) of a specific value of
time to loss of vertical separation τ ∈ {0, 1, 5, 10, 20, 40, 60, 80, 100} seconds. For example,
N2,3 corresponds to a neural network in which aprev = WL and τ = 5. Then each of these

43

2.3. NEURAL NETWORK VERIFICATION

networks receives inputs for the remaining five state variables (ρ, θ, ψ, vown, and vint) and outputs
a value associated with each of the five output variables ({COC,WL,WR,SL,SR}), see Table
2.3. Several architectures and optimizers were considered and analyzed for the training process.

β corresponds to the index (1 to 9) of a specific value of time to loss of vertical separation
τ ∈ 0, 1, 5, 10, 20, 40, 60, 80, 100} seconds. For example, N2,3 corresponds to a neural network
in which aprev = WL and τ = 5. Then each of these networks receives inputs for the remain-
ing five state variables (ρ, θ, ψ, vown , and vint) and outputs a value associated with each of the
five output variables ({COC,WL,WR, SL, SR}). Several architectures and optimizers were
considered and analyzed to train all 45 neural networks. AdaMax [113], a variant of Adam, was
chosen as it proved to learn the fastest without getting stuck in local optima. As for the layered
architecture, six hidden layers of 50 neurons each yielded the best results while maintaining an
efficient computation time [54]. Hence, all the neural networks have five inputs, five outputs,
and six hidden layers of 50 neurons each, as depicted in Figure 2.3.

Figure 2.3. Depiction of the ACAS Xu neural network.

Table 2.3. ACAS Xu Actions (Horizontal Collision Avoidance).

Action Description
SL strong left at 3.0 deg/s
WL weak left at 1.5 deg/s
COC clear of conflict (do nothing)
WR weak right turn at 1.5 deg/s
SR strong right turn at 3.0 deg/s

We useNx,y to denote the network trained for the x− th value of aprev and y− th value of τ .
For example, N2,3 is the network trained for the case where aprev = weak left and τ = 5. Using
this notation, we now formally define each of the properties φ1, . . . , φ10 that we tested. All 10
properties for ACAS Xu benchmarks are summarized in Table 2.4.

44

2.3. NEURAL NETWORK VERIFICATION

Table 2.4. ACAS Xu Benchmark Open Loop Properties.

ρ (ft) θ (rad) ψ (rad) vown (ft/s) vint (ft/s) Networks Output
ϕ1 ≥ 55948 × ≥ 1145 ≤ 60 All COC ≤ 1500
ϕ2 ≥ 55948 × ≥ 1145 ≤ 60 Nx≥2,y COC not max
ϕ3 ∈ [1500, 1800] ∈ [−0.06, 0.06] ≥ 3.10 ≥ 980 ̸= N1,y≥7 COC not min
ϕ4 ∈ [1500, 1800] 0 ≥ 1000 ∈ [700, 800] ̸= N1,y≥7 COC not min
ϕ5 ∈ [250, 500] ∈ [0.2, 0.4] ≈ π ∈ [100, 400] N1,1 SR min
ϕ6 ∈ [12000, 62000] ∈ [0.7, π]∨ ∈ [−π,−0.7] ≈ π ∈ [100, 1200] N1,1 COC min
ϕ7 ∈ [0, 60760] ∈ [−π, π] ∈ [100, 1200] ∈ [0, 1200] N1,9 SL, SR min
ϕ8 ∈ [0, 60760] ∈ [−π,−0.75π] ∈ [600, 1200] ∈ [600, 1200] N2,9 WL ∨ COC
ϕ9 ∈ [2000, 7000] ∈ [−0.4,−0.14] ≈ −π ∈ [100, 150] N3,3 SR min
ϕ10 ∈ [36000, 60760] ∈ [0.7, π] ≈ −π ∈ [900, 1200] N4,5 COC min

(a) Property ϕ1 and ϕ2 (b) Property ϕ3 (head-on collision) (c) Property ϕ4 (closing collision)

Figure 2.4. Illustration of properties ϕ1, ϕ3, and ϕ4. Angles and distances are not drawn to true scale for clarity
of the image.

In particular, as shown in Figure 2.4, properties 1-4 are described in detail, which are used
in the later experimental chapters. Property ϕ1 selects a distance ρ of approximately 10.5 miles
(55,947 feet), exceeding the maximum turning radius of an aircraft flying at 1145 ft/s (43,736
feet). The maximum velocity of 1145 ft/s (approximately 780 mph) is a conservative upper
bound that is significantly higher than typical commercial cruise speeds, which are closer to
678 mph at 30,000 feet altitude. Additionally, the intruder’s velocity is set at 60 ft/s (40 mph),
representing a conservative lower limit for fixed-wing aircraft. While these variables seem rea-
sonable, ϕ1 has limitations as it reflects the design constraints of the neural network rather than
prioritizing the ranking of optimal actions to avoid conflicts. A better property would focus on
ensuring that the network produces clear conflict-avoidance maneuvers. In contrast, ϕ2 refines
ϕ1 by addressing a subset of its conditions and evaluating situations where avoiding conflict is
not the last resort, making ϕ2 more specific and potentially more effective in ensuring robust

45

2.4. NEURAL NETWORK REPAIR

neural network performance. Together, these properties highlight the need for precise metrics
to evaluate aircraft encounter scenarios effectively.

Properties ϕ3 and ϕ4 check that the neural network does not output clear of conflict in cases
where the intruder is ahead of the ownship and a collision is imminent. Property ϕ3 evaluates
scenarios where the two aircraft are approaching a head-on collision within less than a second,
assuming insufficient vertical separation, and requires the neural network to recommend imme-
diate conflict-avoidance maneuvers to prevent the collision. For instance, if the relative velocity
exceeds a certain threshold (e.g., 1000 ft/s), the network must trigger an action without delay.
Property ϕ4, on the other hand, examines situations where the ownship is directly behind the
intruder and closing in at a relative speed of 200-300 ft/s, predicting a collision within 9 seconds
unless evasive action is taken. This property ensures that the neural network accurately identifies
the intruder’s trajectory and provides optimal solutions, such as adjusting speed or trajectory, to
avoid collision. Together, these properties assess the robustness of the neural network in han-
dling critical and time-sensitive collision scenarios, emphasizing the importance of clear and
immediate conflict resolution to maintain air traffic safety.

2.4 Neural Network Repair

Neural network repair is the process of modifying a neural network to correct undesirable behav-
iors or improve its performance on specific tasks without compromising its overall functionality.
This is particularly important in applications where the neural network must meet strict safety,
robustness, or fairness criteria, such as in autonomous driving, healthcare, and finance.

2.4.1 Repair Problem Statement

Similar to software testing, neural network testing evaluates the behavior of neural networks
through a large number of test cases to determine the existence of misbehavior, and significant
progress has been made in recent years in the areas of test coverage criteria [114] and use case
generation [115] [116]. However, both neural network validation and neural network testing are
post hoc analyses, i.e., they can only provide qualitative or quantitative conclusions on the pres-
ence or absence of erroneous behaviors. When a neural network does not satisfy a particular
property, the results of neural network validation or testing cannot alleviate these violations. On
the contrary, deep neural network training methods based on property satisfaction, which leave
aside pre-trained models and focus on building and training a neural network from scratch that
satisfies a specific property (the degree of satisfaction can be evaluated by neural network valida-
tion or testing), have gained a lot of attention and made significant breakthroughs, especially in
deep neural network training methods based on robustness [117]. Whether it is neural network

46

2.4. NEURAL NETWORK REPAIR

validation, neural network testing, or neural network training based on property satisfaction, all
of them fail when faced with a neural network model with erroneous behaviors, i.e., they are
unable to do anything about the erroneous behaviors that the neural network model has already
exhibited. To solve this problem, Neural Network Repair (DNN repair) [118] has emerged, i.e.,
when a neural network is found to exhibit erroneous behaviors (achieved through neural network
verification or testing techniques), the neural network repair aims to eliminate these erroneous
behaviors, so that the repaired neural network meets the specific properties of the statute while
minimizing the impact on the performance of the network model.

Definition 2.4.1 (Neural Network Repair). Given a neural network f and a set of properties P
that f should satisfy, the repair process starts by identifying instances where f violates P . These
instances are formally defined as a set of counterexamples C:

C = {(x, y) | f(x) /∈ P(y)}

where x is an input, y is the expected output, and P(y) represents the set of acceptable outputs
for the input x.

Once the problematic instances are identified, the next step is to define the objectives of the
repair process.

The objective of the repair process is to find a new neural network f ′ that minimally deviates
from f but satisfies the properties P for all x:

∀(x, y) ∈ C, f ′(x) ∈ P(y)

Additionally, f ′ should retain the performance of f on non-counterexample inputs as much as
possible:

∀(x, y) /∈ C, f ′(x) ≈ f(x)

Several techniques can be employed to achieve these repair objectives. These techniques
focus on different aspects of the network and the repair process, ensuring that the modified
network meets the desired properties while maintaining its overall functionality.

• Retraining: Adjusting the network weights by fine-tuning on a modified dataset Drepair that
includes counterexamples and possibly additional data to reinforce desired properties:

f ′ = train(f,Drepair)

• Layer Adjustment: Modifying the weightsW and biases b of specific layers to correct the

47

2.4. NEURAL NETWORK REPAIR

outputs for counterexamples:

W ′, b′ = adjust(W, b, C)

• Constraint-based Methods: Introducing constraints Cconstraints during the training process
to enforce properties P:

minimize loss(f ′(x), y) subject to Cconstraints

After applying these repair techniques, it is crucial to evaluate the repaired network to ensure
that it meets the desired properties and performs well on a test set.

The repaired network f ′ must be evaluated to ensure it meets the desired properties P and
performs well on a general test set Dtest. Formally, this involves:

• Checking property satisfaction:

∀(x, y) ∈ Dtest, f ′(x) ∈ P(y)

• Assessing performance metrics (e.g., accuracy, precision) to ensure f ′ performs ade-
quately on Dtest:

performance(f ′,Dtest) ≈ performance(f,Dtest)

Through this systematic process, neural network repair aims to enhance neural networks’
robustness and reliability, ensuring they perform as expected across a wide range of inputs.

Previous subsections have introduced the common definition of neural network repair. Specif-
ically, because of the different nature of neural network protocols and their description types,
more specific neural network repair problems have emerged in recent years. Regarding the
nature of the network to be repaired, neural network repair problems can be categorized into
sample-wise DNN repair problem (SRP) and Domain-Wise DNN Repair Problem (DWNRP).
Sample-wise Repair Problem (SRP) and Domain-wise DNN Repair Problem (DRP) are defined
as follows:

Definition 2.4.2 (The Sample-wise Repair Problem (SRP)). Given a neural network to be re-
paired and the set of properties {Pi}pi=1 that it violates, i.e.,Nθ ̸|= {(Xi;Yi;φi)}pi=1 the set of in-
putsX and outputs Y of each propertyPi describes the set of sample points in the corresponding
space. The neural network sample repair problem refers to the problem of modifying the param-
eter set θ to θ′, by some repair means, to obtain a repaired neural network Nθ′ that satisfies the
set of constraint properties described in the form of sample points, i.e., Nθ′ ⊨ {(Xi;Yi;φi)}pi=1.

Definition 2.4.3 (Domain-wise repair problem (DRP)). Given a neural network to be repaired
and the set of normative properties, it violates {Pi}pi=1, i.e., Nθ ̸|= {(Xi;Yi;φi)}pi=1 the set of

48

2.4. NEURAL NETWORK REPAIR

inputs X and outputs Y . Each property Pi describes a region (e.g., interval, polyhedron, etc.)
in the corresponding space. The neural network region repair problem refers to the problem of
repairing a neural network by modifying the parameter set θ to θ′ to obtain a neural network that
satisfies these criteria. The repaired neural network satisfies the set of constraints described in
the form of regions, i.e.,Nθ′ ⊨ {(Xi;Yi;φi)}pi=1 [119].

This thesis mainly considers the sample-wise repair problem.

Definition 2.4.4 (DNN repair/patching problem). Given an initial neural network Nθ to be re-
paired and the set of properties {Pi}pi=1 that it violates, the following problem can be solved. The
neural network repair problem refers to the problem of modifying the parameter set θ to θ′, by
some repair means, get the repaired neural networkNθ′ to satisfy the set of constraint properties,
i.e., Nθ′ ⊨ {(Xi;Yi;φi)}pi=1

Many researchers have proposed their full-precision neural network repair techniques. These
can be divided into three categories: Retraining, Direct Weight Modification, and Attaching
Repair Units.

The requirements for neural network models can be summarized below:

• The repaired neural network can satisfy the properties of the statute violated by the orig-
inal neural network N and correctly process the input samples or regions that cannot be
correctly processed by N .

• For those input samples (regions) that are different from those to be repaired, the repair
strategy can not change the behavior of the original neural network on these samples (re-
gions) as much as possible, i.e., the repair neural network can perform as close as the
original neural network.

• The repaired neural network N� has to maintain the performance of the original neural
network N as much as possible. When a performance loss is incurred, the repair strategy
must minimize this performance degradation. Of course, if the repair results in an increase
in the performance of the neural network, that is even better! Whether the repair strategy
can support higher dimensional descriptions of the samples or regions to be repaired, e.g.,
the dimensionality of polyhedra, etc. Whether the repair strategy can support different
neural network units, e.g., convolutional neural network, RNN, etc.

• The repair strategy should be computationally efficient, as evidenced by the fact that the
repair strategy can accomplish the given neural network repair task in a determined amount
of time and can run on hardware at the current state of the art.

49

2.4. NEURAL NETWORK REPAIR

2.4.2 Mixed Integer Linear Optimization

The repair strategies for neural networks, as discussed, need to be computationally efficient to
be feasible on current hardware. Mixed Integer Linear Programming (MILP), with its ability to
handle discrete decision variables and complex constraints in a linear framework, offers a robust
methodology for achieving such efficiency. By formulating the neural network repair problem
as a MILP, it becomes possible to efficiently explore and optimize the vast solution space, even
under stringent operational constraints. This connection highlights the practical utility of MILP
in ensuring that neural network repair strategies not only meet theoretical performance bench-
marks but are also implementable with the computational resources available today. This sets
the stage for a deeper examination of MILP’s features and application in the subsequent section.

MILP (Mixed Integer Linear Programming) extends linear programming in which some or
all decision variables are restricted to integers. In this type of problem, the objective function
and all constraints are linear, but the solution space becomes discrete due to integer constraints,
making the problem more complex and challenging.

Definition 2.4.5 (MILP (Mixed Integer Linear Programming)). Minimize (or Maximize) the
objective function:

cTx+ dTy (2.14)

Subject to linear constraints:

Ax+By ≤ b

x ≥ 0, y ≥ 0
(2.15)

Here, x represents a vector of decision variables that must take integer values;y represents
a vector of decision variables that can take real values; and A, B, c, d, and b are matrices and
vectors of problem parameters.

The difficulty in solving MILP problems primarily stems from the integer constraints, which
make the feasible solution space highly complex.

All state-of-the-art solvers for MILP employ one of many existing variants of the well-known
branch-and-bound algorithm of [120]. This class of algorithm searches a dynamically con-
structed tree (known as the search tree). The state-of-the-art MILP solvers include Gurobi [121],
a commercial solver widely used for linear programming, integer programming, and mixed inte-
ger linear programming. According to B. Meindl and M. Templ’s [122] Analysis of commercial
and free and open source solvers for linear optimization problems, Gurobi is the fastest solver

50

2.5. CHAPTER SUMMARY

and can solve most problems. Another reason for choosing Gurobi was primarily in the area of
neural network robustness, and other approaches, such as alpha-beta-crown in the area of neural
network verification, use Gurobi as their backend. Hence, we use Gurobi as the backend to solve
the neural network repair problem.

Other MILP solver include: CPLEX [123], GLPK (GNU Linear Programming Kit) [124].
Python external library Scipy [125] also provides some functions for MILP.

• CPLEX: CPLEX is a high-performance mathematical programming solver developed by
IBM. It is widely used for solving large-scale Linear Programming (LP), Mixed-Integer
Programming (MIP), and Quadratic Programming (QP) problems.

• GLPK (GNU Linear Programming Kit): GLPK is an open-source solver for Linear
Programming (LP) and Mixed-Integer Programming (MIP) problems. It is part of the GNU
Project and is known for its flexibility and ease of use.

• Scipy: Scipy is a Python library for scientific and technical computing. It builds on NumPy
and provides a wide range of functions for optimization, integration, interpolation, eigen-
value problems, and other scientific computations.

QNNRepair is a neural network repair tool with a Gurobi backend that converts neural net-
work repair problems into linear programming problems.

2.5 Chapter Summary

This chapter delves into the foundational elements of neural networks, highlighting their practi-
cal implementations and addressing the critical areas of neural network verification and repair.
We provide a comprehensive overview of cutting-edge techniques in the field while also drawing
parallels with existing concepts.

This chapter begins by elucidating neural network fundamentals. Recognizing the significant
deployment of neural networks within the embedded systems domain, we discuss quantized neu-
ral networks, which serve as a cornerstone for our subsequent analyses of verification and repair
processes. This is complemented by examining defense strategies against emerging threats that
compromise neural network robustness, setting the stage for exploring verification methodolo-
gies with an emphasis on bounded model checking.

Subsequent sections present a thorough review of contemporary neural network verification
strategies, categorically divided into four main approaches: Exact Verification, Approximate
Verification, Verification through Satisfaction Theory, and Verification via mixed-integer linear

51

2.5. CHAPTER SUMMARY

programming. Our discussion extends to the verification of neural network reachability and
quantization effects, spotlighting areas of conceptual overlap.

The concluding segments of this chapter shift focus to the realm of neural network repair. We
navigate through prevalent neural network repair methodologies, such as retraining, direct ad-
justment of weights, integration of repair units, and counterexample-guided repair mechanisms,
with a particular consideration for quantization nuances.

Through this literature review, we gain a holistic understanding of the current landscape in
neural network research, encompassing both theoretical underpinnings and practical applica-
tions. This exploration enriches our knowledge base and illuminates the inter-connectedness
of verification and repair strategies, underscoring the importance of continuous innovation and
adaptation in the face of evolving technological challenges and threats.

52

Chapter 3

Related Works

In this chapter, we will provide an overview of related work in neural network verification and re-
pair. For neural network verification, we classify existing methods into two categories based on
two criteria: whether approximation techniques are employed to reduce verification complex-
ity and the type of problem-solving approach used (e.g., SMT-based methods or MILP-based
methods). For neural network repair, we categorize current approaches into four main groups:
Retraining, Adjusting Weight, Attaching Repair Units, and Counter-example guided repairing.
Additionally, we explore the impact of quantization operations on both verification and repair
processes. Through this discussion, we aim to highlight the state-of-the-art methodologies and
their respective strengths and limitations in neural network verification and repair, providing a
foundation for the subsequent contributions of this thesis.

3.1 Verification Methods

Verification methods for neural networks can be categorized into full neural network verification
and approximate neural network verification based on completeness. Depending on the back-
end of the problem solving, they can be categorized as SMT-based using an SMT solver such as
Z3 and LP-based and MILP-based using a linear programming solver such as Gurobi, discussed
below.

3.1.1 Exact Verification

Most neural network verification problems can be solved by reducing them to constraint-solving
problems in first-order logic. Formulas in first-order logic consist of constants, variables, func-
tion and predicate symbols, logical connectives, and quantifiers. This thesis needs only one

53

3.1. VERIFICATION METHODS

particular type of first-order logic, namely the quantifier-free fragment of Linear Rational Arith-
metic (LRA) [126].

Definition 3.1.1 (Linear Rational Arithmetic). The syntax of linear rational arithmetic (LRA)
is as follows. The set of terms is defined by the following grammar

s, t ∈ Term ::= c|x|s+ t | c · t (3.1)

where x is a variable symbol and c is a rational number.

For example, first, let X = {x0, x1, . . .} be a set of variables which range over values in R.
Then, we define terms as follows: a term is either a constant c ∈ R, a variable x ∈ X , or a
function application t1 ◦ t2, where ◦ ∈ {+, ·} and t1, t2 are two terms. For instance, 5, x , and
3 · x+ 2 · y are terms. To reflect the usual notation, we often drop the multiplication sign.

• SMT Solvers: Two SMT solvers, Reluplex [112] and Planet [127], have been proposed for
verifying properties of DNNs expressible with SMT constraints. SMT solvers typically per-
form well on problems expressed as Boolean combinations of constraints on other variable
types. SMT solvers typically combine SAT solvers with specialized decision procedures
for other theories.

• SAT Method: Narodytska [128], [129] propose to verify the properties of a class of neu-
ral networks (i.e., binary neural networks where both weights and activations are binary)
by reducing to the well-known Boolean satisfiability. Using this Boolean encoding, they
utilize the power of modern SAT solvers and the proposed counterexample-guided search
procedure to verify various properties of these networks. One of the focuses is on the ro-
bustness against adversarial perturbations. Experimental results show this approach applies
to medium-sized deep neural networks used in image classification tasks.

The advantages of exact neural networks are that they are complete, verifiable, and give reli-
able counterexamples. The disadvantages are that they take a long time and use many computa-
tion resources. They are especially CPU intensive and cannot be accelerated using GPUs, which
are widely used in approximate verification. And they are not scalable for large networks.

3.1.2 Approximate Verification

Initially, the robustness problem involved small perturbations in the data to deal with measure-
ment errors and other factors contributing to noise in the input data [127]. It quickly became a
security issue as more and more networks began to be deployed in safety-critical applications.

54

3.1. VERIFICATION METHODS

Recent advances in formal verification methods such as Satisfiability Modulo Theory (SMT)
[130] and Mixed Integer Linear Programming (MILP) [131] have made it possible to use general-
purpose solvers applied to neural network verification problems. However, these solvers are too
slow to verify any real network [132] [11] [133]. Therefore, additional DNN-level inference is
needed to make any verification procedure scale.

Approximate Verification uses a variety of approximation or abstract interpretation methods
to simplify the verification process of neural networks; the most common simplification method
is to abstract the activation function in the neural network, which includes segmented linear
approximation, Zonotope, etc., which is described below.

The representative segmented linear approximation is β-CROWN developed by Wang et al.,
[134], a new bound propagation-based method that can fully encode neuron splits via optimiz-
able parameters constructed from either primal or dual space. It solves an optimization problem
equivalent to the expensive LP-based methods with neuron split constraints while still enjoying
the efficiency of bound propagation methods.

As described by [135], a Zonotope is a specific kind of convex polytope. What makes it
unique is its ability to be represented as the sum of line segments via a mathematical opera-
tion called Minkowski sum. This characteristic makes Zonotopes useful for expressing affine
transformations and approximating sets in mathematical contexts.

When we use a Zonotope to approximate a function such as ReLU (Rectified Linear Unit),
we aim to encompass all the potential values the function might output within a defined range
of inputs. In simpler terms, we’re trying to create a shape that covers all the possible outcomes
of the function within a specific input range.

The most famous use of Zonotope and achievement on VNN-COMP [109] isAI2, an approx-
imate verification technique proposed in [11] for authenticating security and robustness proper-
ties using abstract interpretation.

Abstract interpretation is a static program analysis technique that can infer the state a program
may reach during execution. In the context of neural networks, abstract interpretation is often
used to estimate the range of outputs or the behavior of a neural network given inputs.

Due to the use of abstractions, it is a sound but incomplete approach, as verification queries
are performed on an abstraction of the neural network, and the abstraction may contain points
that do not appear in any concrete implementation. The concept was introduced by the seminal
work of Cousot et al. [136], who articulated the theoretical foundations of abstract interpretation
in their paper. Their work outlined how abstract interpretation could be used to perform static
program analysis to infer program properties. Since then, this theoretical framework has been
widely used in program analysis and verification, including verification of neural networks.

55

3.1. VERIFICATION METHODS

Tran et al. [137] discovered that in terms of prediction, the approximate star method is more
robust than the abstract domain and Zonotope. Interestingly, the approximate star method is
much faster than the abstract domain method for LeakyReLU networks.

A notable contribution to the field is POPQORN [138]. It finds robustness certificates for
RNN-based networks that utilize the 2D plane to limit cross-nonlinearities in Long Short-Term
Memory (LSTM) networks so that certificates within the Lp sphere can be found if the lower
bound on the true value. The Lp sphere is a concept in mathematics, particularly in functional
analysis and geometry. It is defined in the context of Lp spaces, which are function spaces
characterized by the integrability of the p-th power of the absolute value of a function.

Definition 3.1.2 (Lp sphere). The Lp sphere consists of all elements in an Lp space that have a
norm equal to one. Mathematically, for a given p ≥ 1, the Lp sphere in an Lp space Lp(X,µ) is
the set

{f ∈ Lp(X,µ) : ∥f∥p = 1},

where ∥f∥p denotes the Lp norm of f . The concept generalizes the idea of the unit sphere in
Euclidean space to more abstract function spaces.

The labeled output cell is greater than the upper bound of all other output cells. Later, Cert-
RNN [139] introduced a powerful RNN authentication framework that overcomes the limitations
of POPQORN [138]. This framework maintains the correlation between variables and acceler-
ates the evaluation of RNN nonlinearities for practical use. This work utilizes Zonotopes [140]
to encapsulate input perturbations. The Cert-RNN verifies the properties of the output Zonotope
to determine provable robustness.

However, these approaches may fail to provide any conclusion on the original network when
the property is violated on the abstract model. This is, in fact, due to spurious counterexamples.
Namely, when the property does not hold, a Counter-Example (CE) on the abstract model is gen-
erated. Still, due to the over-approximation of the abstract model, this CE might not correspond
to any real behavior in the original model (i.e., spurious counterexample) [48].

Sometimes, the abstraction of neural networks is too coarse to prove the desired proper-
ties. Researchers apply the Counterexample-Guided Abstraction Refinement (CEGAR) prin-
ciple [141]. The CEGAR loop is guaranteed to terminate as it makes at least one refinement
per iteration, and there are only finitely many (though exponential) exact polytopes. This en-
sures that the procedure eventually converges to a solution, verifying the property or providing
a counterexample. The iterative refinement process helps in systematically narrowing down the
ambiguous regions, improving the accuracy of the verification and reducing the computational
complexity in each iteration. The effectiveness of the CEGAR approach makes it a powerful

56

3.1. VERIFICATION METHODS

tool in the formal verification of neural networks, especially in ensuring their robustness and
reliability in critical applications.

Another technique to avoid an explosion in the number of polytopes is to find polytopes that
represent a safe inductive invariant. Some work considers improving incomplete verification
methods by introducing a reinforcement phase to exclude as many spurious CEs as possible. In
other words, the verification method iteratively controls the abstract model until we can prove
that the properties hold or that the generated CEs exhibit realistic behavior on the original model
[127] [142] [143] [144] [145].

The advantage of approximate verification is that it is fast, has scalability, supports multiple
models, and supports GPU operations. However, its disadvantages are that it is incomplete and
not guaranteed to satisfy networks.

3.1.3 Verification by Satisfiability Modulo Theories

Verification by Satisfiability Modulo Theories (SMT) is a formal verification method used to
determine the satisfiability of logical formulas with respect to certain theories, such as arith-
metic, bit-vectors, arrays, and others. SMT solvers extend the capabilities of traditional Boolean
Satisfiability (SAT) solvers by handling more complex mathematical constructs and providing a
more expressive framework for verification.

In recent years, SMT solvers have been adapted to address the verification of neural networks,
a growing area of interest due to the increasing reliance on neural networks in critical applica-
tions. One notable advancement in this field is Reluplex, proposed by Katz et al. in their paper
[112].

Reluplex is an algorithm and toolkit for verifying the properties of FFNNs. It addresses the
activation function problem head-on by extending the simplex algorithm, a standard algorithm
used to solve LP instances, to support ReLU constraints. This is done by exploiting the piecewise
linear nature of ReLU and attempting to progressively satisfy the constraints imposed by the
algorithms as they search for feasible solutions. They called this algorithm Reluplex, meaning
”ReLU with Simplex.” They also presented the first proof of NP-completeness for the neural
network verification problem.

Marabou is an extension of Reluplex developed by G Katz et al. in their paper [146]. It
builds on the original Reluplex algorithm and improves upon it significantly. Moreover, unlike
Reluplex, they built their own Simplex kernel instead of relying on GLPK [124]. Marabou’s
enhancements allow it to handle a broader range of neural network architectures and configura-
tions, offering more robust verification capabilities across different application scenarios.

57

3.1. VERIFICATION METHODS

Expanding further into formal verification, model checking offers another powerful tech-
nique. Model checking is wholly based on temporal logic, which provides a framework for
reasoning about the behavior of systems over time. Temporal logic [147] is instrumental in sit-
uations where the truth value of statements can vary with different states or time points within
a system. This is particularly pertinent to systems with dynamic behaviors where states evolve,
such as digital circuits or software programs. An example of a propositional temporal logic is
Computational Tree Logic (CTL). CTL can specify that when some initial condition is satisfied
(e.g., all program variables are positive or no cars on a highway straddle two lanes), then all pos-
sible executions of a program avoid some undesirable condition (e.g., dividing a number by zero
or two cars colliding on a highway). In this example, the safety property could be verified by a
model checker that explores all possible transitions out of program states satisfying the initial
condition and ensures that all such executions satisfy the property.

Definition 3.1.3 (Computational Tree Logic). The following grammar generates the language
of well-formed formulas for CTL:

φ ::=⊥ |⊤|p|(¬φ)|(φ ∧ φ)|(φ ∨ φ)|(φ⇒ φ) | (φ⇔ φ)

| AXφ|EXφ|AFφ|EFφ|AGφ|EGφ|A[φUφ]|E[φUφ]
(3.2)

Where p ranges over a set of atomic formulas. It is not necessary to use all connectives - for
example, {¬,∧,AX,AU,EU} comprises a complete set of connectives, and the others can be
defined using them. – A means ‘along All paths’ (inevitably) – E means ‘along at least (there
Exists) one path’ (possibly)

For example, the following is a well-formed CTL formula:

EF(EGp⇒ AFr) (3.3)

The following is not a well-formed CTL formula:

EF(rUq) (3.4)

The problem with this string is that U can occur only when paired with an A or an E. CTL
uses atomic propositions as its building blocks to make statements about a system’s states. These
propositions are then combined into formulas using logical and temporal operators.

To implement model checking, we represent the model in a program written in a relevant
programming language. However, a significant limitation of this method is the state explosion
problem, which occurs when performing explicit CTL model checking. Specifically, the model

58

3.1. VERIFICATION METHODS

size grows exponentially with the number of variables used in the program’s description, ren-
dering the technique computationally infeasible for large systems.

Despite these challenges, exact verification methods remain crucial as they are both sound
and complete. These methods will either return proof of the property under scrutiny or provide a
counterexample that violates it. This thoroughness ensures that the verification is reliable, albeit
at the cost of higher computational demands.

The exactness of the aforementioned methods comes at the price of high computational com-
plexity, making them suitable only for small networks. Therefore, approximate methods have
been developed to address the limitations of exact methods. These methods sacrifice complete-
ness for speed, allowing for faster verification processes. Many verification problems, for in-
stance, focus on determining which outputs a neural network can produce, given a specific set
of inputs.

In exploring these alternative verification methods, one area that has garnered significant
attention is the use of optimization techniques. This leads us to consider an auspicious approach
known as Mixed-Integer Linear Programming (MILP).

3.1.4 Verification by Mixed-Integer Linear Programming

To address these challenges and enhance the efficiency of verification methods, researchers have
explored various alternative approaches. One promising approach involves the use of optimiza-
tion techniques to frame verification problems, allowing for a balance between precision and
computational feasibility. Among these techniques, Mixed-Integer Linear Programming (MILP)
has emerged as a notable method.

MILP (Mixed Integer Linear Programming) extends linear programming in which some or
all decision variables are restricted to integers. In this type of problem, the objective function
and all constraints are linear, but the solution space becomes discrete due to integer constraints,
making the problem more complex and challenging.

Definition 3.1.4 (MILP). A mixed-integer linear program is an optimization problem where the
objective and constraints are linear, and the variables may be either real-valued or binary. They
are often written as:

Wifi−1 (xi−1) + bi (3.5)

where c, h, A, G, and b are constants, in this case, coming from the network’s weights and
biases. The binary variables d represent the state of each ReLU in the network. The MILP solver
searches through the ReLU states using built-in methods to reason about binary variables.

59

3.1. VERIFICATION METHODS

Many tools are available to analyze and solve mixed-integer linear programs, one of which
is Gurobi [148]. This includes GLPK [124], Gurobi [148], CPLEX [149] and others. The
main differences between them are that they are open-source to use and which are commercial,
requiring a license.

Recently, the verification problem for DNNs implemented as fixed-point networks has been
solved [71], [150] by reducing the problem to an SMT solving problem involving the theory of
infinitesimal word bit-vector arithmetic. However, the poor scalability of this approach moti-
vates us to explore alternative verification methods. We introduce a method for verification of
quantized neural networks that reduces the problem to a decision problem using mixed integer
linear programming (MILP) [131]. MILP solver cannot be directly used to verify quantized neu-
ral networks because they do not support shift and round operations, the most basic primitives
needed to perform arithmetic operations using fixed-point numbers. To address this limitation,
one effective approach is to divide nonlinear quantization operations into several linear segments
[151]. This method simplifies the problem by breaking the nonlinear region into multiple linear
regions, making it suitable for MILP solvers.

3.1.5 Quantization Aspect

Naively, one could independently compute the output intervals of QNNs and DNNs using ex-
isting neural network verification tools in the literature and then directly compute their output
differences by interval subtraction. However, this approach is ineffective due to significant ac-
curacy loss.

Some researchers have proposed quantized neural network verification based on the Mixed-
Integer Linear Programming (MILP) problem. Yedi et al. developed QEBVerif [152], a quan-
tization error-bound verification method. QEBVerif encodes the verification problem into an
equivalent MILP problem, which off-the-shelf solvers can solve if the Differential Reachability
Analysis (DRA) fails to prove the error bound. Yedi et al. also developed QVIP [153], which
reduces the verification problem of QNNs into solving integer linear constraints.

At the same time, Henzinger et al. [150] proposed the quantized neural network verification
method based on Satisfiability Modulo Theories (SMT). This paper proved that the verification
problem for quantized neural networks with bit-vector specifications is PSPACE-hard. If a prob-
lem is PSPACE-hard, it is at least as hard as any NP-hard problem, given that NP is a subset of
PSPACE [154]. Proving a problem is PSPACE-hard often indicates a higher level of computa-
tional difficulty compared to proving it is NP-hard, as it must account for the broader range of
problems solvable with polynomial space. They ran some evaluations on ACAS Xu and Modi-
fied National Institute of Standards and Technology (MNIST) [155] benchmarks, and it requires
a lot of time to prove some simple properties.

60

3.1. VERIFICATION METHODS

Jia et al, [156] went further, they proposed a method, Efficient Exact Verification (EEV), for
verifying Binarized Neural Networks (BNN) - neural networks with binary weights and activa-
tions at run-time� which consists of two parts: one is a novel SAT solver that speeds up BNN
verification, and the other one is strategies to train solver-friendly robust BNNs.

Huang et al., [157] present a framework for formally verifying the properties of quantized
neural networks. Their baseline technique is based on integer linear programming, guarantee-
ing rationality and completeness. They then show how to utilize gradient-based heuristic search
methods, boundary advancement Search methods, and boundary propagation techniques to im-
prove efficiency. They evaluate their approach to perceptual networks quantized with PyTorch.

3.1.6 Comparison with QNNVerifier

Table 3.1 provides a comprehensive comparison of various neural network verification tools,
highlighting their approximation methods, verification techniques, supported neuron types, back-
end environments, and supported datasets. Each tool listed in the table is designed with specific
capabilities tailored to meet distinct verification needs. For instance, alpha-Beta-CROWN em-
ploys linear programming relaxation and branch-and-bound methods for verification and sup-
ports both FFNN and CNN architectures, making it versatile for tasks involving MNIST and
CIFAR datasets. Similarly, Marabou (Reluplex) combines abstract interpretation with simplex
and MILP methods, catering to both FFNN and quantized FFNNs. This diversity in approaches
reflects the adaptability of these tools to various neural network structures and problem domains.

Table 3.1. Comparison between QNNVerifier and SOTA, for the perspective of approximation, verification
method, supported neuron type, datasets, and running environment.

Name Approximation Verification Method Neuron Type Backend & Envi-
ronment

Supported Datasets

alpha-Beta-CROWN
[134]

Linear programming relax-
ation, Branch and Bound

Linear programming FFNN, CNN Gurobi, PyTorch MNIST, CIFAR

AI2 [11] Abstract Interpretation,
Zonotope

Linear programming FFNN, CNN Gurobi, Tensorflow MNIST, CIFAR

EEV [156] BNN-specific encodings SAT-based Method Binarized Neural
Network

MiniSAT, Z3, Py-
Torch

MNIST, CIFAR

EQV [157] Interval Analysis, Heuristic
search

Integer Linear Program-
ming

FFNN, CNN, Quan-
tized FFNN

Gurobi, PyTorch MNIST

Henzinger et al.
[150]

Abstract Interpretation,
Minimum Bit Allocation

SMT-based Method Quantized FFNN Boolector, Tensor-
flow

MNIST, Fashion
MNIST

Marabou (Reluplex)
[146] [158]

Abstract Interpretation,
Simplex

SMT-based Method, MILP FFNN, Quantized
FFNN

Z3, Gurobi ACAS Xu

NeuronSAT [159] Abstract Interpretation SMT-based Method FFNN, CNN Gurobi, PyTorch ACAS Xu, MNIST,
CIFAR

QEBVerif [152] Abstract Domain, Differen-
tial Reachability Analysis

MILP Quantized FFNN Gurobi, Tensor-
flow+Keras

ACAS Xu, MNIST

QVIP [153] Constraint Simplification Integer Linear Program-
ming

Quantized FFNN Gurobi, Tensorflow MNIST, Fashion-
MNIST

QNNVerifier Search Table, Quantization SMT-based Method FFNN, CNN ESBMC, Tensorflow,
Keras, PyTorch

CIFAR, MNIST,
ACAS Xu

As can be seen from the table, the SOTA methods use different approaches to approximate
and simplify neural network validation, and the validation methods are divided into two main
categories: SMT/SAT-based Methods and Linear Programming. The supported neural networks

61

3.2. REPAIR METHODS

are mainly FFNNs, and some of them can be validated as CNNs or quantized FFNNs. The
backends are mainly Gurobi or Z3, and the mainstream datasets used are MNIST and CIFAR.
This detailed comparison is a valuable guide for this thesis in conducting experiments in Chapter
4.

3.2 Repair Methods

Neural network repair methods can be categorized into four groups: retraining, adjusting weights,
attaching repair units, and counterexample-guided repair methods. In this section, we introduce
SOTA repair methods in four categories, then we consider neural network quantization with
neural network repair, and finally, we compare these SOTA with QNNRepair.

3.2.1 Repair by Retraining

In the first category of repair methods, the idea is to retrain or fine-tune the model for the cor-
rected output with the identified misclassified input.

Repair by Retraining is a neural network repair technique that involves fine-tuning the model
by retraining it on a modified or augmented dataset. This method aims to correct specific errors
or misclassifications while improving the overall performance of the network.

• Targeted Dataset Modification: The primary step involves identifying problematic re-
gions or instances where the neural network fails to meet desired performance. This can
be achieved through error analysis, adversarial attacks, or domain-specific criteria. The
dataset is then modified or augmented to include these problematic instances, ensuring
that the network learns to handle these specific cases correctly during retraining.

• Fine-Tuning: Instead of training the network from scratch, repair by retraining focuses on
fine-tuning the existing model. This approach leverages the knowledge already captured by
the network while making targeted adjustments to improve performance. Fine-tuning in-
volves training the network on the augmented dataset for a few epochs with a lower learning
rate to avoid overfitting and to ensure smooth updates to the weights.

• Regularization Techniques: Regularization techniques such as dropout, weight decay,
and data augmentation are employed to prevent overfitting on the augmented dataset. These
techniques help maintain the network’s generalization capabilities.

Yu et al. [12] propose a style-guided data augmentation method DeepRepair for repairing
DNN in the operational environment, which learns and introduces the unknown failure patterns

62

3.2. REPAIR METHODS

within the failure samples into the training data via the style transfer. Then, they conducted
training on the augmented datasets.

The Apricot repair framework proposed by Zhang et al. [118] aims to repair neural network
models iteratively by weight adaptation. Its core idea is that if a deep learning neural network
model is trained on many different subsets of the original training dataset, the weights in the
resulting reduced Deep Learning Model (rDLM) can be used to repair the neural network model.
rDLM can provide insights into the direction and size of the original model’s weights to deal
with the original model’s misclassification test cases. Test cases for categorizing errors in the
original network model.

In most of the current neural networks, the prediction of a single input sample depends on
all of the model parameters, so it is difficult to correct the behavior of the neural network for
a specific input without affecting the model’s performance on other inputs. For this reason,
Sinitsin et al. [160] proposed editable neural networks and the corresponding editable training
(editable) algorithm. The editable training uses a new objective function.

Obj (θ, le) = Lbase (θ) + cedit · Ledit (θ) + cloc · Lloc (θ) (3.6)

The training process is a multi-objective optimization process, where the base objective func-
tion Lbase ensures that the initial model is trained for θ; the edit training objective function.

Ledit (θ) = max
(︁
0, le

(︁
Editkα (θ, le)

)︁
(3.7)

Where Edit (θ, le) is referred to as the edit function, and the goal is to adjust the parameter
set θ during training. The final term Lloc (θ) is responsible for locality by minimizing the KL
divergence between the predictions of original and edited models. KL divergence (Kullback-
Leibler divergence) [161] is a way to measure how different one probability distribution P is
from another distribution Q, often thought of as how much information is lost when Q is used
to approximate P . The idea of reducing it is: If P represents true data distribution and Q is
approximating it. Having more representative data can help Q learn a closer approximation to
P .

Repair by Retraining is a powerful and flexible approach to improving neural network per-
formance by addressing specific errors through targeted dataset modifications and fine-tuning.

63

3.2. REPAIR METHODS

3.2.2 Repair by Adjusting Weights

The second category uses solvers to get the corrected weights and modify the weights in the
trained model directly. These types of methods, including [162] and [163], used SMT solvers
for solving the weight modification needed at the output layer for the neural network to meet
specific requirements without any retraining. The details of SMT solvers can be found in Section
2.2.2.

Repair by Adjusting Weights is a technique for correcting a neural network’s behavior by
directly modifying its weight parameters. This method involves identifying and updating spe-
cific weights within the network to address errors or misclassifications, thereby improving the
network’s performance without the need for extensive retraining.

Several key techniques are employed to adjust weights in neural networks. These techniques
focus on making precise adjustments to the network’s weights, utilizing gradient-based methods
for optimization, and applying constraints to ensure beneficial outcomes. The following methods
illustrate these approaches:

• Targeted Weight Adjustment: The primary focus is on identifying the weights contribut-
ing to the network’s incorrect outputs or undesirable behavior. The network’s performance
can be corrected by making precise adjustments to these weights. Local Repair of Neu-
ral Networks (LRNN) [164] expresses the nature of the statute as a set of predicates that
impose constraints on the output of the neural network over the repair region and defines
the neural network repair problem as mixed-integer quadratic programming to adjust the
weights of the single-layer neural network according to the given predicates.

• Gradient-Based Optimization: Gradient-based methods [163] [165] are often used to
determine the necessary weight adjustments. This can involve using back-propagation to
compute the gradients of the loss function for the weights and updating the weights accord-
ingly.

• Constraint-Based Methods: In some cases, constraints can be applied to the weight ad-
justments to ensure that the modifications lead to desirable outcomes. For example, con-
straints can ensure that the adjustments do not degrade the network’s performance on cor-
rectly classified instances [163] [166].

In addition to the above three common methods, other researchers have proposed more dis-
tinctive and effective methods, such as:

Fu et al. [167] proposed REASSURE, which differs from normal neural network weight
modification methods. Two ReLU neural network repair techniques are proposed: patch function
and support network. The patch function is to find a function pA = cx + d for a linear region

64

3.2. REPAIR METHODS

A to be repaired such that for any sample x in the polyhedral region A = aix ⩽ bi, i ∈ I ,
f(x) + pA(x) satisfies the property, where is the output of the original neural network.

Figure 3.1. The neural network model before and after repair. Left: the target DNN with buggy inputs. Right:
The REASSURE-repaired DNN with the patch network is shown in red.

Figure 3.1 illustrates the target Deep Neural Network (DNN) and its repaired version. The
left part shows the original network with defective inputs, while the right part demonstrates
the network repaired by introducing a patch network. The patch network consists of two sub-
networks: the support network gA and the affine patch function network pA. The support network
gA is designed to approximate the characteristic function on the linear region A, ensuring the
locality of the patch network. The affine patch function pA guarantees that the region A satisfies
the target specification Φ. This design enables the repaired network to maintain local features
while addressing input defects, thereby improving overall robustness and performance.

Usman et al. [163] proposed using the neuron activation pattern [168] as a guide for middle-
layer repair. Since it is very difficult to repair all output classes simultaneously, NNRepair solves
a set of expert networks, one for each target class, and combines these to obtain the final repaired
classifier. NNRepair defines suspicious neuron, consider a mis-classified input, Xf with ideal
label C. Let σC be the correct-label pattern with highest support for C. Let L be the layer for
this pattern, and let N denote a neuron at layer L. Then the set of suspicious neurons Nsus can
be defined as follows:

N ∈ Nsus ⇐⇒
(︁
N ∈ on(σC) ∧N(Xf) ≤ 0

)︁
∨
(︁
N ∈ off(σC) ∧N(Xf) > 0

)︁
The NNRepair repair strategy consists of the following steps: (1) Error localization: The

goal of this step is to identify a set of suspicious neurons and the suspicious weights of the input
edges. (2) Symbolic execution. (3) Concolic execution [169]: Add values to the weights of the
suspicious edges and then use the network to execute along the positive and negative samples in
parallel to collect the values of the symbolic expressions of the suspicious neurons. Then, the
network is executed along the positive and negative samples in parallel to collect the symbolic

65

3.2. REPAIR METHODS

expression values of the suspicious neurons. (4) Constraint solving: A symbolic expression is
formed by a set of repair constraints and solved by an existing solver.

Sun et al. [170] proposed a particle swarm optimization (PSO) algorithm [171] for neuron
parameter updating. The particle swarm optimization algorithm simulates the intelligent col-
lective behavior of animals, such as schools of fish and flocks of birds, and is a widely used
continuous space optimization algorithm. The PSO algorithm provides the weights for the pa-
rameters of the neurons identified in the localization session. The PSO algorithm searches for
minor adjustments to the weight parameters of the identified neurons in the localization session
to meet the specified properties and maintain the performance of the original network as much
as possible to complete the network repair.

3.2.3 Repair by Attaching Repair Units

Repair by Attaching Repair Units is a neural network repair technique that introduces additional
units, or small auxiliary networks, to modify and correct the behavior of the original neural
network without altering its core structure. This method addresses specific errors or misclassi-
fications by providing targeted adjustments through these repair units.

• Repair Units: These are small auxiliary networks or functions that are attached to the
original neural network. They are designed to correct specific outputs or regions of the
input space where the original network fails to meet desired properties or performance
criteria.

• Non-Intrusive Modification: Instead of altering the weights and architecture of the orig-
inal network, repair units are added externally. This non-intrusive approach preserves the
integrity and learned features of the original network while providing a mechanism for
targeted corrections.

• Patch Functions: A common form of repair units is patch functions, which are linear or
non-linear functions added to the network’s output in specific regions. For example, a patch
function pA(x) = cx+ d can be added to the output of a region A to correct errors in that
region.

• Support Networks: Another form of repair unit is a support network, which is a small
neural network designed to correct the original network’s outputs. These support networks
are explicitly trained to handle problematic regions or scenarios identified in the original
network’s performance.

Sotoudeh et al. [13] proposed PRDNN (Provable Repair of DNNs), a neural network sample
and region (polytope-based) repair technique. PRDNN places no restrictions on the activation

66

3.2. REPAIR METHODS

functions used by neural networks. The key insight is the introduction of a new architecture
called decoupled deep neural networks (DDNNs), in which every deep neural network has an
equivalent decoupled counterpart. The repair of any single layer in the decoupled deep neural
network can be reduced to a linear programming problem.

Definition 3.2.1 (Decoupled DNN). A Decoupled DNN (DDNN) having layers of size s0, . . . , sn
is a list of triples

(︁
W (a,1),W (v,1), σ(1)

)︁
, . . . ,

(︁
W (a,n),W (v,n), σ(n)

)︁
, where W (a,i) and W (v,i) are

si × si−1 matrices and σ(i) : Rsi → Rsi is some activation function.

DDNNs can be extended to non-differentiable activation functions as discussed in Sotoudeh
and Thakur [13]. Moving to another innovative approach, DeepCorrect [172] corrects the worst
distortion-affected filter activations by appending correction units. They apply small stacks of
convolutional layers with residual connections at the output of these ranked filters. They train
them to correct the worst distortion-affected filter activations while leaving the rest of the pre-
trained filter outputs in the network unchanged.

Adding repair units provides better repair results compared to retraining and better general-
ization ability. Compared to directly modifying the weights, there is no need to perform SMT
or Gurobi solving, which greatly saves repair time. However, the repair method of adding repair
units still changes the structure of the original neural network, which may affect the scalability
and localization of the neural network.

In addition to these methods, AIRepair [37] aims to integrate multiple existing repair tech-
niques into the same platform. However, it is important to note that these methods only support
the full-precision models and cannot apply to quantized models.

3.2.4 Repair by Counterexamples

Some researchers have proposed the counterexample-guided repair methods; David Boetius et
al., [14] showed that counterexample-guided repair can be considered a robust optimization al-
gorithm. While termination guarantees for neural network repair remain beyond our reach, they
prove termination for more restrained machine learning models and disprove termination in gen-
eral.

Counterexample-guided neural network repair methods are a class of techniques that itera-
tively refine a neural network by addressing specific errors or failures identified through coun-
terexamples. These methods leverage counterexamples – specific inputs that cause the network
to produce incorrect or undesired outputs – to guide the repair process. The goal is to improve
the network’s performance and reliability by systematically correcting these errors.

1. Counterexample Generation: Generate or identify counterexamples that cause the net-

67

3.2. REPAIR METHODS

work to fail. This can be done using various techniques, such as adversarial attacks, property-
based testing, or formal verification methods.

2. Error Localization: Analyze the network’s behavior on the counterexamples to pinpoint
the components responsible for the errors. Techniques such as gradient analysis, sensitivity
analysis, or symbolic execution can be used to localize errors.

3. Repair Strategy: Apply targeted fixes to the localized errors. This can involve adjusting
weights, modifying activation functions, or adding auxiliary components to the network.
The repair strategy should be designed to correct the specific errors identified while mini-
mally affecting the overall network performance.

4. Verification and Iteration: Verify the repaired network on a verification set to ensure that
the counterexamples are addressed and that no new errors are introduced. If necessary,
generate new counterexamples and repeat the process until the network meets the desired
performance criteria.

Fu et al. [173] developed REGLO (repair technique with provable guarantees on satisfying
global robustness properties). It first identifies the violating regions where the counterexamples
are located, then uses the validated robustness bounds on these regions to formulate a robust opti-
mization problem to compute the minimum weight change in the network to make modifications
to the weights in the neural network.

SpecRepair proposed by Bauer-Marquart et al. [174] is another representative work of the
retraining repair paradigm, whose core idea lies in converting the safety statute property into an
objective function that is negative for all network inputs that violate the property and then detect-
ing the counterexamples using a global optimization method. These detected counterexamples
are then used to make the neural network safe by penalized retraining.

Dong et al. [175] proposed NREPAIR. It divides the input region into two non-overlapping
regions. It restarts the validation process using these two new input regions until the input region
cannot be divided. The validator generates a counterexample to be provided to the repair process.
In the repair process, given the violated property and the counterexample sample, NREPAIR
defines a loss function and then minimizes the counterexample’s loss value by modifying the
neuron’s output. Next, the gradient of each neuron is computed based on the values of the
provided counterexamples and loss function, and each neuron node is sorted in descending order
of the gradient to find the neuron with the largest gradient and with no more than the allowed
number of modifications. After identifying these suspicious neurons, NREPAIR modifies its
output to its original output minus the product of the neuron’s gradient and a predetermined step
size. Finally, a new neural network is run through the validator again to check that the repair is
complete, and if the network is repaired, it is returned to the new network; otherwise, the process
is repeated until a solution is found or a timeout occurs.

68

3.2. REPAIR METHODS

3.2.5 Quantization Aspect

One option often explored to fix quantized neural networks is retraining. However, this method
has its challenges. Retraining necessitates the use of the original dataset. Plus, quantized neu-
ral networks cannot undergo direct training. Instead, one typically retrains the corresponding
floating-point neural network first and then applies quantization. Yet, even after this process, the
quantized version might still encounter robustness problems.

Then, let us consider adding repair units. However, it would also require a quantization oper-
ation after operating on a floating-point neural network, which would also suffer from robustness
issues. Therefore, none of the latest repair methods consider the repair of quantized neural net-
works.

Therefore, we developed a quantized neural network repair method, as detailed in Chapter 5,
which directly modifies weights based on constraint solving. It has the advantage that it does
not need to retrain the floating-point neural network and avoids the new robustness problem
introduced in quantized floating-point neural networks.

3.2.6 Comparison with QNNRepair

Table 3.2. Comparison between QNNRepair and SOTA, for the perspective of fault localization, repair method,
measurement, neuron type, and running environment.

Name Fault Localization Repairing Method Measurement Neuron Type Environment Supported Datasets
Apricot [118] - Training and adapt-

ing
Accuracy CNN, ResNet Keras, Tensorflow CIFAR

Arachne [165] Gradient Loss (GL)
based, Random Se-
lection

Patch generation Fairness CNN, LSTM TensorFlow, PyTorch CIFAR, GTSRB, F-
MNIST

DeepCor-
rect [172]

Computing Correc-
tion Prioritization

Adding correction
units

Accuracy CNN with cor-
rection units

Theano, Keras CIFAR, Imagenet

DeepRepair [12] - Data augmentation,
Fine-Tuning

Accuracy Densenet,
ResNet, All-
ConvNet, Renet,
LSTM

PyTorch CIFAR

DeepFault [176] Tarantula, Ochiai,
D*

Suspiciousness-
guided input syn-
thesis

Loss, Accuracy, Sus-
picious neurons dis-
tribution, Similarity

CNN Keras, TensorFlow MNIST, CIFAR

PRDNN [13] Randomly-selected
or CNN layer

Polytope Repair, Ar-
chitecture extension

E: Efficacy (%), D:
Drawdown (%), G:
Generalization (%),
T: Time

SqueezeNet,
FFNN

PyTorch, Gurobi ImageNet, ACAS
Xu, CIFAR

QNNRepair Tarantula, Ochiai,
D*, Euclid, Ample,
Jaccard, Wong3

SMT-based, Weight
Modification

Accuracy, Robust-
ness

CNN, ResNet Keras, Tensorflow,
PyTorch

CIFAR, GTSRB,
ImageNet

Socrates [177] Causal attribution Particle Swarm Op-
timization (PSO)
algorithm

Fairness, Backdoor
Safety, Accuracy

CNN, FFNN PyTorch, Gurobi GTSRB, MNIST, F-
MNIST

SpecRepair [174] Counterexample
generated by Verifi-
cation

Quadratic program-
ming

Accuracy CNN, FFNN PyTorch ACAS Xu, MNIST

Table 3.2 provides a comparison of QNNRepair with other state-of-the-art (SOTA) tools in
the field of neural network fault repair. The table outlines key features such as fault localiza-
tion techniques, repair methods, evaluation metrics, supported neuron types, and the runtime
environment for each tool. For example, Arachne employs Gradient Loss-based and Random

69

3.3. CHAPTER SUMMARY

Selection methods for fault localization and utilizes patch generation as its repair technique. It
is evaluated based on fairness metrics and supports CNN and LSTM neuron types, with com-
patibility for TensorFlow and PyTorch environments. On the other hand, DeepFault integrates
traditional fault localization approaches such as Tarantula and Ochiai, combining them with
suspiciousness-guided input synthesis to improve accuracy and neuron distribution similarity,
specifically for CNNs.

3.3 Chapter Summary

This chapter provides an in-depth discussion of the related works on neural network verification
and repair, summarizing the advancements and challenges in the field. Firstly, using the clas-
sic ACAS Xu system as an example, it elaborates on the safety properties addressed in neural
network verification, including robustness, monotonicity, output bounds, and fairness. These
properties serve as critical metrics for evaluating whether neural networks behave as expected.

Next, the chapter categorizes and introduces the various methods for neural network verifi-
cation as follows:

1. Exact Verification: This approach employs exhaustive search or symbolic reasoning to
precisely verify the safety properties of neural networks. While it offers high accuracy, it
is computationally expensive and generally applicable to smaller-scale networks.

2. Approximate Verification: Techniques like abstract interpretation or relaxed constraints
are used to rapidly assess network safety. Though some precision may be sacrificed, this
method is suitable for larger-scale networks.

3. Verification by Satisfiability Modulo Theories: By formulating the verification problem
as satisfiability modulo theories (SMT), this approach achieves theoretical completeness,
though the efficiency can be limited by the scale of the constraints.

4. Verification by Mixed-Integer Linear Programming: Utilizing mixed-integer linear pro-
gramming, this method is particularly effective for networks with linear activation func-
tions, striking a balance between efficiency and precision.

The strengths and limitations of these methods are analyzed to highlight their applicable
scenarios and constraints.

Subsequently, the chapter delves into the works on neural network repair, classifying them
into the following categories:

70

3.3. CHAPTER SUMMARY

1. Repair by Retraining: Errors are corrected by retraining the network. While this method
is broadly applicable, it often requires significant amounts of data and computational re-
sources.

2. Repair by Adjusting Weights: Network weights are directly adjusted to address specific
issues. This method is efficient but may introduce new problems.

3. Repair by Attaching Repair Units: Additional network structures or repair modules are
incorporated to limit erroneous behavior under specific inputs, enhancing the flexibility of
the network.

4. Repair by Counterexamples: This approach leverages counterexamples generated during
verification to guide targeted optimization, demonstrating high specificity and effective-
ness.

Lastly, the chapter also considers the impact of network quantization on verification and repair
methods, analyzing its influence on verification accuracy and repair outcomes to ensure that
theoretical research can be effectively applied to practical scenarios.

71

Chapter 4

QNNVerifier: Quantized Neural Network

Verification

This chapter focuses on our neural network verification tool QNNVerifier. QNNVerifier has
a set of processing procedures for input neural network models that are described in detail in
this chapter, including neural network code conversion, discretization of non-linear activation
function, interval analysis, assertion language, constant folding and slicing. This chapter also in-
troduces QNNVerifier’s backend ESBMC. We then conducted an experimental evaluation of the
QNNVerifier, benchmarking it on the ACAS Xu, GTSTB, and CIFAR datasets and comparing
it with the experimental results of SOTA, which illustrates the advantages of the QNNVerifier
over SOTA in validating neural network models.

4.1 Chapter Introduction

To fix the vulnerabilities, we need first to detect them. Unlike traditional software vulnerabilities,
which are often related to specific lines or blocks of code, the vulnerabilities in neural networks
are embedded in the weights of the trained models. Traditional software vulnerabilities can
be detected and precisely located within the programming code, but DNNs remain largely black
boxes. Moreover, traditional vulnerability detection tools cannot read and understand the DNNs’
weights and, therefore, cannot detect errors within these DNNs.

This chapter mainly introduces the QNNVerifier, a specialized tool designed to detect errors
in DNNs and provide counterexamples that exploit the erroneous models. Unlike conventional
methods that might directly attempt to verify neural network models, QNNVerifier circumvents
the complexity associated with different model formats trained on various frameworks. Instead,

72

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

QNNVerifier converts these models into an intermediate C code representation. This interme-
diate step allows the insertion of safety properties and the abstraction of activation functions,
facilitating a more straightforward verification process.

The core of QNNVerifier’s verification process is supported by ESBMC (please see Section
2.2.1), a mature and permissively licensed open-source context-bounded model checker. ES-
BMC is adept at verifying single- and multi-threaded C programs for code safety violations. By
leveraging ESBMC as the backend, QNNVerifier can effectively check the converted C code
for errors, ensuring a thorough verification process.

After detailing the algorithm and implementation of QNNVerifier, a series of evaluations
were conducted to validate its effectiveness. This includes an ablation study to identify the
optimal parameter combinations for QNNVerifier, ensuring the best performance. Addition-
ally, QNNVerifier was compared with state-of-the-art (SOTA) neural network verification tools,
highlighting its advantages and demonstrating its efficacy in various scenarios.

4.2 QNNVerifier Framework Overview

As shown in Figure 4.1, the QNNVerifier framework consists of the following components:
code generation, representation, abstraction of activation functions, generation of safety proper-
ties, Invariant generation, model checking, deployment, and retraining.

Figure 4.1. The proposed verification workflow for fixed- and floating-point DNNs. The inputs are neural
network models, and the outputs are models that can be used safely.

1. C Code Generation: Given a neural network model to be validated and a set of safety
properties as inputs, the code generation module will produce a C-file that is consistent
with the behavior of the original neural network model, and the user can compile this C-
file to perform inference operations. QNNVerifier uses this C-file as input for subsequent
verification.

73

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

2. Representation of Quantized Behaviour: In representation, QNNVerifier converts trained
models and neural network operations, e.g., realization, from floating-point representation
into fixed-point, followed by a check of the desired properties.

3. Discretization of non-linear activation functions: In the abstraction of activation func-
tions, QNNVerifier presents an approach to convert such non-linear functions into look-up
tables, thus significantly speeding up verification processes.

4. Introducing safety properties: Verifying a neural network model means proving that a
given safety property holds. Such a safety property is a falsifiable mathematical relation
defined by the values of a DNN’s variables. Since we are considering software implemen-
tation of DNNs in generating safety properties, we then show how to annotate DNN code
and specify a desired safety property.

5. Invariant Generation: Given the sequential nature of inference in neural networks, the
set of H values allowed by the safety property premise also limits the scope of subsequent
intermediate computational steps. Thus, if we can explicitly derive these additional con-
straints and unfold them onto intermediate variables to propagate them and benefit from
them in subsequent operations, we can more succinctly tell the model checker where to find
counterexamples. On the more practical side, many tools exist to perform interval analysis
of C code. In our experiments, we have used the Evolved Value Analysis (EVA) plugin of
the open-source tool Frama-C [178].

6. Model Checking: Given the annotated C code containing safety properties from the pre-
vious module, we are now tasked with answering the following verification question: does
the all input that satisfies the precondition assume also satisfy the associated assert post-
condition in a particular neural network implementation? In other words, can we find at
least one particular input that violates the safety property of a quantized neural network
implementation with a specific accuracy? We will introduce the use of state-of-the-art
model-checking techniques to answer this question.

7. Deployment or Re-training: After completing model checking, QNNVerifier determines
whether the model can be deployed or needs to be retrained based on ESBMC verification
result (Verification Successful or Verification Failed) of the given safety properties.

4.2.1 Neural Network Code Conversion

QNNVerifier uses ESBMC as the backend, a C program verification tool, to perform bounded
model checking on the converted C files. To utilize this tool, QNNVerifier first needs to con-
vert the neural network model into the corresponding C program and ensure that the converted
model’s behavior is consistent with that of the original model.

74

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

Converting neural network models to C programs requires understanding the different file
formats used by various neural network frameworks. Ensuring compatibility and accurate trans-
lation from these formats to C code is crucial for the verification process. Hence, we need to
validate the converted code. During the validation step, we use an original model and its imple-
mentation in C code to generate and store outputs based on the mentioned datasets. Then, we
take the absolute value of the difference between these two sets, i.e., outputs from the original
and C-based elements, to show that they are within a range given by ϵ, which is arbitrarily small.
Indeed, our goal is to show that their outputs are similar enough to reason about their equality so
that the associated implementation is regarded as valid, keeping the original intended behavior.
This way, we ensure that our transformation strategy is reliable and does not affect the obtained
inference results.

The current neural network implementation uses popular training and development platforms
such as TensorFlow [72], PyTorch [16], and Caffe [17]. These platforms define specific file
formats to store the neural network’s architecture and trained weights. For example, PyTorch’s
.pth [179] file format is typically used to save a model’s weights or the entire model. Although
this is not an open-standard file format, it is based on PyTorch’s serialization mechanism. On the
other hand, TensorFlow Keras uses the HDF5 file format to preserve the structure and weights of
the model. HDF5, known as Hierarchical Data Format version 5 [180], is a file format designed
for storing and organizing large amounts of data. This format is well-suited for processing and
storing complex data, such as scientific and large datasets.

Before the code conversion, QNNVerifier implemented the functions of each basic building
block in the neural network, such as the fully connected unit, the convolutional neural network
unit, and the activation function, in C language. Then, the neural network model is read, and the
weights in the model are imported into the C file according to the corresponding format.

In the following, an example in Figure 4.2 is given to illustrate conversion from a neural
network model to a C file:

On the left side, the code snippet defines a function resnet_block that builds a single block of
the ResNet architecture using the Keras library. The function takes an input tensor x and applies
a series of transformations to it:

• A 1x1 convolution that adjusts the number of filters. Batch normalization followed by
ReLU activation (lines 3-6).

• A 3x3 convolution with “SAME” padding to maintain the spatial dimensions (lines 7-8).

• Another round of batch normalization and ReLU activation (lines 9-10).

• A final 1x1 convolution to adjust the channel dimensions, followed by batch normalization
(lines 11-12).

75

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

1 def r e s n e t _ b l o c k (x , f i l t e r s ,
2 k e r n e l _ s i z e =3 , s t r i d e =1) :
3 x= l a y e r s . Conv2D (f i l t e r s , 1 ,
4 s t r i d e s = s t r i d e) (x)
5 x= l a y e r s . B a t c h N o r m a l i z a t i o n () (x)
6 x= l a y e r s . A c t i v a t i o n (” r e l u ”) (x)
7 x= l a y e r s . Conv2D (f i l t e r s ,
8 k e r n e l _ s i z e , padd ing=”SAME”) (x)
9 x= l a y e r s . B a t c h N o r m a l i z a t i o n () (x)

10 x= l a y e r s . A c t i v a t i o n (” r e l u ”) (x)
11 x= l a y e r s . Conv2D (4∗ f i l t e r s , 1) (x)
12 x= l a y e r s . B a t c h N o r m a l i z a t i o n () (x)
13 x= l a y e r s . Add () ([s h o r t c u t , x])
14 x= l a y e r s . A c t i v a t i o n (” r e l u ”) (x)
15 re turn x

1 s i z e _ t c o n v 2 d _ 1 _ s t r i d e [2]={1 , 1} ;
2 s i z e _ t c o n v 2 d _ 1 _ d i l a t i o n [2]={1 , 1} ;
3 k 2 c _ t e n s o r conv2d_1_ou tpu t = [
4 conv2d_1_ou tpu t _ a r r ay , 3 , 65536 ,{16 ,16 ,256 ,
5 1 . 1}} :
6 k . 2 c _ t e n s o r conv2d_1_ke rne l = {
7 conv2d_1_ke rne1_a r r ay , 4 ,16384 ,{ 1 , 1 ,
8 64 , 256 , 1}} ;
9 k 2 c _ t e n s o r conv2d_1_b i a s = { conv2d_1_b i a s _ a r r a y

10 , 1 , 256 , {256 , 1 , 1 , 1 , 1 }} ;
11 s i z e _ t c o n v 2 d _ 4 _ s t r i d e [2] = {1 , 1 } ;
12 s i z e _ t c o n v 2 d _ 4 _ d i l a t i o n [2] = {1 , 1 } ;
13 k 2 c _ t e n s o r conv2d_4_ou tpu t = {
14 conv2d_4_ou tpu t _ a r r ay , 3 , 65536 , {16 , 16 , 256 ,
15 1 , 1 }} ;
16 k 2 c _ t e n s o r conv2d_4_ke rne l = {
17 conv2d_4_ke rn e l _ a r r ay , 4 , 16384 , {1 , 1 ,
18 64 , 256 , 1}} ;
19 k 2 c _ t e n s o r conv2d_4_b i a s = { conv2d_4_b i a s _ a r r a y
20 1 , 256 , { 256 , 1 , 1 , 1 , 1 }} ;
21 k 2 c _ t e n s o r add_ou t pu t = { a d d _ o u t p u t _ a r r a y
22 , 3 , 65536 , {16 , 16 , 256 , 1 , 1 }} ;
23 s i z e _ t add_num_tenso r s0 =2 ;

Figure 4.2. Conversion from the neural network structure defined by Keras to the neural network structure
defined by C. This is a code snippet of resnet_block, the basic unit in the ResNet (see Definition 2.1.5) model
mentioned in Section 2.1.1 that will be tested in the experimental section, which contains three convolutional

layers as well as an added layer, with the activation function chosen to be ReLU.

• An addition operation that combines the original input (assumed to be a shortcut) with the
transformed input, followed by another ReLU activation (lines 13-14).

The right side shows the translated C code. The variables and structures suggest the definition
of convolutional layers and parameters such as:

• Definitions of tensor structures for convolutional layers’ outputs, kernels, and biases (lines
1-10).

• Settings for strides and dilations in convolutional operations (lines 11-12).

• The allocation of tensors for outputs and kernel weights, alongside their dimensions (lines
13-20).

• The setup suggests configurations for multiple convolution layers, likely corresponding to
the ones defined in the Python version (lines 21-23).

4.2.2 Discretization of Non-linear Activation Functions

Specific activation functions can have a considerable impact on verification times. Piece-wised
linear functions can be readily represented with if-then-else instructions, but non-linear acti-
vation ones require careful adjustments to avoid severe performance degradation. This section
presents a method to convert such non-linear functions into look-up tables, thus speeding up the
verification process.

Firstly, let us introduce the concept of Lipschitz continuous function in calculus:

76

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

Definition 4.2.1 (Lipschitz continuous function). A function f : X → Y is called Lipschitz
continuous with constant C if, for each x1, x2 ∈ X one has

d(f(x1), f(x2)) ≤ C · d(x1, x2), (4.1)

where d stands for the distance.

Assume that the non-linear activation function N : U ↦→ R is a piecewise Lipschitz con-
tinuous function [181], thus there is a finite set of a locally Lipschitz continuous functions
Ni : Ui ↦→ R for i ∈ N≤a, the so-called selection functions, such that the sets Ui ⊂ R are
disjoint intervals, N (u) ∈ {N1(u), . . . ,Na(u)} holds for all u ∈ U, U =

⋃︁
i∈N≤a

Ui, and

∥Ni(u1)−Ni(u2)∥ ≤ λi∥u1 − u2∥, ∀u1, u2 ∈ Ui, (4.2)

where λi denotes the Lipschitz constant of Ni.

QNNVerifier applies the following discretization approach to each subset Ui. First, it dis-
cretizes each Ui with a countable set Ũ i ⊂ Ui. Then, it builds a lookup table for rounding the
evaluation of Ni(u) to Ñ i(u) : Ui ↦→ R, thus rounding N (u) to Ñ (u) ∈

{︂
Ñ 1(u), . . . , Ñ a(u)

}︂
.

This lookup table contains uniformly distributed Ni samples within Ui to ensure the accuracy
∥Ñ i(u)−Ni(u)∥ ≤ ϵ. More specifically, let Li be the length of the interval Ui, i.e.,

Li ≜ sup
u∈Ui

u− inf
u∈Ui

u. (4.3)

Given the length Li and the desired accuracy ϵ, Ni can be chosen according to Theorem 1:

Theorem 1. Let the non-linear activation function N : U ↦→ R, N ∈ {N1(u), . . . ,Na(u)}, be
piecewise Lipschitz continuous such that each selection function Ni(u) : Ui ↦→ R presents the
Lipschitz constant λi, and consider the discrete approximation Ñ (u) ∈

{︂
Ñ 1(u), . . . , Ñ a(u)

}︂
,

where each selection function Ñ i : Ui ↦→ R, for i ∈ N≤a is obtained with Ui ⊂ U containing Ni

samples. The approximation error is bounded as

∥Ñ (u)−N (u)∥ ≤ ϵ, (4.4)

for a given ϵ, if the following inequality holds:

Ni ≥ 1 +
Liλi
ϵ
,∀i ∈ N≤a. (4.5)

Proof. Given that the length of each interval Ui is Li (cf. (4.3)), the length of each sub-interval,
obtained by uniformly dividingUi intoNi samples, is Li

Ni−1
. Considering the Lipschitz continuity

77

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

in (4.2), the rounding error for Ñ i(u) is bounded as

∥Ñ i(u)−Ni(u)∥ ≤ Li

Ni − 1
λi. (4.6)

If (4.4) holds for all i ∈ N≤a, the inequality

Li

Ni − 1
λi ≤ ϵ (4.7)

and (4.5) also hold. Moreover, from (4.6) and (4.7), ∥Ñ i(u)−Ni(u)∥ ≤ ϵ for all i ∈ N≤a.

Without loss of generality, let us rewrite the discretization Ñ i(u) as follows:

Ñ i(u) = Ni (Ai(u)) , (4.8)

where Ai : Ui ↦→ Ũ i is an arbitrary approximation operator, e.g. rounding and quantization. For
instance, consider the approximation Ñ Sigm of the sigmoid activation function NSigm, based on
a discrete domain Ũ with target accuracy ϵ = 0.01. It is clear that NSigm is globally Lipschitz
continuous with constant λSigm = 0.25, since supu∈U |NSigm(u)| = 0.25 and U = R. Moreover,
let us choose the following three intervals to define the approximation Ñ Sigm(u):

U1 = (−∞,−20] , U2 = (−20, 20) , andU3 = [20,∞) , (4.9)

Since the derivative of NSigm(u) is negligible for u ∈ U1 ∪ U3, we have λ1 ≈ 0 and λ3 ≈ 0,
whereas λ2 is equivalent to the global Lipschitz constant, i.e. λ2 = λSigm = 0.25. Now, we can
use (4.5) to compute the number of samples per interval to ensure the desired accuracy ϵ = 0.01.
Accordingly, we have N1 = N3 = 1 and N2 = 1001 since L2 = 40 (cf. (4.3)), and Ai can be
arbitrarily chosen. For this example, we suggest to choose A1 = −20 and A3 = 20 because it
is not necessary to have more samples than the limits of the intervals for U1 and U3. Finally, A2

can be chosen as the half-towards-zero rounding with 3 decimal digits for floating-point and real
DNNs.

Figure 4.3 illustrates the discretization effect on the Sigmoid function. The approximation
fits well for ϵ = 0.01, but it becomes poor when ϵ increases. It is worth mentioning that a lookup
table is a trade-off between speed and memory. If the latter is not a restriction, ϵ should be as
small as possible and much lower than the quantization step incurred by a fixed-point format. In
this way, the correctness of the verification process will not be compromised.

78

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

(a) (b)

Figure 4.3. Comparison between the real sigmoid NSigm and its discretizations Ñ Sigm for ϵ = 0.01 (N2 = 1001),
ϵ = 0.1 (N2 = 101), ϵ = 1 (N2 = 11): (a) sigmoid activation function together with its approximations within

the range [−20, 20] and (b) a zoom in to show the interval [−2, 2].

4.2.3 Interval Analysis via Frama-C

Once the safety property has been specified, as explained in Section 2.3.1, QNNVerifier can
inject further assume instructions into the code and reduce the model checker’s search space.
Indeed, given the sequential nature of DNN computation, the set H of values allowed by the
premise of a safety property also constraint the range of the following intermediate computation
steps.

To effectively utilize these constraints, it is crucial to propagate the initial set H through the
network accurately. This propagation allows us to refine the bounds on the network’s intermedi-
ate and output values, thereby tightening the overall verification process. One common method
to achieve this is through invariant analysis.

Invariant analysis computes lower and upper bounds on the values of each program variable
(e.g., a ≤ x ≤ b, where a, b are constants and x is variable) by propagating the initial set H
through a DNN with interval arithmetic rules.

QNNVerifier uses the EVA plugin of Frama-C as a tool for interval analysis. The Evolved
Value Analysis plug-in [182] computes variable variation domains. Although the user may guide
the analysis in places, it is quite automatic. It handles a wide spectrum of C constructs. This
plug-in uses abstract interpretation techniques.

ACSL (ANSI/ISO C Specification Language) [183] is a specification language for describing
the behavior of C programs that can be used with Frama-C [184] to verify that C code conforms
to its specification.

Within EVA, the expression evaluator interleaves forward and backward evaluation steps. A
forward evaluation is a bottom-up propagation of value abstractions from the values and con-
stants to the root of an expression. It queries the state abstractions to extract a value for variables
and relies otherwise on the value semantics of the C operators.

Example 1. Consider two memory domains, I and C, storing information about the possible

79

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

values of integer variables. Domain I uses intervals, and domain C uses congruences for value
abstractions. Assume the condition x > 3, where I provides the interval abstraction [0, 12] and
C provides the congruence x ≡ 0 (mod 3) for x. The values for x are reduced to [4, 12] in I
and remain x ≡ 0 (mod 3) in C when backward-evaluating the condition. The inter-reduction
between these values further narrows down the interval in I to [6, 12]. This refinement enables
learning more precise information for x as it abstracts the effects of the entire condition.

QNNVerifier then injects intervals into converted C-code as additional pre-condition in-
structions assume on intermediate variables, thus covering the entire processing chain. Finally,
QNNVerifier is compared with the native interval analysis support provided by the state-of-the-
art verification tool ESBMC [94] and found that combining them (both enabled) yields the best
results.

4.2.4 Assertion Language in ESBMC

To further enhance the verification process, it is essential to leverage a robust assertion language
that can accurately specify the properties of neural networks within the verification framework.
By defining clear and precise assertions, the verification tool can effectively verify the correct-
ness and safety of the neural network model.

In traditional software programs, many assertion languages have been developed over the
years. These range from simple state-based assertions to more complex forms of logic, such as
Hoare logic [185] and temporal logic [186]. However, the existing engines that specify neural
network properties often do so in an ad hoc manner, lacking a standardized approach. This ad hoc
specification poses a challenge as neural networks, being a new programming paradigm, are used
in a wide array of applications, each with distinct requirements. Consequently, it is crucial to
establish a common language that can uniformly specify the required properties across different
neural networks.

One key aspect of this common language is the reachability attribute. This attribute specifies
that the neural network output must satisfy a specific constraint (e.g., within a specific range) if
the input satisfies a specific constraint (e.g., within a specific range). This form of constraint is
already supported by existing tools such as Reluplex [112], which demonstrates the feasibility
and importance of such specifications. Specifying these constraints in our proposed language is
straightforward. For instance, Figure 4.4 illustrates Property 1 from [112] using our assertion
language, showcasing how easily these properties can be defined and understood.

By integrating such a robust assertion language, we can significantly improve the verification
process, making it more comprehensive and reliable. This ensures that neural networks can be
effectively validated, leading to safer and more dependable AI systems.

80

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

1 (a s s e r t (<= X_0 0 .679857769))
2 (a s s e r t (>= X_0 0 . 6))
3
4 (a s s e r t (<= X_1 0 . 5))
5 (a s s e r t (>= X_1 −0 .5))
6
7 (a s s e r t (<= X_2 0 . 5))
8 (a s s e r t (>= X_2 −0 .5))
9

10 (a s s e r t (<= X_3 0 . 5))
11 (a s s e r t (>= X_3 0 . 4 5))
12
13 (a s s e r t (<= X_4 −0 .45))
14 (a s s e r t (>= X_4 −0 .5))
15 ; Unsafe i f COC >= 1500 . Outpu t s c a l i n g i s

373 .94992 wi th a b i a s o f 7 . 518884 :
(1500 − 7 .518884) / 373 .94992 =
3 .991125

16 (a s s e r t (>= Y_0 3 .991125645861615))

1 __ESBMC_assume (t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [0] <=
0.679857769 && t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y
[0] >= 0 . 6) ;

2 __ESBMC_assume (t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [1] <=
0 . 5 && t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [1] >=
−0 .5) ;

3 __ESBMC_assume (t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [2] <=
0 . 5 && t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [2] >=
−0 .5) ;

4 __ESBMC_assume (t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [3] <=
0 . 5 && t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [3] >=
0 . 4 5) ;

5 __ESBMC_assume (t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [4] <=
−0.45 && t e s t 1 _ d e n s e _ 4 2 _ i n p u t _ i n p u t . a r r a y [4] >=
−0 .5) ;

6
7 __ESBMC_assert (c _ a c t i v a t i o n _ 4 8 _ t e s t 1 . a r r a y [0] >=

3 .991125645861615 , ” C l a s s i f i c a t i o n i s no t s a f e . ”)
;

Figure 4.4. The conversion from safety properties defined by VNN-LIB to safety properties defined by ESBMC
is an example of the conversion.

The code block on the left shows the safety properties defined in VNN-LIB [109]. It contains
a series of assertion statements that define constraints on parameters such as relative distances,
angles, speeds, and other critical metrics between the vehicle and the intruder. The purpose of
the VNN-LIB standard is to provide a unified format for the description of NNs for verification.
To support the widest range of network architectures and related properties, the standard builds
on the ONNX (see Section 2.1.1) format to represent the network models and on the SMT-LIB
language for property specification.

For example, the assertion statement
1 __ESBMC_assert (c _ a c t i v a t i o n _ 4 8 _ t e s t 1 . a r r a y [0] >= 3 .991125645861615 , ” C l a s s i f i c a t i o n ␣ i s ␣ no t ␣ s a f e . ”) ;

checks a specific safety condition. This statement asserts that c_activation_48_test1.array[0]
(which corresponds to Y_0 in the VNN-LIB format) must be greater than or equal to 3.99. If this
condition is unmet, ESBMC will trigger an error with the message ”Classification is not safe.”
This mechanism ensures that the system adheres to predefined safety standards, preventing po-
tential hazards by verifying that critical thresholds are maintained.

The code block on the right shows how these safety properties can be translated into a form
that ESBMC can understand. Here, __ESBMC_assume assumes constraints on the input val-
ues, and __ESBMC_assert is used to assert safety properties under specific conditions. This
translation allows ESBMC to verify the system’s behavior against the defined safety properties,
ensuring compliance with the required safety standards.

4.2.5 ESBMC Architecture

Figure 4.5 shows the current architecture of ESBMC; white rectangles represent input and out-
put, while grey rectangles represent the verification steps. The tool is composed of several mod-
ules, each with a specific goal.

81

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

Figure 4.5. ESBMC architecture.

Frontend. This converts the program into an Abstract Syntax Tree (AST). ESBMC has three
frontends: one clang-based C frontend, one CBMC-based C frontend, and one CBMC-based
C++ frontend.

GOTO converter. This module converts the AST generated by the front end into a state tran-
sition system called the GOTO program. The GOTO program can be changed to add property
checks and k-induction-specific instructions. Converts the GOTO program into a sequence of
static single assignments (SSA). This module unwinds the loops of the GOTO program, propa-
gating constants to generate a minimal set of SSAs. This module can also add property checks,
most of which are related to dynamically allocated memory.

SMT encoding. Converts the set of SSAs into SMT and checks for satisfiability. If the for-
mula is satisfiable, then the SMT solver is queried for relevant information in order to build the
counterexample. ESBMC 7.6.1, which QNNVerifier uses as the bounded model checker in this
thesis, currently supports five solvers: Z3, Bitwuzla, Boolector, Yices [187], and CVC5.

4.2.6 Constant Folding and Slicing

Constant Folding and slicing are pivotal optimization techniques in compiler design, aiming
to enhance the efficiency and performance of programs by reducing computation overhead and
eliminating redundant code. As detailed by Muchnick et al., [85], Constant Folding involves
pre-calculating expressions during compile time rather than at runtime. This optimization can
be applied to various constant expressions, including arithmetic operations and string literals,
effectively reducing the runtime computation requirements.

Constant Slicing, while not as frequently discussed as constant folding, is crucial in opti-
mizing compiler performance. According to Wegman et al., [188], constant slicing involves the
removal of parts of the program that are deemed unnecessary for the execution outcome. This
process often works hand-in-hand with constant propagation, where the compiler replaces ex-
pressions with known constant values during the compilation process, streamlining the code and
improving execution efficiency.

82

4.2. QNNVERIFIER FRAMEWORK OVERVIEW

In particular, QNNVerifier exploits the constant propagation technique to reduce the num-
ber of expressions associated with specific neuron computation procedures and activation func-
tions. By simplifying the SSA (Static Single Assignment) representation, QNNVerifier can use
local and recursive transformations to remove functionally redundant expressions (for neuron
computation procedures and activation functions) and redundant literals (for safety properties).
This involves identifying expressions whose values can be predetermined at compile time and
propagating these values throughout the program to simplify further expressions and eliminate
unnecessary calculations.

For example, if a neuron’s activation function consistently produces a specific value for given
inputs, this value can be propagated, eliminating the need to recompute the function repeatedly.
Similarly, if certain safety properties involve constants that can be determined at compile time,
these can be embedded directly into the assertions, reducing the overhead during runtime veri-
fication.

Overall, these optimization techniques not only enhance the performance and efficiency of
the compiled code but also contribute to more reliable and maintainable software by ensuring
that only the necessary computations are performed, and all redundant code is removed.

Thus, QNNVerifier simplifies the SSA representation, using local and recursive transfor-
mations to remove functionally redundant expressions (for neuron computation procedures and
activation functions) and redundant literals (for safety properties), as

a ∧ true = a a ∧ false = false a ∨ false = a a ∨ true = true
a⊕ false = a a⊕ true = ¬a ite (true, a, b) = a ite (false, a, b) = b

ite (f, a, a) = a ite (f, f ∧ a, b) = ite (f, a, b) .

We apply such simplifications to reduce the resulting formula’s size and then achieve simplifi-
cation within each time step and across time steps during the encoding procedure of a DNN.

QNNVerifier’s approach to constant folding and slicing is intricately linked to the work-
ings of the Efficient SMT-Based Context-Bounded Model Checker (ESBMC). ESBMC, as in-
troduced by Gadelha, Morse, and Cordeiro in their discussion on handling the complexities of
C programs [189], utilizes these optimizations as part of its process to convert C programs into
GOTO programs. This conversion simplifies the program’s structure by replacing all control
structures with conditional and unconditional jumps, making it more amenable to analysis and
optimization. The GOTO program representation is further processed through symbolic execu-
tion, transforming the program into a Static Single Assignment (SSA) [190] form. This trans-
formation facilitates the unrolling of loops and recursive functions dynamically, incorporating
unwinding assertions to check the adequacy of the unrolling bounds.

Slicing removes expressions that do not contribute to the checking procedure of a given safety

83

4.3. EVALUATION

property. The verification engine combines two slicing strategies: it removes all instructions
after the last assert in the SSA set. It collects all symbols in assertions and removes instructions
that do not contribute to them. Both slicing strategies ensure that unnecessary instructions are
ignored during SMT encoding. As an example, using Figure 4.6, if we are interested in checking
that DNN’s output only, we rewrite the final assert statement, in line 12, as f <= 4. It indicates
that everything not involving f does not impact the conclusion of the intended safety property,
and the resulting SSA for that code would be sliced as

x1 == nondet_symbol(nondet0) ∧ y1 == nondet_symbol(nondet1)∧

f1 == 3 ∗ (int)x1 + (int)y1 ∧ f2 == (f1 < 0 ? 0 : f1) ∧ f2 <= 4,

where there is no presence of information (states) regarding neurons a and b.

1 int main() {
2 _Bool x, y;
3 int a, b, f;
4 x = nondet_bool();
5 y = nondet_bool();
6 a = ((2*x) - (3*y));
7 a = a < 0 ? 0 : a;
8 b = (x + (4*y));
9 b = b < 0 ? 0 : b;

10 f = ((3*x) + y);
11 f = f < 0 ? 0 : f;
12 assert(a <= 2 && b <= 5 && f <= 4);
13 return 0;
14 }

Simple neural network

1 x1 = nondet_symbol(nondet0);
2 y1 = nondet_symbol(nondet1);
3 a1 = 2 * (int)x1 - 3 * (int)y1;
4 a2 = (a1 < 0 ? 0 : a1);
5 b1 = (int)x1 + 4 * (int)y1;
6 b2 = (b1 < 0 ? 0 : b1);
7 f1 = 3 * (int)x1 + (int)y1;
8 f2 = (f1 < 0 ? 0 : f1);
9 (assert) a2 <= 2;

10 (assert) b2 <= 5;
11 (assert) f2 <= 4;

Neural Network in SSA form

Figure 4.6. (a) A simple NN implemented in C, where variables “a”, “b”, and “c” range from −3 to 2, 0 to 5, and
0 to 4, respectively. (b) The initial NN C program was converted into SSA form.

4.3 Evaluation

4.3.1 Description of the QNNVerifier Benchmarks

In our evaluation, we consider DNNs trained on four datasets: the ACAS Xu dataset [54], the
GTSRB dataset [191], the CIFAR-10 dataset and the TinyImageNet dataset:

ACAS Xu:

• The ACAS Xu benchmark, derived from avionics research focused on Airborne Collision
Avoidance Systems (ACAS) for Unmanned Aircraft (Xu), employs a large state-action ta-
ble that dictates appropriate piloting decisions and compresses them into 45 DNNs. Each
neural network’s input scale is 1 × 5, and the output scale is 1 × 5. The details about the
definition can be found in Section 2.3.2.

84

4.3. EVALUATION

• Due to using a large lookup table in the design, a neural network compression of the policy
was proposed.

• Analysis of this system has spurred a significant body of research on neural network veri-
fication in the formal methods community.

German Traffic Sign Recognition Benchmark (GTSRB):

• GTSRB (German Traffic Sign Recognition Benchmark) [191] is employed for machine
learning and computer vision research, particularly in the realm of traffic sign recognition,
featuring a wide array of real traffic signs in varied conditions in Germany.

• The GTSRB contains 43 classes of traffic signs, divided into 39,209 training images and
12,630 test images.

• The images have varying light conditions and rich backgrounds.

CIFAR-10 Dataset:

• Krizhevsky et al. [192] assembled a CIFAR-10 dataset consisting of ten classes with 6,000
images per class. These classes are airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. The standard train/test split is class-balanced, containing 50,000 training
and 10,000 test images. The classes are designed to be completely mutually exclusive. For
example, neither automobile nor truck contains images of pickup trucks.

Tiny ImageNet Dataset:

• The Tiny ImageNet dataset is a scaled-down version of the ImageNet dataset designed for
academic and research purposes. It contains 200 classes, each with 500 training images,
50 validation images, and 50 test images, making it more manageable than the full Im-
ageNet dataset. Each image is resized to 64 × 64 pixels, significantly smaller than the
standard ImageNet images. Tiny ImageNet is often used for benchmarking and develop-
ing new machine-learning models due to its balance of complexity and size. It provides
a good challenge for evaluating the performance of algorithms and architectures in image
classification tasks.

At the same time, Table 4.1 describes the network structure of the different benchmarks and
the number of neurons in columns so that the reader can grasp the difficulty of the verification
problem. The output log of ESBMC also contains how many assignments the transformed SSA
contains for an input C file, which can be seen as the complexity of a verification problem. As
shown in Table 4.1, we have similarly tabulated the number of assignments for each verification
property. The Iris benchmarks contain fewer assignments and require less time, while ACAS Xu
contains more properties and assignments. Hence, it needs much more time to verify. We also
give the average and maximum time to validate a property in this table.

85

4.3. EVALUATION

Table 4.1. The baseline models. Parameters include the trainable and non-trainable parameters in the models; the
unit is kilo (K). The two parameters are for the converted C file model, including the capacity of the C file and the

number of assignments in the ESBMC procedure.

Model Dataset #Layers #Params #Benchmarks Converted C file
Average C file capacity ESBMC assignments

ACAS Xu ACAS Xu 6 - 135 230KB ∼ 7500
CIFAR-10-max-pooling CIFAR-10 10 113K 24 580KB ∼ 37900
GTSRB_small GTSRB 8 320K 15 520KB ∼ 13100
GTSRB_medium GTSRB 8 844K 15 1300KB ∼ 25800
GTSRB_big GTSRB 8 1630K 15 2300KB ∼ 41900

4.3.2 Experiments Setup

In this regard, we are mainly interested in the following experimental goals:

EG1 - Ablation study - Is it possible to establish the role of each employed enhancement tech-
nique and also define an optimal setup, both regarding verification time and performance?

EG2 - Quantization effects - How does a quantization choice influence our verification process
and the safety of a neural network?

EG3 - Comparison with SOTA techniques - What is the performance of our verification ap-
proach when compared to the existing literature?

The experimental evaluation was conducted on an AMD EPYC 7T83 2.5 GHz 64-core Pro-
cessor with 90GB of RAM and Linux OS. We present the CPU execution times as measured with
the times system call [193]. ESBMC v7.3.0. was configured to run without time or memory lim-
its. Thus, timeouts are all due to exceedingly high memory consumption 1 The following com-
mand is used to run ESBMC unless specifically noted: esbmc <file.c> -I <path-to-OM>
--force-malloc-success --no-div-by-zero-check --no-pointer-check --boolector
--k-induction-parallel --no-bounds-check --fixedbv. The execution was run with-
out time or memory limits.

In the above command, several options were used to configure the ESBMC execution:

Table 4.2. Command Line Options of ESBMC and Their Descriptions.

Option Description
--force-malloc-success do not check for malloc/new failure
--no-div-by-zero-check do not check divide by zero
--no-pointer-check do not do pointer check
--k-induction-parallel prove by k-induction, running each step on a separate process
--no-bounds-check do not do array bounds check
--fixedbv encode floating-point as fixed bit-vectors

These options were chosen to disable certain runtime checks and to employ specific encoding
and verification techniques. The aim was to streamline the verification process, reduce overhead,

1Available at http://esbmc.org/

86

http://esbmc.org/

4.3. EVALUATION

Table 4.3. The time consumption (in seconds) in different phases of Bounded Model Checking (BMC) tasks
using different solvers

Symex Encoding Solver Overall BMC time

Z3 1007 266 10 1283
Boolector 1012 275 4 1291
Bitwuzla 1011 286 20 1317
CVC5 1042 273 16743 18057

and leverage parallel processing capabilities where possible. By doing so, ESBMC can be en-
sured to perform efficiently and effectively under the given constraints.

4.3.3 SMT Solvers Comparison

As mentioned in Section 4.2, our approach relies on model checking to reason about the satis-
fiability of a safety property concerning a DNN implementation. For our experiments, we have
chosen ESBMC as a verification engine, as it is an extensively evaluated tool with SOTA re-
sults [194]. It converts input C code into SMT formulae and then calls an external SMT solver.
Currently, ESBMC supports three solvers by default: Boolector, Z3, and Bitwuzla, which has
been introduced in Section 2.2 yield different verification results, both in terms of counterexam-
ple (if any) and verification time.

Here, we compare the performance of such solvers in verifying DNN implementations. We
run them on our ACAS Xu benchmarks, with bit widths of 8. This way, we cover the most used
quantization lengths and analyze the behavior of our methodology on a varied test suite. We use
these experimental settings throughout our ablation study.

The runtime of ESBMC consists of several components: symbolic execution, encoding, and
bounded model checking. These components are detailed in Section 4.2.5. Our examination of
the ESBMC verification logs for the ACAS Xu benchmarks revealed interesting patterns in the
time distribution across different solvers.

To provide a clearer picture, we calculated the average time each solver spent on symbolic
execution, encoding, and bounded model checking. The results, summarized in Table 4.3, show
distinct performance characteristics for each solver across the different processes.

The phases include Symbolic Execution (Symex), Encoding, Solving, and the Overall BMC
time. The times for the Symex phase are quite close across different solvers. Z3 takes 1007
seconds, Boolector takes 1012 seconds, Bitwuzla takes 1010 seconds, and CVC5 takes 922 sec-
onds. The Encoding phase times are also relatively close. Z3 takes 266 seconds, Boolector takes
275 seconds, Bitwuzla takes 286 seconds, and CVC5 takes 294 seconds. The Encoding phase
times are also relatively close. Z3 takes 266 seconds, Boolector takes 275 seconds, Bitwuzla
takes 286 seconds, and CVC5 takes 294 seconds.

87

4.3. EVALUATION

It is evident that CVC5 spends a substantial amount of time in the Solver phase (16743 sec-
onds), which greatly increases the overall BMC time. This suggests that CVC5 might be less
efficient in handling certain types of problems or that these problems are particularly complex
for CVC5. The other three solvers (Z3, Boolector, and Bitwuzla) have relatively short solving
times, with Boolector being the fastest at just 4 seconds. This indicates that Boolector has a
significant advantage in solving efficiency.

The main differences between the solvers are seen in the Solver phase efficiency, which is
likely influenced by the solver’s algorithms, implementation details, and optimizations for spe-
cific types of problems. CVC5 performs significantly worse in this phase, leading to a much
higher overall BMC time compared to the other solvers.

The results of our comparison between Z3, Boolector and Bitwuzla are summarized in Fig-
ure 4.7. In this graph, I compared their performance on ACAS Xu Property 1,3 and 4, due to the
same verification results of these three properties.

In comparison between Bitwuzla and Z3, for Property 1, most data points are below the diag-
onal line, indicating that Bitwuzla’s verification time is generally shorter than Z3’s. For property
3, while some points are above the diagonal line, the majority are still below it, indicating that
Bitwuzla’s verification time is slightly shorter than Z3’s. For Property 4, the data points are
clearly below the diagonal line, showing that Bitwuzla’s verification time is significantly shorter
than Z3’s.

In comparison between Bitwuzla and Boolector, for Property 1, Bitwuzla’s verification time
is generally shorter than Boolector’s, with data points close to the diagonal but slightly skewed
towards the horizontal axis. For Property 3, Bitwuzla’s verification time is slightly shorter than
Boolector’s, with a relatively even distribution. For Property 4, Bitwuzla’s verification time is
significantly shorter than Boolector’s.

Noticed that Ls represents the amount of non-determinism in the source code, i.e., the set
of possible values that program constraints can assume in the state space search. Thus, as the
size of the Ls region grows, so does the state space search, leading to more complex formulae
to be solved. This increase in complexity affects the performance of the SMT solvers, making
the verification process more time-consuming and challenging.

Given the results in Figure 4.7, we chose Bitwuzla as our SMT solver for the rest of this ex-
perimental section. While it is impossible to know exactly why Bitwuzla is the best-performing
solver on our test suite, we speculate it happens because ESBMC encodes verification problems
into SMT formulae with the formalism of QF_AUFBV logic.2 Here, QF stands for quantifier-
free formulas, A stands for the theory of arrays, UF stands for uninterpreted functions, and BV
stands for the theory of fixed-sized bit-vectors. For this type of formulae, Bitwuzla represents

2https://smtlib.cs.uiowa.edu/logics.shtml

88

https://smtlib.cs.uiowa.edu/logics.shtml

4.3. EVALUATION

103.05 103.1 103.15 103.2 103.25
103

103.1

103.2

Bitwuzla

is better

Boolector is better

Bitwuzla verif. time (s)

B
o
ol
ec
to
r
ve
ri
f.

ti
m
e
(s
) Property 1

Property 3
Property 4

103.05 103.1 103.15 103.2 103.25
103

103.1

103.2

Bitwuzla

is better

Boolector is better

Bitwuzla verif. time (s)

z3
v
er
if
.
ti
m
e
(s
)

Property 1
Property 3
Property 4

Figure 4.7. Comparison of verification times with different SMT solvers for the fixed-point ACAS Xu
benchmarks: The unit of the verification time is seconds(s).

the SOTA SMT solver. 3

The results presented here successfully answer EG1. We identified the best configura-
tion of ESBMC within our framework, which consists of all the above techniques with
solver Bitwuzla.

4.3.3.1 Effects of Quantization on Verification Time and Memory

First, the relation between DNN quantization and verification time will be tackled. Indeed,
verifying quantized neural networks is PSPACE-hard [195]. However, this is theoretical, and
empirical results provided by Giacobbe et al. [71] show a positive correlation between the num-
ber of bits and verification time. In this study, we conducted a comprehensive evaluation of
the GTSRB benchmark by performing experiments using quantized bit-widths ranging from 2
bits to 32 bits, focusing specifically on even bit-width values (e.g., 2, 4, 6, ..., 32). The goal of
this evaluation was to assess how different quantization bit-widths influence execution time and
memory usage during the neural network’s verification and inference stages. For each quantiza-
tion setting, we measured and recorded the computational performance, allowing us to observe
trends and trade-offs as the bit-width increases.

In addition to quantized models, we also ran the GTSRB floating-point model as a baseline
for comparison. The floating-point model represents the standard full-precision setting, which
allows us to directly compare the performance of quantized models against the full-precision
counterpart. By comparing these results, we aim to determine whether lower-bit quantized mod-
els can offer significant computational advantages, such as reduced memory usage and faster
execution, while maintaining acceptable accuracy and model behavior, or if higher precision
(e.g., floating-point) is necessary for more robust results. Because of the long verification time
required for the floating-point model, we set the time limit for verifying the floating-point model

3https://smt-comp.github.io/2020/results/qf-aufbv-single-query

89

https://smt-comp.github.io/2020/results/qf-aufbv-single-query

4.3. EVALUATION

to 36,000s and do not set a memory cap (the physical memory limit is 90GB) The physical
memory is 90GB and the verification task for a single floating-point model takes up all the CPU
time.

Fig. 4.8 illustrates the performance differences between quantized neural networks with vary-
ing bit widths and floating-point neural networks. Specifically, time_30, time_48, and time_-
64 represent the verification times corresponding to resolutions of 30x30, 48x48, and 64x64 on
the GTSRB benchmark, respectively. Similarly, max_mem_res30, max_mem_res48, and max_-
mem_res64 indicate the maximum memory usage for the same resolutions on the GTSRB bench-
mark.

As shown in Fig. 4.8 (a), in terms of memory usage, the floating-point model consistently
consumes slightly more memory compared to both the maximum and average values of the quan-
tized models. This discrepancy becomes particularly noticeable when considering the floating-
point model at a resolution of 64x64, where its memory footprint significantly exceeds the aver-
age memory usage of the quantized model. Moreover, in the worst-case scenario, the memory
consumption of the floating-point model is even larger than its own typical memory footprint,
making it noticeably more resource-intensive than the quantized versions, especially at higher
resolutions.

Turning to time usage, as highlighted in Fig. 4.8 (b), the floating-point model requires signif-
icantly more validation time compared to the quantized models across all resolutions. This time
difference is evident for time_30, time_48, and time_64, where the floating-point model con-
sistently takes much longer to validate than even the maximum time required by the quantized
models. At each resolution level, the floating-point model’s validation time far exceeds that of
the quantized models, underscoring its higher computational demands.

Furthermore, Fig. 4.8 (c) demonstrates a gradual yet steady increase in memory usage as the
digit size grows for most memory results, particularly for res30 and res48. However, res64
stands out by maintaining a nearly constant high value across all digit sizes, indicating that the
memory requirement for res64 is significantly higher and less sensitive to changes in digit size
compared to the other resolutions.

Lastly, Fig. 4.8 (d) reveals that while processing times remain relatively stable for each res-
olution, there are clear distinctions in the time required for time_30, time_48, and time_64.
Notably, time_64 takes considerably longer than the other two, with the gap becoming increas-
ingly pronounced as the resolution increases. This suggests that higher resolutions impose a
much greater computational load, particularly for time_64, further emphasizing the computa-
tional advantages of using quantized models at lower resolutions.

In the experimental results of the fully quantized neural network, both the maximum memory
usage and verification time show only a gradual increase as the network scales. Therefore, for

90

4.3. EVALUATION

fixed_avg fixed_max float
Type

0

10

20

30

40

M
ax

 M
em

Max Mem Comparison by Type
Memory Resolution

max_mem_res30
max_mem_res48
max_mem_res64

(a)

fixed_avg fixed_max float
Type

0

1000

2000

3000

4000

Ti
m

e
(s

ec
on

ds
)

Time Taken by Type
Time Interval

time_30
time_48
time_64

(b)

0 10 20 30

10

20

30

40

Digit

M
ax

M
em

Max Mem vs Digit

max_mem_res30
max_mem_res48
max_mem_res64

(c)

0 10 20 30
0

100

200

300

Digit

Ti
m

e

Time vs Digit

time_30
time_48
time_64

(d)

Figure 4.8. Comparison of average case, worst case time spent and maximum memory usage of quantized
networks with floating point networks, and verification time vs max memory usage for different quantization

bit-widths: from 2-bit to 32-bit.

our practical verification, we opted to use the int8 data type for the quantized neural network.
This choice aligns with common industry practices, as int8 is the most widely used bit width in
real-world applications due to its balance between performance and resource efficiency.

Notice that the security property of robustness of the validation neural network in the face
of small perturbations of the inputs is fundamentally different from the ACAS Xu benchmark,
which is usually performed for small perturbations in the input space. Whereas input pertur-
bations are usually very localized, i.e., restricted to a small region (e.g., by setting an epsilon
value to represent the range of input perturbations), ACAS Xu is a much more complex sys-
tem containing multiple inputs, outputs, and rules. These systems are designed for real-time
decision-making to avoid aircraft collisions. Their safety validation usually involves complex
multidimensional spatial analysis and needs to consider the dynamic behavior of the system
(e.g., relative speed, position, and orientation of multiple aircraft, etc.), which significantly in-
creases the size and complexity of the problem, and therefore it requires a shorter validation time
than ACAS Xu and can give a counterexample very quickly.

91

4.3. EVALUATION

These results answer EG2: the verification time and memory have some correlation
with the number of bits used for DNN quantization and the scale of DNN. Moreover,
the safety of a DNN is mostly stable across different quantization levels, which supports
the use of aggressive quantization in machine learning practice as long as some verifica-
tion is performed.

4.3.4 Comparison with State-of-the-art Verification Tools

This section compares QNNVerifier with existing studies. Related work is progressing rapidly,
but only a few available tools exist. Besides, the approaches for verifying QNNs [71], [196]–
[198]) do not always provide means for replicating their experiments or performing the compar-
isons. As such, QNNVerifier can only be compared with earlier tools that verify DNN safety as
abstract mathematical models in infinite precision. Among those, the three most popular ones
were chosen:

• Marabou [146]. Based on the Reluplex [112], Marabou uses a simplex-like algorithm to
split the verification problem into smaller subproblems and invoke an SMT solver on each
of them. It also has an option to use LP relaxation for bound tightening, which uses Gurobi
as an LP solver.

• ERAN [199]. It combines abstract domains with custom multi-neuron relaxations to sup-
port fully connected, convolutional, and residual networks with ReLU, Sigmoid, Tanh, and
Maxpool activations.

• Alpha-Beta-CROWN [134]. It uses a new bound propagation-based method that can fully
encode neuron splits via optimizable parameters constructed from either primal or dual
space.

• NeuralSAT [159]. NeuralSAT is a deep neural network (DNN) verification tool. It inte-
grates the DPLL(T) [200] approach commonly used in SMT solving with a theory solver
specialized for DNN reasoning. NeuralSAT exploits multicores and GPU for efficiency and
can scale to networks with millions of parameters. It also supports a wide range of neural
networks and activation functions.

The goal is to show that our quantized methodology is at least as efficient as these SOTA tools.
Besides, QNNVerifier provides more information on the safety of actual DNN implementations
than the abstract safety guarantees provided by Marabou and Alpha-Beta-Crown.

The ACAS Xu Property 1,3,4 benchmark was chosen as a comparison suite (see Section 4.3.1)
for property verification, which has the advantage of being already implemented in Marabou,

92

4.3. EVALUATION

NeuralSAT, and Alpha-beta-crown,4 5 6thus allowing a fair performance comparison.

The results regarding verification time are shown in Figure 4.9. QNNVerifier was compared
to our methodology with the SMT-based tool Marabou and the DPLL(T)-based SAT backends
tool NeuralSAT. We believe this is because the ESBMC is more efficient at producing opti-
mized SMT formulae (see Section 4.2.6) than the custom simplex-like method employed by
Marabou [146]. This also explains why the verification times of our methodology are almost
constant across the whole comparison suite.

In the comparison, since NeuralSAT runs authentication using all cores of the CPU by default,
NeuralSAT was modified by limiting the number of CPU cores to force it to run authentication
using a single core to ensure that it is comparable to ESBMC running on a single core.

101 102 103 104
103

103.05

103.1

103.15

103.2

103.25

103.3

Marabou is better

Ours is better

Marabou verification time (s)

O
u
r

ve
ri

fi
ca

ti
on

ti
m

e
(s

)

AcasXu p1 (S-F)

Comparison with Marabou

102.6 102.8 103 103.2 103.4 103.6
103

103.1

103.2

NeuralSAT

is better

Ours is better

NeuralSAT verif. time (s)

O
u
rs

v
er
if
.
ti
m
e
(s
)

Property 1
Property 3
Property 4

Comparison with NeuralSAT

Figure 4.9. Comparison of verification time among our methodology and SOTA tools on Property 1 of ACAS
Xu. The unit of the verification time is seconds (s).

In Figure 4.9, the left plot is the comparison of the verification time between QNNVerifier
and Marabou. Many of the cases that validate Marabou are timeouts (we set the timeout to
3600 seconds), so we place these points on the far right of the x-axis. Most points lie below the
diagonal, indicating that our method generally performs faster than Marabou for most test cases.
This demonstrates the efficiency of our verification technique in comparison with the existing
tool. A few points are above the diagonal line, indicating that Marabou is faster in some cases.
The spread of points below the diagonal suggests significant efficiency gains in our method. For
instance, in several cases, the verification time is reduced by an order of magnitude or more. As
the verification time increases (towards the right side of the plot), our method shows consistent
performance improvements, highlighting its scalability for more complex verification tasks. The
comparison clearly illustrates the advantages of QNNVerifier in terms of speed and efficiency.

The right plot provides a detailed comparison of the verification times between our method
4https://github.com/NeuralNetworkVerification/Marabou
5https://github.com/dynaroars/neuralsat
6https://github.com/Verified-Intelligence/alpha-beta-CROWN

93

https://github.com/NeuralNetworkVerification/Marabou
https://github.com/dynaroars/neuralsat
https://github.com/Verified-Intelligence/alpha-beta-CROWN

4.3. EVALUATION

and NeuralSAT across different properties of the ACAS Xu model. The points are spread around
the diagonal line, suggesting that for many test cases, both our method and NeuralSAT have
similar verification times. However, there are notable differences for specific properties and test
cases. In Property 1, Many blue squares lie close to or just above the diagonal line, indicating
that our method performs comparably to NeuralSAT for Property 1. Since our advantage over
NeuralSAT on Property 1 is not really significant, we added a comparison experiment for Prop-
erties 2 and 3. A few points below the diagonal showcase where our method is faster. Brown
triangles are more dispersed, with several points below the diagonal line, indicating that our
method is generally faster for Property 3. There are fewer points above the diagonal, suggesting
that in most cases, our method outperforms NeuralSAT for this property. Yellow circles also
show a spread around the diagonal line, with a notable number of points below the diagonal.
This indicates that for Property 4, our method tends to be faster than NeuralSAT in many test
cases. Some points lie close to the diagonal, suggesting similar performance in those cases.

Our method exhibits competitive verification times across different properties compared to
NeuralSAT. For Property 3 and Property 4, our method generally performs better, showing
faster verification times in many test cases. Property 1 shows comparable performance, with
our method being slightly faster in several cases.

We also compared the counterexample generated by our tool with the counterexample gener-
ated by alpha-beta-crown, as shown in Figure 4.10. Since Marabou is not scalable for GTSRB
benchmarks and NeuralSAT does not give the counterexample when verification failed. So, for
counterexample generation, we chose the GTSRB dataset and alpha-beta-crown as the compar-
ison suite. The original figure, the counterexample generated by our tool as well as the one
generated by alpha-beta-crown can be recognized by humans as a turnpike sign, but the coun-
terexample generated by our tool possesses less noise and the image is clearer.

In the top row, we use Property from the GTSRB dataset, 08258.jpg, which is the image with
the blue circular road sign with the white arrow pointing to the left. The original is clear and
crisp, and the white arrow on the blue background is very visible. The image in the middle is
a counterexample created by our tool, which decreases in clarity and the arrow becomes more
distorted and less recognizable. But when we look at the third image, the counterexample created
by alpha-beta-crown, the arrow appears fragmented and there is a lot of noise in this image.

The center row has three circular road signs indicating a speed limit of “40” from 07040.jpg
in the GTSRB dataset. The original image on the left shows a clearly legible white “40” placed
within a black circle with a white border. The “40” on the center image is slightly blurred, a
counterexample created by our method. And the image on the far right, from alpha-beta-crown,
is so badly distorted that the numbers are barely legible.

The bottom row shows the “100” speed limit sign, which comes from 11985.jpg in the GT-
SRB dataset, and the middle-most image in the row, from a counterexample created by our

94

4.4. CHAPTER SUMMARY

Figure 4.10. Enlarged counterexamples for the GTSRB benchmarks 30× 30 pixels image resolutions generated
by our method (with and without approximation) and alpha-beta-crown, compared with the original image.

method, blurs and distorts the sign and makes the background color lighter. The third image,
from alpha-beta-crown, is the blurriest version of the number, with the 100-speed limit sign
barely recognizable and with a lot more noise in the background.

These results successfully answer EG3 and Research Question 1: We evaluated and
compared our tool with SOTA ones, including Marabou (SMT-based), Alpha-beta-
CROWN (based on Linear Programming and Branch-and-Bound), and NeuralSAT
(based on DPLL(T)). Our approach can successfully verify all the benchmarks without
timeout or crash. Furthermore, considering the Property 1 of ACAS Xu, our approach
is significantly faster and solves more verification tasks than Marabou; considering the
Property 2 and 3, our approach is slightly better than NeuralSAT.

4.4 Chapter Summary

Through these efforts, we aim to provide a robust, scalable, and reliable framework for neural
network verification that can be adapted to the evolving landscape of deep learning technologies.

Verification of DNNs has recently attracted considerable attention, with notable approaches
using optimization, reachability, and satisfiability methods. While the former two promise scal-
ing to large neural networks, they achieve such a goal by relaxing and approximating the verifi-
cation problem. In contrast, satisfiability methods are exact by construction but are confronted
with the full complexity of the original verification problem.

95

4.4. CHAPTER SUMMARY

We propose an SMT approach to address DNN verification. More specifically, we view the
DNN not as an abstract mathematical model but as a concrete piece of software (i.e., source
code), which performs a sequence of fixed- or floating-point arithmetic operations. With this
view, we can borrow several software verification techniques and seamlessly apply them to DNN
verification. In this regard, we center our verification framework around Software Model Check-
ing (SMC) and empirically show the importance of interval analysis, constant folding, slicing,
and expression simplifications in reducing the total verification time. Furthermore, we propose
a tailored discretization technique for non-piecewise-linear activation functions that allow us to
verify DNNs beyond the piecewise-linear assumptions that many state-of-the-art methods are
restricted to.

Finally, the problem of verifying DNNs is still open. More specifically, it is unclear which
set of techniques yields the best performance when scaling to large networks. In this regard,
our future work includes comparing our approach to other existing techniques and optimizing
our verification performance even further. In addition, our work can be regarded as the first
step towards an approach capable of revealing the most aggressive DNN representation that still
provides correct operation, aiming to achieve maximum compression for a particular model.

In our future work, we aim to significantly enhance the scalability of our technology, address-
ing both the computational efficiency and the broader applicability of our methods. Here is an
expanded view of our planned initiatives:

1. Engineering improvements: We intend to refine the current QNNVerifier implementa-
tion by optimizing algorithms and streamlining data structures to handle larger datasets and
more complex neural network models. This involves reevaluating the computational bot-
tlenecks and memory usage to ensure efficient resource management and faster processing
times. Especially during the code conversion procedures, the C file converter may generate
redundant code, and the C code needs to be optimized.

2. Soundness guarantees: Enhancing soundness guarantees is crucial for the reliability of
QNNVerifier. We plan to develop mechanisms that provide stronger soundness assurances
without adversely affecting performance, including generating checkable proof objects that
can be independently verified, offering an extra layer of verification for the correctness of
analyses.

3. Proof of correctness: We aim to generate externally checkable proofs of correctness that
can be verified by third-party tools or manual inspection. This will increase the verifica-
tion process’s trustworthiness and foster transparency and reproducibility in neural network
verification research.

4. Handling diverse DNN architectures: Finally, We plan to extend our approach to accom-
modate DNNs with various layers, such as convolutional, recurrent, and residual layers.

96

4.4. CHAPTER SUMMARY

This extension will involve developing new abstraction and verification techniques suitable
for these layers’ unique characteristics, thereby broadening QNNVerifier to more complex
and state-of-the-art neural network architectures.

97

Chapter 5

QNNRepair: Quantized Neural Network

Repair

This chapter introduces the QNNRepair implementation and the evaluation of QNNRepair. Firstly,
it presents the concept, application, and security concerns of neural networks. Then, it includes
the QNNRepair core methodology: neural importance ranking, constrains-solving based repair-
ing. After that, the QNNRepair algorithm is described, and QNNRepair was tested on popular
benchmarks and compared QNNRepair with the state-of-the-art methods.

5.1 Chapter Introduction

Chapter 4 introduces the neural network verification tool QNNVerifier, which aims to identify
vulnerabilities in trained models. While this tool is effective at uncovering weaknesses, the
question remains: how do we address and rectify these vulnerabilities once they are found? This
chapter introduces the neural network model repairing tool, QNNRepair, explicitly designed to
address this challenge.

QNNRepair provides a systematic approach to fixing identified issues in neural networks. By
integrating QNNVerifier and QNNRepair, we create a comprehensive framework that detects
and remedies faults in neural networks, ensuring improved performance and reliability. The
repair tool analyzes the detected vulnerabilities and applies targeted modifications to the model
parameters or architecture to mitigate these issues.

To make the repair process effective, QNNRepair employs techniques such as fine-tuning,
retraining specific layers, or altering the network structure where necessary. These methods are
chosen based on the type and severity of the vulnerabilities identified by QNNVerifier. For

98

5.2. QNNREPAIR METHODOLOGY

example, if a vulnerability is due to an overfitting issue, QNNRepair might implement regu-
larization techniques, including dropout, which randomly disables neurons during training to
reduce co-adaptation or adjust the training data to enhance the model’s generalizability.

Additionally, QNNRepair is designed with usability in mind, featuring an intuitive interface
that guides users through the repair process. This interface provides clear instructions and visu-
alizations to help users understand the changes being made to the model. The goal is to make
the tool accessible to both experts and non-specialists, allowing a wider audience to benefit from
its capabilities.

Another critical aspect addressed by QNNRepair is compatibility with models trained on
different platforms and stored in various formats. To handle this, the tool includes a robust model
conversion mechanism that supports popular frameworks such as TensorFlow, PyTorch, ONNX,
and Keras. This ensures that models can be seamlessly imported into QNNRepair, processed,
and then exported back to their original or preferred format.

After introducing QNNVerifier, this chapter describes a series of evaluations to validate its
effectiveness. This includes an ablation study to identify the optimal parameter combinations
for QNNRepair, ensuring the best performance. The ablation study systematically examines the
impact of different parameters on the tool’s performance, helping to fine-tune QNNRepair for
various types of neural network models and use cases. By identifying the best configurations,
QNNRepair can maximize the accuracy and efficiency of the repair process.

Additionally, this chapter compares QNNRepair with state-of-the-art (SOTA) neural network
verification tools. This comparison involves rigorous benchmarking against existing tools to
highlight QNNRepair’s advantages. Key metrics such as accuracy, speed, scalability, and ro-
bustness are evaluated to provide a comprehensive assessment of QNNRepair’s capabilities. The
results of these comparisons demonstrate the efficacy of QNNRepair in various scenarios, show-
casing its ability to not only detect but also effectively repair vulnerabilities in neural network
models.

These evaluations underscore the practical benefits of QNNRepair, illustrating how it can be
integrated into existing workflows to enhance the reliability and security of neural networks. By
providing concrete evidence of its performance and advantages, these studies build a strong case
for the adoption of QNNRepair in both academic research and industry applications.

5.2 QNNRepair Methodology

The overall workflow of QNNRepair is illustrated in Figure 5.1. It takes two neural networks, a
floating-point model and its quantized version for repair, as inputs. There is also a repair dataset

99

5.2. QNNREPAIR METHODOLOGY

Figure 5.1. The QNNRepair Architecture. In order to obtain the information that the quantized neural network is
missing after quantization we need the original floating point neural network, as well as to localize the faults by
Successful/Failing the dataset. The output of this method is the quantized neural network with high accuracy.

of successful (passing) and failing tests, signifying whether the two models would produce the
same classification outcome when given the same test input.

Next, this chapter thoroughly describes these procedures in the above graph. The process be-
gins with the initial inputs, comprising the floating-point and quantized neural networks, along-
side a repair dataset that categorizes tests into successful (passing) and failing based on the
models’ classification outcomes. This dataset is crucial as it helps identify discrepancies in the
outputs of the two models, serving as the basis for the repair process.

5.2.1 Neuron Importance Ranking

QNNRepair starts with evaluating the importance of the neurons in the neural network for caus-
ing the output difference between the quantized model and the floating point one. When con-
ducting an inference procedure on an image, the intermediate layer in the model has a series of

100

5.2. QNNREPAIR METHODOLOGY

outputs as the inputs for the next layer. The outputs go through activation functions, and we as-
sume that they are ReLU functions. For the output, if it is positive, we place it at one. If not, we
place it at zero and name it the activation output. Let fi and qi represent the activation output of
a single neuron in full-precision and quantized models separately. If there is a testing image that
makes (fi, qi) not equal, we consider the neuron as “activated”, and we set vmn = 1, otherwise
vmn = 0. Then we define the activation function matrix to assemble the activation status of all
neurons for the floating-point model:⎛⎜⎜⎝

f11 · · · f1n
...
fm1 · · · fmn

⎞⎟⎟⎠ = fi and qi for the quantized model.

QNNRepair defines the activation differential matrix to evaluate the activation difference be-
tween the floating point and the quantized model. Given an input image i, QNNRepair calculates
diffi = fi− qi between the two models. QNNRepair forms a large matrix of these diff i regard-
ing the image i. The element in this matrix should be 0 or 1, representing whether the floating
and quantized neural networks’ activation status is the same.

QNNRepair borrows concepts from traditional software engineering, replacing the statements
in traditional software with neurons in neural network models. In this context, passing tests are
defined as images in the repair set where the floating-point and quantized models produce the
same classification output while failing tests are those where their classification results differ.
For a set of repair images, we define < Caf

n , C
nf
n , C

as
n , C

ns
n > as follows:

• Caf
n is the number of “activated” neurons for failing tests.

• Cnf
n is the number of “not activated” neurons for failing tests.

• Cas
n is the number of “activated” neurons for passing tests.

• Cns
n is the number of “not activated” neurons for passing tests.

QNNRepair also draws from traditional software fault localization methods, such as Taran-
tula [201], Ochiai [202], DStar [203], Jaccard [204], Ample [205], Euclid [206], and Wong3 [207],
to define indicators of neuronal suspicion. These indicators are summarized in Table 5.1. Note
that in DStar, * represents the nth power of Caf

n .

QNNRepair then ranks the quantitative metrics of these neurons from largest to smallest
based on certain weights, with higher metrics indicating more suspicious neurons and the ones
QNNRepair needs to target for repair. This ranking helps us prioritize which neurons to address
first, ensuring that the most likely sources of errors are tackled early in the repair process.

101

5.2. QNNREPAIR METHODOLOGY

Table 5.1. Importance (i.e., fault localization) metrics used in experiments.

Tarantula:
Caf

n/
(︂
Caf

n+Cnf
n

)︂
Caf
n/

(︁
Caf

n+Cnf
n

)︁
+Cas

n/
(︁
Cas

n+Cns
n

)︁ Euclid:
√︁

Caf
n + Cns

n

Ochiai: Caf
n√︂(︁

Caf
n+Cas

n

)︁(︁
Caf

n+Cnf
n

)︁ DStar: Caf∗
n

Cas
n+Cnf

n

Ample:
⃓⃓⃓

Caf
n

Caf
n+Cnf

n
− Cas

n
Cas

n+Cns
n

⃓⃓⃓
Jaccard: Caf

n

C
af
n +C

nf
n +Cas

n

Wong3: Caf
n − h h =

⎧⎨⎩
Cas

n if Cas
n ≤ 2

2 + 0.1 (Cas
n − 2) if 2 < Cas

n ≤ 10
2.8 + 0.01 (Cas

n − 10) if Cas
n > 10

5.2.2 Constraints-Solving Based Repairing

After the neuron importance evaluation, QNNRepair obtains a vector of neuron importance for
each layer and ranks this importance vector. The neuron with the highest importance is our target
for repair, as it could have the most significant impact on the corrected error outcome. This step
is crucial because it allows us to focus our repair efforts on the most influential neurons, thereby
increasing the efficiency and effectiveness of the repair process.

The optimization problem for a single neuron can be described as follows:

Definition 5.2.1 (Optimization Problem for Neural Network Repair).

Minimize: M

Subject to:

M ≥ 0

δi ∈ [−M,M] ∀i ∈ {1, 2, . . . , n}

If floating model gives the result 1 and quantized model gives 0:

∀xi in TestSet X :
m∑︂
i=1

wixi < 0 and
m∑︂
i=1

(wi + δi)xi > 0

If floating model gives the result 0 and quantized model gives 1:

∀xi in TestSet X :
m∑︂
i=1

wixi > 0 and
m∑︂
i=1

(wi + δi)xi < 0

(5.1)

In the formula, m represents the number of neurons connected to the previous layer of the
selected neuron, and we number them from 1 to m. We add incremental δ to the weights to
indicate the weights that need to be modified. The solutions for the symbolic δ’s obtained from
the solver guarantee that all the inputs (both passing and failing) satisfy the pattern and are thus

102

5.2. QNNREPAIR METHODOLOGY

likely to be classified as C by the network. These solutions are then used to update the weights
of the network. M is used to make δ1...δi sufficiently small. The value δ1...δi are encoded as the
non-deterministic variables, and our task is to use Gurobi to solve these non-deterministic based
on the given constraints.

QNNRepair assumes that in the full-precision neural network, this neuron’s activation func-
tion gives the result 1, and the quantized gives 0. The corrected neuron in the quantized model
result needs to be greater than 0 for the output of the activation function to be 1. If in the full-
precision neural network, this neuron’s activation function gives the result 0, and the quantized
gives 1. The corrected neuron in the quantized model result needs to be smaller than 0 for the
output of the activation function to be 0. In this case, we make the distance of the repaired
quantized neural network as close as possible to that of the original quantized neural network.

QNNRepair’s inputs are a quantized neural networkQ that needs to be repaired, a set of data
sets X for testing, and the full-precision neuron network model F to be repaired. QNNRepair
uses Gurobi [121] as the constraint solver to solve the constraint and then replace the original
weights with the result obtained as the new weights.

5.2.3 QNNRepair Algorothm

QNNRepair is formulated in Algorithm 1. The input to the algorithm is the full-precision model
F , the quantized model Q. The repair set X , the validation set V , and the number of neurons
that need to be repaired N (Line 1). Firstly, QNNRepair initializes arrays to store the activation
states of the floating and quantized model, the values of the neuron importance, and four arrays
Cas[], Caf [], Cns[] and Cnf [] mentioned in Section 5.2.1. For these six arrays, QNNRepair sets
all elements to 0.

Next, in lines 3-4, for each input in the test set x ∈ Xn, QNNRepair performs the inference
process once it obtains the neurons’ activation states in the corresponding model layers and stores
them in the activation states of the floating and quantized model. In line 5, if x[i] is a failing test,
then we add the difference of activation status between the float model and quantized model to
Cas[i], and vice versa. In line 11 and 12, we calculateCns[] andCnf [] according to the definition
in Section 5.2.1. QNNRepair calculates the importance (this section uses DStar as an example)
for each neuron regarding seven importance metrics and sort them in descending order, then
store them in set In[] in line 14.

Then, QNNRepair picks the neuron in In[], according to the neuron’s weights and the corre-
sponding inputs from the previous layer, we create and solve the LP problem we discussed in
Section 5.2.2, get the correction of each neuron, and update their weights. When it arrives at the
maximum number of neurons to repair, the loop breaks and we correct all the neurons. These
are implemented at lines 17-24 in Algorithm 1.

103

5.3. EVALUATION

Algorithm 1: Repair algorithm
Input: Floating-point model F , Quantized model Q, Repair set X , Validation set V , Number

of neurons to be repaired N
Output: Repaired model Q′, Repaired model’s accuracy Acc

1 Initialize Fa[][], Qa[][], In[], Cas[], Caf [], Cns[], Cnf []

2 foreach X do
3 Fa[][i] = getActStatus(F, xi)
4 Qa[][i] = getActStatus(Q, xi)
5 if x[i] is a failing test then
6 Caf [i] = Caf [i] + |Fa[][i]−Qa[][i]|
7 else
8 Cas[i] = Cas[i] + |Fa[][i]−Qa[][i]|
9 end

10 end
11 Cnf [] = Cnf []− Caf []

12 Cns[] = Cns[]− Cas[]

13 In[] = DStar(Cas
n [], Cas

n [], Cas
n [], Cas

n [])

14 In[] = sort(In[]) // In descending order
15 Initialize weight of neurons w[][] and the increment δ[][]
16 foreach neuron[i] ∈ In[] do
17 foreach edge[j][i] ∈ neuron[i] do
18 w[j][i] = getWeight(edge[j][i])
19 end
20 δ[][i] = solve(X,w[][i]) // Solve LP problem 5.1
21 foreach edge[j][i] ∈ neuron[i] do
22 edge[j][i] = setWeight(w[j][i] + δ[j][i])

23 Q′ = update(Q, edge[j][i])
24 end
25 if i >= N then
26 break
27 end
28 end
29 Acc = calculateAcc(Q′, V)

30 return Q′

5.3 Evaluation

Finally, this chapter evaluates the classification accuracy of the corrected quantized model. If
it satisfies the requirements, then the model is repaired. Otherwise, try other combinations of
parameters like important metrics or the maximum number of neurons needed to repair and
repeat the LP solving and correction process. The output for this algorithm is the repaired model
with updated weight.

5.3.1 Description of the QNNRepair Benchmarks

In evaluation, the full-precision MobileNetV2 benchmarks are directly obtained from the Keras
library, whereas we trained the VGGNet [4] and ResNet-18 models on the CIFAR-10 dataset.

104

5.3. EVALUATION

Table 5.2. The baseline models. Parameters include the model’s trainable and non-trainable parameters; the unit
is million (M). The two accuracy values are for the original floating point model and its quantized version,

respectively.

Accuracy
Model Dataset #Layers #Params floating point quantized

Conv3 CIFAR-10 6 1.0M 66.48% 66.20%
Conv5 CIFAR-10 12 2.6M 72.90% 72.64%
VGGNet CIFAR-10 45 9.0M 78.67% 78.57%
ResNet-18 CIFAR-10 69 11.2M 79.32% 79.16%
MobileNetV2 ImageNet 156 3.5M 71.80% 65.86%

We also defined and trained two smaller convolutional neural networks on CIFAR-10 for com-
parison: Conv3, which contains three convolutional layers, and Conv5, which contains five con-
volutional layers. Both models have two dense layers at the end. The quantized models are
generated by using TensorFlow Lite (TFlite) [208] from the floating point models. In TFLite,
we chose dynamic range quantization, and the weights are quantized as 8-bit integers. The quan-
tized convolution operation is optimized for performance, and the calculations are done in the
fixed-point arithmetic domain to avoid the overhead of de-quantizing and re-quantizing tensors.

A subset of ImageNet called ImageNet-mini [209] is also used for evaluation, which contains
38,668 images in 1,000 classes for repairs of the quantized model’s performance. The dataset
is divided into the repair set and the validation set. The repair set contains 34,745 images,
and the validation set contains 3,923 images. The CIFAR-10 dataset contains 60,000 images in
10 classes in total. 50,000 of them are training images, and 10,000 of them are test sets. 1,000
images are used as the repair set. The repair set are used to identify suspicious neurons, generate
LP constraints, apply corrections to the identified neurons, and use the validation set to evaluate
the accuracy of the models. The same experiment was repeated ten times for random neuron
selection and to get the average to eliminate randomness in repair methods.

5.3.2 Experiments Setup

We are mainly interested in the following experimental goals:

EG1 - Fault Localization - How does a fault localization choice influence our repair process
and performance?

EG2 - Repair Efficiency - What is the performance when repairing a model?

EG3 - Comparison with the SOTA - What is the performance of our repair approach when
compared to the existing literature?

The experiments are conducted on a machine with Ubuntu 18.04.6 LTS OS Intel(R) Xeon(R)
Gold 5217 CPU @ 3.00GHz and two Nvidia Quadro RTX 6000 GPUs. The experiments are

105

5.3. EVALUATION

Table 5.3. QNNRepair results on CIFAR-10 models. The best repair outcome for each model, w.r.t. the dense
layer in that row, is in bold. We further highlight the best result in blue if the repair result is even better than the
floating point model and in red if the repair result is worse than the original quantized model. Random means that
QNNRepair randomly selects neurons at the corresponding dense layer for the repair, whereas Fault Localization
refers to the selection of neurons based on important metrics in QNNRepair. In All cases, all neurons in that layer
are used for repair. 'n/a' happens when the number of neurons in the repair is less than 100, and '-' is for repairing

the last dense layer of 10 neurons, and the result is the same as the All case.

Random Fault Localization -
#Neurons repaired 1 5 10 100 1 5 10 100 All

Conv3_dense-2 63.43% 64.74% 38.90% n/a 66.26% 66.36% 62.35% n/a 57.00%
Conv3_dense-1 65.23% 66.31% - n/a 66.10% 66.39% - n/a 66.46%
Conv5_dense-2 72.49% 72.55% 72.52% 72.52% 72.56% 72.56% 72.56% 72.56% 72.54%
Conv5_dense-1 72.51% 72.52% - n/a 72.58% 72.56% - n/a 72.56%

VGGNet_dense-3 78.13% 78.44% 78.20% 78.38% 78.83% 78.82% 78.78% 78.66% 78.60%
VGGNet_dense-2 78.36% 78.59% 78.44% 78.22% 78.55% 78.83% 78.83% 78.83% 78.83%
VGGNet_dense-1 78.94% 67.75% - n/a 79.29% 69.04% - n/a 74.49%
ResNet_dense_1 78.90% 78.92% - n/a 79.08% 79.20% - n/a 78.17%

run with TensorFlow2 + nVidia CUDA platform. We use the Gurobi [121] as the linear program
solver and enable multi-thread solving (up to 16 cores). QNNRepair was applied to repair a
benchmark of five quantized neural network models, including MobileNetV2 [63] on ImageNet
datasets [79], and ResNet-18 [62], VGGNet [4] and two simple convolutional models trained on
CIFAR-10 dataset [192].

5.3.3 Repair Results on Baselines

In this part, QNNRepair was applied to these baseline quantized models, except for MobileNetV2,
in Table 5.3. In our experiments, MobileNetV2 is trained on ImageNet while other models are
trained on CIFAR-10, and it contains more layers. The results for MobileNetV2 are reported in
Section 5.3.5.

For each model, QNNRepair performs a layer-by-layer repair of its last dense layers. These
dense layers are named dense-3 (the third last layer), dense-2 (the second last layer), and dense-1
(the output layer).

The QNNRepair results are reported in Table 5.3. QNNRepair ranked the neurons using
important metrics and chose the best results among the seven metrics. The evaluation also ran
randomly picked repairing as a comparison. QNNRepair has chosen Top-1, Top-5, Top-10, Top-
100, and all neurons as the repairing targets. For most models, the repair procedure improved
the accuracy of the quantized networks and, in some cases, even higher than the accuracy of the
floating-point model.

The dense-2 layer only contains 64 neurons in the Conv3 model. Hence, QNNRepair selected
30 neurons as the repair targets. In the dense-1 layer of Conv3, the effect of repairing individ-
ual neurons is not ideal, but as the number of repaired neurons gradually increases, the correct
information the Conv3 quantization model obtains from the floating-point model. Hence, the

106

5.3. EVALUATION

Table 5.4. QNNRepair results on ImageNet model.

Random Fault Localization -

#Neurons repaired 10 100 10 100 All
MobileNetV2_dense-1 70.75% 70.46% 70.77% 70.00% 68.98%

accuracy gradually improves until it reaches 66.46% (which does not exceed the accuracy of the
floating-point Conv3 neural network, but it gets very close to it: 66.48%, see Table 5.3). This is
because all the repair information in the last layer comes from the original floating-point neural
network. Note that because of the simple structure of the Conv3 neural network, the floating-
point version of Conv3 itself is inaccurate, and the quantized and repaired neural network does
not exceed the accuracy. In the dense-2 layer of Conv5, applying importance metrics to repair
this layer is slightly better than random selection, only 0.01% regarding randomly selecting five
neurons compared with using fault localization to select Top-5 neurons. Compared to the quan-
tized model before repair, whose accuracy is 72.64%, the repairing only gets an accuracy of
72.56%, which does not improve the model’s accuracy. In the dense-1 layer of Conv5, the best
result is using fault localization to pick the Top-1 neuron and repair at 72.58% accuracy, and this
is not better than the quantized model before repair.

For VGGNet and ResNet-18 neural networks, the dense-1 layer is a good comparison. Both
VGGNet and ResNet-18 have relatively complex network structures, and the accuracy of the
original floating-point model is close to 80%. In the dense-1 layer of ResNet-18, only some
of the neurons were repaired with accuracy close to their original quantized version, but all
of them did not exceed the exact value of the floating-point neural network after the repair.
However, unlike ResNet-18, correcting a single neuron randomly in the dense-1 layer of VGGNet
makes it more accurate than the quantized version of VGGNet. Using the importance metric
and correcting a single neuron make the accuracy even higher than the floating-point version
of VGGNet. However, repairing dense-1 of VGGNet was unsatisfactory, especially when 5
neurons were selected for repair; it suffered a significant loss of accuracy, even below 70%,
which was regained if all ten neurons in the last layer were repaired. In the dense-2 layer of
VGGNet, the overall accuracy is higher than 78%. When the importance metric is applied, the
accuracy reaches 78.83%, noting that this accuracy is also achieved if all neurons in this layer are
repaired. For the dense-3 layer of VGGNet, repairing 5 or 10 neurons using importance metrics
will achieve the highest accuracy at 78.83%, the same as repairing the dense-2 layer.

ImageNet The evaluation also conducted repair on the last layer for MobileNetV2 trained on the
ImageNet dataset of high-resolution images. Using Euclid as the importance metric and picking
10 neurons as the correct targets achieve the best results, at 70.77%, improving the accuracy of
the quantized model.

107

5.3. EVALUATION

5.3.4 Effects of Passing and Failing Tests in QNNRepair

In Section 5.2.1, we discussed that QNNRepair uses the passing and failing tests to locate the
fault neurons. For comparison purposes, we chose four neural networks trained on the CIFAR
dataset: Conv3, Conv5, VGGNet, and ResNet, which also have experimental results in Section
5.3.3 baselines.

Table 5.5. Effects of Failing Tests on Model Repair. FP model error means Failing tests in which the floating
point model is misclassified but the quantitative model is classified correctly, and vice versa for QNN error.FP

accuracy is the accuracy of the floating point model on the test set, and the QNN accuracy we divide into before
fixing and after fixing are given respectively.

Model Failing tests FP model error QNN error FP accuracy QNN accuracy QNN accuracy (after repair) Improvement(by %)

Conv3 204 58 71 66.48% 66.20% 66.46% 0.26%
Conv5 300 93 119 72.90% 72.64% 72.58% -0.08%
ResNet 183 50 79 79.32% 79.16% 79.20% 0.04%

VGGNet 139 44 53 78.67% 78.57% 79.29% 0.72%

Table 5.5 reflects the effect of failing and passing tests on neural network model repair. For
models with higher accuracy than the quantized neural network after repair, we mark the im-
proved accuracy in blue; otherwise, it is in red. FP model errors occur when the FP model
misclassifies while the QNN model correctly classifies, and vice versa for QNN errors. The
results show that the repair process yields varying improvements across different models. For
Conv3 and ResNet, the improvements are marginal (0.26% and 0.04%, respectively), indicat-
ing limited repair effectiveness. Conversely, Conv5 exhibits a slight accuracy decline (-0.08%),
suggesting that the repair process may not always generalize well.

Also, there is a trend in the table that the fewer the failing tests, the better the repair results,
e.g., for VGGNet, 139 Failing tests are the fewest among the four models, but the best repair
results are achieved, and the accuracy of the repair is even higher than that of the original floating-
point model. However, for Conv5, with 300 failing tests, the repair effect is not so good, and
the accuracy even slightly decreases (-0.08%) compared with the quantized model before repair.
One speculation is that the more failing tests, the more modifications are made to the original
quantization model during the repair process, which in turn destroys the integrity of the original
model and decreases the accuracy.

5.3.5 Fault Localization Metrics in QNNRepair

Let the model and the layer stay the same, and MobileNetV2’s last layer is the target. Seven
important metrics mentioned in Section 5.3.5 were compared. In these experiments, we used
1,000, 500, 100, and 10 jpeg images as the repair sets to assess the performance of different
importance assessment methods.

Firstly, QNNRepair ranked the neurons in the last layer using seven different representative

108

5.3. EVALUATION

Table 5.6. The results regarding importance metrics, including 7 fault localization metrics and 1 random baseline.
The number of images indicates how many inputs are in the repair set.

Model+Repair Layer #Images Tarantula Ochiai DStar Jaccard Ample Euclid Wong3 Random

MobileNetV2_dense-1 1000 70.61% 69.76% 69.73% 69.73% 69.72% 70.70% 69.73% 69.56%
500 68.99% 69.01% 69.05% 69.05% 68.99% 69.46% 69.06% 69.00%
100 69.50% 69.42% 69.46% 69.46% 69.53% 69.98% 69.46% 70.12%
10 70.62% 70.15% 70.12% 70.12% 70.17% 70.73% 70.12% 70.18%

VGGNet_dense-3 1000 78.64% 78.64% 78.64% 78.64% 78.65% 78.66% 78.66% 78.22%
VGGNet_dense-2 1000 78.83% 78.83% 78.83% 78.83% 78.83% 78.83% 78.83% 78.38%
Conv3_dense 1000 59.50% 59.50% 59.50% 59.50% 59.27% 59.27% 59.27% 32.42%

important metrics, which are Tarantula [201], Ochiai [202], DStar [203], Jaccard [204], Am-
ple [205], Euclid [206] and Wong3 [207]. As shown in Figure 5.2, for the last fully connected
layer of MobileNetV2, the important neurons are mainly concentrated at the two ends, those
neurons with the first and last numbers. The evaluation metrics results are relatively similar for
different neurons.

100 neurons (for Conv3, it is 30 neurons) were selected with the highest importance and could
be solved by MILP solvers according to different importance measures. The deltas were obtained
according to Equation 5.1, and QNNRepair applied the deltas to the quantized model. After that,
QNNRepair used the validation sets from ImageNet, which contains 50,000 JPEG images, to test
the MobileNetV2 model. The validation sets from CIFAR-10, which contain 10,000 PNG image
files, were used to test VGGNet and Conv5 after the repair. As a comparison, 100 neurons were
also randomly picked to apply to repair, and their accuracy was tested. The results of the top
100 important neurons after selection and repair are shown in Table 5.6.

Tarantula was picked, and scatter plots based on the importance distribution of the different
neurons were plotted. The importance of those neurons was ranked, and line plots were drawn
as illustrated in Figure 5.2.

The figures give scatter plots of neuron importance and ranked line plots for the last dense
layer of MobileNetV2. The horizontal coordinates of these plots are the serial numbers of the
neurons. For the last layer in the MobileNetV2 model, few neurons have the highest importance.
More than 300 neurons had an importance measurement of 0, and another large proportion had an
importance of 0.5 or less. Based on the ranking of the importance of neurons, all the evaluation
metrics except Tarantula and Euclid considered 108, 984, 612, 972 to be the four most important
neurons in this layer, and among the 5th-10th most important neurons, 550, 974, 816, 795, and
702, just in a different order. This is reflected in the importance distribution graphs as spikes
at the ends and as spikes at the ends of the graphs. Hence, Ochiai, Dstar, Jaccard, Ample, and
Wong3 have similar performance regarding the accuracy evaluation, and Euclid and Tarantula
achieve better accuracy on ImageNet validation sets.

Table 5.6 shows that the Euclid importance assessment method is highly effective, achiev-
ing relatively good results from restoration with 500 images to restoration with ten images and

109

5.3. EVALUATION

achieving only weaker accuracy than the Tarantula method in a restoration scenario with 1,000
images. A random selection of neurons can achieve good restoration results, especially when
100 images are selected as restoration images, achieving a validation accuracy higher than 70%.
Also, in Table 5.6, QNNRepair works well with models containing fewer neurons. In experi-
ments with Conv3_dense, the approach achieves more than 20% higher accuracy than random
selection. When it comes to large models, although the improvement is not as pronounced as
with smaller models, higher accuracy than random selection is still achieved in most cases, even
if random selection is better than importance ranking by only a small margin (0.14%). Consid-
ering the successful and failing tests used for repair, i.e., the repair images, in the experiments,
the repair results using 10 repair images were slightly better than using 1,000 repair images. For
the Euclid method that produces the best repair results, the accuracy using 10 images is 0.03%
higher than using 1,000 repairing images.

MobileNetV2 Importance Distribution

MobileNetV2 Sorted Importance Distribution

Figure 5.2. Importance distribution regarding certain importance metrics on MobileNetV2.

For the VGGNet model, for the same reason as MobileNetV2 regarding the neuron impor-
tance ranking, the Tarantula, Ochiai, DStar, Jaccard, Euclid, and Wong3 give the same results
when selecting 100 top important neurons to repair. As a comparison, the accuracy of random
selection in dense-2 layer and dense-3 has a slight drop, at 78.38% and 78.22%. For the Conv3
model, the seven importance metrics give the same results, and randomly selected 30 neurons

110

5.3. EVALUATION

Table 5.7. The Gurobi solving time for constraints of each neuron in the dense-2 layer of the VGGNet model.
There are 512 neurons in total.

Duration <=5mins 5-10mins 10-30mins 30mins-1h No solution

Percentage 75% 8.98% 5.27% 1.76% 8.98%

suffered a great accuracy loss, at 32.42%. But compared to the results in Table 5.3, repairing
30 top neurons also suffered accuracy drops. For the dense layer of conv3, the best repair is still
to select one neuron for repair based on Tarantula sorting at 66.10%, and if random selection is
taken into account, then selecting five neurons for repair would give the best result at 64.74%.

A side-by-side comparison of the number of images required for the repair on MobileNetV2
was also conducted. It shows that the best results are obtained using 1,000 images for repair
and 10 images for the repair, but given the amount of time required to generate constraints for
the repair using 1,000 images and to solve the constraints using Gurobi, we recommend using a
smaller set of repair images for the model.

Euclid demonstrates that it has the highest accuracy most of the time, and repairing with
importance evaluation is more accurate than repairing randomly selected neurons.

These results successfully answer EG1 and Research Question 2: QNNVerifier was
proposed based on the MILP(see definition in Definition 2.4.5) algorithm to verify the
quantized neural network model, which converted from floating-point models. QN-
NVerifier uses the Neuron Importance Ranking method to optimize the repairing al-
gorithm to answer Research Question 3. QNNVerifier was evaluated and compared
with baselines and it can successfully repair all the benchmarks.

5.3.6 Repair Efficiency

The constraints-solving part contributes to the major computation cost in QNNRepair. Other
operations, such as importance evaluation, weight modification, model formatting, etc., take
only a few minutes to complete. Thereby, Table 5.7 measures the runtime cost when using the
Gurobi to solve the values of the new weights for a neuron for our experiments on the VGGNet
model. It is shown in Table 5.7 that 75% of the solutions were completed within 5 minutes, and
less than 9% of the neurons could not be solved, resulting in a total solution time of 9 hours for
a layer of 512 neurons.

These results answer EG2: We evaluated our tool on VGGNet model. Our approach
can successfully repair most of the benchmarks without a timeout or crash. QNNRepair
finished 75% of the benchmarks in 5 minutes.

111

5.4. CHAPTER SUMMARY

Table 5.8. QNNRepair vs SQuant

MobileNetV2 ResNet-18

Accuracy Time Accuracy Time

SQuant [210] 46.09% 1635.37ms 70.70% 708.16ms
QNNRepair 70.77% ∼15h 79.20% ∼9h

5.3.7 Comparison with Data-free Quantization

SQuant [210] was tested in this section, which is a fast and accurate data-free quantization
framework for convolutional neural networks, employing the Constrained Absolute Sum of Er-
ror (CASE) of weights as the rounding metric. SQuant was tested on two quantized models,
the same as our approach: MobileNetV2 trained on ImageNet and ResNet-18 on CIFAR-10.
This thesis modified the original code to support MobileNetV2, which is not reported in their
experiments.

In contrast, to complete data-free quantization, our constraint solver-based quantization does
not require a complete dataset but only some input images for repair. Despite taking much more
time than SQuant because it uses Gurobi and a constrained solution approach, MobileNetV2 –
a complex model trained on ImageNet – QNNRepair achieves much higher accuracy.

These results answer EG3: We evaluated and compared our tool with the SQuant. Our
approach can successfully repair all the benchmarks without a timeout or crash.

5.4 Chapter Summary

This chapter presented QNNRepair, a novel method for repairing quantized neural networks.
It is inspired by traditional software statistical fault localization. This chapter evaluated the
importance of the neural network models and used Gurobi to get the correction for these neurons.
According to the experimental results, after correcting the model, accuracy increased compared
with the quantized model. QNNRepair was also compared with state-of-the-art techniques; the
experiment results show that our method can achieve much higher accuracy when repair models
are trained on large datasets.

According to Nemhauser et al. [211], the MILP problem is NP-Hard. There is no known
polynomial time algorithm that can solve all MILP instances. Therefore, for very large or struc-
turally complex problems, the solver may take a long time to find the optimal or acceptable
approximate solution. Hence, selecting more repairing images for correction will have a greater
likelihood of Gurobi being unable to solve the MILP problem, which is reflected in the limitation
of improving accuracy.

112

5.4. CHAPTER SUMMARY

As the future works, QNNRepair will move forward to larger datasets; currently, QNNRe-
pair supports MobileNetV2 trained on ImageNet. In the future, we will test our tool and make
it scalable for larger models and not limited to classification tasks. These include generative
tasks like text generation (e.g., GPT) and image synthesis (e.g., Stable Diffusion) [212], where
models produce new content rather than assigning predefined labels. It also includes sequence-
to-sequence tasks like translation and summarization, as well as reinforcement learning tasks
such as decision-making in dynamic environments (e.g., robotics or gaming). Due to the com-
plexity of the model itself, repairing these large networks will require a lot of computational
resources, and we will find a balance between improving accuracy and computing time.

For some of the repairing problems, Gurobi was not able to solve them in the given time limit,
so in the future, the target of QNNRepair is to optimize the encoding of the neural network repair
problem to increase the speed of the repair solution and to solve some of the repair problems that
were not previously solved. More problem solvers, such as SMT solvers, will also be integrated
in the future to solve these problems that Gurobi cannot solve.

113

Chapter 6

AIRepair: A Repair Platform for Neural

Networks

This chapter introduces AIRepair, the neural network repair platform. Firstly, it introduces the
overall framework. Then, it describes the usages of AIRepair and gives a simple example of
using AIRepair. After that, several experiments were conducted on popular benchmarks, and
the evaluation results were reported.

6.1 Chapter Introduction

In Chapter 4 and 5, the neural network verification method QNNVerifier and the neural network
repair method QNNRepair were introduced. But the question is, how do you make this workflow
fluid and make it quickly accessible to non-specialists?

To achieve this, it is crucial to develop an intuitive user interface that abstracts the complexity
of the underlying processes. This interface should provide clear, step-by-step guidance to users,
enabling them to run verification and repair tasks without requiring deep technical knowledge.
Additionally, comprehensive documentation and user support resources, such as tutorials and
FAQs, can significantly enhance the accessibility of these tools.

At the same time, neural network models supplied by users are often trained on various plat-
forms and frameworks and stored in different formats. Addressing this heterogeneity is another
significant challenge. To handle these diverse models in a unified way, it is essential to im-
plement a standardized model import and export functionality. This could involve developing
or integrating a conversion library that supports a wide range of formats, such as TensorFlow,

114

6.1. CHAPTER INTRODUCTION

PyTorch, ONNX (see Section 2.1.1), and Keras. Converting these models into a common inter-
mediate representation can ensure compatibility with the QNNVerifier and QNNRepair.

Moreover, automated scripts or pipelines can be provided to facilitate the conversion pro-
cess, reducing the manual effort required from users. These scripts can be designed to detect
the format of the input model and perform the necessary transformations automatically. In addi-
tion, providing a robust API can allow advanced users to integrate these tools into their existing
workflows more seamlessly.

Hence, the neural network repair platform AIRepair was proposed, which integrates various
repair tools and can accept different neural network model formats. AIRepair is designed to
provide a comprehensive and flexible solution for repair neural networks, accommodating the
diverse needs and formats commonly encountered in the field.

In the front end of AIRepair, the platform automatically identifies the neural network model
type and converts it into a format that the specified repair tool can accept. This automatic
identification and conversion process eliminates the need for manual intervention, making it
user-friendly and efficient. AIRepair supports a wide range of formats, including TensorFlow,
PyTorch, ONNX, and Keras, ensuring broad compatibility with models from different frame-
works.

During the repair process, AIRepair monitors system resource usage, including CPU, mem-
ory, and GPU utilization. This monitoring ensures that the repair process is efficient and does
not overburden the system, providing real-time feedback and alerts if resource usage exceeds
predefined thresholds. This feature is particularly important for large-scale models that require
substantial computational power.

After completing the repair process, AIRepair generates a detailed repair report. This report
includes information on the original vulnerabilities detected, the specific repairs made, and the
overall impact on model performance. Additionally, AIRepair compares the effectiveness of
different repair methods used, providing insights into which method is more suitable for the
input model. This comparative analysis helps users understand the strengths and weaknesses of
various repair approaches, enabling them to make informed decisions for future repairs.

Overall, AIRepair offers a robust and user-friendly platform for neural network repair, inte-
grating advanced tools and automated processes to enhance the reliability and performance of
neural networks. By providing comprehensive monitoring, detailed reporting, and comparative
analysis, AIRepair stands out as a valuable resource for both researchers and practitioners in the
field of neural network security and maintenance.

115

6.2. AIREPAIR FRAMEWORK

Configure

Environment

Model

Conversion

Pre-Processing

Retraining/Fine-

turning

Direct Weight

Modification

Architecture

Extension

Repair

Models

Datasets

Accuracy

Confusion Accuracy

Constraints Accuracy

...

Evaluate Compare Output Models

performance

improved?

Tool Input

Figure 6.1. The AIRepair Architecture. The input of the framework is the neural network to be repaired, and the
dataset used for training, AIRepair, automatically selects the repair method as well as evaluates the repair effect,

and the output is the repaired neural network and the repair report.

6.2 AIRepair Framework

The primary motivation behind the development of AIRepair is to create a comprehensive plat-
form dedicated to testing and evaluating various repair methods in a standardized and compatible
manner. This platform addresses the need for a unified system where different repair techniques
can be assessed on a level playing field, ensuring consistency and comparability in their evalua-
tion. By providing a standardized environment, AIRepair facilitates the benchmarking of repair
methods, allowing researchers and practitioners to identify the most effective approaches. Ad-
ditionally, this platform is designed to foster innovation and collaboration in the field of repair
technologies, enabling the sharing of insights and best practices among the community. Through
AIRepair, the goal is to advance the understanding and improvement of repair methods, ulti-
mately leading to more reliable and efficient solutions in various applications.

As illustrated in Figure 6.1, AIRepair accepts the trained models and the training datasets
if specified in the configuration. It performs pre-processing on different benchmarks to make
them capable of other frameworks. Pre-processing isolates different running environments for
deep learning libraries, e.g., TensorFlow [15] or PyTorch [16]. After the repair, AIRepair col-
lects the results and analyses them automatically, which is done by examining the outputs and
experimental logs. Finally, it presents the results so the user can decide which repair tool suits
their models. The output from AIRepair includes the repaired model, logs, and parameters.

116

6.2. AIREPAIR FRAMEWORK

In the following sections, this chapter details each component in AIRepair: 1) input, 2) pre-
processing, 3) repair, and 4) evaluation.

6.2.1 Input

The input to AIRepair is trained neural network models and testing or training datasets depending
on the repair method configured. AIRepair accepts fully connected feed-forward neural networks
and convolutional neural networks in popular deep learning model formats such as .pth and .pt
from PyTorch, and .pb, and .h5 from TensorFlow + Keras [213]. AIRepair has been tested on
standard datasets like MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100.

MNIST is a widely used benchmark dataset consisting of 70,000 grayscale images of hand-
written digits (0-9), each of size 28x28 pixels. It serves as a standard for evaluating image
classification algorithms and models in ML and computer vision.

Fashion-MNIST is a dataset similar in format to MNIST but contains 70,000 grayscale im-
ages of 10 different types of clothing items, such as T-shirts, trousers, and dresses. Each image is
also 28x28 pixels. Fashion-MNIST was created as a more challenging replacement for MNIST,
aimed at testing more advanced machine learning algorithms.

For CIFAR-10 and CIFAR-100, please check Section 4.3.1.

JavaScript Object Notation (JSON) [214] is a lightweight data-interchange format that is easy
for humans to read and write and easy for machines to parse and generate. JSON is a text format
that is completely language-independent but uses conventions that are familiar to programmers
of the C family of languages, including C, C++, C#, Java, JavaScript, Perl, Python, and many
others. These properties make JSON an ideal data-interchange language.

Existing efforts on neural network analyzing techniques have resulted in multiple impressive
tools, including verifiers we mentioned in Chapter 2.4. These tools, however, have their input
format. Thus, AIRepair accepts JSON format and supports a variety of neural network mod-
els and an assertion language to provide a common ground for different neural network repair
techniques.

The JSON file provided to AIRepair consists of a series of keys specifying details of the
network model and attributes. Table 6.1 shows the keys used to define models. At the top level,
the model is determined using the key model. The values of the model are then defined as JSON
objects using a tuple consisting of the key shape, boundary, and layer. The key shape is used to
define the shape of the input sample, a tuple containing multiple integer values. The first value
represents the length of the sample. Note that for acyclic neural networks, the first value is always
1; for recurrent neural networks, the first value is always n, where n≥1. The remaining numbers

117

6.2. AIREPAIR FRAMEWORK

represent the shape of each element in the sample. For example, the tuple (5; 80) indicates that
the input sample is a sequence of length 5, and each sequence component is a vector of size 80.

The key layer specifies the details of the network layer by layer. Its value is an array. Each
element in the array is a JSON object representing a layer of the network with a specific type.
Depending on each type, a layer can contain multiple keys to specify the parameters of that layer.
In general, each layer can be thought of as a function. The original sample of the network is the
input of the first layer, the output of the nth layer is the input of the n+1 th layer, and the output
of the last layer is the output of the entire network.

Each type is associated with a set of parameter values specified with one or more predefined
keys. For example, the keys’ weight, bias, and function define the weight matrix, bias vector,
and activation function, respectively.

Depending on the type of the layer, the key filters, stride, padding, h0, and c0, are used to
define the values of the filter matrix, stride value, padding value, h0 vector, and c0 vector, respec-
tively. If the layer has more than one parameter of the same type, indexes are used to distinguish
between them. For example, two filter matrices in the ResNet-21 layer can be defined using two
keys, filter1, and filter2, and ResNet-21 means that the ResNet mentioned in Section 2.1.1 model
consists of 21 layers.

Table 6.1. Definitions of keys used in the neural network model.

Key Definition
model The details of the network model
shape The shape of input sample
bounds The bounds of input sample
layers The details of model layers
type The type of a layer
weights The weight matrix of a layer
biases The bias vector of a layer
func The activation/transformation function of a layer
filters The filter matrix of a convolutional layer
padding The padding value of a convolutional layer
stride The stride value of a convolutional layer
h0/c0 The h0/c0 vector of a recurrent layer

The AIRepair platform is meticulously engineered to support a variety of neural network ar-
chitectures, including fully connected feed-forward networks and convolutional neural networks,
which are prevalent in the deep learning landscape. This platform is compatible with widely-
used deep learning model formats such as .pth and .pt for PyTorch implementations, alongside
.pb and .h5 formats from TensorFlow + Keras frameworks. The versatility in model format com-
patibility is inspired by the extensive work in neural network development and application, as
highlighted by Chollet in his seminal work on Keras [213].

To ensure robustness and applicability, AIRepair platform has been rigorously tested on stan-
dard machine learning datasets, including MNIST [59], Fashion-MNIST [215], CIFAR-10, and

118

6.2. AIREPAIR FRAMEWORK

CIFAR-100 [216]. These datasets are acknowledged benchmarks within the machine learning
community, providing a solid foundation for evaluating neural network performance. By align-
ing AIRepair ’s testing protocols with these established datasets, the platform guarantees a con-
sistent and reliable framework for model assessment. Specifically, the platform’s design allows
for automatically recognizing the dataset associated with a user’s pre-trained model. This en-
sures that models are evaluated under conditions similar to their training, facilitating a direct and
relevant analysis of performance and robustness [40].

Upon integration of a neural network model and its corresponding dataset, AIRepair embarks
on a detailed mutation testing regimen. This process involves the deliberate alteration of input
data to uncover potential vulnerabilities in the network’s structure and function, drawing on
strategies from both traditional software engineering and machine learning fields [24]. Mutation
tests are integral to diagnosing the network’s resilience to input perturbations, which is a crucial
aspect of the evaluation of machine learning models.

In addition to mutation testing, AIRepair applies dataset augmentation techniques to probe
the neural network’s robustness further. Dataset augmentation, a method well-documented by
Shorten and Khoshgoftaar [217], involves the application of various transformations to the orig-
inal data, such as image rotation, scaling, and cropping. These augmented datasets present
alternative scenarios to test the network’s ability to maintain performance under varied input
conditions, thereby offering insights into the model’s generalization capabilities.

In conclusion, the AIRepair platform provides a comprehensive and multifaceted approach
to evaluating and enhancing the robustness of neural network models. The platform stands as a
testament to the current state of deep learning research and application through the integration
of versatile model formats, alignment with standard testing datasets, and the implementation of
mutation and augmentation testing methodologies.

6.2.2 Pre-processing

Pre-processing is designed to streamline the workflow of neural network diagnostics and repair
by facilitating model conversions between different frameworks, automating the setup of diverse
runtime environments, and conducting thorough pre-repair evaluations. The versatility of neural
network modeling tools has led to diverse formats and frameworks used in model development,
such as PyTorch and TensorFlow. These frameworks differ in syntax, design philosophy, com-
putational paradigms, and support for different hardware accelerators.

To address these disparities and ensure seamless interoperability within the AIRepair ecosys-
tem, the platform incorporates a model conversion utility based on MMdnn. This comprehen-
sive, cross-framework solution supports conversion among various neural network formats. In-
troduced by Liu et al. [218], MMdnn acts as a translational bridge, preserving model integrity

119

6.2. AIREPAIR FRAMEWORK

and performance across conversions. To ensure the model integrity, MMdnn introduces the
concept of faithful model conversion:

Definition 6.2.1 (Faithful Model Conversion). A is a faithful model conversion algorithm if the
following two conditions are satisfied:

• Syntactic Legality. Given an arbitrary source model M1 = ⟨V1, E1, P1⟩, a legitimate target
model M2 = ⟨V2, E2, P2⟩ should be produced:

M1 ⊨A M2 ∧ (P2 = P1)

• Semantic Equivalence. Given an arbitrary valid input, the source and target models should
always return the same result:

Ztp = FM1(Xtp) ⊨A Ztp = FM2(Xtp)

Ztp, Xtp are the output and input tensor tuples, respectively.

Ideally, MMdnn performs the isomorphic graph transformation or graph rewriting [219] on
M1: for each source node ui (e.g., a TensorFlow Conv2D node), a new node vi with the same
ui.op operator (still Conv2D for the case) is generated in M2; if ui has an edge pointing from
its k-th output tensor to the l-th input tensor of uj (i.e., (ui, uj) ∈ M1), a corresponding edge
from vi’s k-th output to vj’s l-th input is added. The faithfulness clearly holds.

This capability is crucial as it allows the AIRepair platform to cater to a wide array of neural
network models, ensuring broad applicability and user convenience.

Furthermore, recognizing the diverse and often complex dependencies required by different
neural network repair tools, AIRepair leverages Anaconda, an open-source package and envi-
ronment management system, to streamline the configuration process [220]. Before initiating
any repair procedure, the platform automatically configures the necessary runtime environments
specific to each tool. This process involves the creation of isolated environments, ensuring that
each repair tool operates under optimal conditions with the correct versions of libraries and
dependencies. This meticulous preparation mitigates compatibility issues and enhances the re-
producibility of repair outcomes.

By automating these preparatory steps, AIRepair significantly reduces the barrier to entry
for users seeking to analyze and enhance the robustness of their neural network models. The
platform’s integrated approach, combining model conversion with automatic environment con-
figuration, establishes a cohesive and user-friendly workflow, enabling practitioners to focus
more on interpreting results and less on navigating the technical intricacies of model repair and
evaluation.

120

6.2. AIREPAIR FRAMEWORK

6.2.3 Repair

The repair component within the AIRepair platform stands as a critical mechanism meticulously
designed to address and rectify issues within neural network models. Upon receiving input
models and subsequent comprehensive pre-processing, this component intelligently tailors and
initiates repair methodologies specifically suited to the diagnosed issues within these models.
This customization involves intricate parameter setting and conditions to ensure precise and
impactful repair actions, aligning with practices outlined in contemporary neural network repair
research, such as those described by B Yu et al. [12] in their work on DeepRepair.

During the intricate repair phase, the AIRepair system prioritizes efficient resource manage-
ment and transparent communication with the user. It continuously monitors hardware resource
consumption, including CPU and GPU utilization, alongside memory and disk usage. This vigi-
lant oversight ensures that the repair processes are conducted without overwhelming the system,
reflecting strategies akin to those found in system monitoring standards described in the Ana-
conda documentation [220]. This approach allows for real-time adjustment of the repair work-
load, safeguarding both the efficiency of the repair process and the overall system performance.

Moreover, the AIRepair platform commits to maintaining open lines of communication with
the user throughout the repair procedure. It provides ongoing updates on the repair status, includ-
ing progress, warnings, and errors, thereby keeping users informed and engaged. This aspect of
user interaction is critical, as highlighted by Goodfellow et al. [40] in their discussions on the
importance of transparency and communication in automated systems. In addition to real-time
updates, AIRepair meticulously logs every detail of the repair process, capturing vital informa-
tion such as parameter adjustments, method outputs, and resource consumption. These logs
are indispensable for post-repair evaluation, allowing users to scrutinize the repair actions and
understand the decision-making processes behind the implemented repair strategies.

By integrating model conversion capabilities, system resource monitoring, and user commu-
nication, the repair component of the AIRepair platform ensures not only the effective repair of
neural network models but also a user-friendly and transparent experience. This comprehensive
approach enables users to focus on the substantive aspects of model repair and improvement,
supported by a robust framework that adheres to established best practices in the field.

6.2.4 Evaluation and Output

This component measures the performance of a model before and after repair. There are several
metrics for characterizing a model’s performance from complementary perspectives, including
the model’s (classification) accuracy, constraint accuracy [221], and confusion accuracy. The
constraint accuracy describes the percentage of predictions given by the model that satisfies the

121

6.2. AIREPAIR FRAMEWORK

constraint associated with the problem, which requires that the probabilities of groups of classes
have either a very high or a very low probability.

For example, we can declaratively express constraints over quantities that are not explicitly
computed by the network, such as

pθ(x)people < ϵ ∨ pθ(x)people > 1− ϵ. (6.1)

This constraint on the output activations of a CIFAR-100 classifier pθ says that for a network
input x, the probability of people, denoted pθ(x)people , is either very small or very large. As
CIFAR-100 does not have a class of people, we define it as a function of other output activations:

pθ(x)people = pθ(x)baby + pθ(x)boy + pθ(x)woman + · · · (6.2)

The confusion accuracy is defined as P = TP
TP+FP

, where TP and FP are True Positive
and False Positive classifications. These two metrics evaluate the model’s robustness. Data
augmentation of different kinds of blurs (glass, motion, and zoom) [222] can be applied to the
input dataset when collecting these metrics.

• To understand confusion accuracy, let us consider two types of images, cats, and dogs,
in the CIFAR dataset and use the confusion matrix to evaluate the model’s accuracy in
classifying cats and dogs. For example, if the prediction is a dog and the actual label of the
picture is a dog, we consider it as True Positive (TP); If the actual label is a cat, we consider
it as False Positive (FP). The confusion accuracy is defined as P = TP

TP+FP
, where TP is

True Positive and FP is False Positive.

Typically, existing repair tools take some misclassified inputs, and the repair goal is to correct
those erroneous nodes. Each repair method often focuses on improving performance according
to one type of evaluation metric. The AIRepair tool integrates different repair methods and
performance metrics to give a comprehensive view when repair a neural network model.

6.2.5 AIRepair Implementation

The AIRepair platform employs a sophisticated approach to facilitate the repair of neural net-
work models across different frameworks and architectures by leveraging environment isolation,
JSON parsing, and command concatenation techniques. Initially, it ensures that each repair tool
operates within an isolated runtime environment. This isolation, typically achieved through

122

6.2. AIREPAIR FRAMEWORK

technologies like Docker or virtual environments in Python, prevents conflicts between the de-
pendencies required by different tools, thereby ensuring consistency and reproducibility. Envi-
ronment isolation aligns with principles similar to those documented for Anaconda, a widely
recognized platform for managing project-specific environments and dependencies [220].

In addition to environment isolation, AIRepair enhances its functionality through effective
user input handling and configuration management. To achieve this, AIRepair utilizes JSON
parsing to interpret user inputs and configurations effectively. JSON, a lightweight data inter-
change format, is widely used for its simplicity and ease of integration with various programming
languages. In the context of AIRepair, JSON parsing allows for flexible and dynamic interpreta-
tion of repair parameters and settings, as outlined by Crockford in the documentation of JSON
standards [223].

Additionally, the platform automates the process of command concatenation based on user
inputs and the parsed JSON data. This process involves assembling the command-line arguments
and parameters required to invoke the repair tools tailored to the specific needs of the model
under repair. Using command-line interfaces for automation and scripting is well-established in
software engineering, reflecting practices documented in Neal’s comprehensive exploration of
command-line utilities [224].

Integrating these three core components –environment isolation, JSON parsing, and com-
mand concatenation – the AIRepair platform streamlines the model repair process, enhancing
user experience and ensuring effective repair outcomes.

6.2.6 Example Usage

In the first step, it is recommended to train the baseline model using the script ('train_baseline.py')
provided. Subsequently, one can configure and run different network repair tools with AIRepair:

1 py thon AIRepa i r . py [−h] [−− a l l]

2 [−− n e t _ a r c h NETARCH] [−− d a t a s e t DATASET]

3 [−− p r e t r a i n e d PATH_AND_FILENAME]

4 [−− dep th DEPTH]

5 [−− method METHOD] [−− au t o]

6 [−− a d d i t i o n a l _ p a r a m PARAM]

7 [−− i n p u t _ l o g s INPUT_LOGS]

8 [−− t e s t o n l y]

For example, the setup below configures and runs AIRepair with three repair methods, Apri-
cot, DeepRepair, and DL2, as discussed in Section 2.4. They are applied to repair a model named
'cifar10_resnet34' with the CIFAR-10 dataset. When AIRepair finishes executing this command,
it will save the running log and print the comparison results.

123

6.2. AIREPAIR FRAMEWORK

1 py thon AIRepa i r . py −−method a p r i c o t d e e p r e p a i r d l 2 −− p r e t r a i n e d

c i f a r 1 0 _ r e s n e t 3 4 _ b a s e l i n e . p t −− d a t a s e t c i f a r 1 0 −− n e t _ a r c h r e s n e t −− dep th 34

In particular, users need to specify the model’s architecture and depth when using '–pre-
trained' to specify the path of a trained neural network model to repair. PyTorch has two methods
to save the trained model: the entire model, the state_dict, or the checkpoint. When loading the
neural network model, AIRepair needs to know its structure for the second method. It has the
built-in structure definition for ResNet families and several convolutional neural networks for
MNIST and Fashion-MNIST. Hence, users only need to specify the net architecture and depth
when loading the state_dict. For the architectures that do not belong to these three models,
users either provide the entire model or customize AIRepair’s pre-processing module. Currently,
AIRepair can process both feed-forward and convolutional neural networks.

The parameter '–net_arch' specifies the architecture of models, and '–dataset' selects the cor-
responding dataset (that are needed for retraining/refining or attaching correction units). These
are as discussed in Section 6.2.1.

To further specify the repair process, the specific repair method (tool) can be indicated us-
ing '–method'. In addition, the '–auto' option will automatically invoke the repair process using
the default parameters for the selected repair methods. For example, it sets the following con-
figurations for the DeepRepair method to repair a ResNet-34 model trained on the CIFAR-10
dataset:
1 −− b a t c h _ s i z e 128 −− l r 0 . 1 −−lam 0

2 −− e x t r a 128 −−epoch 60 −− b e t a 1 . 0

3 −−cu tmix_p rob 0 −− r a t i o 0 . 9

However, if users need to set them manually, add the desired parameters after –additional
param. There is no set required to run the tool for running Apricot, and the parameter '–
-additional_param' is no longer helpful for this tool.

For those who wish to evaluate a model’s performance without undergoing any repair pro-
cedure, the '—testonly' option is available. This can be used before or after the repair process
to check the model’s performance, providing valuable insights into the effectiveness of the re-
pair. The evaluation metrics include accuracy, confusion, and constraint accuracy, offering a
comprehensive assessment of the model.

To streamline the repair process, users can employ the 'python AIRepair.py –all' command,
which runs all the repair methods on all available models automatically with default parameters.
This comprehensive approach ensures thorough testing and repair across multiple models and
methods. However, it is important to note that this option requires substantial computing power,

124

6.3. EVALUATION

as it encompasses a wide range of operations and evaluations. For more details, refer to the
documentation available at https://zenodo.org/record/7627801#.Y-X6g3bP3tU.

6.3 Evaluation

6.3.1 Description of the AIRepair Benchmarks

Three repair methods, Apricot [118], DeepRepair [12], and DL2 [221], are chosen as baselines
for this study. The details of these tools or methods can be found in Section 3.2. Each of these
methods brings a unique approach to the task of repair neural networks, addressing various
aspects of model reliability and robustness.

To begin with, Apricot [118] is a tool designed for repair neural networks by leveraging
gradient-based optimization techniques to identify and mitigate erroneous behaviors in trained
models. It aims to improve model robustness by adjusting the weights to correct specific errors.

Similarly, DeepRepair [12] focuses on enhancing the robustness and reliability of deep learn-
ing models by utilizing training data augmentation and specialized loss functions to address and
fix faults identified during model evaluation.

Meanwhile, DL2 [221], which stands for Deep Learning with Differentiable Logic, is a
framework that integrates logical constraints into the training process of neural networks. This
ensures that the models adhere to specified properties, thereby improving their correctness and
safety.

In addition to these methods, DeepState [225] is a testing framework for deep learning sys-
tems that combines symbolic execution with state space exploration. This approach helps iden-
tify and repair faulty behaviors in neural network models, ensuring they perform reliably under
various conditions.

Lastly, RNNRepair [226] is a repair method specifically aimed at recurrent neural networks
(RNNs). It addresses issues related to sequence learning and temporal dependencies by employ-
ing specialized techniques to fix errors and improve the overall performance of RNN models.

These repair methods are applied to a benchmark of 11 neural network models, including
ResNet models [62], using four datasets commonly used in image classification: MNIST [155],
Fashion-MNIST [215], CIFAR-10, and CIFAR-100 [216].

To utilize these repair methods, users can invoke them by specifying '–auto', as discussed in
Section 6.2.6. We conducted comparisons and reported the best results for each repair method
from different settings, subsequently setting the corresponding optimal settings as defaults for
each specific tool.

125

https://zenodo.org/record/7627801##.Y-X6g3bP3tU

6.3. EVALUATION

Table 6.2. A summary table for all benchmarks used in the experiments.

Dataset Name Models Type Scale

CIFAR-10/100
ResNet18 CNN 32*32 inputs, 18 layers deep, 10/100 outputs
ResNet34 CNN 32*32 inputs, 34 layers deep, 10/100 outputs
ResNet50 CNN 32*32 inputs, 50 layers deep, 10/100 outputs

MNIST/F-MNIST CNN CNN 28*28 input, 6 conv layers, 10 output
FFNN FFNN 28*28 input, 6 layers, 784 per layer, 10 output

Recognizing that repair tools often exhibit randomness, we repeated the same experiment
three times to eliminate this variability and ensure the reliability of the results. This thorough
approach helps to provide a clear and accurate assessment of each repair method’s effectiveness.

6.3.2 Experiments Setup

We are mainly interested in the following experimental goal:

EG - Efficacy - Can AIRepair run repair on different models using appropriate repair methods?

The experiments were conducted on a machine with Ubuntu 18.04.6 LTS OS Intel(R) Xeon(R)
Gold 5217 CPU @ 3.00GHz and two Nvidia Quadro RTX 6000 GPUs. The experiments are run
with TensorFlow2 + nVidia CUDA platform. The Gurobi [121] was used as the linear program
solver and enable multi-thread solving (up to 16 cores). QNNRepair was applied to repair a
benchmark of five quantized neural network models, including MobileNetV2 [63] on ImageNet
datasets [79], and ResNet-18 [62], VGGNet [4] and two simple convolutional models trained on
CIFAR-10 dataset [192].

6.3.3 Train Baseline Models

DL2 was used to train the baseline models. We trained three Convolutional Neural Network
models with different depths, ResNet18, ResNet34, and ResNet50 [62], on the CIFAR-10,
CIFAR-100 datasets separately. For the definition and details of these models, please check
Section 2.1.1. We also trained two simple convolutional Neural Network Models on the MNIST
and Fashion-MNIST datasets. The weights of the DL2 abstraction layer were set to 0 in order
to serve as the baseline network, and all subsequent neural network repair was performed on the
baseline neural network models.

126

6.3. EVALUATION

Table 6.3. AIRepair results: ’running’ means the experiment is still running. ’–’ means that the tool does not
apply to the model. The best accuracy (Acc.) and constraints accuracy (Const.) improvement for each model are

highlighted in % and % separately.

Datasets CIFAR-10 CIFAR-100
MNIST F-MNIST

Models ResNet18 ResNet34 ResNet50 ResNet18 ResNet34 ResNet50 MNIST F-
MNIST

Baselines Acc. 92.05% 91.34% 94.42% 46.84% 44.16% 47.36% 99.45% 92.20%
Const. 90.51% 90.27% 90.66% 86.62% 85.95% 85.21% 99.96% 100%

Apricot Acc. -2.65% -0.38% -3.4% +9.02% +13.74% +11.15% +0.06% +0.61%

DeepRepair Acc. +0.5% -1.27% -4.14% +10.91% +21.42% +20.32% +0.17% +0.47%
Const. -9.46% -8.82% -

12.77%
-

37.62%
-

34.95%
-

29.71%
-0.43% -4.10%

DL2 Acc. -2.16% +0.23% -1.95% +0.87% +1.17% -1.16% +0.08% +0.28%

Const. +9.3% +9.61% +5.4% -0.49% -0.89% -0.4% +2.55% +6.27%

6.3.4 Compare Different Repair Tools on the Same Benchmark

Table 6.3 shows the complete AIRepair results of 3 repair methods on 8 neural networks (columns)
from 4 datasets. The performance was measured by accuracy and constraint accuracy. The
baseline represents each model’s actual performance, and for each repair method, we report the
absolute performance increment or decrement after repair. Apricot repairs a neural network by
directly modifying its weight parameter values. DeepRepair and DL2 belong to the category of
retraining and architecture extension, respectively, for repair neural networks. The three base-
lines are selected to represent all 5 categories of neural network repair methods, as discussed in
Section 2.

For the models trained on CIFAR-10, DL2 brings the greatest improvement in constraint ac-
curacy (Const.). At the same time, this often comes with slight drops in plain accuracy (Acc.),
which is specially designed to repair the constraints’ accuracy and can effectively improve it.
When repairing ResNets on CIFAR-10 datasets, there were a few accuracy drops, but the con-
straints’ accuracy increased significantly. The adversarial robustness and the plain accuracy are
two contradicting goals [227]. Besides, the performance of the CIFAR-10 models drops to dif-
ferent extents by Apricot and DeepRepair. Apricot is not designed to improve the constrains
accuracy of models. We do not evaluate the constraints accuracy metrics on models repaired by
Apricot.

At the same time, Apricot and DeepRepair have better improvements on CIFAR-100 neural
network models. This indicates that when the original model’s performance is relatively low, the
Apricot and DeepRepair are more effective. Moreover, as the ResNet models become deeper,

127

6.3. EVALUATION

from 18 layers to 50 layers, DeepRepair can improve accuracy by sacrificing constraint accu-
racy. For the models trained on CIFAR-100, Apricot is an outstanding tool for improving the
accuracy of the models. Because they are more complex than the models trained on CIFAR-
10, and DL2 uses semi-supervised learning tactics while handling the CIFAR-100 dataset, DL2
has no significant improvement in performance this time of these models. On the other hand,
DeepRepair considerably improves accuracy while sacrificing constraints accuracy. It is based
on data augmentation, enabling a neural network to process more input images efficiently. As
the ResNet models become deeper, from 18 layers to 50 layers, DeepRepair can perform better
and improve accuracy. Although originally Apricot, DeepRepair, and DL2 were designed to run
on CIFAR-10 and CIFAR-100 datasets, we compared the experimental results presented in their
paper and found similar results.

The original Apricot, DeepRepair, and DL2 tools do not support them. So, in this section,
patches were created for these tools to enable them to run these models under the AIRepair frame-
work. The patches do not change the algorithms and the functions inside their tool. They only
make the repair tool accept MNIST and Fashion-MNIST datasets and define the model structure
trained on these two datasets. Therefore, we supposed it would not affect the repair performance
of these tools. As shown in Table 6.3 (last two columns), all three repair methods result in no-
ticeable performance improvements of different levels for MNIST and Fashion-MNIST models,
even though the original networks’ performance is already high (99.45% and 92.20% respec-
tively).

In summary, there are some general observations from the experiments. There is no single
best repair method on all benchmarks and on all evaluation metrics. Different repair methods
seem to complement each other highly, and this would motivate future “combined repair” of
neural network models, for which AIRepair can serve as the test bed. Mostly, as expected,
less complex neural networks (MNIST/Fashion-MNIST in Table 6.3) and lower performance
models (CIFAR-100 examples in Table 6.3) are easier to repair. We still consider them valuable
observations, as they confirm that AIRepair is a valid platform for benchmarking different repair
methods.

We also tested AIRepair on three RNN-based architectures. We apply DeepState and RN-
NRepair to repair LSTM, BLSTM, and GRU models trained on MNIST. The baseline model
classification accuracy is 98.6%, 98.54%, and 98.93%. DeepState slightly improves the accu-
racy of these models by 0.05%, 0.19%, and 0.18%, whereas the model accuracy drops by 0.09%,
0.06%, and 0.33% when using RNNRepair. Moreover, when it comes to mixed testing datasets,
we can see significant improvements in the models repaired by DeepState. RNNRepair has
a slight drop in accuracy after repair. Although it is not as high as DeepState, RNNRepair im-
proves after repair when testing it on mixed datasets. DeepState performs better than RNNRepair
for LSTM, BLSTM, and GRU neural network models trained on the MNIST dataset.

128

6.4. CHAPTER SUMMARY

These results successfully answer Research Question 3 and EG: AIRepair can convert
the models between different formats and apply them with appropriate repair methods.
AIRepair supports JSON format input to describe the input model and attributes. AIRe-
pair also implements environment isolation to ensure the comparison of different repair
methods is sound.

6.4 Chapter Summary

This chapter introduces AIRepair, a comprehensive platform for repair neural networks, and
it can test and compare different neural network repair methods. This paper gives the results
of five existing neural network repair tools integrated into AIRepair. Although AIRepair is an
early prototype, it shows promising results. AIRepair will support and test more neural network
repair methods and propose a unified interface for developers to test and benchmark their repair
methods.

Based on AIRepair experiments, a prioritized strategy has been designed for addressing per-
formance anomalies in neural network models. The recommended repair methods are as follows:

1. Direct Weight Modification: This method is most effective for simpler neural network
architectures, such as those trained on datasets like MNIST and Fashion-MNIST. Direct
weight modification is quick and efficient as it does not require access to the original train-
ing or testing datasets and can be performed on machines without specialized GPU hard-
ware. However, it may not be sufficient for models with higher complexity or performance
requirements, as it might lead to suboptimal solutions or fail to address deep-rooted issues
within the network structure.

2. Fine-Tuning/Retraining: Retraining or fine-tuning becomes necessary for more complex
models, especially those like ResNets with millions of parameters. Direct weight modifica-
tion in such complex networks often leads to the search space explosion problem, making
it impractical. Retraining allows for comprehensive adjustment of the model’s parameters
in response to the identified anomalies, often yielding more robust and stable solutions.
This method, however, may require substantial computational resources, including power-
ful GPUs, to process the large datasets and extensive parameter space efficiently.

3. Attaching a New Repair Structure: In cases where retraining leads to overfitting or when
the model needs to enhance its performance on specific tasks or improve constraint accura-
cies, introducing new repair units or structures to the existing network might be beneficial.
These units are designed to correct specific deficiencies or enhance certain aspects of the

129

6.4. CHAPTER SUMMARY

model’s performance. This approach is particularly relevant when the existing model struc-
ture is insufficient to achieve the desired level of accuracy or functionality.

4. Model and Scenario Specific Considerations: The choice of repair method should also
consider the neural network’s specific application scenario. For instance, models trained
on the MNIST dataset are often used for handwriting recognition, which may have differ-
ent performance requirements and constraints compared to models trained on more com-
plex datasets like ImageNet, which is used for detailed image recognition and classification
tasks. Furthermore, models deployed in resource-constrained environments, such as mo-
bile or embedded devices, may benefit from specialized repair methods that consider the
limitations of these platforms, such as quantized neural network models.

Each repair method has unique advantages and is suitable for different neural network mod-
els and application scenarios. Therefore, it is crucial to carefully evaluate the nature of the
performance anomaly, the complexity of the neural network model, and the specific application
requirements before selecting the most appropriate repair strategy.

130

Chapter 7

Conclusions and Future Works

This thesis first describes the actual examples and the safety problems in neural network model
implementations. Therefore, we need a way to ensure the security of neural networks. Unlike
traditional software verification and vulnerability patching, verification and remediation of neu-
ral networks remains a challenging problem, as evidenced by the fact that such remediation is
not accomplished by directly modifying the code but by improving the learning algorithms and
data inputs, which often requires extensive experimentation to find the optimal configuration.
This paper then investigates current neural network verification and repair efforts and identifies
confusing concepts.

In this thesis, we have presented three contributions to quantized neural network robustness.
Firstly, we introduced our new quantized neural network verification method QNNVerifier in
Chapter 4. It is based on Abstract Interpretation and SMT-based solver ESBMC. We evaluated
QNNVerifier on two popular datasets, ACAS_Xu and GTSRB, and proved that QNNRepair is
able to find the vulnerabilities in neural network models effectively. This contribution answered
Research Question 1 in Section 1.2.1.

Secondly, we described our new quantized neural network repair method QNNRepair in
Chapter 5. It converts the neural network repairing a problem into a Mixed Integer Linear Pro-
gramming (MILP) problem and solves it by using Gurobi as the backend. We also evaluated
the QNNRepair on CIFAR-10 and MobileNetV2 datasets and verified the effectiveness of the
methods. At last, we compared QNNRepair with the SOTA data-free quantization method and
proved our advantages over it. This contribution answered Research Question 2 in Section 1.2.2.

Finally, we presented our neural network repair platform AIRepair in Chapter 6. It provides
isolations between different running environments and converts the neural network models from
different frameworks like TensorFlow and PyTorch. AIRepair also can generate the comparison
results of different repairing methods on the same neural network models and give recommen-
dations. We also tested AIRepair on the SOTA neural network repairing tools and proved the

131

effectiveness. This contribution answered Research Question 3 in Section 1.2.3.

In the future, we will continue to optimize the tools based on the algorithms in the three
chapters above.

For QNNVerifier, we aim to significantly enhance the scalability, addressing both the com-
putational efficiency and the broader applicability of QNNVerifier. First, we will optimize the
conversion process from the neural network model to the C-file, which will effectively reduce
the size of the C-file and reduce the time it takes ESBMC to validate a single file. Secondly,
we will optimize the approximation mechanism to provide stronger soundness assurances and
to minimize performance overhead. Finally, we plan to extend our approach to accommodate
DNNs with various layers, such as convolutional, recurrent, and residual layers.

For QNNRepair, due to the limitation of LP solver Gurobi, some of the repair problems
could not be solved. So, in the future, we intend to improve the encoding from the neural net-
work model and safety properties to LP problems. We will also try other problem solvers and
try to encode the repair problems under these solvers, like SMT-based solvers. Also, due to the
complexity of neural network models, repairing these large networks will require a lot of com-
putational resources, and we will continuously find a balance between improving accuracy and
computing time.

For AIRepair, in the future, we aim to support more neural network frameworks and repair
tools. Also, we will improve the mechanism of selecting tools when performing repairs on
neural network models. Besides, the interface of AIRepair will be improved in order to make
researchers use this tool easily.

132

References

[1] M. Krenn, L. Buffoni, B. Coutinho, et al., “Forecasting the future of artificial intelligence

with machine learning-based link prediction in an exponentially growing knowledge net-

work,” Nature Machine Intelligence, vol. 5, no. 11, pp. 1326–1335, 2023 (cited on p. 18).

[2] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,”

Science, vol. 349, no. 6245, pp. 255–260, 2015 (cited on p. 18).

[3] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and D. Terzopoulos, “Image

segmentation using deep learning: A survey,” IEEE transactions on pattern analysis and

machine intelligence, vol. 44, no. 7, pp. 3523–3542, 2021 (cited on p. 18).

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014 (cited on pp. 18, 19, 104, 106, 126).

[5] A. G. Howard, M. Zhu, B. Chen, et al., “Mobilenets: Efficient convolutional neural net-

works for mobile vision applications,” arXiv preprint arXiv:1704.04861, 2017 (cited on

pp. 18, 19, 34).

[6] J. Guo, H. He, T. He, et al., “Gluoncv and gluonnlp: Deep learning in computer vision and

natural language processing,” Journal of Machine Learning Research, vol. 21, no. 23,

pp. 1–7, 2020 (cited on pp. 18, 19).

[7] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with deep neural

networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016 (cited on p. 18).

[8] S. G. Finlayson, H. W. Chung, I. S. Kohane, and A. L. Beam, “Adversarial attacks against

medical deep learning systems,” arXiv preprint arXiv:1804.05296, 2018 (cited on p. 18).

[9] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural networks,” in

2017 ieee symposium on security and privacy (sp), Ieee, 2017, pp. 39–57 (cited on pp. 19,

20).

133

REFERENCES

[10] X. Huang, D. Kroening, W. Ruan, et al., “A survey of safety and trustworthiness of deep

neural networks: Verification, testing, adversarial attack and defence, and interpretabil-

ity,” Computer Science Review, vol. 37, p. 100 270, 2020 (cited on pp. 19, 20).

[11] T. Gehr, M. Mirman, D. Drachsler-Cohen, P. Tsankov, S. Chaudhuri, and M. Vechev,

“Ai2: Safety and robustness certification of neural networks with abstract interpretation,”

in 2018 IEEE symposium on security and privacy (SP), IEEE, 2018, pp. 3–18 (cited on

pp. 19, 55, 61).

[12] e. a. Yu Bing, “Deeprepair: Style-guided repairing for deep neural networks in the real-

world operational environment,” IEEE Transactions on Reliability, 2021 (cited on pp. 19,

62, 69, 121, 125).

[13] M. Sotoudeh and A. V. Thakur, “Provable repair of deep neural networks,” in PLDI, 2021

(cited on pp. 19, 66, 67, 69).

[14] D. Boetius, S. Leue, and T. Sutter, “A robust optimisation perspective on counterexample-

guided repair of neural networks,” arXiv preprint arXiv:2301.11342, 2023 (cited on

pp. 19, 67).

[15] M. Abadi, P. Barham, Chen, et al., “{Tensorflow}: A system for {large-scale} machine

learning,” in USENIX OSDI, 2016 (cited on pp. 19, 24, 116).

[16] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance

deep learning library,” Advances in neural information processing systems, vol. 32, 2019

(cited on pp. 19, 24, 34, 75, 116).

[17] Y. Jia, E. Shelhamer, J. Donahue, et al., “Caffe: Convolutional architecture for fast feature

embedding,” in Proceedings of the 22nd ACM international conference on Multimedia,

2014, pp. 675–678 (cited on pp. 19, 75).

[18] S. E. Hodgson, C. McKenzie, T. W. May, and S. L. Greene, “A comparison of the accu-

racy of mushroom identification applications using digital photographs,” Clinical Toxi-

cology, vol. 61, no. 3, pp. 166–172, 2023 (cited on p. 20).

[19] F. Menczer, D. Crandall, Y.-Y. Ahn, and A. Kapadia, “Addressing the harms of ai-

generated inauthentic content,” Nature Machine Intelligence, vol. 5, no. 7, pp. 679–680,

2023 (cited on p. 20).

[20] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial ex-

amples,” arXiv preprint arXiv:1412.6572, 2014 (cited on pp. 20, 31).

134

REFERENCES

[21] Y. Tian, K. Pei, S. Jana, and B. Ray, “Deeptest: Automated testing of deep-neural-network-

driven autonomous cars,” in Proceedings of the 40th international conference on soft-

ware engineering, 2018, pp. 303–314 (cited on p. 20).

[22] L. Engstrom, B. Tran, D. Tsipras, L. Schmidt, and A. Madry, “Exploring the landscape

of spatial robustness,” in International conference on machine learning, PMLR, 2019,

pp. 1802–1811 (cited on p. 20).

[23] C. Szegedy, W. Zaremba, I. Sutskever, et al., “Intriguing properties of neural networks,”

arXiv preprint arXiv:1312.6199, 2013 (cited on pp. 20, 37).

[24] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of deep

learning systems,” in Proceedings of the 26th Symposium on Operating Systems Princi-

ples, ser. SOSP ’17, ACM, 2017 (cited on pp. 20, 119).

[25] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, “Deeproad: Gan-based meta-

morphic testing and input validation framework for autonomous driving systems,” in

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software

Engineering, 2018, pp. 132–142 (cited on p. 20).

[26] J. Zhang and J. Li, “Testing and verification of neural-network-based safety-critical con-

trol software: A systematic literature review,” Information and Software Technology,

vol. 123, p. 106 296, 2020 (cited on p. 20).

[27] M. Wicki, “How do familiarity and fatal accidents affect acceptance of self-driving vehi-

cles?” Transportation research part F: traffic psychology and behaviour, vol. 83, pp. 401–

423, 2021 (cited on p. 20).

[28] F. Erata, S. Deng, F. Zaghloul, W. Xiong, O. Demir, and J. Szefer, “Survey of approaches

and techniques for security verification of computer systems,” ACM Journal on Emerging

Technologies in Computing Systems, vol. 19, no. 1, pp. 1–34, 2023 (cited on p. 20).

[29] D. Castelvecchi, “Can we open the black box of ai?” Nature News, vol. 538, no. 7623,

p. 20, 2016 (cited on p. 20).

[30] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,” in Pro-

ceedings of the 40th International Conference on Software Engineering, 2018, pp. 1219–

1219 (cited on p. 21).

[31] D. L. Calsi, M. Duran, X.-Y. Zhang, P. Arcaini, and F. Ishikawa, “Distributed repair of

deep neural networks,” in 2023 IEEE Conference on Software Testing, Verification and

Validation (ICST), IEEE, 2023, pp. 83–94 (cited on p. 21).

135

REFERENCES

[32] J. Lee, N. Chirkov, E. Ignasheva, et al., “On-device neural net inference with mobile

gpus,” arXiv preprint arXiv:1907.01989, 2019 (cited on p. 22).

[33] X. Song, E. Manino, L. Sena, et al., “Qnnverifier: A tool for verifying neural networks us-

ing smt-based model checking,” arXiv preprint arXiv:2111.13110, 2021 (cited on pp. 23,

26).

[34] L. Sena, X. Song, E. Alves, I. Bessa, E. Manino, L. Cordeiro, et al., “Verifying quantized

neural networks using smt-based model checking,” arXiv preprint arXiv:2106.05997,

2021 (cited on p. 23).

[35] X. Song, Y. Sun, M. A. Mustafa, and L. C. Cordeiro, “Qnnrepair: Quantized neural net-

work repair,” in International Conference on Software Engineering and Formal Methods,

Springer, 2023, pp. 320–339 (cited on pp. 23, 26).

[36] X. Song, Y. Sun, M. A. Mustafa, and L. C. Cordeiro, “Airepair: A repair platform for

neural networks,” in 2023 IEEE/ACM 45th International Conference on Software En-

gineering: Companion Proceedings (ICSE-Companion), IEEE, 2023, pp. 98–101 (cited

on p. 24).

[37] X. Song, Y. Sun, M. A. Mustafa, and L. Cordeiro, “Airepair: A repair platform for neural

networks,” in ICSE-Companion, IEEE/ACM, 2022 (cited on pp. 26, 67).

[38] M. Uzair and N. Jamil, “Effects of hidden layers on the efficiency of neural networks,”

in 2020 IEEE 23rd international multitopic conference (INMIC), IEEE, 2020, pp. 1–6

(cited on p. 27).

[39] B. K. Spears, “Contemporary machine learning: A guide for practitioners in the physical

sciences,” arXiv preprint arXiv:1712.08523, 2017 (cited on p. 27).

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016 (cited on

pp. 27, 28, 119, 121).

[41] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint arXiv:1803.08375,

2018 (cited on p. 28).

[42] J. Han and C. Moraga, “The influence of the sigmoid function parameters on the speed

of backpropagation learning,” in International workshop on artificial neural networks,

Springer, 1995, pp. 195–201 (cited on p. 28).

[43] B. L. Kalman and S. C. Kwasny, “Why tanh: Choosing a sigmoidal function,” in [Pro-

ceedings 1992] IJCNN International Joint Conference on Neural Networks, IEEE, vol. 4,

1992, pp. 578–581 (cited on p. 28).

136

REFERENCES

[44] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, “A survey on modern trainable

activation functions,” Neural Networks, vol. 138, pp. 14–32, 2021 (cited on p. 28).

[45] G. Zhao, Z. Zhang, H. Guan, P. Tang, and J. Wang, “Rethinking relu to train better

cnns,” in 2018 24th International conference on pattern recognition (ICPR), IEEE, 2018,

pp. 603–608 (cited on p. 28).

[46] S. Hayou, A. Doucet, and J. Rousseau, “On the impact of the activation function on

deep neural networks training,” in International conference on machine learning, PMLR,

2019, pp. 2672–2680 (cited on p. 29).

[47] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep belief

nets,” Neural computation, vol. 18, no. 7, pp. 1527–1554, 2006 (cited on p. 29).

[48] F. Boudardara, A. Boussif, P.-J. Meyer, and M. Ghazel, “A review of abstraction methods

toward verifying neural networks,” ACM Transactions on Embedded Computing Systems,

vol. 23, no. 4, pp. 1–19, 2024 (cited on pp. 29, 56).

[49] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and C. Leeper, “Acas xu: Integrated colli-

sion avoidance and detect and avoid capability for uas,” in 2019 IEEE/AIAA 38th Digital

Avionics Systems Conference (DASC), IEEE, 2019, pp. 1–10 (cited on pp. 29, 41).

[50] S. Lang, Undergraduate analysis. Springer Science & Business Media, 2013 (cited on

p. 30).

[51] M. R. Baker and R. B. Patil, “Universal approximation theorem for interval neural net-

works,” Reliable Computing, vol. 4, pp. 235–239, 1998 (cited on p. 30).

[52] Y. Lu and J. Lu, “A universal approximation theorem of deep neural networks for ex-

pressing probability distributions,” Advances in neural information processing systems,

vol. 33, pp. 3094–3105, 2020 (cited on p. 30).

[53] M. J. Kochenderfer and J. Chryssanthacopoulos, “Robust airborne collision avoidance

through dynamic programming,” Massachusetts Institute of Technology, Lincoln Labo-

ratory, Project Report ATC-371, vol. 130, 2011 (cited on pp. 31, 43).

[54] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer, “Policy compres-

sion for aircraft collision avoidance systems,” in 2016 IEEE/AIAA 35th Digital Avionics

Systems Conference (DASC), IEEE, 2016, pp. 1–10 (cited on pp. 31, 43, 44, 84).

[55] S. Shanmuganathan, Artificial neural network modelling: An introduction. Springer, 2016

(cited on p. 31).

137

REFERENCES

[56] L. R. Medsker, L. Jain, et al., “Recurrent neural networks,” Design and Applications,

vol. 5, no. 64-67, p. 2, 2001 (cited on p. 31).

[57] H. Hewamalage, C. Bergmeir, and K. Bandara, “Recurrent neural networks for time se-

ries forecasting: Current status and future directions,” International Journal of Forecast-

ing, vol. 37, no. 1, pp. 388–427, 2021 (cited on p. 31).

[58] P. Liu, X. Qiu, and X. Huang, “Recurrent neural network for text classification with

multi-task learning,” arXiv preprint arXiv:1605.05101, 2016 (cited on p. 31).

[59] Y. LeCun, C. Cortes, and C. Burges. “The mnist database of handwritten digits.” (1998),

[Online]. Available: http://yann.lecun.com/exdb/mnist/ (cited on pp. 31, 118).

[60] R. Venkatesan and B. Li, Convolutional neural networks in visual computing: a concise

guide. CRC Press, 2017 (cited on p. 32).

[61] Y. LeCun, Y. Bengio, et al., “Convolutional networks for images, speech, and time se-

ries,” The handbook of brain theory and neural networks, vol. 3361, no. 10, p. 1995,

1995 (cited on p. 32).

[62] e. a. He Kaiming, “Deep residual learning for image recognition,” Proceedings of the

IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016 (cited

on pp. 33, 106, 125, 126).

[63] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: Inverted

residuals and linear bottlenecks,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 4510–4520 (cited on pp. 34, 106, 126).

[64] A. Howard, M. Sandler, G. Chu, et al., “Searching for mobilenetv3,” in Proceedings of

the IEEE/CVF international conference on computer vision, 2019, pp. 1314–1324 (cited

on p. 34).

[65] J. Sanders and E. Kandrot, CUDA by example: an introduction to general-purpose GPU

programming. Addison-Wesley Professional, 2010 (cited on p. 34).

[66] J. Bai, F. Lu, K. Zhang, et al., Onnx: Open neural network exchange, https://github.

com/onnx/onnx, 2019 (cited on p. 35).

[67] M. Nagel, M. Fournarakis, R. A. Amjad, Y. Bondarenko, M. Van Baalen, and T. Blankevoort,

“A white paper on neural network quantization,” arXiv preprint arXiv:2106.08295, 2021

(cited on pp. 35, 36).

138

http://yann.lecun.com/exdb/mnist/
https://github.com/onnx/onnx
https://github.com/onnx/onnx

REFERENCES

[68] “Quantization and training of neural networks for efficient integer-arithmetic-only infer-

ence,” in Proceedings of the IEEE conference on computer vision and pattern recogni-

tion, 2018, pp. 2704–2713 (cited on p. 35).

[69] Q. Ducasse, P. Cotret, L. Lagadec, and R. Stewart, “Benchmarking quantized neural net-

works on fpgas with finn,” arXiv preprint arXiv:2102.01341, 2021 (cited on p. 35).

[70] H. Benmaghnia, M. Martel, and Y. Seladji, “Code generation for neural networks based

on fixed-point arithmetic,” ACM Transactions on Embedded Computing Systems (TECS),

2022 (cited on p. 35).

[71] M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does it take to quantize

your neural network?” In Tools and Algorithms for the Construction and Analysis of

Systems: 26th International Conference, TACAS 2020, Held as Part of the European

Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland,

April 25–30, 2020, Proceedings, Part II 26, Springer, 2020, pp. 79–97 (cited on pp. 35,

60, 89, 92).

[72] R. David, Duke, et al., “Tensorflow lite micro: Embedded machine learning for tinyml

systems,” Proceedings of Machine Learning and Systems, 2021 (cited on pp. 36, 75).

[73] H. Vanholder, “Efficient inference with tensorrt,” in GPU Technology Conference, vol. 1,

2016, p. 2 (cited on p. 36).

[74] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional neural net-

works for mobile devices,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 4820–4828 (cited on p. 36).

[75] W. Roth, G. Schindler, B. Klein, et al., “Resource-efficient neural networks for embedded

systems,” arXiv preprint arXiv:2001.03048, 2020 (cited on p. 36).

[76] M. R. Biswal, T. S. Delwar, A. Siddique, P. Behera, Y. Choi, and J.-Y. Ryu, “Pattern

classification using quantized neural networks for fpga-based low-power iot devices,”

Sensors, vol. 22, no. 22, p. 8694, 2022 (cited on p. 36).

[77] J. Rock, W. Roth, P. Meissner, and F. Pernkopf, “Quantized neural networks for radar

interference mitigation,” arXiv preprint arXiv:2011.12706, 2020 (cited on p. 36).

[78] H. D. M. Ribeiro, A. Arnold, J. P. Howard, et al., “Ecg-based real-time arrhythmia mon-

itoring using quantized deep neural networks: A feasibility study,” Computers in Biology

and Medicine, vol. 143, p. 105 249, 2022 (cited on p. 37).

139

REFERENCES

[79] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in 2009 IEEE conference on computer vision and pattern

recognition, Ieee, 2009, pp. 248–255 (cited on pp. 37, 106, 126).

[80] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learning at scale,” arXiv

preprint arXiv:1611.01236, 2016 (cited on p. 37).

[81] E. M. Clarke and Q. Wang, “25 years of model checking.,” in Ershov Memorial Confer-

ence, 2014, pp. 26–40 (cited on p. 38).

[82] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving sat and sat modulo theories: From

an abstract davis–putnam–logemann–loveland procedure to dpll (t),” Journal of the ACM

(JACM), vol. 53, no. 6, pp. 937–977, 2006 (cited on p. 38).

[83] L. Chaves, I. Bessa, L. Cordeiro, and D. Kroening, “Dsvalidator: An automated coun-

terexample reproducibility tool for digital systems,” in Proceedings of the 21st Interna-

tional Conference on Hybrid Systems: Computation and Control (part of CPS Week),

2018, pp. 253–258 (cited on p. 38).

[84] Q. Wang, “Model checking for biological systems: Languages, algorithms, and appli-

cations,” Ph.D. dissertation, Ph. D. thesis, Carnegie Mellon University, 2016 (cited on

p. 38).

[85] S. Muchnick, Advanced compiler design implementation. Morgan kaufmann, 1997 (cited

on pp. 38, 82).

[86] L. Cordeiro, B. Fischer, and J. Marques-Silva, “Smt-based bounded model checking for

embedded ansi-c software,” IEEE Transactions on Software Engineering, vol. 38, no. 4,

pp. 957–974, 2011 (cited on p. 38).

[87] S. A. Kripke, “Semantical analysis of modal logic i normal modal propositional calculi,”

Mathematical Logic Quarterly, vol. 9, no. 5-6, pp. 67–96, 1963 (cited on p. 38).

[88] H. Garavel, R. Mateescu, and I. Smarandache, “Parallel state space construction for

model-checking,” in Model Checking Software: 8th International SPIN Workshop Toronto,

Canada, May 19–20, 2001 Proceedings 8, Springer, 2001, pp. 217–234 (cited on p. 38).

[89] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without bdds,”

in Tools and Algorithms for the Construction and Analysis of Systems: 5th International

Conference, TACAS’99 Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS’99 Amsterdam, The Netherlands, March 22–28, 1999 Pro-

ceedings 5, Springer, 1999, pp. 193–207 (cited on pp. 38, 39).

140

REFERENCES

[90] M. Sheeran, S. Singh, and G. Stålmarck, “Checking safety properties using induction and

a sat-solver,” in International conference on formal methods in computer-aided design,

Springer, 2000, pp. 127–144 (cited on p. 39).

[91] K. L. McMillan, “Applying sat methods in unbounded symbolic model checking,” in

Computer Aided Verification: 14th International Conference, CAV 2002 Copenhagen,

Denmark, July 27–31, 2002 Proceedings 14, Springer, 2002, pp. 250–264 (cited on

p. 39).

[92] K. L. McMillan, “Interpolation and sat-based model checking,” in Computer Aided Ver-

ification: 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003.

Proceedings 15, Springer, 2003, pp. 1–13 (cited on pp. 39, 40).

[93] M. K. Ganai, A. Gupta, and P. Ashar, “Efficient sat-based unbounded symbolic model

checking using circuit cofactoring,” in IEEE/ACM International Conference on Com-

puter Aided Design, 2004. ICCAD-2004., IEEE, 2004, pp. 510–517 (cited on p. 39).

[94] R. Menezes, M. Aldughaim, B. Farias, et al., “Esbmc v7. 4: Harnessing the power of

intervals,” arXiv preprint arXiv:2312.14746, 2023 (cited on pp. 39, 80).

[95] A. Cimatti, E. Clarke, E. Giunchiglia, et al., “Nusmv 2: An opensource tool for symbolic

model checking,” in Computer Aided Verification: 14th International Conference, CAV

2002 Copenhagen, Denmark, July 27–31, 2002 Proceedings 14, Springer, 2002, pp. 359–

364 (cited on p. 39).

[96] F. Merz, S. Falke, and C. Sinz, “Llbmc: Bounded model checking of c and c++ programs

using a compiler ir,” in International Conference on Verified Software: Tools, Theories,

Experiments, Springer, 2012, pp. 146–161 (cited on p. 39).

[97] L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik, “Jbmc: A bounded

model checking tool for verifying java bytecode,” in International Conference on Com-

puter Aided Verification, Springer, 2018, pp. 183–190 (cited on p. 39).

[98] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker: (competition con-

tribution),” in Tools and Algorithms for the Construction and Analysis of Systems: 20th

International Conference, TACAS 2014, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.

Proceedings 20, Springer, 2014, pp. 389–391 (cited on p. 39).

141

REFERENCES

[99] D. Monniaux, “A survey of satisfiability modulo theory,” in Computer Algebra in Scien-

tific Computing: 18th International Workshop, CASC 2016, Bucharest, Romania, Septem-

ber 19-23, 2016, Proceedings 18, Springer, 2016, pp. 401–425 (cited on p. 39).

[100] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” Journal on Satisfiability, Boolean

Modeling and Computation, vol. 9, no. 1, pp. 53–58, 2014 (cited on p. 40).

[101] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in International conference

on Tools and Algorithms for the Construction and Analysis of Systems, Springer, 2008,

pp. 337–340 (cited on p. 40).

[102] A. Niemetz and M. Preiner, “Bitwuzla at the smt-comp 2020,” arXiv preprint arXiv:2006.01621,

2020 (cited on p. 40).

[103] A. R. Bradley and Z. Manna, The calculus of computation: decision procedures with

applications to verification. Springer Science & Business Media, 2007 (cited on p. 41).

[104] M. O’Searcoid, Metric spaces. Springer Science & Business Media, 2006 (cited on

p. 41).

[105] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-box neural net-

works,” Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, pp. 121–

144, 2019 (cited on p. 41).

[106] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation and verifica-

tion for multilayer neural networks,” IEEE transactions on neural networks and learning

systems, vol. 29, no. 11, pp. 5777–5783, 2018 (cited on p. 41).

[107] H. Zhang, P. Zhang, and C.-J. Hsieh, “Recurjac: An efficient recursive algorithm for

bounding jacobian matrix of neural networks and its applications,” in Proceedings of

the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 5757–5764 (cited on

p. 41).

[108] L. Weng, H. Zhang, H. Chen, et al., “Towards fast computation of certified robustness

for relu networks,” in International Conference on Machine Learning, PMLR, 2018,

pp. 5276–5285 (cited on p. 41).

[109] M. N. Müller, C. Brix, S. Bak, C. Liu, and T. T. Johnson, “The third international veri-

fication of neural networks competition (vnn-comp 2022): Summary and results,” arXiv

preprint arXiv:2212.10376, 2022 (cited on pp. 41, 55, 81).

142

REFERENCES

[110] D. Beyer and A. Podelski, “Software model checking: 20 years and beyond,” in Principles

of Systems Design: Essays Dedicated to Thomas A. Henzinger on the Occasion of His

60th Birthday, Springer, 2022, pp. 554–582 (cited on p. 42).

[111] R. R. Bunel, I. Turkaslan, P. Torr, P. Kohli, and P. K. Mudigonda, “A unified view of

piecewise linear neural network verification,” Advances in Neural Information Process-

ing Systems, vol. 31, 2018 (cited on p. 43).

[112] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An ef-

ficient smt solver for verifying deep neural networks,” in Computer Aided Verification:

29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Pro-

ceedings, Part I 30, Springer, 2017, pp. 97–117 (cited on pp. 43, 54, 57, 80, 92).

[113] S. Vani and T. M. Rao, “An experimental approach towards the performance assessment

of various optimizers on convolutional neural network,” in 2019 3rd international con-

ference on trends in electronics and informatics (ICOEI), IEEE, 2019, pp. 331–336 (cited

on p. 44).

[114] X. Xie, L. Ma, F. Juefei-Xu, et al., “Deephunter: A coverage-guided fuzz testing frame-

work for deep neural networks,” in Proceedings of the 28th ACM SIGSOFT international

symposium on software testing and analysis, 2019, pp. 146–157 (cited on p. 46).

[115] X. Zhang, X. Xie, L. Ma, et al., “Towards characterizing adversarial defects of deep

learning software from the lens of uncertainty,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, 2020, pp. 739–751 (cited on p. 46).

[116] Z. Chen, Y. Cao, Y. Liu, H. Wang, T. Xie, and X. Liu, “A comprehensive study on chal-

lenges in deploying deep learning based software,” in Proceedings of the 28th ACM joint

meeting on European software engineering conference and symposium on the founda-

tions of software engineering, 2020, pp. 750–762 (cited on p. 46).

[117] S. H. Silva and P. Najafirad, “Opportunities and challenges in deep learning adversarial

robustness: A survey,” arXiv preprint arXiv:2007.00753, 2020 (cited on p. 46).

[118] H. Zhang and W. Chan, “Apricot: A weight-adaptation approach to fixing deep learning

models,” in ASE, IEEE, 2019 (cited on pp. 47, 63, 69, 125).

[119] Z. Liang, T. Wu, C. Zhao, et al., “Repairing deep neural networks based on behavior

imitation,” arXiv preprint arXiv:2305.03365, 2023 (cited on p. 49).

[120] A. H. Land and A. G. Doig, An automatic method for solving discrete programming

problems. Springer, 2010 (cited on p. 50).

143

REFERENCES

[121] G. Optimization, Inc.. gurobi optimizer reference manual, version 5.0, 2012 (cited on

pp. 50, 103, 106, 126).

[122] B. Meindl and M. Templ, “Analysis of commercial and free and open source solvers

for linear optimization problems,” Eurostat and Statistics Netherlands within the project

ESSnet on common tools and harmonised methodology for SDC in the ESS, vol. 20, 2012

(cited on p. 50).

[123] S. Nickel, C. Steinhardt, H. Schlenker, and W. Burkart, “Ibm ilog cplex optimization stu-

dio—a primer,” in Decision Optimization with IBM ILOG CPLEX Optimization Studio:

A Hands-On Introduction to Modeling with the Optimization Programming Language

(OPL), Springer, 2022, pp. 9–21 (cited on p. 51).

[124] A. Makhorin, “Glpk (gnu linear programming kit),” http://www. gnu. org/s/glpk/glpk.

html, 2008 (cited on pp. 51, 57, 60).

[125] E. Bressert, “Scipy and numpy: An overview for developers,” 2012 (cited on p. 51).

[126] S. M. Kolb, S. Teso, A. Passerini, L. De Raedt, et al., “Learning smt (lra) constraints

using smt solvers,” in Proceedings of the Twenty-Seventh International Joint Conference

on Artificial Intelligence ((IJCAI-18), IJCAI, 2018, pp. 2333–2340 (cited on p. 54).

[127] R. Ehlers, “Formal verification of piece-wise linear feed-forward neural networks,” in

Automated Technology for Verification and Analysis: 15th International Symposium,

ATVA 2017, Pune, India, October 3–6, 2017, Proceedings 15, Springer, 2017, pp. 269–

286 (cited on pp. 54, 57).

[128] N. Narodytska, “Formal analysis of deep binarized neural networks.,” in IJCAI, 2018,

pp. 5692–5696 (cited on p. 54).

[129] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh, “Verifying prop-

erties of binarized deep neural networks,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 32, 2018 (cited on p. 54).

[130] Y. Y. Elboher, J. Gottschlich, and G. Katz, “An abstraction-based framework for neural

network verification,” in Computer Aided Verification: 32nd International Conference,

CAV 2020, Los Angeles, CA, USA, July 21–24, 2020, Proceedings, Part I 32, Springer,

2020, pp. 43–65 (cited on p. 55).

[131] G. Sierksma and Y. Zwols, Linear and integer optimization: theory and practice. CRC

Press, 2015 (cited on pp. 55, 60).

[132] M. Fowler, Refactoring. Addison-Wesley Professional, 2018 (cited on p. 55).

144

REFERENCES

[133] K. Ghorbal, E. Goubault, and S. Putot, “The zonotope abstract domain taylor1+,” in Com-

puter Aided Verification: 21st International Conference, CAV 2009, Grenoble, France,

June 26-July 2, 2009. Proceedings 21, Springer, 2009, pp. 627–633 (cited on p. 55).

[134] S. Wang, H. Zhang, K. Xu, et al., “Beta-crown: Efficient bound propagation with per-

neuron split constraints for neural network robustness verification,” Advances in Neural

Information Processing Systems, vol. 34, pp. 29 909–29 921, 2021 (cited on pp. 55, 61,

92).

[135] T. Ladner and M. Althoff, “Exponent relaxation of polynomial zonotopes and its appli-

cations in formal neural network verification,” in Proceedings of the AAAI Conference

on Artificial Intelligence, vol. 38, 2024, pp. 21 304–21 311 (cited on p. 55).

[136] P. Cousot and R. Cousot, “Abstract interpretation: A unified lattice model for static anal-

ysis of programs by construction or approximation of fixpoints,” in Proceedings of the

4th ACM SIGACT-SIGPLAN symposium on Principles of programming languages, 1977,

pp. 238–252 (cited on p. 55).

[137] H.-D. Tran, N. Pal, D. M. Lopez, et al., “Verification of piecewise deep neural networks:

A star set approach with zonotope pre-filter,” Formal aspects of computing, vol. 33,

pp. 519–545, 2021 (cited on p. 56).

[138] C.-Y. Ko, Z. Lyu, L. Weng, L. Daniel, N. Wong, and D. Lin, “Popqorn: Quantifying ro-

bustness of recurrent neural networks,” in International Conference on Machine Learn-

ing, PMLR, 2019, pp. 3468–3477 (cited on p. 56).

[139] T. Du, S. Ji, L. Shen, et al., “Cert-rnn: Towards certifying the robustness of recurrent

neural networks.,” CCS, vol. 21, no. 2021, pp. 15–19, 2021 (cited on p. 56).

[140] D. Eppstein, “Zonohedra and zonotopes,” 1995 (cited on p. 56).

[141] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstrac-

tion refinement,” in Computer Aided Verification: 12th International Conference, CAV

2000, Chicago, IL, USA, July 15-19, 2000. Proceedings 12, Springer, 2000, pp. 154–169

(cited on p. 56).

[142] H.-D. Tran, S. Bak, W. Xiang, and T. T. Johnson, “Verification of deep convolutional

neural networks using imagestars,” in International conference on computer aided veri-

fication, Springer, 2020, pp. 18–42 (cited on p. 57).

145

REFERENCES

[143] H.-D. Tran, D. Manzanas Lopez, P. Musau, et al., “Star-based reachability analysis of

deep neural networks,” in Formal Methods–The Next 30 Years: Third World Congress,

FM 2019, Porto, Portugal, October 7–11, 2019, Proceedings 3, Springer, 2019, pp. 670–

686 (cited on p. 57).

[144] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient formal safety analysis

of neural networks,” Advances in neural information processing systems, vol. 31, 2018

(cited on p. 57).

[145] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security analysis of neu-

ral networks using symbolic intervals,” in 27th USENIX Security Symposium (USENIX

Security 18), 2018, pp. 1599–1614 (cited on p. 57).

[146] G. Katz, D. A. Huang, D. Ibeling, et al., “The marabou framework for verification and

analysis of deep neural networks,” in Computer Aided Verification: 31st International

Conference, CAV 2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I

31, Springer, 2019, pp. 443–452 (cited on pp. 57, 61, 92, 93).

[147] M. Fisher, An introduction to practical formal methods using temporal logic. John Wiley

& Sons, 2011 (cited on p. 58).

[148] G. Optimization et al., Gurobi optimizer reference manual, 2020 (cited on p. 60).

[149] C. Bliek1ú, P. Bonami, and A. Lodi, “Solving mixed-integer quadratic programming

problems with ibm-cplex: A progress report,” in Proceedings of the twenty-sixth RAMP

symposium, 2014, pp. 16–17 (cited on p. 60).

[150] T. A. Henzinger, M. Lechner, and Đ. Žikelić, “Scalable verification of quantized neural

networks,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35,

2021, pp. 3787–3795 (cited on pp. 60, 61).

[151] V. Tjeng, K. Xiao, and R. Tedrake, “Evaluating robustness of neural networks with mixed

integer programming,” arXiv preprint arXiv:1711.07356, 2017 (cited on p. 60).

[152] Y. Zhang, F. Song, and J. Sun, “Qebverif: Quantization error bound verification of neural

networks,” in International Conference on Computer Aided Verification, Springer, 2023,

pp. 413–437 (cited on pp. 60, 61).

[153] Y. Zhang, Z. Zhao, G. Chen, et al., “Qvip: An ilp-based formal verification approach for

quantized neural networks,” in Proceedings of the 37th IEEE/ACM International Con-

ference on Automated Software Engineering, 2022, pp. 1–13 (cited on pp. 60, 61).

146

REFERENCES

[154] M. V. Marathe, H. B. Hunt III, R. E. Stearns, and V. Radhakrishnan, “Approximation

algorithms for pspace-hard hierarchically and periodically specified problems,” SIAM

Journal on Computing, vol. 27, no. 5, pp. 1237–1261, 1998 (cited on p. 60).

[155] L. Deng, “The mnist database of handwritten digit images for machine learning re-

search,” IEEE Signal Processing Magazine, vol. 29, 2012 (cited on pp. 60, 125).

[156] K. Jia and M. Rinard, “Efficient exact verification of binarized neural networks,” Ad-

vances in neural information processing systems, vol. 33, pp. 1782–1795, 2020 (cited on

p. 61).

[157] P. Huang, H. Wu, Y. Yang, et al., “Towards efficient verification of quantized neural

networks,” arXiv preprint arXiv:2312.12679, 2023 (cited on p. 61).

[158] H. Wu, O. Isac, A. Zeljić, et al., “Marabou 2.0: A versatile formal analyzer of neural

networks,” in International Conference on Computer Aided Verification, Springer, 2024,

pp. 249–264 (cited on p. 61).

[159] H. Duong, D. Xu, T. Nguyen, and M. B. Dwyer, “Harnessing neuron stability to improve

dnn verification,” arXiv preprint arXiv:2401.14412, 2024 (cited on pp. 61, 92).

[160] A. Sinitsin, V. Plokhotnyuk, D. Pyrkin, S. Popov, and A. Babenko, “Editable neural net-

works,” arXiv preprint arXiv:2004.00345, 2020 (cited on p. 63).

[161] J. R. Hershey and P. A. Olsen, “Approximating the kullback leibler divergence between

gaussian mixture models,” in 2007 IEEE International Conference on Acoustics, Speech

and Signal Processing-ICASSP’07, IEEE, vol. 4, 2007, pp. IV–317 (cited on p. 63).

[162] e. a. Goldberger Ben, “Minimal modifications of deep neural networks using verifica-

tion.,” in LPAR, 2020, 23rd (cited on p. 64).

[163] M. Usman, D. Gopinath, Y. Sun, Y. Noller, and C. S. Păsăreanu, “Nn repair: Constraint-

based repair of neural network classifiers,” in Computer Aided Verification: 33rd Inter-

national Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I

33, Springer, 2021, pp. 3–25 (cited on pp. 64, 65).

[164] K. Majd, S. Zhou, H. B. Amor, G. Fainekos, and S. Sankaranarayanan, “Local repair of

neural networks using optimization,” arXiv preprint arXiv:2109.14041, 2021 (cited on

p. 64).

[165] J. Sohn, S. Kang, and S. Yoo, “Arachne: Search-based repair of deep neural networks,”

ACM Transactions on Software Engineering and Methodology, vol. 32, no. 4, pp. 1–26,

2023 (cited on pp. 64, 69).

147

REFERENCES

[166] Z. Tao, S. Nawas, J. Mitchell, and A. V. Thakur, “Architecture-preserving provable repair

of deep neural networks,” Proceedings of the ACM on Programming Languages, vol. 7,

no. PLDI, pp. 443–467, 2023 (cited on p. 64).

[167] F. Fu and W. Li, “Sound and complete neural network repair with minimality and locality

guarantees,” arXiv preprint arXiv:2110.07682, 2021 (cited on p. 64).

[168] D. Gopinath, H. Converse, C. Pasareanu, and A. Taly, “Property inference for deep neural

networks,” in 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE), IEEE, 2019, pp. 797–809 (cited on p. 65).

[169] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,” ACM

SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp. 263–272, 2005 (cited on p. 65).

[170] B. Sun, J. Sun, L. H. Pham, and J. Shi, “Causality-based neural network repair,” in Pro-

ceedings of the 44th International Conference on Software Engineering, 2022, pp. 338–

349 (cited on p. 66).

[171] T. M. Blackwell, J. Kennedy, and R. Poli, “Particle swarm optimization,” Swarm Intelli-

gence, vol. 1, no. 1, pp. 33–57, 2007 (cited on p. 66).

[172] T. S. Borkar and L. J. Karam, “Deepcorrect: Correcting dnn models against image dis-

tortions,” IEEE Transactions on Image Processing, vol. 28, no. 12, pp. 6022–6034, 2019

(cited on pp. 67, 69).

[173] F. Fu, Z. Wang, J. Fan, et al., “Reglo: Provable neural network repair for global robustness

properties,” in Workshop on Trustworthy and Socially Responsible Machine Learning,

NeurIPS 2022, 2022 (cited on p. 68).

[174] F. Bauer-Marquart, D. Boetius, S. Leue, and C. Schilling, “Specrepair: Counter-example

guided safety repair of deep neural networks,” in International Symposium on Model

Checking Software, Springer, 2022, pp. 79–96 (cited on pp. 68, 69).

[175] G. Dong, J. Sun, J. Wang, X. Wang, and T. Dai, “Towards repairing neural networks

correctly,” arXiv preprint arXiv:2012.01872, 2020 (cited on p. 68).

[176] H. F. Eniser, S. Gerasimou, and A. Sen, “Deepfault: Fault localization for deep neural

networks,” in International Conference on Fundamental Approaches to Software Engi-

neering, Springer, 2019, pp. 171–191 (cited on p. 69).

[177] L. H. Pham, J. Li, and J. Sun, “Socrates: Towards a unified platform for neural network

analysis,” arXiv preprint arXiv:2007.11206, 2020 (cited on p. 69).

148

REFERENCES

[178] A. Blanchard, N. Kosmatov, and F. Loulergue, “A lesson on verification of iot software

with frama-c,” in Int. Conf. on High Performance Computing & Simulation, 2018 (cited

on p. 74).

[179] E. Stevens, L. Antiga, and T. Viehmann, Deep learning with PyTorch. Manning Publi-

cations, 2020 (cited on p. 75).

[180] S. Koranne and S. Koranne, “Hierarchical data format 5: Hdf5,” Handbook of open

source tools, pp. 191–200, 2011 (cited on p. 75).

[181] M. Ó. Searcóid, Metric Spaces. Springer-Verlag, 2006 (cited on p. 77).

[182] D. Bühler, “Eva, an evolved value analysis for frama-c: Structuring an abstract interpreter

through value and state abstractions,” Ph.D. dissertation, Rennes 1, 2017 (cited on p. 79).

[183] P. Baudin, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prevosto, “Acsl: Ansi c

specification language,” CEA-LIST, Saclay, France, Tech. Rep. v1, vol. 2, 2008 (cited on

p. 79).

[184] N. Kosmatov and J. Signoles, “Frama-c, a collaborative framework for c code verifi-

cation: Tutorial synopsis,” in Runtime Verification: 16th International Conference, RV

2016, Madrid, Spain, September 23–30, 2016, Proceedings 7, Springer, 2016, pp. 92–

115 (cited on p. 79).

[185] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of

the ACM, vol. 12, no. 10, pp. 576–580, 1969 (cited on p. 80).

[186] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium on Foundations

of Computer Science (sfcs 1977), ieee, 1977, pp. 46–57 (cited on p. 80).

[187] B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided Verification,

Springer, 2014, pp. 737–744 (cited on p. 82).

[188] M. N. Wegman and F. K. Zadeck, “Constant propagation with conditional branches,”

ACM Transactions on Programming Languages and Systems (TOPLAS), vol. 13, no. 2,

pp. 181–210, 1991 (cited on p. 82).

[189] M. Y. Gadelha, L. C. Cordeiro, and D. A. Nicole, “Encoding floating-point numbers

using the smt theory in esbmc: An empirical evaluation over the sv-comp benchmarks,”

in Formal Methods: Foundations and Applications: 20th Brazilian Symposium, SBMF

2017, Recife, Brazil, November 29—December 1, 2017, Proceedings 20, Springer, 2017,

pp. 91–106 (cited on p. 83).

149

REFERENCES

[190] A. Stoutchinin and F. De Ferriere, “Efficient static single assignment form for predica-

tion,” in Proceedings. 34th ACM/IEEE International Symposium on Microarchitecture.

MICRO-34, IEEE, 2001, pp. 172–181 (cited on p. 83).

[191] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The german traffic sign recognition

benchmark: A multi-class classification competition,” in The 2011 international joint

conference on neural networks, IEEE, 2011, pp. 1453–1460 (cited on pp. 84, 85).

[192] Krizhevsky, Alex and Hinton, Geoffrey, “CIFAR-10 (canadian institute for advanced re-

search),” University of Toronto, Tech. Rep., 2009. [Online]. Available: https://www.

cs.toronto.edu/~kriz/cifar.html (cited on pp. 85, 106, 126).

[193] F. Monteiro, E. Alves, I. Silva, H. Ismail, L. Cordeiro, and E. de Lima-Filho, “ESBMC-

GPU a context-bounded model checking tool to verify cuda programs,” Sci. Comput.

Program., vol. 152, pp. 63–69, 2018 (cited on p. 86).

[194] M. Gadelha, R. Menezes, F. R. Monteiro, L. Cordeiro, and D. A. Nicole, “ESBMC:

scalable and precise test generation based on the floating-point theory - (competition

contribution),” in 23rd Int. Conf. Fundamental Approaches to Software Engineering,

ser. LNCS, vol. 12076, 2020, pp. 525–529 (cited on p. 87).

[195] T. A. Henzinger, M. Lechner, and Đ. Žikelić, Scalable verification of quantized neural

networks (technical report), 2020. eprint: 2012.08185 (cited on p. 89).

[196] M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Rakamarić, “An smt theory of

fixed-point arithmetic,” in Automated Reasoning, N. Peltier and V. Sofronie-Stokkermans,

Eds., Cham: Springer International Publishing, 2020, pp. 13–31 (cited on p. 92).

[197] K. Jia and M. Rinard, “Verifying low-dimensional input neural networks via input quan-

tization,” arXiv preprint arXiv:2108.07961, 2021 (cited on p. 92).

[198] G. Amir, H. Wu, C. Barrett, and G. Katz, “An smt-based approach for verifying binarized

neural networks,” in Int. Conf.on Tools and Algorithms for the Construction and Analysis

of Systems, Springer, 2021, pp. 203–222 (cited on p. 92).

[199] M. Christakis, H. F. Eniser, H. Hermanns, et al., “Automated safety verification of pro-

grams invoking neural networks,” in Computer Aided Verification: 33rd International

Conference, CAV 2021, Virtual Event, July 20–23, 2021, Proceedings, Part I 33, Springer,

2021, pp. 201–224 (cited on p. 92).

150

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
2012.08185

REFERENCES

[200] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Dpll (t): Fast

decision procedures,” in Computer Aided Verification: 16th International Conference,

CAV 2004, Boston, MA, USA, July 13-17, 2004. Proceedings 16, Springer, 2004, pp. 175–

188 (cited on p. 92).

[201] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic fault-

localization technique,” in Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering, 2005, pp. 273–282 (cited on pp. 101, 109).

[202] R. Abreu, P. Zoeteweij, and A. J. Van Gemund, “On the accuracy of spectrum-based

fault localization,” in Testing: Academic and industrial conference practice and research

techniques-MUTATION (TAICPART-MUTATION 2007), IEEE, 2007 (cited on pp. 101,

109).

[203] W. E. Wong, V. Debroy, R. Gao, and Y. Li, “The dstar method for effective software fault

localization,” IEEE Transactions on Reliability, vol. 63, no. 1, pp. 290–308, 2013 (cited

on pp. 101, 109).

[204] P. Agarwal and A. P. Agrawal, “Fault-localization techniques for software systems: A

literature review,” ACM SIGSOFT Software Engineering Notes, vol. 39, no. 5, pp. 1–8,

2014 (cited on pp. 101, 109).

[205] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight bug localization with ample,” in

Proceedings of the sixth international symposium on Automated analysis-driven debug-

ging, 2005, pp. 99–104 (cited on pp. 101, 109).

[206] Z. Galijasevic and A. Abur, “Fault location using voltage measurements,” IEEE Trans-

actions on Power Delivery, vol. 17, no. 2, pp. 441–445, 2002 (cited on pp. 101, 109).

[207] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai, “Effective fault localization using code cov-

erage,” in COMPSAC, IEEE, vol. 1, 2007, pp. 449–456 (cited on pp. 101, 109).

[208] TensorFlow Lite. [Online]. Available: https://www.tensorflow.org/lite (cited on

p. 105).

[209] ifigotin, Imagenetmini-1000, https : / / www . kaggle . com / datasets / ifigotin /

imagenetmini-1000, Accessed: April 4, 2023, 2021 (cited on p. 105).

[210] e. a. Guo Cong, “Squant: On-the-fly data-free quantization via diagonal hessian approx-

imation,” arXiv preprint arXiv:2202.07471, 2022 (cited on p. 112).

[211] G. L. Nemhauser and L. A. Wolsey, “Integer and combinatorial optimization john wiley

& sons,” New York, vol. 118, 1988 (cited on p. 112).

151

https://www.tensorflow.org/lite
https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000
https://www.kaggle.com/datasets/ifigotin/imagenetmini-1000

REFERENCES

[212] S. Bengesi, H. El-Sayed, M. K. Sarker, Y. Houkpati, J. Irungu, and T. Oladunni, “Ad-

vancements in generative ai: A comprehensive review of gans, gpt, autoencoders, diffu-

sion model, and transformers.,” IEEE Access, 2024 (cited on p. 113).

[213] F. Chollet, Keras, https://keras.io, 2015 (cited on pp. 117, 118).

[214] C. Severance, “Discovering javascript object notation,” Computer, vol. 45, no. 4, pp. 6–

8, 2012 (cited on p. 117).

[215] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset for bench-

marking machine learning algorithms,” arXiv:1708.07747, 2017 (cited on pp. 118, 125).

[216] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of

Toronto, Tech. Rep., 2009 (cited on pp. 119, 125).

[217] C. Shorten and T. M. Khoshgoftaar, “A survey on image data augmentation for deep

learning,” Journal of Big Data, vol. 6, no. 1, p. 60, 2019 (cited on p. 119).

[218] Y. Liu, C. Chen, R. Zhang, et al., “Enhancing the interoperability between deep learning

frameworks by model conversion,” in ESEC/FSE, 2020, pp. 1320–1330 (cited on p. 119).

[219] G. Rozenberg, Handbook of graph grammars and computing by graph transformation.

World scientific, 1997, vol. 1 (cited on p. 120).

[220] I. Anaconda, Anaconda documentation, https://docs.anaconda.com/, 2020 (cited

on pp. 120, 121, 123).

[221] M. Fischer, M. Balunovic, D. Drachsler-Cohen, T. Gehr, C. Zhang, and M. Vechev, “DL2:

Training and querying neural networks with logic,” in ICML, 2019 (cited on pp. 121,

125).

[222] A. Laugros, A. Caplier, and M. Ospici, “Are adversarial robustness and common pertur-

bation robustness independant attributes?” In ICCV, 2019 (cited on p. 122).

[223] D. Crockford, The application/json media type for javascript object notation (json), https:

//www.ietf.org/rfc/rfc4627.txt, 2006 (cited on p. 123).

[224] B. Neal, Effective Command-Line Interface. Pragmatic Bookshelf, 2018 (cited on p. 123).

[225] Z. Liu, Y. Feng, Y. Yin, and Z. Chen, “DeepState: Selecting test suites to enhance the

robustness of recurrent neural networks,” in ICSE, 2022 (cited on p. 125).

[226] X. Xie, W. Guo, L. Ma, et al., “Rnnrepair: Automatic rnn repair via model-based analy-

sis,” in ICML, 2021 (cited on p. 125).

152

https://docs.anaconda.com/
https://www.ietf.org/rfc/rfc4627.txt
https://www.ietf.org/rfc/rfc4627.txt

REFERENCES

[227] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry, “There is no free lunch

in adversarial robustness (but there are unexpected benefits),” arXiv:1805.12152, vol. 2,

no. 3, 2018 (cited on p. 127).

153

	Front matter
	Title page
	Contents
	List of figures
	List of tables
	Abstract
	Declaration of originality
	Copyright statement
	List of publications
	Acknowledgements

	Terms and abbreviations
	1 Introduction
	1.1 Research Motivation
	1.2 Research Questions
	1.2.1 RQ1: How to find vulnerabilities in Quantized Neural Network Models?
	1.2.2 RQ2: How to Repair Quantized Neural Network Models?
	1.2.3 RQ3: How to Reach Trade-off Between Repairing Correctness and Efficiency?

	1.3 Contributions
	1.4 Thesis Structure

	2 Background
	2.1 Neural Networks (NNs)
	2.1.1 NN Implementations
	2.1.2 NN Quantization
	2.1.3 Adversarial Examples

	2.2 Bounded Model Checking
	2.2.1 Bounded Model Checking Tools
	2.2.2 Satisfiability Modulo Theories Backends

	2.3 Neural Network Verification
	2.3.1 Verification Problem Statement
	2.3.2 Verification of Safety Properties

	2.4 Neural Network Repair
	2.4.1 Repair Problem Statement
	2.4.2 Mixed Integer Linear Optimization

	2.5 Chapter Summary

	3 Related Works
	3.1 Verification Methods
	3.1.1 Exact Verification
	3.1.2 Approximate Verification
	3.1.3 Verification by Satisfiability Modulo Theories
	3.1.4 Verification by Mixed-Integer Linear Programming
	3.1.5 Quantization Aspect
	3.1.6 Comparison with QNNVerifier

	3.2 Repair Methods
	3.2.1 Repair by Retraining
	3.2.2 Repair by Adjusting Weights
	3.2.3 Repair by Attaching Repair Units
	3.2.4 Repair by Counterexamples
	3.2.5 Quantization Aspect
	3.2.6 Comparison with QNNRepair

	3.3 Chapter Summary

	4 QNNVerifier: Quantized Neural Network Verification
	4.1 Chapter Introduction
	4.2 QNNVerifier Framework Overview
	4.2.1 Neural Network Code Conversion
	4.2.2 Discretization of Non-linear Activation Functions
	4.2.3 Interval Analysis via Frama-C
	4.2.4 Assertion Language in ESBMC
	4.2.5 ESBMC Architecture
	4.2.6 Constant Folding and Slicing

	4.3 Evaluation
	4.3.1 Description of the QNNVerifier Benchmarks
	4.3.2 Experiments Setup
	4.3.3 SMT Solvers Comparison
	4.3.4 Comparison with State-of-the-art Verification Tools

	4.4 Chapter Summary

	5 QNNRepair: Quantized Neural Network Repair
	5.1 Chapter Introduction
	5.2 QNNRepair Methodology
	5.2.1 Neuron Importance Ranking
	5.2.2 Constraints-Solving Based Repairing
	5.2.3 QNNRepair Algorothm

	5.3 Evaluation
	5.3.1 Description of the QNNRepair Benchmarks
	5.3.2 Experiments Setup
	5.3.3 Repair Results on Baselines
	5.3.4 Effects of Passing and Failing Tests in QNNRepair
	5.3.5 Fault Localization Metrics in QNNRepair
	5.3.6 Repair Efficiency
	5.3.7 Comparison with Data-free Quantization

	5.4 Chapter Summary

	6 AIRepair: A Repair Platform for Neural Networks
	6.1 Chapter Introduction
	6.2 AIRepair Framework
	6.2.1 Input
	6.2.2 Pre-processing
	6.2.3 Repair
	6.2.4 Evaluation and Output
	6.2.5 AIRepair Implementation
	6.2.6 Example Usage

	6.3 Evaluation
	6.3.1 Description of the AIRepair Benchmarks
	6.3.2 Experiments Setup
	6.3.3 Train Baseline Models
	6.3.4 Compare Different Repair Tools on the Same Benchmark

	6.4 Chapter Summary

	7 Conclusions and Future Works
	References

