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Abstract

This thesis investigates the application of interval analysis and methods within the do-

main of software verification, with a particular focus on mitigating the state space explosion

problem. State space explosion poses a significant challenge to static and dynamic software

verification techniques, such as fuzzing, bounded model checking (BMC), and abstract inter-

pretation. These methods, despite their robustness, struggle to scale when faced with complex

programs that generate a vast number of execution paths and states. To address this, the thesis

introduces the use of contractors—interval methods that refine the search space by eliminating

non-solution regions—across several verification frameworks. By applying interval contrac-

tors in fuzzing, BMC, and abstract interpretation, the search space is systematically reduced

without compromising the soundness or completeness of the verification process. Contractors

are employed to navigate guard conditions, narrow down variable domains, and simplify con-

trol structures, leading to a more efficient exploration of execution paths. The thesis presents

a detailed implementation of these methods and evaluates their performance through rigorous

benchmarking. Results demonstrate that the integration of contractors significantly enhances

verification efficiency, reducing both computational resource consumption and time while

preserving accuracy in identifying potential software vulnerabilities. This research offers a

novel contribution to improving the scalability of software verification methods, making them

more practical for real-world applications.
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Chapter 1

Introduction

The concept of testing encompasses a wide range of activities aimed at evaluating the

functionality, reliability, and performance of various systems, from ancient civil engineer-

ing projects to modern digital innovations [10]–[12]. Throughout history, testing has been a

crucial component of development and innovation, bridging theoretical design and practical

application. In fields such as manufacturing, construction, and education, testing methodolo-

gies have evolved to ensure that products and structures meet specific standards and require-

ments. This evolution emphasises the importance of identifying and correcting issues before

they lead to failure or underperformance. It calls for a more organised approach to quality

assurance [13].

A prominent example of the implications of insufficient testing is the 1940 collapse of the

Tacoma Narrows Bridge [14]. The bridge’s collapse, resulting from an inadequate grasp of

aerodynamic forces, prompted an examination of engineering methodologies and testing stan-

dards in civil construction. This catastrophe emphasised the imperative for rigorous testing

frameworks, propelling progress in structural analysis and quality assurance to avert analo-

gous failures in forthcoming infrastructure endeavours. Insights gained from these instances

persist in shaping contemporary testing methodologies, guaranteeing that systems undergo

rigorous examination prior to implementation.

As rigorous testing is necessary in engineering in order to avoid catastrophic failures, it

is similarly imperative in software development. Testing is an essential component of the

software lifecycle, impacting a wide range of applications, including online financial sys-

tems and toys for kids. It assures that software meets its specified requirements and operates

effectively and securely. Neglecting its significance may result in substantial losses or en-

danger individuals’ welfare. Testing activities include ensuring the software’s correctness,

safety, reliability, and security [15]. Correctness guarantees that the program functions as in-
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(a) Therac-25 (b) Boeing 737 MAX (c) Ariane 5 Flight 501

Fig. 1.1. Examples of software malfunction resulting in disastrous consequences.

tended in all scenarios, including the proper management of issues and unexpected situations.

Safety is paramount in important systems, such as medical devices or automobile controls,

where human lives may be endangered [16]. Reliability emphasises the software’s capacity to

function under defined settings throughout time without failure, whereas security verification

seeks to safeguard against cyber threats by discovering and addressing potential vulnerabil-

ities [17]. The importance of software testing is made clear by the serious consequences of

software bugs, which can result in financial losses and pose significant safety and security

risks, emphasising the necessity for rigorous verification and testing procedures throughout

the software development lifecycle [18].

The impact of software failures, particularly in systems where human lives are at risk,

cannot be overstated. A notable case is the Therac-25, a medical radiation therapy device

illustrated in Figure 1.1a, which caused multiple fatalities due to software malfunctions in

the mid-1980s, as reported by Leveson [19]. Similarly, the Boeing 737 MAX crashes, shown

in Figure 1.1b, resulted in the tragic loss of 346 lives and highlighted the grave dangers of

software failures in complex, safety-critical environments [20]. Another significant example

is the Ariane 5 Flight 501 incident on June 4, 1996, illustrated in Figure 1.1c, where a software

error caused the rocket to deviate from its intended trajectory and disintegrate shortly after

launch [21]. These incidents underscore the vital importance of rigorous software verification

and testing to protect human lives in advanced technological systems. We must learn from

these tragedies and take decisive action to prevent their recurrence.

To avoid incidents, various methodologies have been progressively developed and refined

in software development to enhance the effectiveness of quality assurance practices. These
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methodologies are broadly classified into manual and automated techniques, each serving

distinct purposes throughout the software development life cycle. Manual testing methods,

such as code reviews and pair programming, remain prevalent in examining repositories and

code bases on platforms such as GitHub [22]. In contrast, automated techniques have seen

significant advancements, introducing tools that use various methods for more comprehensive

testing [23].

1.1 Software Verification

The practice of verification is an integral part of the automated software testing umbrella.

Verification evaluates whether the software meets its specified requirements and ensures the

product is built correctly. Verification techniques are generally categorised into two main

types: static and dynamic verification [24]. On the one hand, static verification involves

analysing the code without executing it and detecting potential errors through tools such as

linters [25]–[28] or static analysers. Dynamic verification, on the other hand, tests the soft-

ware during runtime, identifying defects that manifest during execution, often through tech-

niques such as unit testing or integration testing [29]–[32]. These verification methodologies

work in tandem to ensure both code quality and functional correctness throughout the devel-

opment process.

1.1.1 Static Analysis

Static verification, or static analysis, involves examining and evaluating a program’s code

without executing the program, providing a means to identify potential errors and issues in

the codebase before runtime. Static analysis is crucial for several reasons. Firstly, it allows for

the early detection of security vulnerabilities and coding errors, which can be much harder and

costlier to fix once they reach production [33], [34]. Additionally, it ensures compliance with

coding standards and helps maintain clean, maintainable codebases [34], [35]. By integrating

static analysis into the development process, developers can “shift left” to catch issues early,

reducing technical debt and ensuring smoother, faster software deployment [33], [36].

Moreover, static analysis contributes to the overall security of software systems by identi-

fying potential risks such as buffer overflows, SQL injections, and other vulnerabilities [34].
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It also helps enforce coding standards, making the code easier to maintain and less prone to

errors in the long run [35]. The following is an exploration of the most used static analysis

techniques in the industry and academia.

The journey of program analysis has evolved alongside the growing complexity of soft-

ware development. Early on, Syntax Checking [37]–[40] emerged as a foundational tool,

catching rudimentary errors such as typos and structural inconsistencies. While invaluable

for immediate feedback, it quickly became evident that syntax alone could not address deeper

logical or runtime issues that plagued more sophisticated code bases. Syntax checking was a

necessary first step, but as software systems grew, developers demanded more [15].

This is where techniques such as Data Flow and Control Flow Analysis came into play.

In the 1970s, these methods, developed by pioneers such as Allen [41] and Sharir & Pnueli

[42], began to dig deeper into the program’s inner workings. Data Flow Analysis traced

how data moved through a program, identifying potential misuses or leaks, while Control

Flow Analysis focused on the logical paths that the execution might follow. Though these

methods were a leap forward, they were not without flaws. Their predictions about dynamic

behaviour, especially in complex systems, could lead to inaccuracies, or what practitioners

call “false positives”.

With the rise of larger and more interconnected systems, the need to understand depen-

dencies between different parts of the code became critical. Dependency Analysis, introduced

in the 1990s by researchers like Jackson [43], mapped these interactions, offering invaluable

insights into how changes in one module might ripple across the entire system. However,

as systems grew to millions of lines of code, the challenge of managing and comprehending

these dependencies became overwhelming.

In parallel, the industry was grappling with Symbolic Execution, a technique developed

in the mid-1970s by J. C. King [44]. Symbolic execution offered the tantalising prospect

of testing all possible execution paths by treating inputs symbolically rather than concretely.

While powerful, this approach required enormous computational resources, limiting its use

to specific cases where the potential payoff was worth the cost.

As the complexity of software continued to grow, Semantic Analysis emerged as a deeper,

more nuanced approach. Aho [45], and others argued that understanding the meaning of

code—its semantics—was key to detecting issues such as type safety violations or improper
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usage of programming constructs. However, this approach required a sophisticated under-

standing of the language’s semantics, making it challenging to apply without deep expertise

[46].

Around the turn of the millennium, Bounded Model Checking (BMC) emerged as a promi-

nent technique, targeting the detection of bugs within a predefined bound on the execution

depth. This approach, pioneered by Biere [47] and further developed by Biere, Cimatti,

Clarke, and Zhu [48], [49], offered a more scalable way to detect issues in finite sections of

code. BMC examines the reachability of states within a predetermined number of steps, utilis-

ing formal methods and SAT or SMT solvers to verify the absence or presence of bugs within

those constraints. While it is limited by its inability to see beyond its predetermined bounds,

BMC’s precision in identifying error conditions and providing counterexamples makes it an

invaluable debugging tool, especially in hardware design, embedded systems, and safety-

critical software verification.

Lastly, Abstract Interpretation, introduced by Patrick Cousot and Radhia Cousot in the

late 1970s [50], became known for its ability to generalise and analyse all possible executions

of a program. As a static analysis technique, it examines code without actual execution to

deduce program behaviours by abstracting possible program states to identify potential er-

rors and verify properties, utilising mathematical models to broadly approximate program

behaviours. This technique is particularly adept at detecting runtime errors and compliance

issues, offering insights into potential bugs such as null pointer dereferences and memory

leaks preemptively. It is used in compiler optimisations and static analysis tools, aiding in

pre-execution bug detection and software analysis. Its strength lies in scalability and sound-

ness, but it is not immune to criticism. However, by over-approximating the behaviour of a

program, it sometimes reports false positives, leaving developers to sift through unnecessary

warnings [51].

Each technique offers unique advantages in static analysis, yet they also possess inherent

limitations that necessitate careful selection based on specific analysis goals. Overall, two

methods that stand out for their innovative approaches and transformative impact are Bounded

Model Checking (BMC) and Abstract Interpretation. Bounded Model Checking (BMC) and

Abstract Interpretation stand out due to their proven effectiveness and widespread adoption in

the industry. BMC is valued for its precision in detecting complex bugs, especially in hard-

ware and embedded systems, while Abstract Interpretation excels in analysing large-scale,
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safety-critical software. Both techniques are recognised for their scalability and impact on

real-world applications, making them key tools in static analysis [51], [52].

1.1.2 Dynamic Analysis

Dynamic analysis is essential to software testing [23]. It involves running the program in real

time to uncover issues that static analysis alone might miss, such as runtime errors, memory

leaks, and performance problems. Each dynamic testing method has its distinct advantages

and challenges, and tracing their evolution provides valuable insight into their significance

and adoption. Historically, these techniques emerged in response to the growing complexity

of software systems, reflecting both academic inquiry and industrial need.

Among these techniques, Fuzz Testing, also known as fuzzing, has garnered significant at-

tention due to its unparalleled ability to detect critical flaws. While methods such as Concolic

Testing [53] explore specific execution paths with precision, and Performance Testing [54]

benchmarks a system’s response under varying workloads, fuzzing operates with a broader,

almost chaotic scope. Professor Barton Miller’s introduction of fuzzing in 1995 at the Univer-

sity of Wisconsin-Madison marks a pivotal moment in software testing [55]. Its breakthrough

lies in its ability to generate vast amounts of random or semi-random input autonomously,

pushing software systems to their breaking points.

Fuzzing excels in uncovering often elusive vulnerabilities, particularly in large and com-

plex systems. This is not just due to the volume of inputs it generates but also because it intro-

duces scenarios developers may never anticipate. Its success is evidenced by its widespread

adoption in industries where security is paramount—such as operating systems, browsers, and

cloud infrastructure-often finding vulnerabilities that other testing techniques overlook. The

automation and scalability of fuzzing further enhance its appeal. Unlike Concolic Testing,

which struggles with scalability in complex applications [56], fuzzing can handle large-scale

systems by continuously generating new test cases with minimal human intervention.

However, fuzzing is not without its challenges. Its reliance on large computational re-

sources to generate and process the high volume of test cases is a significant drawback [55].

Furthermore, while fuzzing effectively exposes vulnerabilities, it offers little systematic ex-

ploration of execution paths, leaving gaps in its coverage that more targeted methods, such

as Concolic Testing, are better equipped to address. Despite this, the sheer efficiency of
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fuzzing in security-critical applications makes it a preferred method for many organizations,

even over more academically explored techniques such as abstract interpretation or bounded

model checking.

What sets fuzzing apart is its random nature and its alignment with real-world attack vec-

tors. In a world of increasingly sophisticated cyberattacks, the ability to simulate unpre-

dictable input scenarios has become invaluable [57]. Fuzzing exposes the vulnerabilities that

malicious actors might exploit, making it indispensable in the software industry’s efforts to

safeguard systems preemptively. This is why fuzzing has become a highly regarded and es-

sential tool in security research and practical applications—its ability to find bugs that no one

knew existed gives it a competitive edge in software testing.

In conclusion, dynamic testing methods such as fuzzing, Concolic Testing, and Perfor-

mance Testing are indispensable for ensuring modern software systems’ reliability, safety,

and security. Fuzzing’s automation and capacity for handling large datasets make it stand out,

particularly in industries where security is non-negotiable. Ultimately, combining fuzzing

with other dynamic and static testing methods offers the most robust strategy for uncovering

defects and securing software, underscoring its pivotal role in the future of software engi-

neering [54]–[56], [58].

1.2 Problem Description

Automated testing and software verification are essential tools for ensuring the reliability

and correctness of modern software systems [59]. These techniques promise to streamline

the testing process, catching bugs and issues early. However, despite their potential, they are

still far from flawless. One of the biggest challenges they face is the Search Space Explosion

problem (also known as State Space or Path Explosion) [60], which significantly limits the

effectiveness of both static and dynamic analysis methods. This issue arises due to the ex-

ponential growth of possible states and execution paths, making it difficult to verify complex

systems fully [61].

Bounded Model Checking (BMC) transforms the verification problem into a satisfiability

problem (SAT) [47] or a satisfiability modulo theories (SMT) [62], [63] problem, which is

then solved by a SAT or SMT solver. As the system’s complexity grows, the number of
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states increases exponentially, leading to a state space explosion, especially when there are

unbounded loops. This explosion makes it increasingly difficult for SAT/SMT solvers to

manage the verification process within reasonable time frames or memory constraints [64].

The state space explosion problem has not been completely solved, though significant

progress has been made in mitigating its impact [65]. Techniques such as SAT/SMT solver

optimisations, symbolic representations like Binary Decision Diagrams (BDDs) [66], inter-

polation methods [67], property-directed reachability (PDR) [68], and compositional or in-

cremental verification methods have effectively managed this challenge [66]. However, sev-

eral issues persist [69]. Scalability remains a concern, as these methods may not efficiently

handle extremely large or infinite state spaces. Moreover, the trade-off between precision and

efficiency is notable, with abstraction techniques simplifying the state space but requiring fur-

ther refinement to ensure accuracy [49]. Many techniques also demand manual intervention

or domain-specific knowledge, leaving the challenge of full automation unresolved. Memory

limitations are also problematic, as even symbolic methods can struggle with large models

containing numerous variables. Despite these advances, achieving a completely scalable and

automated solution to state space explosion is still an open challenge [69], [70].

Although abstract interpretation inherently aims to mitigate state space explosion by work-

ing with abstract domains, the choice of abstraction can lead to a trade-off between precision

and scalability. Too coarse an abstraction might miss errors (false negatives), while too fine

an abstraction might not sufficiently reduce the state space, leading to performance issues

similar to those in explicit state enumeration. [71], [72].

Fuzzing is a dynamic software verification technique that generates inputs to a program

to find bugs and vulnerabilities in a given program [55]. The problem in fuzzing arises when

executing a program with many inputs and complex guards. Because the potential input space

can be vast, especially for complex programs with numerous input parameters. As the number

of inputs and the program’s complexity grows, the time and computational resources needed

to thoroughly fuzz the program increase exponentially, making it challenging to achieve com-

prehensive coverage [73]–[75].

Several strategies have been developed to mitigate the state space explosion problem in

these methodologies, including heuristic search techniques, state space reduction methods

such as partial order reduction [76], abstraction techniques to simplify models [65], and par-
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allel or distributed computing approaches to increase computational capacity [77]. Despite

these efforts, the state space explosion remains a significant hurdle in scaling these verifica-

tion and testing techniques to complex software systems.

Summary of the Problem: The exponential growth of possible states and execution paths

in complex software systems leads to state space explosion, severely limiting the scalability

and effectiveness of automated testing and verification methods.

1.3 Challenges

Automated software verification techniques, such as Bounded Model Checking (BMC),

Abstract Interpretation, and Fuzzing, aim to ensure software correctness. However, they face

several challenges, particularly as software systems grow more complex. This section outlines

three key challenges that limit the effectiveness and scalability of these techniques: search

space explosion, resource consumption, and the need to maintain soundness and complete-

ness.

Challenge 1: Search Space Explosion The first major challenge is the problem of search

space explosion. As software systems become more complex, the number of states or execu-

tion paths grows exponentially, overwhelming traditional verification methods such as BMC

and Abstract Interpretation. This exponential growth in the search space makes it difficult for

solvers to explore all possible states, often resulting in incomplete verification or excessive

computational overhead. To mitigate this issue, reducing the search space while maintain-

ing soundness and completeness is crucial for ensuring efficient and accurate verification.

Research shows that symbolic techniques such as Binary Decision Diagrams (BDDs) and

SAT/SMT solvers are helpful but still limited by scalability concerns when tackling vast or

infinite state spaces [66], [72]. Advanced methods such as interpolants [67] and property-

directed reachability (PDR) [68] have been developed to enhance model checking by gener-

ating concise over-approximations of reachable states and focusing on property violations.

However, even these techniques face challenges when dealing with highly complex systems,

as they can still encounter scalability issues due to the underlying state space explosion prob-

lem.

Challenge 2: Resource Consumption Another significant challenge is the excessive con-
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sumption of computational resources, including memory and CPU time, in software verifica-

tion processes. Verification tools such as BMC and fuzzing require substantial resources to

explore large portions of the search space. For instance, fuzzing, though effective in detect-

ing security vulnerabilities, often generates vast amounts of random input, requiring exten-

sive computational power to achieve meaningful coverage. Reducing resource consumption

without compromising verification quality remains an open challenge. Studies suggest that

optimising solvers or employing parallel computing techniques can alleviate this issue, but

further innovations are needed [74], [78].

Challenge 3: Maintaining Soundness and Completeness The third challenge is preserv-

ing the soundness and completeness of verification methods while reducing the search space.

Soundness ensures that verified properties truly hold in the system, while completeness en-

sures that all potential errors are detected. Many techniques, including BMC and Abstract

Interpretation, struggle to balance reducing the search space with maintaining soundness and

completeness. Abstractions used to simplify verification may overlook important execution

paths, resulting in false negatives, while overly precise methods can overwhelm the system

with false positives or unsolved states. Ensuring that reductions in the search space do not

compromise the verification’s reliability is a critical area of ongoing research [59], [79].

By addressing these challenges, this research aims to enhance software verification tech-

niques by integrating numerical methods and Interval Methods to reduce the search space

and improve overall efficiency without sacrificing soundness and completeness.

1.4 Research Questions

Among the various challenges in software verification, this thesis specifically addresses the

issue of search space explosion, which significantly hinders scalability and efficiency. While

the related concerns of resource consumption and maintaining soundness and completeness

are acknowledged, the primary focus is on mitigating search space explosion through the

integration of numerical methods—particularly Interval Methods and Contractors—within

existing verification frameworks.

The principle behind contractors is based on constraint propagation and narrowing down

the search space. By applying constraints derived from the problem’s specifications, contrac-
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tors eliminate regions of the search space that cannot contain a solution, effectively reducing

the computational burden. This involves evaluating the constraints over the interval repre-

sentations of variables and adjusting these intervals to exclude values that do not satisfy the

constraints.

Research Question 1. To what extent can integrating a numerical method into verification

techniques effectively reduce the search space?

This thesis attempts to mitigate the search space problem by using Interval Methods, fo-

cusing on Contractors in particular. Contractors are an interval method that over-estimates

the solution of a given Constraint Satisfaction Problem [80]. By representing variables as

intervals, contractors enhance these methods by actively reducing the size of these intervals

without losing any potential solutions.

Research Question 2. To what extent can the integration of Interval Methods—particu-

larly contractors—into verification tools reduce computational resource consumption, such

as memory and processing time, during software verification?

The reduction in the search space directly impacts the amount of computational resources

required, such as processing power and memory usage. While reducing the state space can

lead to faster algorithms and lower memory consumption, this reduction is not always guar-

anteed. In some cases, the process of calculating the contractor can introduce significant

computational overhead, which may outweigh the potential benefits. This trade-off between

the effort involved in contractor calculations and the possibility of reducing the state space

is a critical consideration. In complex systems, this overhead might limit the overall effec-

tiveness of the reduction techniques. Chapters 3, 4, and 5 will explore this trade-off and its

impact through experimental evaluation.

Research Question 3. Does the integration of Interval Methods, particularly contractors,

into verification frameworks such as Fuzzing, Bounded Model Checking (BMC), and Abstract

Interpretation preserve the soundness and completeness of these techniques?

Soundness and completeness are important concepts in software verification. Soundness

ensures that if the software is verified as correct, it truly is, preventing false positives. Com-

pleteness ensures that all potential errors are detected, leaving no bugs unnoticed. Together,

they guarantee software verification is both accurate and exhaustive, ensuring software cor-

rectness and reliability without overlooking any possible errors [59], [66]. In each chapter,
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we will discuss the effect of integrating contractors on the soundness and completeness of

each method.

By addressing these research questions, this thesis aims to contribute to the advancement

of software verification techniques, making them more efficient and reliable through the in-

tegration of numerical methods and Contractors.

1.5 Research Scope

This research focuses on advancing the state of software verification by addressing the

prevalent issue of state space explosion in automated testing and verification techniques. It

also focuses on designing, integrating, and applying interval analysis methods, particularly

contractors, within various software verification approaches, namely fuzzing, bounded model

checking (BMC), and abstract interpretation. The aim is to reduce the computational over-

head associated with the verification of complex software systems while ensuring the sound-

ness (cf. Definition 1) and completeness (cf. Definition 2) of the verification process.

This study encompasses the following key areas:

• Interval Analysis and Contractors: The research explores the use of interval analysis

and contractors to reduce the search space in software verification systematically. Con-

tractors are employed to refine variable domains, eliminate non-solution regions, and

simplify constraint satisfaction problems, thereby enhancing the efficiency of verifica-

tion processes.

• Integrating Contractors in Software Verification Techniques: The design and inte-

gration of contractors is applied across multiple software verification methods:

– Fuzzing: Contractors are used to optimise the input space for fuzzes by bypass-

ing infeasible paths and focusing on promising regions, thereby improving code

coverage and detecting vulnerabilities.

– Bounded Model Checking (BMC): Contractors are applied to prune the state space

in BMC by refining variable domains and constraints derived from BMC instances,

resulting in more efficient verification of safety-critical properties.
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– Abstract Interpretation: Contractors are utilised to enhance the precision of ab-

stract interpretation by narrowing the abstract domains and providing a more ac-

curate program behaviour analysis.

• Performance Evaluation and Benchmarking: The research comprehensively evalu-

ates the proposed methods through rigorous benchmarking. The effectiveness of con-

tractors in reducing the required computational resources, such as memory and CPU

time, is analysed across various case studies.

• Soundness and Completeness: The study investigates the impact of integrating con-

tractors on the soundness and completeness of the verification process. Ensuring that

the reductions in search space do not compromise the reliability and accuracy of the

verification is a critical focus of this research.

1.5.1 Types of Vulnerabilities Targeted in This Research

The verification methods examined in this thesis—fuzzing, bounded model checking (BMC),

and abstract interpretation—are particularly suited to uncover a variety of software vulnera-

bilities, especially those critical to safety, security, and reliability. Among the most commonly

detected vulnerabilities are:

• Buffer Overflows: Violations in memory access boundaries leading to memory corrup-

tion.

• Integer Overflows: Arithmetic operations resulting in unexpected values due to ex-

ceeding variable limits.

• Null Pointer Dereferencing: Runtime errors caused by accessing memory through

uninitialized or null pointers.

• Memory Leaks and Use-After-Free Errors: Faulty memory handling leading to un-

released resources or use of invalid memory.

• Assertion Violations and Logic Bugs: Violations of expected control flows or formal

assertions.
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• Unreachable or Infeasible Paths: Missed paths in traditional analysis that may contain

critical logic or faults.

By integrating interval-based contractors into these frameworks, this research has shown

that additional or previously undetected vulnerabilities can be revealed. This is achieved by

improving state space exploration and refining variable domains more precisely than tradi-

tional techniques.

An analysis of benchmark test cases from SV-COMP and TEST-COMP demonstrates that

contractors enabled the detection of vulnerabilities in cases where traditional static or sym-

bolic analysis failed to produce conclusive results. In particular, cases involving complex loop

constructs, tight constraint conditions, or infeasible branches benefited significantly from the

interval narrowing achieved through contractors. These included benchmarks from categories

such as LoopLit, BitVectors, and Sequentialized, where traditional tools either timed

out or reported inconclusive results but were resolved correctly with contractor-enhanced

techniques.

These findings are elaborated further in the evaluation sections of Chapters 3, 4, and 5,

where benchmark-specific vulnerabilities and outcomes are discussed in detail.

Therefore, the scope of this research is defined by its objective to push the boundaries of

knowledge by enhancing the scalability and practicality of software verification techniques by

integrating interval methods, making them more suitable for real-world, large-scale software

systems.

1.6 Contributions

This thesis explores the novel design and respective implementation of methods that in-

tegrate contractor techniques into various verification and testing frameworks to reduce the

search space and enhance efficiency.

Contractors in Fuzzing: This work introduces a novel strategy that incorporates contrac-

tor techniques, grounded in interval analysis and related methodologies, to optimise software

testing through fuzzing. By strategically bypassing guard conditions, this approach enables

fuzzers to probe deeper execution paths, thereby improving code coverage. The integration
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of abstract interpretation and static analysis further refines the search space, allowing the

fuzzer to concentrate on paths with a higher likelihood of uncovering errors. This method

significantly enhances the detection of potential vulnerabilities by prioritizing high-value ex-

ploration paths.

Contractors in Bounded Model Checking (BMC): This thesis also extends the applica-

tion of contractors to BMC, employing contractors to model constraints and properties as a

Constraint Satisfaction Problem (CSP) composed of variables, domains, and constraints de-

rived from BMC instances. By analysing the program’s GOTO-intermediate representation,

which simplifies control constructs such as switch and while statements, contractors are

applied to prune the CSP search space. The implementation of both outer and inner contrac-

tors refines variable domains by excluding non-satisfiable regions, thereby reducing compu-

tational complexity. Detailed algorithms and case studies demonstrate the effectiveness of

contractors, particularly in handling iterative structures, leading to a marked improvement

in verification efficiency. Empirical results corroborate that the introduction of contractors

enhances performance, optimising resource usage while preserving the soundness and com-

pleteness of the BMC process.

Contractors in Abstract Interpretation: This thesis further contributes to the field by

incorporating contractor operations into the abstract interpretation framework to improve the

precision and scalability of program analysis. The use of contractors facilitates more refined

constraint management and domain-specific approximations, resulting in enhanced accuracy

and efficiency in analysing program behaviour. This method addresses several limitations of

traditional abstract interpretation techniques, particularly in managing complex data struc-

tures and non-linear properties, and contributes to the development of more robust and scal-

able analysis tools.

This structured integration of contractor techniques across multiple verification and testing

methods underscores the contributions of this thesis in reducing search space, improving

computational efficiency, and maintaining rigorous verification standards.
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1.7 Organisation of the Thesis

This thesis is structured to progressively build an understanding of advanced software ver-

ification techniques, the technologies employed, and their practical applications in software

verification research. Each chapter focuses on distinct yet interrelated aspects of the research,

providing a comprehensive overview and detailed analysis.

Chapter 2 presents a comprehensive overview of software verification techniques. It elu-

cidates the various technologies employed in software verification research, assessing their

effectiveness and limitations. The chapter introduces interval analysis and computations, ex-

plaining their utility in solving generic constraint satisfaction problems. Detailed discussions

on the most effective interval methods are provided, demonstrating their application in en-

hancing software verification processes.

Each of Chapters 3, 4, and 5 explores a distinct verification technique—fuzzing, bounded

model checking, and abstract interpretation, respectively—and examines how the integration

of contractors affects their scalability and precision. While these techniques differ in method-

ology and application, they are unified in this thesis through the shared objective of reducing

search space complexity using interval-based contractors. Chapter 3 demonstrates this inte-

gration in dynamic analysis via fuzzing, Chapter 4 applies it in a symbolic model checking

setting (BMC), and Chapter 5 evaluates its impact within a static abstract interpretation frame-

work. These chapters collectively answer the three central research questions introduced in

Chapter 1 and provide cross-method insights into the effectiveness of contractors. Chapter 6

consolidates these findings and highlights their theoretical and practical implications.

Chapter 3 delves into the application and implementation of contractors within fuzzing.

This chapter highlights the architecture of the selected tool, FuSeBMC, and explicates the

integration of contractors and abstract interpretation into FuSeBMC. The discussion includes

technical details on the methodology, showcasing how these integrations enhance the fuzzing

process.

Chapter 4 explores the application of contractors in the context of Abstract Interpretation.

This chapter focuses on implementing these methods within the emerging abstract interpre-

tation framework in ESBMC (Efficient SMT-Based Model Checker). It provides an in-depth

analysis of the results obtained from this application, discussing the improvements and chal-
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lenges encountered.

Chapter 5 addresses applying interval methods via contractors in the Incremental Sym-

bolic Bounded Model Checking (BMC) software. This chapter aims to enhance the verifica-

tion process by introducing a novel method to model constraints and properties from BMC

instances into a Constraint Satisfaction Problem (CSP). Contractors are utilised to refine the

search space, thereby improving the efficiency of software verification. The chapter includes

illustrative examples demonstrating the use of contractors to prune the search space in BMC

by managing variable domains and constraints. Implementation steps are detailed, and the

method’s effectiveness is evaluated through experimental results, highlighting improvements

in verification performance and resource consumption.
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Chapter 1: Introduction

• Problem description.
• Contributions.

Chapter 2: Background and literature review

• Interval Analysis and Methods
• Soundness and completeness
• Fuzzing
• Bounded Model Checking (BMC)
• Abstract Interpretation

Chapter 3: Contractors in Fuzzing

• Integrating within Fuzzing framework.
• Implementing within Fuzzing tool (FuSeBMC v4.0).
• Evaluating on TEST-COMP2023 benchmarks.

Chapter 4: Contractors in Bounded Model Checking

• Integrating within BMC framework.
• Implementing within BMC tool (ESBMC v6.9).
• Evaluating on SV-COMP2021 benchmarks.

Chapter 5: Contractors in Abstract Interpretation

• Integrating within Abstract Interpretation framework.
• Implementing within Abstract Interpretation tool (ESBMC v7.2).
• Evaluating on SV-COMP2024 benchmarks.

Chapter 6: Conclusions and Future Work

Publications [1]

Publications [4], [6]

Publications [2], [3]

Fig. 1.2. Thesis structure.
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Chapter 2

Background and Literature Review

2.1 Overview of Background and Related Concepts

This chapter describes the foundational concepts underpinning the various software anal-

ysis techniques explored in this thesis. The goal is to provide the reader with a clear under-

standing of the core principles and methods central to the discussions and implementations

in the subsequent chapters.

We begin with a detailed exploration of interval analysis and its applications. Interval anal-

ysis is a powerful numerical method for dealing with uncertainty in mathematical computa-

tions, and its methods form the backbone of many verification techniques discussed later [50],

[81]. This section also covers the essential set operations and arithmetic rules that apply to

intervals, providing a rigorous mathematical foundation.

Next, we introduce the concept of constraint satisfaction problems (CSPs) within the con-

text of interval analysis [82]. CSPs are pivotal in various verification methods, particularly

in how they enable framing and solving interval-based problems. The chapter also discusses

contractors interval methods that estimate solutions to CSPs by narrowing down the possible

solution space, ensuring both correctness and efficiency.

Additionally, this chapter covers key verification concepts such as soundness and com-

pleteness, which are crucial in evaluating the reliability of software verification methods [81].

Finally, we explore fuzzing and bounded model checking (BMC), two dynamic analysis tech-

niques integral to modern software testing and verification.

By the end of this chapter, the reader will have a comprehensive understanding of these

preliminary concepts, enabling a deeper appreciation of the advanced methods and techniques
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discussed in the later chapters.

2.2 Soundness and Completeness

In formal verification, there are two central concepts, soundness and completeness, to

estimate the effectiveness of the verification process [81]. These are standards by verifiers on

the level to which a program correctly implements given properties.

Definition 1 (Soundness). For a verifier to be considered sound, it must reason about all

program executions. Thus, if the verifier result concludes that there are no bugs, i.e., the

verification outcome is TRUE, then the program is safe concerning the specified property.

Formally, we can define soundness with the following equation:

∀ p ∈ L, verifier(p) = TRUE =⇒ p satisfies P (2.1)

where L is the set of all programs, the program verifier is sound with respect to property

P [81]

Soundness is concerned with the accuracy of the verification process in asserting that a

program is free from errors [83]. Specifically, a sound verifier guarantees that if it concludes

the program is safe (i.e., the verification outcome is TRUE), then the program indeed satisfies

the intended property P . This characteristic is formalised in Definition 1, emphasising that

the verifier’s assertion of correctness is trustworthy and that no errors have been overlooked

in the analysis [83].

Definition 2 (Completeness). For a verifier to be considered complete, it must have a concrete

program execution that results in a property violation. Thus, if the verifier reports a bug, then

the program is unsafe concerning the specified property. Similar to soundness 2.1, we can

define completeness with the following equation:

∀ p ∈ L, verifier(p) = TRUE ⇐= p satisfies P (2.2)

Completeness, as outlined in Definition 2, deals with the verifier’s ability to detect vio-

lations of the specified property. A complete verifier ensures that a bug or violation within a
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program will be identified, thereby confirming the program is unsafe if the verification out-

come is FALSE. Completeness thus ensures that the verification process is thorough and that

no potential errors are missed [84].

The relationship between soundness and completeness highlights the trade-offs that often

arise in formal verification. A sound verifier minimises the risk of false positives—incor-

rectly indicating that a program is safe—while a complete verifier reduces the likelihood of

false negatives—failing to detect a real issue [85]. Ideally, a verifier would be sound and

complete, accurately identifying every genuine error without mistakenly flagging correct be-

haviour. However, achieving this balance is complex, and often, a compromise must be made

depending on the specific goals of the verification process [86].

Understanding these concepts is key to developing and evaluating verification tools that

ensure the reliability of software systems, particularly as their complexity and criticality con-

tinue to grow.

2.3 Fuzzing

Fuzzing is a technique used in software testing to uncover coding errors and security vul-

nerabilities by inputting large volumes of random data, known as “fuzz”, into a system to pro-

voke crashes or anomalous behaviour [87]. This technique automates unexpected but valid

data input to reveal vulnerabilities such as buffer overflows, unhandled exceptions, and mem-

ory leaks. The primary objective of fuzzing is to identify weaknesses in a software system

that could be exploited maliciously or lead to system failures.

Barton Miller pioneered fuzzing at the University of Wisconsin-Madison in 1988 [87].

Miller and his colleagues formulated the foundational principles of fuzzing and conducted a

pioneering study demonstrating that simple random testing could unearth software applica-

tion bugs.

Many companies, such as Microsoft, Google, and Mozilla, use fuzzing extensively to en-

hance the security of their software products. Before releasing, Microsoft uses fuzzing [88]

to test operating systems and applications, such as Microsoft Office. Google utilises OSS-

Fuzz [89], a tool designed to improve the security and robustness of open source software.

This tool continuously applies fuzzing to open-source projects, discovering critical vulner-

38



2.3. FUZZING

Input generation Execution Monitoring Analysis

Finish

Bug report

input output

yes

no
feedback loop

Fig. 2.1. Fuzzing Process [90].This diagram shows the iterative workflow of a fuzzing process, which
includes six major steps: input generation, execution, monitoring, analysis, decision-making (finish or
feedback), and bug reporting. The process uses a feedback loop to refine inputs for better bug detection
efficacy and comprehensively assess vulnerabilities.

abilities in key libraries like OpenSSL and libjpeg. Mozilla uses fuzzing [88] to test com-

ponents of the Firefox browser, including the rendering and JavaScript engines, which has

significantly enhanced their security.

2.3.1 Fuzzing Process

First comes the input generation, in which the fuzzer generates inputs—either wholly arbitrary

or crafted with care according to the expected input specifications of the program under test

(PUT). The latter is an important step to ensure broad coverage of different possible input

scenarios that the PUT may go through [90], [91].

Following the creation of such inputs, the next step is called execution, where such inputs

are provided to the PUT. The execution may happen in different environments: locally on a

tester’s machine, remotely on servers, or even in controlled virtual environments so that no

real-world systems are affected. The execution step runs the PUT to instigate problems that

may arise during extreme or unexpected cases [90].

Next, it is essential to monitor the execution of the PUT and its response to each input,

which should include checking for crashes, observing resource usage such as memory and

CPU time, and validating the outputs against expected outcomes [92]. Such monitoring al-

lows pinpointing where and when the PUT fails or behaves unexpectedly, giving the first

insights into possible weaknesses or bugs.
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If any bugs are detected, an analysis is performed to understand the root causes and effects

of the failure. It involves using debugging tools to backtrack to the part of the code that

instigated the failure and conduct an in-depth analysis of the nature of the bug. This step not

only identifies the vulnerable part of the code but also allows assessing the severity of the

identified issues, which provides information for prioritising bug fixes [93].

Finally, fuzzing includes a feedback loop in which the results of the testing period are

fed into future tests. This makes the fuzzer, over time, adapt its testing strategies and focus

more on input types or parts of the code that are more likely to discover new bugs. Advanced

fuzzing techniques may even include machine learning algorithms to optimise this process

better so that the tests become more effective with time [91].

2.3.2 Fuzzing Tools (Fuzzers)

Table 2.1. Comparison of fuzzing tools. The table below will go over the common fuzzing tools, their
strengths and weaknesses, and best target applications. This will include AFL, LibFuzzer, Honggfuzz, and
others, evaluating their applicability to domains including memory corruption detection, kernel fuzzing, and
protocol testing.

Tool Strengths Weaknesses Target Applications

AFL [94] Effective for memory corruption
bugs; coverage-guided; widely
used

Requires source code instrumen-
tation; limited for closed-source
binaries

C/C++ programs

LibFuzzer [95] Integration with LLVM; efficient
memory error detection; unit test-
ing style

Requires writing C++ harnesses;
may not suit all developers

Library functions in
C/C++

Honggfuzz [96] High performance; supports user-
space and kernel fuzzing; ASan
integration

Steeper learning curve for begin-
ners

User applications and
Linux kernel

FuSeBMC [97] Combines fuzzing with formal
methods; finds deep bugs

Complex setup; higher resource
requirements

Bounded model checking
problems

OSS-Fuzz [98] Automated large-scale fuzzing;
continuous integration; finds nu-
merous bugs

Mainly for open-source projects;
not for proprietary software

Open-source libraries and
applications

Radamsa [99] Simple to use; effective for mal-
formed inputs; easy integration

Lacks coverage guidance; may
miss deeper bugs

Network protocols and file
formats

Peach Fuzzer [100] Comprehensive platform; extensi-
ble; supports many targets

Complexity; cost for commercial
version

Protocols and file formats

Boofuzz [101] Open-source; Python-based; easy
to extend

Less efficient than compiled
fuzzers

Network protocols, file
formats, APIs

Atheris [102] Python integration; handles com-
plex data types; code coverage

Limited to Python; not for other
languages

Python libraries and appli-
cations

Syzkaller [103] Deep kernel integration; finds
complex kernel bugs

Requires expertise; complex setup Linux kernel fuzzing

Many tools implement fuzzing, each with unique approaches and target applications. Ta-

ble 2.1 describes the strengths and weaknesses of each fuzzing tool. Notably, AFL (American
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Fuzzy Lop) [94] is most recognised with wide efficiency in memory corruption-related bugs

that could potentially yield vulnerabilities. AFL employs a genetic algorithm to create test

cases while analysing the program’s responses for every input supplied to optimise inputs

and find new execution paths for the program’s control flow. AFL technique has managed

to detect many bugs in diverse software programs. LibFuzzer [95], on the other hand, a part

of the LLVM compiler infrastructure, works primarily on the fuzzing of library functions

individually. This strategy is most useful for projects that can identify functions apt for unit-

testing-like scenarios. Honggfuzz [96] is another commonly used fuzzing tool that supports

both coverage-guided and feedback-directed fuzzing approaches; it is also highly compatible

with AddressSanitizer (ASan) in memory bug detection.

FuSeBMC [97] is a recent development in the area dedicated precisely to the task of

fuzzing software that can be described as bounded model checking problems. This tool com-

bines fuzzing techniques with symbolic execution and formal verification methods in order

to achieve a deeper knowledge of the behaviour of the PUT. OSS-Fuzz [98], developed by

Google, is a service that collaborates with open-source projects in order to run continuous

testing of their software libraries and programs. Many security bugs and stability problems

have been found with OSS-Fuzz. Radamsa [99] is a test case generator that mutates existing

inputs to generate new test cases. This tool is important in that it is simple yet effective at

producing deformed inputs to test the robustness of network protocols and file formats.

Moreover, Peach Fuzzer [100] is a comprehensive fuzzing framework that provides pro-

tocol and file format fuzzing. The extensibility of Peach Fuzzer, combined with its wide

range of target systems applications, makes it suitable for industrial usage. Boofuzz [101]

is an open-source fuzzing framework modelled from the Sulley [104] fuzzing framework.

It supports fuzzing network protocols, file formats, and software APIs. Atheris [102] is a

Python-based fuzzing tool tightly coupled with AFL that targets Python libraries and appli-

cations, aims to increase code coverage, and focuses on detecting run-time errors. Finally,

Syzkaller [103] is a powerful and complex fuzzer designed exclusively for the Linux kernel

by utilising a coverage-guided technique in finding security-related defects within the kernel

source. These tools show how fuzzing techniques can be diverse depending on domains or

software architectures because each fuzzing tool produces different test cases, has explored

different execution paths, or facilitates integration with already existing development work-

flows. Continued development and improvement are significant in enhancing the reliability
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and security of software in an increasingly complex technological landscape.

2.4 Bounded Model Checking (BMC)

Bounded Model Checking (BMC) is a verification technique used to verify the correctness

of a system model within a specified number of steps [49]. It effectively identifies bugs in the

early stages of system executions by transforming the verification problem into a satisfiability

problem solvable by SAT or SMT solvers [105]. BMC is widely utilised in software through

tools like CBMC and ESBMC [106], [107], which can analyse C and C++ programs for

various safety properties and assertions by unwinding loops and analysing path constraints.

This method is a preferred choice in academic and industrial applications for ensuring system

reliability within bounded limits due to its capacity to provide a scalable solution to verify

certain critical characteristics in the short term.

2.4.1 BMC Process

In BMC, the program is modelled as a state transition system (TS), which is derived from

its control-flow graph [108], and then converted to a Static Single Alignment form (SSA).

SSA is a representation where each variable is assigned exactly once, and every variable is

defined before it is used, simplifying data flow analysis and optimisations [109]. Each control

graph node will be converted to either an assignment or a conditional statement converted

to a guard. Each edge represents a change in the program’s control location [62]. When

modelling the program, a Kripke structure [110] is used as TS M = (S, T, S0), which is

an abstract machine that has a set of states S, initial states S0 ⊆ S, and transition relation

T ⊆ S × S. The set of states S = {s0, s1, ...sn} : n ∈ N contains all the states. Each state

has the value of each variable in the program and a program counter pc. Each transition is

denoted by γ(si, si+1) ∈ T , where it represents a logical formula that encodes all the changes

in variables and pc from si to si+1. Next is to compute a Verification Condition (VC) denoted

by Ψ, a quantifier-free formula in a decidable subset of first-order logic. Given a transition

system M , a property φ, and a bound k, BMC unrolls the system k times to produce Ψ such

that Ψ is satisfiable iff φ has a counterexample of length k or less.
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Ψk = I(s0) ∧
k⋁︂

i=0

(
i−1⋀︂
j=0

γ(sj, sj+1)) ∧ ¬φ(si) (2.3)

In the logical formula (2.3) [62], I denotes the set of initial states ofM , γ(sj, sj+1) denotes

the relation between two states in M . φ denotes the safety properties that should not be

violated. Hence, I(s0) ∧
⋀︁i−1

j=0 γ(sj, sj+1) represents the execution of M of length i and if

there exists some i ≤ k such that it satisfies Ψk at time-step i there exists a state in which φ is

violated. Then, Ψk is given to an SMT solver to be checked for satisfiability. If it is satisfiable,

then the SMT solver will provide an assignment that satisfies Ψk. This assignment constructs

the counterexample using the values extracted from the program variables. For a property φ, a

counterexample consists of a sequence of states {s0, s1, .., sk}|s0 ∈ S0 and si ∈ S|0 ≤ i < k

and γ(si, si+1). IfΨk is unsatisfiable, no error state is reachable in k steps or less; therefore, no

property was violated. Tools that implement BMC for software [62] produce two quantifier-

free formulae, represented by C and P , which encode the constraints and properties, resp.

Formula C serves as the first part of Ψk, which is I(s0)∧
⋁︁k

i=0

⋀︁i−1
j=0 γ(sj, sj+1). As for¬P , it

serves as the second part of Ψk which is
⋁︁k

i=0 ¬φ(si). Then the SMT solver checks C |=T P

in the form of C ∧ ¬P .

BMC can also be used for soundness (cf. Definition 1) under certain conditions. A com-

pletion threshold (CT ) is used to provide soundness [49]. This threshold checks whether k

reaches all reachable states of M . This means a path of size k that can reach the program’s

last state starting from the initial state. CTk can be defined as:

CTk = I(s0) ∧
k⋀︂

i=0

γ(si, si+1) ∧ ¬(sk = sn) (2.4)

Where n is the last reachable state of M . In BMC, if Ψk ∨CTk is UNSAT for a given k, then

the program can be considered safe. Finding the optimal value for k is not always possible

due to unbounded loops (i) or limited system resources (ii). Considering these limitations,

two approaches can be used: k-induction (for i) and incremental (for ii).
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2.4.2 BMC Strategies

Incremental Bounded Model Checking (Incremental-BMC) and k-induction are two funda-

mental strategies in BMC. Those techniques overcome the complexity of program property

verification either by iterative examination of program states or by mathematical induction

over bounded traces. Incremental-BMC incrementally increases the bound k to perform an

exhaustive state space exploration until the program is proven safe or unsafe or resources are

exhausted. On the other hand, k-induction uses a sequence of logical steps: base case, forward

condition, and inductive reasoning to prove properties universally true for execution traces of

programs. The following definitions formalize these methods and highlight their theoretical

implementation developed in [106].

Definition 3 (Incremental-BMC). In Incremental-BMC approach, the value of k is incre-

mented interactively until all states are reached (or resources are exhausted) [106]. We can

define the incremental-BMC for a program P and bound k as Inc(P, k):

Inc(P, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P is unsafe, Ψk is SAT

P is correct, Ψk ∨ CTk is UNSAT

Inc(P, k + 1), otherwise.

(2.5)

[106]

Definition 4 (k-Induction). k-Induction approach requires three steps: base case, forward

condition and inductive step. Base case and forward condition are represented through Ψk

and CTk, respectively. The inductive step (referred to as S) checks whether a property that

holds for k will imply that it also holds for any next k. To achieve this, S is applied to a M ′,

which adds lambda transitions between every state [106] as follows:

Ik = ∃n.
n+k−1⋀︂
i=n

(φ(si) ∧ γ
′
(si, si+1)) ∧ ¬φ(sn+k) (2.6)

K(P, k) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P has a bug, Ψk is SAT

P is correct, Ψk ∨ (CTk ∨ Sk) is UNSAT

K(P, k + 1), otherwise.

(2.7)
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2.4.3 Limitations

Bounded Model Checking is a technique that examines only a finite number of program

runs [49]. Despite this, it generates verification conditions that provide detailed informa-

tion about the program’s execution path, the context in which functions are invoked, and the

exact representation of expressions [62]. These verification conditions are logical formulas

from a bounded program and desired correctness properties. If all the verification conditions

of a bounded program are valid, then the program conforms to its specification up to the pro-

vided bound [111]. Users can specify correctness attributes using assert statements or code

generated automatically from a specification language. Although BMC was developed two

decades ago, recent developments in SMT have made it more practical [63]. However, due to

the complexity of modern software systems, the impact of this technique is still limited [112].

It is common for BMC tools to encounter failures due to memory or time limitations [113].

These limitations are usually observed in programs that have loops with indeterminate or

enormous bounds. Furthermore, even if a program does not violate any safety rules up to a

certain bound, its safety is not guaranteed beyond that bound [113]. Researchers have devel-

oped new techniques to explore a program’s search space to address these limitations while

ensuring overall correctness.

2.4.4 Advancements and Tools

Bounded Model Checking (BMC) has had notable improvements that have increased its scal-

ability, efficiency, and relevance in diverse fields, such as software verification, hardware de-

sign, and artificial intelligence systems. These advancements include enhancements in solver

technology, symbolic methods, parallelisation techniques, hybrid verification methodologies,

and the integration of machine learning strategies.

The development of SAT and SMT [114] solver technologies has significantly enhanced

BMC’s capability to handle complex systems efficiently. Solvers like MiniSAT [115] and

Z3 [116], which employ conflict-driven clause learning (CDCL) and incremental solving

techniques, have greatly improved BMC’s performance [117], [118]. Furthermore, the intro-

duction of Satisfiability Modulo Theories (SMT) solvers, such as Yices [119] and Z3 [116],

has expanded BMC’s applicability by enabling it to handle more complex theories involving
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real numbers and arrays [118], [120].

Symbolic BMC methods employ different representations like Binary Decision Diagrams

(BDDs) [121] and SMT [114] formulas to compactly encode state spaces. This symbolic rep-

resentation reduces memory usage and allows for the exploration of larger or even infinite-

state systems [122]. Tools such as the C Bounded Model Checker (CBMC) [107] extends

BMC’s application to C programs, enhancing the reliability and safety of critical software

by efficiently detecting bugs and vulnerabilities. CBMC utilises symbolic execution and ab-

straction techniques to improve scalability and reduce computational complexity [66].

Parallel and distributed BMC techniques have been developed to further scale the ver-

ification process. By dividing verification tasks across multiple processors or computing

environments, these methods significantly reduce verification time and enable the handling

of large-scale industrial systems [123]. Tools like ABC [124] employ parallelisation strate-

gies to leverage the computational power of multi-core processors, demonstrating substantial

speed-ups in the verification of complex systems.

Hybrid verification approaches combine BMC with methods like abstraction refinement

and interpolation, enhancing precision and effectiveness, especially for complex systems

[125]. These techniques allow for a more scalable verification process by abstracting irrele-

vant details and focusing on critical components of the system under analysis.

In the field of software verification, tools like ESBMC (Efficient SMT-Based Bounded

Model Checker) [62], [126] have made significant contributions. ESBMC translates the sys-

tem under verification into a single static assignment (SSA) form and then into SMT formulas,

utilising powerful SMT solvers to check for property violations. It can verify safety properties

in both sequential and multi-threaded C programs, offering flexibility in selecting between

fixed and floating-point arithmetic. ESBMC effectively detects various issues such as array

bounds violations, pointer safety errors, deadlocks, data races, overflows, and memory leaks.

It has been successfully applied to verify the safety and security of diverse systems, includ-

ing digital control systems, digital filters, unmanned aerial vehicles, and telecommunication

software [127]–[130].

In artificial intelligence and autonomous systems, BMC is used to verify the safety and

correctness of machine learning models and decision-making algorithms, ensuring adherence

to safety constraints [131]. The integration of BMC into Model-Based Design workflows

46



2.4. BOUNDED MODEL CHECKING (BMC)

allows for the early detection of potential errors during the design phase, reducing costly

mistakes in later development stages [132].

The incorporation of machine learning techniques into BMC tools has opened new avenues

for optimising solver strategies based on system properties. Recent studies have demonstrated

how learning from past verification runs can predict beneficial configurations and solver pa-

rameters, reducing the time and effort required for the verification process while maintaining

high accuracy [133].

These advancements have significantly broadened BMC’s scope, solidifying its role in

verifying complex systems across various domains. By leveraging improved solver technolo-

gies, symbolic methods, parallelization, hybrid approaches, and machine learning integration,

BMC continues to evolve, offering more efficient and scalable solutions for system verifica-

tion challenges.

2.4.5 Hybrid Verification Tools

Several modern verification frameworks have explored hybrid approaches that combine static

and dynamic analysis techniques to address the scalability and precision limitations of indi-

vidual methods. For instance, KLEE [134] integrates symbolic execution with concrete exe-

cution for test case generation, enabling more effective path exploration and input derivation

. Similarly, Driller combines fuzzing with concolic execution to discover complex bugs by

exploring paths that are difficult for traditional fuzzers to reach [135]. CPAchecker and Ul-

timate Automizer [136], [137] are other prominent examples from SV-COMP that support

configurable program analysis, allowing combinations of predicate abstraction, BMC, and

value analysis.

These tools illustrate the benefits of unifying complementary techniques, much like this

thesis, which augments fuzzing, BMC, and abstract interpretation with interval-based con-

tractor methods. By narrowing search domains and refining input constraints, the contractor-

based approach contributes to enhancing precision and efficiency across these traditionally

independent verification paradigms.
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2.5 Interval Analysis and Methods

In this section, we will explore interval analysis, methods, and powerful numerical tools

that can be used to solve a wide range of estimation problems in real intervals. The interval

methods we will discuss are guaranteed approaches that do not use sampling techniques,

meaning they can obtain all possible solutions. The following chapters frequently use these

methods to apply the contractors in different verification methods.

Section 2.5.1 of this chapter will cover basic interval computations and interval analysis.

Section 2.5.4 will introduce constraint satisfaction problems in the context of intervals. Fi-

nally, in Section 2.5.5, we will explore interval methods in detail, where several algorithms

are developed to solve various types of constraint satisfaction problems efficiently.

2.5.1 Interval Analysis

Definition 5 (Real Interval). [80] A real interval is a connected, closed subset of R denoted

by [x]. It has lower and upper limits that are scalars denoted by x and x, respectively, where

x, x ∈ R. An interval is defined as [x] = [x, x] ∈ IR, where IR is the set of all intervals of R

[138].

Here, we assume that x ≤ x, nonetheless, in the field of Modal Interval Analysis [138] it

is possible to have x > x. However, this case is outside this thesis’s scope, which does not

mean that the opposite is invalid as it is used in the field of Modal Interval Analysis [138].

Definition 6 (Width and Centre). [80] Each interval has a width and centre, which are re-

spectively defined as:

w([x]) = x− x (2.8)

c([x]) =
x+ x

2
(2.9)

where width and centre [82] are w and c, respectively. An interval is considered degenerate

or punctual if its width is 0, i.e., w = 0.
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Definition 7 (Box). [80] Intervals can be extended to higher dimensions. Equation (2.10)

defines an interval in n dimensions is as vector of intervals for each dimension.

[x] = [x1]× [x2]× ...× [xn] (2.10)

where [x] is called a box and [x] ∈ IRn. Given that the set of all n-dimensional boxes is

denoted by IRn, A box is an axis-aligned hyper-rectangle in Rn.

Interval width and centre are also extended to boxes as follows:

w([x]) = max
i∈{1,...,n}

w([xi]), (2.11)

c([x]) = [c([x1]) c([x2]) ... c([xn])]
T . (2.12)

The centre of a box is a vector of each interval centre(cf.2.8 and 2.9); width remains a scalar

and is the maximum width of all intervals.

2.5.2 Set Operations

Every interval is a set, but not vice-versa [80]. For a set to be a real interval, it has to be

closed, connected, and defined in real numbers. Set operations include intersection, union,

and difference.

Definition 8 (Intersection). [82] Intersection is applied on intervals as follows, Let m1 =

Max(x1, x2) and m2 = Min(x1, x2) then:

[x1] ∩ [x2] =

⎧⎪⎨⎪⎩[m1,m2 ], ifm1 ≤ m2

∅, otherwise.
(2.13)

Definition 9 (Union and Interval Hull). [82] For union, it can result in two disconnected

intervals. Interval Hull encompasses the entire area between two disconnected intervals,

denoted by ⊔. Interval Hull is applied on intervals as follows, Let m1 = min(x1, x2) and
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m2 = max(x1, x2) then:

[x1] ⊔ [x2] = [[x1] ∪ [x2]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[m1,m2 ], if [x1] ̸= ∅ ∧ [x2] ̸= ∅

[x1], if [x1] ̸= ∅ ∧ [x2] = ∅

[x2], if [x1] = ∅ ∧ [x2] ̸= ∅

∅, otherwise.

(2.14)

Definition 10 (Difference). [82] Interval difference, denoted by the operator [\] , Let [y] =

[x1] ∩ [x2] then :

[x1][\][x2] = [[x1] \ [x2]] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[x1], if [y] = ∅ ∨ [y] = [x2]

[y, x1], if [y] ̸= [x2] ∧ y < x1

[x1, y], if [y] ̸= [x2] ∧ y > x1

∅, otherwise.

(2.15)

Set operations can also be extended to higher dimensions. The Cartesian product involves

the independent application of interval operations to each pair of corresponding intervals. For

example, when presented with two boxes, [x] and [y], their intersection, union, and difference

are precisely defined by Equations (2.16), (2.17), and (2.18) respectively.

[x] ∩ [y] = ([x1] ∩ [y1])× ([x2] ∩ [y2])× ...× ([xn] ∩ [yn]) (2.16)

[x] ⊔ [y] = ([x1] ⊔ [y1])× ([x2] ⊔ [y2])× ...× ([xn] ⊔ [yn]) (2.17)

[x][\][y] = ([x1] \ [y1])× ([x2] \ [y2])× ...× ([xn] \ [yn]) (2.18)

2.5.3 Interval Arithmetic

Interval arithmetic encompasses a set of operations—such as addition, subtraction, multi-

plication, and division—that are widely applied in numerical methods and constraint solv-

ing [82]. That includes addition and multiplication at a basic level. Division and subtraction
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are best described as interval functions [80]. Consider [x1] and [x2], and let ⋄ be a binary

operator; then, interval arithmetic can be defined as:

[x1] ⋄ [x2] = {x1 ⋄ x2 |x1 ∈ [x1], x2 ∈ [x2]}, (2.19)

If one interval is empty, the result of the binary operation is also an empty interval.

Definition 11 (Addition). Addition is interpreted over intervals as follows:

[x1] + [x2] =

⎧⎪⎨⎪⎩[x1 + x2 , x1 + x2 ], if[x1] ̸= ∅ ∧ [x2] ̸= ∅

∅, otherwise.
(2.20)

Definition 12 (Multiplication). Multiplication is applied on intervals as follows:

[x1] ∗ [x2] =

⎧⎪⎨⎪⎩[Min(Sx),Max(Sx) ], if[x1] ̸= ∅ ∧ [x2] ̸= ∅

∅, otherwise.
(2.21)

where Sx = {x1x2, x1x2, x1x2, x1x2}

Definition 13 (Functions). Functions are applied on intervals as follows:

Let f : R→ R, then

[f ]([x]) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[ f(x) , f(x) ], iff(x) is

monotonically increasing.

[ f(x) , f(x) ], iff(x) is

monotonically decreasing.

(2.22)

For not monotonic functions, we split the domain into sub-domains where the function is

monotonic and apply Equation 2.22, then take the union of the result.

Definition 14 (Subtraction). Subtraction is applied on intervals as follows:

Let f(x) = −x, then [x1] − [x2] = [x1] + [f ]([x2]) (2.23)
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Definition 15 (Division). Similar to subtraction, division can be defined as a function:

Let f(x) =
1

x
, then

[x1]

[x2]
=

⎧⎪⎨⎪⎩[x1] ∗ [f ]([x2]), if{0} ̸∈ [x2]

∅, otherwise.
(2.24)

2.5.4 Constraint Satisfaction Problem

Definition 16 (Constraint Satisfaction Problem). A constraint satisfaction problem (CSP),

in the context of interval analysis, is defined as the triple (X ,D,F), where:

X = {x1, . . . , xn} is a set of n real-valued variables, represented in vector form as x =

(x1, . . . , xn) ∈ Rn; D is the set of domains, where [x] ∈ IRn is a box representing the

interval domain of each variable (cf. Definition 5); F is the set of constraints expressed as

f(x) ≤ 0, where f : Rn → Rm is a vector-valued function whose components are fj , for all

j ∈ {1, . . . ,m} [80].

The solution set of the CSP is defined as:

Sx = {x ∈ [x] | f(x) ≤ 0}. (2.25)

2.5.5 Interval Methods

Given a CSP, interval methods are heuristic search algorithms that compute upper-bound

solutions [80].

Definition 17 (Contractor). A contractor is an interval method that estimates the solution

of a given CSP (cf. Definition 16) with the map C : Rn → Rn. Let Sx be the solution set of

the CSP, and [x] is an initial box then C([x]) ⊆ [x] and C([x]) ∩ Sx = [x] ∩ Sx. The former

satisfies the contraction condition, and the latter satisfies correctness condition [139].

As illustrated in Fig. 2.2, we can have inner contractor Cin and outer contractor Cout, which

complements each other in terms of constraints.
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Fig. 2.2. CSP with x ∈ R2, initial box [x] = [0.4, 1.2]× [0.4, 0.6], and two constraints: y ≥ x2 , y ≤
√
x.

Inner contractor versus an outer contractor. Sout and Sin are the remainder of Cout and Cin actions [80]

Lets start with Figure 2.2a where we see we have two constraints y ≤
√
x and y ≥ x2

and the solution is the intersection between them (ie. the grey area). Our set of variables

is x = {x, y} and our domains are the intervals x = [0.4, 1.2] × [0.4, 0.6]. In Figure 2.2b,

we apply the outer contractor (i.e. remove the area outside the solution), and the resulting

interval is the area inside the solution or on the boundaries. Similarly, in Figure 2.2c, when

we apply the inner contractor and remove the area that is guaranteed to be inside the solution

with the resulting area being outside the solution or on the boundaries.

∀[x] ∈ IRn, C([x]) = [[x] ∩ S]. (2.26)

After applying the contractor, the result is best described as three sets: Sin is the estimated

solution of Sx such that Sin ⊂ Sx color-coded in red. Sout is the complement of the estimated

solution such that Sout ∩ Sx = ∅ color-coded in blue. Sboundary is the boundary set that

represents the area that both includes the solution and its inverse such that Sboundary∩Sx ̸= ∅

and Sboundary ̸⊂ Sx color-coded in yellow.

For different CSPs, there are many types of contractors[140], [141]. However, in this

thesis, we will use Forward-backward Contractor [142] for its simplicity and efficiency.

Definition 18 (Forward-backward Contractor). Forward-backward Contractor is a contrac-

tor (cf. Definition 17) that is applied to a CSP with one single constraint; it contracts in two

steps: forward evaluation and backward propagation [80]; they are illustrated in Algorithm 1.

Generally, a CSP can have multiple constraints; to handle such a situation, we can use
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Algorithm 1: Forward-backward Contractor C↑↓.
1: function C↑↓([x], f(x), [I]) do
2: [y] = [I] ∩ [f ]([x])
3: for all [xi] ∈ [x] : i ∈ {1, ..., n} do
4: [xi] = [xi] ∩ [f−1

xi
]([y], [x])

5: end for
6: return [x]
7: end function

Outer Contractor, which applies forward-backward contractor on each constraint indepen-

dently, as shown in Algorithm 2 [80].

Algorithm 2: Outer Contractor Cout.
1: function Cout([x], f(x)) do
2: for all fj ∈ f : j ∈ {1, ...,m} do
3: [x]← C↑↓([x], fj(x), (−∞, 0])
4: end for
5: return [x]
6: end function

Forward-backwards contractor can be used to construct another type of contractor where

the complementary CSP is considered; such contractor is called Inner Contractor, and its

procedure is defined in Algorithm 3 [80].

Algorithm 3: Inner Contractor Cin.
1: function Cin([x], f(x)) do
2: [x̂]← ∅
3: for all fj ∈ f : j ∈ {1, ...,m} do
4: [x̂]← [x̂] ⊔ C↑↓([x], fj(x), (0,∞))
5: end for
6: return [x̂]
7: end function

2.6 Abstract Interpretation

2.6.1 Introduction

Abstract interpretation is a theoretical framework used in computer science to analyse com-

puter programs and extract information about their behaviour [50]. Patrick Cousot and Rad-
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hia Cousot developed it in the 1970s [50], and it provides a way to simplify the program’s

semantics into a computable form, which is essential for practical program analysis. The cen-

tral idea behind abstract interpretation is to map the complex semantics of a program into an

abstract domain, which makes it simpler to work with. This abstract domain retains enough

information to answer specific questions about the program’s behaviour, such as identifying

potential runtime errors, verifying compliance with type systems, or identifying optimisation

opportunities [143].

Abstract interpretation defines an abstract domain that simplifies the values and states that

a program can take [81]. For example, instead of considering the exact numerical values a

variable can hold, an abstract domain might only distinguish between positive, negative, and

zero values. The program’s operations are then interpreted in this abstract domain, which

allows the analysis to estimate the set of all possible states the program can reach during

execution.

One of abstract interpretation’s main strengths is its flexibility [81]. The same framework

can be adapted to a wide range of analysis tasks by selecting different abstract domains. How-

ever, there is often a trade-off between the analysis’s precision and its computational cost: a

more detailed abstract domain can provide more accurate results at the expense of greater

computational complexity [81], [144].

Abstract interpretation is used in many tools for static program analysis, including com-

piler optimisations, software verification, and security analysis [81]. Abstract interpretation

formal definitions allow for the rigorous justification of the analyses’ soundness, meaning that

the analyses can guarantee the absence of specific errors in analysed programs [81].

In summary, abstract interpretation is a fundamental technique in program analysis that

enables the systematic and scalable analysis of program behaviours. Abstracting away the

complexities of exact execution semantics allows for the effective analysis of programs to

ensure their correctness, security, and efficiency [51], [145].

2.6.2 Syntax

To comprehensively understand the fundamental principles of abstract interpretation, we need

to establish a foundational language syntax that effectively showcases various techniques. In
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n ∈ V scalar values
x ∈ X program variable
⊙ ::= + | − | ∗ | ... binary operator
⧀ ::= < | ≤ | == | ... comparison operator
E ::= scalar expressions

| n scalar constant
| x variable
| E ⊙ E binary operation

B ::= Boolean expressions
| E ⧀ E Compare two expressions

L ::= logical expression
| B Boolean expression
| L ∧ L and
| L ∨ L or

C ::= commands
| skip command that ”does nothing”
| C ; C sequence of commands
| x := E assignment command
| input(x) command reading a value
| if(L ){C } else {C } conditional command
| while(L ){C } loop command

P ::= C program

Fig. 2.3. A simple language syntax [81].

this regard, Figure 2.3 presents a rudimentary language designed with a limited set of features.

This syntax is an extension of the originally proposed by Xavier Rival and Kwangkeun Yi in

their seminal work on abstract interpretation [81].

The language syntax defines a set of scalar values representing constant values, V. Addi-

tionally, a set of scalar-type variables, designated by X and defined by name, is also defined.

The set of boolean values, B = {true, false}, is also included. Scalar expressions entail

constant expressions, variables, and arithmetic operators applied to pairs, resulting in scalar

values. Boolean expressions involve comparison operators that compare two expressions and

result in B values. Logical expressions also result in B values but combine two boolean ex-

pressions into an ”AND” operation denoted by ∧ and an ”OR” operation denoted by ∨.

The provided set of commands includes a skip statement that has no effect, a sequence

of commands, assignment, input, conditional if statement, and simple loops. Although this

language lacks many features commonly used in different languages, it can still express a

large set of programs and demonstrate fundamental abstract interpretation concepts [81].
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Fig. 2.4. This figure explains the abstraction principle in Abstract Interpretation: the first sub-figure (a) shows
the concrete set containing all exact program states; the second sub-figure (b) shows an abstraction, which
simplifies the states by merging them into some more general representation. Finally, the last sub-figure (c)
shows the best abstraction, defined as the most precise approximation that contains all the concrete states and
thus achieves a trade between precision and scalability, as described in [81].

2.6.3 Abstraction and Concretization

Definition 19 (Abstraction). The concept of abstraction is defined as a collection A of log-

ical properties that describe the program states [81]. These properties are referred to as ab-

stract properties or abstract elements. An abstract domain is a set of abstract properties.

In this definition, the word abstract is used here instead of concrete. Moreover, all abstrac-

tions mentioned in this section are strictly an over-approximation.

Definition 20 (Concretization). Concretization of an abstract element a of A is the set of

program states that satisfy it, denoted by γ(a) [81].

Definition 21 (Best abstraction). We say that a is the best abstraction of the concrete set S

if and only if S ⊆ γ(a) and for any a′ that is an abstraction of S (i.e., S ⊆ γ(a′)), then a′ is

a coarser abstraction than a. If S has the best abstraction, then the best abstraction is unique.

When it is defined, we let α denote the function that maps any concrete set of states into the

best abstraction of that set of states.

2.6.3.1 Types of abstraction

Abstraction techniques are essential in simplifying the complexity of numerical values within

programs, making it easier to analyse and verify their behaviour [81]. Among the various
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Fig. 2.5. Types of abstraction. The figure illustrates three types of abstraction in Abstract Interpretation. (a)
Sign abstraction represents states based on variable signs, such as x ≥ 0. (b) Interval abstraction
approximates variable values within defined ranges, such as x ∈ [a, b]. (c) Convex polyhedra abstraction
captures linear relationships between variables, providing higher precision at the cost of increased complexity.
These abstractions offer a trade-off between precision and computational efficiency [81].

forms of abstraction, three notable methods are sign abstraction, convex polyhedra abstrac-

tion, and interval abstraction [81]. Each method has unique strengths and weaknesses, cater-

ing to precision and computational cost aspects. Sign abstraction is the simplest, categoris-

ing values by their signs with minimal computational expense but low precision. Convex

polyhedra abstraction offers high precision by capturing exact linear relationships, albeit at

a high computational cost. Interval abstraction balances these two, representing numerical

values as intervals and providing moderate precision and computational efficiency. This bal-

ance makes interval abstraction a compelling choice for many applications, particularly those

where ranges of variables are crucial, but the relationships between them are less so.

Sign Abstraction is one of the simplest forms of abstraction. This type of abstraction

elements are over-approximated by sign [81]. It abstracts numerical values based on their

sign. Each value is categorised as either positive (+), negative (-), or zero (0). Sign abstraction

offers low precision as it only captures the sign of variables, losing any information about their

magnitude or range. Its computational cost is very low, with simple operations as they only

involve sign changes. This abstraction is useful for programs where the sign of a variable is

important, such as detecting zero crossings. For example, Figure 2.5a shows a variable x ≥ 0

the sign abstraction would represent it as {0,+}.

Interval abstraction represents numerical values as intervals [a, b], where a and b are the

lower and upper bounds of the possible values of a variable [81]. Interval abstraction provides

medium precision when compared with convex polyhedra abstraction by capturing ranges of

values but loses information about correlations between variables. Its computational cost
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is low to moderate, as operations are relatively simple but can involve some overhead for

managing interval bounds. This abstraction is suitable for programs where ranges of variables

are important, but correlations are not. For example, for two variables x, y that range from

1 to 4 and 1 to 3, respectively, the interval abstraction would represent it as [1, 4] × [1, 3] as

illustrated in Figure 2.5b.

Convex polyhedra abstraction represents numerical values using convex polyhedra, which

can capture linear relationships between variables [81]. Convex polyhedra abstraction offers

high precision by capturing exact linear constraints and correlations between variables. Its

computational cost is high due to the complexity of operations on convex polyhedra, which

involves linear programming techniques. This abstraction is ideal for programs where re-

lationships between variables are crucial and precise linear constraints must be maintained.

For example, For variables x and y that satisfy x + y ≤ 5 and x − y ≤ 0, x + y ≥ 0 and

y − x < 0, the convex polyhedra abstraction would capture this linear constraint precisely

shown in Figure 2.5c.

In summary, interval abstraction is an efficient method for numerical abstraction in var-

ious verification contexts. While sign abstraction has low precision and convex polyhedra

abstraction suffers from high computational costs, interval abstraction strikes a good bal-

ance between these competing aspects. It offers adequate precision by covering the range of

variable values at a reasonable level of computational cost. The balance obtained by inter-

val abstraction makes it especially well-suited for applications where the range of values is

relevant but inter-variable dependencies are of minor interest.

2.6.4 Semantics

Semantics refers to the meaning of programs. Knowledge of semantics forms the basis for

analyzing program behaviours at runtime and establishing correctness verification. Tradi-

tionally, semantics is classified into two complementary frameworks: concrete semantics and

abstract semantics [81].
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2.6.4.1 Concrete Semantics

Concrete semantics provides a precise and detailed description of the actual behaviour of a

program [81]. It defines how program states change during execution. This is typically rep-

resented using sets of states and transitions between them. For example, concrete semantics

can describe how the value of a variable changes over time as the program executes each

instruction. This precise representation is crucial for understanding the exact behaviour of a

program, but it often results in a vast amount of detail, making it impractical for large-scale

analysis. The foundational work by Cousot & Cousot (1977) [50] laid the groundwork for

this approach by establishing a unified model that captures these detailed behaviours.

Memory states, or simply a state, is a snapshot that captures the computer’s configuration

during program execution [81]. It includes the memory contents and the “program counter”

value. Our language features (cf. Figure 2.3) a fixed set of variables, all of the same type,

and does not include complex data structures. Therefore, a memory state is represented as a

function m from the set of variables X to the set of values V. For example, if X = x1, x2, we

write {x1 ↦→ 8, x2 ↦→ 4} for the memory state that maps x1 to 8 and x2 to 4.

2.6.4.2 Abstract Semantics

Abstract semantics provides an abstract interpretation of the concrete semantics of a program.

It involves mapping concrete states and operations into an abstract domain, where the opera-

tions are less detailed but more tractable for analysis. This abstraction simplifies the analysis

by focusing on essential properties while ignoring irrelevant details [81], [144]. The abstract

semantics is designed to over-approximate the program’s behaviour, ensuring that all possi-

ble states and transitions in the concrete semantics are captured in the abstract domain [81],

[144].

The importance of abstract semantics in abstract interpretation shows when it allows for

analysing program behaviour without having to compute exact values or states. This is par-

ticularly useful in static analysis, where the goal is to prove properties about the program

(such as the absence of errors) rather than to compute specific outcomes of the program’s

execution [81], [144].

The abstract semantics is defined by abstract transformers that approximate the effect of
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each program operation on the abstract domain. These transformers are sound if they cor-

rectly over-approximate the effect of the corresponding concrete operations. The soundness

of abstract semantics is key to ensuring that any conclusions drawn from the abstract inter-

pretation hold for the actual program execution [50].

2.6.5 Interval Analysis

Interval analysis [81], [144] is a technique used within the framework of abstract interpre-

tation, a theory used to reason about the behaviour of programs in a mathematically rig-

orous way. Abstract interpretation allows the analysis of programs by approximating their

behaviours with a level of abstraction that makes the analysis feasible.

Definition 22 (Interval analysis). refers explicitly to an abstract domain in abstract inter-

pretation where the possible values of numerical variables in a program are represented as

intervals [81]. Each variable is associated with an interval [a, b], where a and b are the lower

and upper bounds, respectively. This interval represents the variable’s possible values during

the program’s execution.

Definition 23 (Abstract Domain). In interval analysis, the abstract domain consists of inter-

vals [a, b] where a and b are elements of the set of real numbers, integers, or other numerical

domains. The interval [a, b] is an abstraction of the set of all possible values that a variable

can hold.

Definition 24 (Abstract Operations). Operations on variables in the program (like addition,

subtraction, multiplication, etc.) are applied on intervals. For example, if a variable x is in

the interval [a1, b1] and another variable y is in the interval [a2, b2], then the interval for x+ y

would be [a1 + a2, b1 + b2].

Definition 25 (Widening and Narrowing). Since program loops can result in potentially

infinite sequences of interval updates, interval analysis employs a technique called widening

to ensure that the analysis terminates by over-approximating the intervals. Narrowing can

then be applied to refine these over-approximations after widening.

Definition 26 (Soundness and Precision). Interval analysis is sound, meaning that it cor-

rectly over-approximates the set of possible values that variables can take. However, it may

not be very precise because the intervals can become quite large, especially after widening,

leading to less precise information about the variable’s value.
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Interval analysis is used in various static analysis tools to detect potential runtime errors

such as overflows, array out-of-bounds errors, and other numerical issues in programs [51],

[146], [147]. By computing intervals for variables, it can check whether a variable might

exceed certain limits, which could indicate a bug or vulnerability.

1 int x = 0;

2 while (x < 10) {

3 x = x + 2;

4 }

Listing 2.1. Interval analysis example

For example, consider the code in listing 2.1. When using interval analysis, initially x is

in the interval [0, 0]. After the first iteration, x is in the interval [2, 2]. After several itera-

tions, x could be in the interval [0, 10] (over-approximation). In this case, interval analysis

would allow the program analyser to determine that xwill never exceed 10, avoiding potential

overflows.

2.6.6 Abstract Interpretation Tools

Various tools have been developed for automating abstract interpretation, offering practical

applications of the theoretical framework in actual software development and analysis. These

tools are extensively utilised in industries for software verification, optimisation, and security

analysis.

Astrée is one such tool [51]. This static analysis tool use abstract interpretation to identify

runtime mistakes, including division by zero, out-of-bounds array accesses, and other impor-

tant safety issues in embedded software. Astrée is proficient in analysing programs written in

C, frequently utilised in safety-critical systems such as aerospace and automotive software.

Frama-C [146] is another significant tool, serving as a framework for the examination of

C programs through several static analysis methodologies, including abstract interpretation.

Frama-C enables developers to validate the attributes of their code, including accuracy, se-

curity, and adherence to particular coding standards.

Infer [147] is a tool created by Facebook for the analysis of Java, C, C++, and Objective-C

code bases. It uses abstract interpretation to detect defects in mobile applications and server

code, offering a scalable system capable of effectively analysing extensive code bases.
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These tools demonstrate the practical application of abstract interpretation, showcasing

its capacity to adapt to sophisticated software systems and offering automated support in

guaranteeing software stability and security.

2.7 Summary

This chapter introduced the foundational concepts and methods that underpin the research

presented in this thesis. It began with an overview of interval analysis, including definitions,

arithmetic, and set operations relevant to interval computations. The role of Constraint Satis-

faction Problems (CSPs) and interval contractors in narrowing variable domains was detailed,

forming the mathematical basis for subsequent applications in verification.

The chapter also examined essential verification properties, such as soundness and com-

pleteness, which are critical for evaluating the reliability and exhaustiveness of verification

methods. Fuzzing and Bounded Model Checking (BMC) were discussed as dynamic and

semi-formal techniques respectively, highlighting their strengths and limitations in detecting

software errors.

The final section focused on Abstract Interpretation, a powerful static analysis framework

that enables reasoning over program properties without execution. Various abstraction tech-

niques were introduced—such as sign abstraction, interval abstraction, and convex polyhe-

dra—each offering trade-offs between precision and scalability. The use of Abstract Interpre-

tation in detecting runtime errors and ensuring safety properties was also illustrated.

In summary, while Abstract Interpretation offers a scalable and mathematically grounded

approach to program analysis, it is not without challenges. Balancing precision and perfor-

mance, particularly in large or complex systems, remains an active area of research. Overall,

this chapter established the theoretical and practical groundwork necessary to understand the

integration of interval-based methods into software verification frameworks, as explored in

the subsequent chapters.
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Chapter 3

Contractors in Fuzzing

3.1 Introduction

In Test-Comp 2022 [148], cooperative verification tools showed their strength by being

the best tools in each category. FuSeBMC [7], [8] is a test-generation tool that employs coop-

erative verification using fuzzing and BMC. FuSeBMC starts with the analysis to instrument

the Program Under Test (PUT); then, based on the results from BMC/AFL, it generates the

initial seeds for the fuzzer. Finally, FuSeBMC keeps track of the goals covered and updates

the seeds, while producing test cases using BMC/Fuzzing/Selective fuzzer. In 2023, we intro-

duce abstract interpretation to FuSeBMC to improve the test case generation. In particular, we

use interval methods to help our instrumentation and fuzzing by providing intervals to help

reach (instrumented) goals faster. The selective fuzzer is a crucial component of FuSeBMC,

which generates test cases for uncovered goals based on information obtained from test cases

produced by BMC/fuzzer [7]. This work is based on our previous study, where CSP/CP by

contractor techniques are applied to prune the state-space search [149]. Our approach also

uses Frama-C [146], [150] to obtain variable intervals, further pruning the state space explo-

ration. Our original contributions are: (1) improve instrumentation to allow abstract interpre-

tation to provide information about variable intervals; (2) apply interval methods to improve

the fuzzing and produce higher impact test cases by pruning the search space exploration; (3)

reduce the usage of resources (incl. memory and CPU time).

Fuzzing, also known as fuzz testing, is a widely used technique in software testing aimed at

uncovering vulnerabilities and bugs by generating and injecting massive amounts of random

data into the target program. The primary goal of fuzzing is to cause unexpected behaviour,

such as crashes or security vulnerabilities, that might not be detected through conventional

testing methods. Fuzzing faces significant challenges despite its effectiveness, particularly
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when dealing with large and complex input spaces. The sheer volume of potential inputs can

make it difficult to achieve comprehensive coverage, and the presence of complex conditional

logic can lead to areas of the codebase being insufficiently tested.

To address these challenges, this chapter explores the use of contractors—powerful interval-

based methods typically employed in constraint satisfaction problems (CSPs)—within the

fuzzing process. Contractors help reduce the search space by applying constraints to inter-

vals, thereby focusing the fuzzing effort on the most promising areas of the input space. This

chapter delves into the theoretical underpinnings of contractors, their practical implemen-

tation in fuzzing, and the impact of this integration on the efficiency and effectiveness of

fuzzing.

3.2 Methodology

To utilise contractors in the context of fuzzing, we need to combine the interval analysis

component of abstract interpretation with fuzzing to help generate test cases. Interval analysis

estimates the possible values that program variables can take during execution. Abstract inter-

pretation allows for approximating program semantics, inferring properties that hold across

all potential executions. Interval analysis focuses on representing variable values as intervals,

defining the range within which a variable may reside. This approach leads to a more targeted

exploration of the input space, potentially resulting in more efficient and effective test case

generation.

To integrate interval analysis into fuzzing, the Program Under Test (PUT) is first instru-

mented to allow the use of abstract interpretation tools. This analysis identifies relevant vari-

able intervals associated with specific testing goals, such as reaching particular branches or

conditions within the code. These intervals are then used to narrow the input space that the

fuzzer will explore, as opposed to traditional fuzzing techniques that rely on random input

generation.

Contractor programming techniques are applied to refine the intervals obtained from the

analysis further. Contractors are algorithms designed to reduce the domain of possible vari-

able values by applying constraints, ensuring that the input space considered during fuzzing

is more focused. The Forward-Backward contractor is one technique that iteratively refines

65



3.3. DESIGN AND IMPLEMENTATION

intervals by evaluating constraints in both forward and backward directions. This process

excludes input values that do not satisfy the program’s conditions.

A Constraint Satisfaction Problem (CSP)(cf. Definition 16) is constructed for each iden-

tified goal within the PUT, incorporating the relevant conditions, variables, and domains.

Contractors are then applied to these CSPs, further refining the input intervals and producing

a set of focused intervals for the fuzzer to explore. This approach directs the fuzzing process

to consider inputs within these specified intervals, potentially influencing the execution paths

related to the goals.

By incorporating interval analysis and contractor programming into fuzzing, the intervals

derived from abstract interpretation guide the generation of test cases. This approach aims

to manage the computational resources required for fuzzing while exploring the input space

more directly.

3.3 Design and Implementation

This section presents both the design architecture and implementation details of the pro-

posed contractor-based interval methods integrated within FuSeBMC. First, the high-level

design of the enhanced system is outlined, providing a conceptual understanding of how con-

tractors are incorporated into the fuzzing workflow. Following that, the technical implemen-

tation details are discussed, elaborating on the concrete steps taken to realise the design in

practice.

3.3.1 Design Overview

FuSeBMC_IA improves the original FuSeBMC using Interval Analysis and Methods [139].

Fig. 3.1 illustrates the FuSeBMC_IA’s architecture. For an architectural overview of FuSeBMC

and its extension in this work, refer to Appendix B. Our approach starts from the analysis

phase of FuSeBMC [7], [8]. It parses statement conditions required to reach a goal, to con-

struct a Constraint Satisfaction Problem/Constraint Programming (CSP/CP) [80] with three

components: constraints (program conditions), variables (used in a condition), and domains

(provided by the static analyzer Frama-C via eva plugin [151]). We instrument the PUT with
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Frama-C intrinsic functions to obtain the domains, which generate intervals of a given set of

variables at a specific program location. Then, we apply the contractor to each goal’s CSP

and output the results to a file used by the selective fuzzer.

FuSeBMC_IA: Interval Analysis and Methods for Test Case Generation

FuSeBMC v4 Test-Generation

Tracer

Selective 
fuzzer Engines

PropertyC Code

FuSeBMC analysis

Analyze and 
Inject

Test-cases

Interval Analysis & Methods

Parse conditions & 
Create CSP/CP Domains reduction Apply Contractors

Intervals files
Static Analyser
(Frama-C eva)

Instrumented file

Seed Generation

BMC/AFL

Seeds

Fig. 3.1. FuSeBMC_IA’s architecture. The changes introduced in FuSeBMC_IA for Test-Comp 2023 are
highlighted in green. The new Interval Analysis & Methods component generates intervals to be used by the
selective fuzzer.

Contractor Programming is a set of interval methods that estimate the solution of a given

CSP [80]. The used contractor technique is the Forward-Backward contractor, which is

applied to a CSP/CP with a single constraint [139], which is implemented in the IBEX li-

brary [152]. IBEX is a C++ library for constraint processing over real numbers that imple-

ment contractors. More details regarding contractors can be found in our current work-in-

progress [149].
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3.3.2 Implementation Details

3.3.2.1 Parsing Conditions and CSP/CP creation for each goal.

While traversing the PUT clang AST [153], we consider each statement’s conditions that lead

to an injected goal: the conditions are parsed and converted from Clang expression [153] to

IBEX expression [152]. The converted expressions are used as the constraints in CSP/CP

when creating a contractor. After parsing the goals, we have a CSP/CP for each goal. If a

goal does not have a CSP/CP, the intervals for the variables are left unchanged. We also create

a constraint for each condition in case of multiple conditions and take the intersection/union.

At the end of this phase, we have a list of each goal and its contractor. Also, a list of variables

for each contractor will be used to instrument the Frama-C file in the next phase.

Instrumented file for Frama-C Intervals fileInstrumented file

Fig. 3.2. The figure illustrates an example of files produced. We are starting from the instrumented file that
shows the goals injected. Then, we instrument the file with the Frama-C intrinsic function. Finally, we
produce a file with each goal and the intervals to satisfy the conditions for each goal.

3.3.2.2 Domains reduction.

In this step, we attempt to reduce the domains (primarily starting from (−∞,∞)) to a smaller

range. This is done via Frama-C eva plugin (evolved value analysis) [151]. First, during the

instrumentation, we make an instrumented file aimed to be used by Frama-C using its intrinsic

functions Frama_c_show_each() (cf. Fig. 3.2). This function allows us to add custom text

to identify goals and how many variables are in each call. Second, we run Frama-C to obtain

the new variable intervals. Finally, we update the domains for the corresponding CSP/CP.
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3.3.2.3 Applying contractors.

Contractors will help prune the domains of the variables by removing a subset of the domain

that is guaranteed not to satisfy the constraints. With all the components for a CSP/CP avail-

able, we now apply the contractor for each goal and produce the output file in Figure 3.2.

The result will be split per goal into two categories. The first category lists each variable and

the possible intervals (lower bound followed by upper bound) to enter the condition given.

The second category contains unreachable goals, i.e. when the contractor result is an empty

vector.

3.3.2.4 Selective Fuzzer.

The Selective Fuzzer parses the file produced by the analyser, extracts all the intervals, applies

these intervals to each goal, and starts fuzzing within the given interval. Thus, it prunes the

search space from random intervals to informed intervals. The selective fuzzer will also

prioritise the goals with smaller intervals and set a low priority to goals with unreachable

results.

3.4 Evaluation

3.4.1 Objectives

This chapter defines the experimental goals of integrating interval-based contractors into

fuzzing-based verification, specifically within the FuSeBMC framework. These goals are

derived from the research questions presented in Section 1.4, with a particular focus on eval-

uating the effectiveness and efficiency of the proposed approach.

The evaluation in this chapter is designed to address the following two research questions:

69



3.4. EVALUATION

RQ1 : To what extent can integrating a numerical method into verification techniques

effectively reduce the search space?

RQ2 : To what extent can the integration of Interval Methods—particularly contrac-

tors—into verification tools reduce computational resource consumption, such

as memory and processing time?

RQ3, which concerns the preservation of soundness and completeness, is not addressed in

this chapter. This decision is based on the inherent limitations of the Test-Comp benchmark-

ing framework, which does not penalise incorrect verification results nor explicitly report false

positives or false negatives. As a result, it is not possible to formally or empirically assess

the soundness and completeness of the verification process based on Test-Comp outcomes

alone. This issue will be revisited qualitatively in later chapters, where broader implications

and limitations are discussed.

Accordingly, the experimental goals for this chapter are:

EG1 Search Space Reduction Efficiency: To evaluate the extent to which interval-

based contractors can reduce the search space in fuzzing-based verification, and

whether this reduction is achieved efficiently.

EG2 Resource Consumption Impact: To assess the impact of contractor integra-

tion on computational resource usage—specifically CPU time and memory con-

sumption—when applied within the FuSeBMC framework.

3.4.2 Description of Benchmarks

To evaluate the performance of FuSeBMC_IA, we analysed the final results from Test-Comp

2023 [148] and compared them to those achieved by FuSeBMC v4 during the same compe-

tition. Test-Comp is an internationally recognized software testing competition where tools

compete in automated test-case generation. The competition categorizes all test-case gener-

ation tasks into two primary groups: Cover-Branches and Cover-Error.

The Cover-Branches category focuses on maximizing branch coverage within a given C

program by generating a comprehensive set of test cases. In contrast, the Cover-Error category
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requires participants to produce a test case capable of triggering a predefined error location

(i.e., an explicitly marked error function) within the program.

Performance in the Cover-Branches category is evaluated using the TestCov tool [154],

which assigns a coverage score between 0 and 1 for each task. For instance, achieving 65%

branch coverage on a given task results in a score of 0.65. Subcategory scores are then com-

puted by summing the scores for all tasks within that subcategory and rounding the total.

Tools are awarded a binary score in the Cover-Error category: 1 for successfully reaching the

error function and 0 otherwise.

Each category is further subdivided into multiple subcategories, which are organized

based on key program features or the origin of the program. The majority of programs in Test-

Comp originate from SV-COMP [155], the largest and most diverse open-source repository

for software verification tasks. This repository includes both hand-crafted and real-world C

programs, encompassing a variety of features such as loops, arrays, bit-vectors, floating-point

operations, dynamic memory allocation, recursive functions, event-condition action systems,

concurrent programming, and BusyBox2 software. For detailed information about the bench-

mark structure and scoring methodology used in this evaluation, refer to Appendix A.

3.4.3 Setup

The evaluations for Test-Comp 2023 were performed on servers equipped with an 8-core

(4 physical cores) Intel Xeon E3-1230 v5 CPU running at 3.4 GHz, 33 GB of RAM, and

operating on x86-64 Ubuntu 20.04 with Linux kernel 5.4. Each test suite generation task was

constrained to 8 CPU cores, 15 GB of RAM, and a maximum of 15 minutes of CPU time.

FuSeBMC allocated its computational resources across its engines based on predefined time

distributions, which were adjusted in 2023.

For benchmarks in both categories, 20 seconds were assigned to seed generation. The

fuzzer was allocated 200 seconds for Cover-Error benchmarks and 250 seconds for Cover-

Branches benchmarks. The bounded model checker received 650 seconds for Cover-Error

tasks and 600 seconds for Cover-Branches tasks. Additionally, the time allocated to the se-

lective fuzzer was reduced to 30 seconds compared to its allocation in the previous year.

In the BMC evaluation, we executed ESBMC using the same configuration options em-
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ployed in SV-COMP 2024, with the only variation being the strategy selected (i.e., k-induction

or incremental-bmc). The following options were used: --incremental-bmc to enable in-

cremental BMC, --k-induction to activate k-induction, --unlimited-k-steps to remove

the upper iteration limit for the incremental BMC algorithm, and --interval-analysis-

ibex-contractor to enable interval analysis (ESBMC’s abstract interpretation engine) and

apply the contractor-based method.

The results are presented in terms of testing time and scores. All execution times reported

are CPU times, representing only the periods during which the allocated CPUs were actively

engaged. Memory consumption was measured as the amount of RAM occupied by the test-

ing process, excluding swapped or non-resident memory. Measurements for CPU time and

memory usage were performed using the benchexec tool [156], with detailed command con-

figurations available on the supplementary page1. Swapping and turbo boost were disabled

during the experiments to ensure consistency, and all tools were restricted to a single CPU

core.

3.4.4 Results

Regarding EG1, Table 3.1 provides a comprehensive overview of the tools’ performance in

Test-Comp 2023, highlighting their scores and CPU times. Notably, FuSeBMC_IA demon-

strated significantly lower CPU time compared to FuSeBMC, achieving an overall reduction

of 35%. However, this improvement came at the cost of a 3% decrease in the score.

Examining individual categories in Table 3.4, FuSeBMC_IA maintained the same score

and CPU time in subcategories such as Bitvector, Controlflow, Heap, ProductLines, XCSP,

and DeviceDriversLinux64. Conversely, its performance declined in Loops, where it achieved

a lower score with the same CPU time, and in Recursive, where the score remained unchanged

but CPU time increased. In other subcategories, such as Arrays, ECA, Floats, and Sequen-

tialized, FuSeBMC_IA managed to reduce CPU time but occasionally lost 1–2 points. Re-

markably, in the Hardware category, FuSeBMC_IA achieved the same score while consuming

less than half the CPU time compared to FuSeBMC.

Similarly, the results for Cover-branches, detailed in Table 3.5, exhibit a consistent trend.

In categories like Arrays, Bitvectors, ControlFlow, Floats, Heaps, Loops, Recursive, and Se-
1https://Test-Comp.sosy-lab.org/2023/results/results-verified/
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Table 3.1. Test-Comp 2023 overall results. With FuSeBMC in first place, VeriFuzz is second, and
FuSeBMC_IA in third. Note on meta-categories: The score is not the sum of scores of the sub-categories
(normalization). The run time is the sum of the run times of the sub-categories, rounded to two significant
digits.

Participants

Cover-Error Cover-Branches Overall

1173 tasks 2933 tasks 4106 tasks

Score CPU time Score CPU time Score CPU time

CoVeriTest [157], [158] 581 120000 s 1509 1700000 s 2073 1800000 s

ESBMC-kind [159], [160] 289 3100 s

FuSeBMC [7], [8] 936 260000 s 1678 2600000 s 2813 2800000 s

FuSeBMC_IA [6], [161] 908 130000 s 1538 1700000 s 2666 1800000 s

HybridTiger [162], [163] 463 240000 s 1170 1600000 s 1629 1900000 s

KLEE [164], [165] 721 10000 s 999 990000 s 1961 1000000 s

Legion [166], [167] 838 2300000 s

Legion/SymCC [167] 349 2700 s 1027 2500000 s 1329 2500000 s

PRTest [168], [169] 222 240000 s 770 2400000 s 927 2600000 s

Symbiotic [170], [171] 644 20000 s 1430 1600000 s 2128 1600000 s

TracerX [172], [173] 1400 780000 s

VeriFuzz [174] 909 16000 s 1546 2600000 s 2673 2600000 s

WASP-C [175] 570 9300 s 1103 1100000 s 1770 1100000 s

quentialized, FuSeBMC_IA experienced slight score reductions while significantly reducing

CPU time. Meanwhile, categories such as ECA, ProductLines, XCSP, SQLite, MainHeap,

and DeviceDriversLinux64 maintained their scores with reduced CPU time. Notably, when

compared to Verifuzz, the second-place competitor, FuSeBMC_IA emerged as the most effi-

cient in CPU time among the podium finishers.

Regarding EG2, Table 3.2 presents the differences in CPU time and score between the

methods. The FuSeBMC_IA approach reduced the score by 2.99% in cover-error and 8.34%

in cover-branches, resulting in an overall score reduction of 5.23%. However, FuSeBMC_IA

significantly decreased CPU time, achieving a 50% reduction in cover-error and 34.62% in

cover-branches, culminating in an overall CPU time reduction of 35.71%.

To evaluate efficiency, we compared the number of points processed per hour for each

method, as shown in Table 3.2. The FuSeBMC method achieved 3.62 points per hour, while

FuSeBMC_IA reached 5.332 points per hour—a 47.43% improvement. This substantial in-
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EG1 (Efficiency) Overall, the results show that FuSeBMC_IA consistently reduced

CPU time compared to FuSeBMC, achieving up to a 35% improvement while

experiencing only a minor decrease (about 3%) in the overall score. In many

categories, FuSeBMC_IA maintained comparable scores but significantly low-

ered CPU time, in some cases by half—for example, in the Hardware cate-

gory. Even where small score reductions occurred (1–2 points), they were

generally accompanied by substantial gains in CPU efficiency. Furthermore,

FuSeBMC_IA outperformed other leading tools, such as VeriFuzz, in terms of

CPU usage.

While reduced CPU time indicates improved efficiency, it does not alone con-

stitute definitive evidence that the search space was pruned. However, through

close manual inspection of selected benchmarks, we observed clear instances

where the application of contractors led to constrained variable domains and the

elimination of infeasible paths. These observations support the interpretation

that contractors contribute to effective search space reduction.

Therefore, based on both performance metrics and benchmark analysis, we con-

clude that contractors help to prune the search space in a way that reduces com-

putational effort.

crease in processing efficiency demonstrates that the trade-off in the score is justified, making

FuSeBMC_IA a more effective choice overall.

Regarding energy consumption, FuSeBMC_IA showed excellent resource optimisation.

Table 3.3 shows the podium winners and compares their energy consumption along with

scores and CPU time. We notice that FuSeBMC_IA requires significantly less CPU time and

energy than both FuSeBMC and VeriFuzz. Therefore, FuSeBMC_IA is an environmentally

friendly and economically viable alternative. Moreover, it attains a CPU time reduction of

37% and energy consumption reduction of 30% compared to VeriFuzz, and a reduction of

58% and 35%, respectively, compared to FuSeBMC. This efficiency is paramount in large-

scale or continuous testing scenarios where computational costs and environmental impact

are among the key concerns.

FuSeBMC_IA provides a sustainable solution for organizations looking to achieve high-
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Table 3.2. This table compares FuSeBMC with FuSeBMC_IA in terms of score and CPU time in seconds. It
also shows the increase percentages where FuSeBMC_IA was less than FuSeBMC in Cover-Error by 2.99% in
terms of score and 50% in terms of CPU time. The table also shows the increase in points per hour in each
tool and the percentage increase by 47%.

Category FuSeBMC FuSeBMC_IA % Increase

Cover-Error Score
T ime(s)

936 908 -2.99%

260000 130000 -50%

Cover-Branches Score
T ime(s)

1678 1538 -8.34%

2600000 1700000 -34.62%

Overall Score
T ime(s)

2813 2666 -5.23%

2800000 1800000 -35.71%

Points per hour 3.62 5.332 47.43%

Table 3.3. Overview of the top-three test generators for each category (measurement values for CPU time and
energy rounded to two significant digits) [176].

Rank Tester Score CPU Time (h) CPU Energy (kWh)

Cover-Error

1 FuSeBMC 936 72 0.96
2 VeriFuzz 909 4.5 0.049
3 FuSeBMC_IA 908 37 0.48

Cover-Branches

1 FuSeBMC 1678 720 9.2
2 VeriFuzz 1546 730 9.1
3 FuSeBMC_IA 1538 470 6.0

Overall

1 FuSeBMC 2813 790 10
2 VeriFuzz 2673 730 9.2
3 FuSeBMC_IA 2666 500 6.5

quality test generation and sustainability in their practices. Strong performance with minimal

use of resources makes it stand out when an organisation’s priorities are efficiency and speed.

Many researchers and pioneers have expressed the importance of speed in software testing

in the industry [177]–[179]. By adopting FuSeBMC_IA, an organization can provide reliable

outcomes of testing activities while addressing sustainable and cost-conscious development

practices.
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EG2 (Trade-off) FuSeBMC_IA has a great balance between performance and re-

source consumption. Where it involves a small sacrifice in terms of score, it

hugely reduces CPU time and power consumption, leading to nearly 30% bet-

ter energy efficiency compared to its counterparts. Together with this improve-

ment of 47.43% in processing power, the placement of FuSeBMC_IA is sound

for widespread testing setups—both on grounds of economics and being eco-

friendly.

3.5 Strengths and Weaknesses

Using abstract interpretation in FuSeBMC_IA improved the test-case generation regarding

resources. Our selective fuzzer uses the new contractors generated by the Interval Analysis

and Methods component: (1) the information provided helps the selective fuzzer to start

from a given range of values rather than a random range (as was our strategy in the previous

version); (2) the selective fuzzer uses the information about unreachable goals to set their

priority low for reachability; (3) when compared to FuSeBMC v4, this improvement helped

saving CPU time by 37% and memory by 13%, which leads to saving 40% of energy; (4)

although our approach produces fewer test cases for a given category, the impact of these test

cases is higher in terms of reaching instrumented goals; (5) there is potential for future work

to use the information provided by Frama-C, especially regarding overflow warnings. Finally,

the intervals provided may not affect the FuSeBMC_IA’s outcome in the worst case. i.e., the

selective fuzzer performs no better than not having interval information for seed generation.

The time it takes to generate the intervals is only a tiny fraction of the time it takes to produce

the test cases; its impact when the information is not useful is negligible.

Our approach suffers from a significant technical limitation: FuSeBMC_IA cannot cre-

ate complementary contractors; we can only create intervals that satisfy the constraints of

a branch (i.e., outer contractors). In practice, we can only create intervals to if-statements

and ignore its else-statements (the inner contractor). We also skip any if-statement inside

else-statements, as this may lead to unsound intervals. This is a technical limitation rather

than a theoretical one: we use run-time type information (RTTI) to identify ibex expressions.

However, we link our tool with Clang, which requires compilation with no RTTI informa-

tion. We are investigating approaches to address this limitation, e.g., to encapsulate all ibex
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expressions and manually store expression information, but currently, no proper fix has been

implemented. Additionally, a bug has been found that caused FuSeBMC_IA to crash on some

benchmarks that made FuSeBMC_IA scores much less than FuSeBMC in the coverage cate-

gory.

3.6 Conclusion

This chapter presents a method based on contractors to improve fuzzing-based test gen-

eration by integrating interval analysis and contractor programming techniques. Embed-

ding interval-based abstract interpretation in the fuzzing process allows for a directed search

toward more promising input domains, significantly reducing the computational resources

needed to generate test cases. The introduction of contractors traditionally used in constraint

satisfaction problems—allowed for more efficient pruning of the input space, improving re-

source usage and shortening execution time.

Empirical assessments, like those performed as part of Test-Comp 2023 [148], [176], indi-

cated this could substantially raise CPU utilization and reduce memory consumption without

compromising the thoroughness of test coverage. The approach showed substantial efficiency

gains and considerable improvement in energy consumption despite minor trade-offs, like

slightly lower coverage scores for some categories. Moreover, using tools like Frama-C [146],

[150], which provide variable intervals via the eva plugin [151], helped ensure that obtained

intervals were reliable and feasible, leading to more effective test cases. By constraining the

search space and focusing on input values that are more likely to expose previously unexplored

execution paths, the selective fuzzer increased the effectiveness of fuzzing efforts.

While the implementation described in Chapter 3 is specifically built on C programs using

Frama-C for instrumentation, the underlying methodology of applying interval contractors to

refine input domains prior to fuzzing is generalisable to other languages and frameworks. The

core requirements for applying the approach are: (1) the ability to extract guard conditions or

symbolic constraints from source code, and (2) a mechanism to represent input domains in a

form amenable to interval analysis. Many modern analysis frameworks in languages such as

C++, Rust, and Java support intermediate representations (e.g., LLVM IR, Java bytecode) that

expose program control-flow and constraints. By adapting the parsing and CSP construction

phases to these representations, the interval contractor integration could be extended beyond
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C/Frama-C environments. However, the efficiency and precision of the method may depend

on the richness and precision of the intermediate representation used in the target system.

In the current implementation of FuSeBMC_IA, no external sanitisation tools such as

AddressSanitizer (ASan) or UndefinedBehaviourSanitizer (UBSan) are integrated into the

fuzzing or verification pipeline. The detection of vulnerabilities relies primarily on asser-

tion violations, memory model checking, and symbolic analysis conducted by the underly-

ing bounded model checking and static analysis components. While sanitisation frameworks

could potentially augment the detection of runtime errors such as buffer overflows or unde-

fined behaviours, integrating them was considered out of scope for the primary goal of this

research, which was focused on reducing search space and improving test input precision

through interval-based domain contraction. Nevertheless, incorporating sanitisation tools

could be a promising extension for future work, particularly to enhance runtime bug detec-

tion capabilities.

Technical challenges remain, for example, in synthesising complementary contractors and

handling complex branching structures. Future work will investigate improvements in the

treatment of else-statements and nested conditions to increase the applicability of interval-

based pruning. Moreover, exploiting more advanced static analysis information—for in-

stance, overflow warnings—offers good prospects for further optimization of test generation

strategies. In other words, combining fuzzing, bounded model checking, abstract interpreta-

tion, and contractor programming leads to a possibly powerful framework for more effective

and efficient test case generation. This research is, therefore, expected to continue to yield

such hybrid methodologies with a significant impact on automated test generation and the

development of more safe and reliable software systems.
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Chapter 4

Contractors in BMC

4.1 Introduction

Fig. 4.1. This figure illustrates the integration of interval contractors into the bounded model checking (BMC)
workflow. The process begins with parsing the C program into an intermediate representation (IR), where
verification properties are extracted. Constraints relevant to these properties are then identified, forming a
constraint satisfaction problem (CSP). Interval contractors are applied to narrow variable domains by
removing infeasible values, effectively pruning the search space. Following contraction, the IR is updated by
inserting assumptions that restrict variables to the contracted intervals. Symbolic execution proceeds over this
refined program, producing verification conditions that are subsequently solved using an SMT solver. A
satisfiable outcome indicates a property violation, while an unsatisfiable result confirms the property’s
correctness within the given bounds. By integrating contractors early in the workflow, the system achieves a
more efficient and scalable verification process without compromising soundness or completeness.

Here, we introduce contractors described in Section 2.5 to BMC of software. In particu-

lar, we model the constraints and properties generated from BMC instances to a CSP [180].

A CSP has three inputs: variables (dimensions), domain, and constraints. The term ”con-

straints” has a different meaning when dealing with BMC or CSP. So, we decided to dif-

ferentiate between the two by stating whether the constraints are BMC constraints or CSP

constraints. We obtain the domains by analysing the declaration of independent variables,

assume directive and variable assignment (BMC constraints). The directive assert, repre-
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4.2. APPROACH

senting the property, will give the contractor CSP constraints. Assert statements will also

dictate which variables are included in our defined domains. We apply the contractors in the

intermediate representation (IR) of programs. Our IR is a GOTO-program that simplifies

the program representation (e.g., replaces switch and while by if and goto statements) [62],

[181]1. Fig. 4.1 shows how contractors can be used in BMC, where the GOTO-symex com-

ponent performs the program’s symbolic execution.

4.2 Approach

As an illustrative example, we consider the code fragment illustrated in Fig. 4.2a. We

model this code into a CSP (cf. definition16) by having our variables x as x1 and y as

x2. Assume the maximum value that an unsigned integer can hold, defined as Maxuint.

Therefore, we define our intervals for each variable from the declaration of the variables.

[x1] = [0,Maxuint], [x2] = [0,Maxuint]. With the assume directive, variable x1 interval will

be [x1] = [0, 20]. With the given assertion x ^>= y, we determine the inequality used being

x1 ≥ x2 as our constraint. Now we have our CSP, we model our input as parameters for a con-

tractor such that: Variables x1, x2; Domains, [x1] = [0, 20], [x2] = [0,Maxuint]; Constraint,

x2 − x1 ≤ 0.

We use the forward-backward contractor [142] mentioned in Definition 18. After we

plug our values in the equations in Fig. 4.2d, we obtain [y] = [−20, 0], [x1] = [0, 20] and

[x2] = [0, 20]. We notice that [x2] was contracted from [0,Maxuint] to [0, 20] because that

is where our solution lies. Regarding BMC, having the domain contracted by the outside

contractor ensures a violation of property since that area is outside the solution Sout. We can

visualize the results in Fig. 4.2, where the left graph shows our initial domain, the right graph

shows the contracted domain in blue, and the area remaining in yellow.

However, if we use the inner contractor, which is the complement of our constraint f(x) >

0, we may prune the area inside our solution Sin to possibly prune our search space and only

have the Sboundary area to be checked by BMC. Consider the example in Fig. 4.3a, we form

our CSP by having our variables: let x be x1 and y be x2, and domain be [x1] = [20, 40] and

[x2] = [0, 70] and constraint as x1 ≥ x2.
1Documentation of GOTO-program can be found at https://ssvlab.github.io/esbmc/

documentation.html
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1 unsigned int x=nondet_uint();

2 unsigned int y=nondet_uint();

3 __ESBMC_assume(x <= 20);

4 assert(x >= y);

(a) Outer contractor example.
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(c) After Outer Contractors.

f(x) ≤ 0 I = (−∞, 0]

f(x) : y = x2 − x1 [y] = I ∩ ([x2]− [x1]) Forward-step

f(x)−1
x1

: x1 = x2 − y [x1] = [x1] ∩ ([x2]− [y]) Backward-step

f(x)−1
x2

: x2 = y + x1 [x2] = [x2] ∩ ([y] + [x1]) Backward-step

(d) Outer contractor steps for the example in Fig 4.2a.

Fig. 4.2. Example illustrating outer contractor.

For the inner contractor, we list our formulas as illustrated in Fig. 4.3d. So we plug our

values for [x1] and [x2]; we obtain [y] = [0, 10], [x1] = [20, 40] and [x2] = [20, 60]. Here, [x2]

was contracted from [0, 60] to [20, 60]. To visualize the solution, in Fig. 4.3c, the red area

is contracted from our domain; it represents the part of our domain that belongs to Sin. For

BMC, this area is guaranteed to hold the property; therefore, we only prune our search space

to the orange area Sboundary.

Algorithms 4 and 5 contain the main steps necessary for our approach. The first four lines

describe each variable we will use throughout the process. We will analyse the variables x

and their intervals (or domain) [x] and the properties (or constraints in the context of CSP)

f(x) ≤ 0. Then, after calling Apply_Contractor, we initialise the contractors based on

variables and constraints. The outer contractors Cout are initialised based on the property in

the form of f(x) ≤ 0 or f(x) = 0, which depends on the property. In contrast, the inner
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1 unsigned int x=nondet_uint();

2 unsigned int y=nondet_uint();

3 __ESBMC_assume(x >= 20 && x <= 30);

4 __ESBMC_assume(y <= 30);

5 assert(x >= y);

(a) Inner contractor example.
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(b) Before inner Contractors.
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(c) After inner Contractors.

f(x) > 0 I = [0,∞)

f(x) : y = x2 − x1 [y] = I ∩ ([x2]− [x1]) Forward-step

f(x)−1
x1

: x1 = x2 − y [x1] = [x1] ∩ ([x2]− [y]) Backward-step

f(x)−1
x2

: x2 = y + x1 [x2] = [x2] ∩ ([y] + [x1]) Backward-step

(d) Inner contractor steps for the example in Fig 4.3a.

Fig. 4.3. Example illustrating inner contractor.

contractor Cin is initialized in the form f(x) > 0 or f(x) ̸= 0.

Algorithm 4: Proposed method algorithm.
Input: Program P

1: x : set of Variables
2: [x] : domain
3: f(x) ≤ 0 : set of Constraints
4: f(x) ≤ 0← Analyze_Properties(P )
5: [x]← Analyze_Intervals(P )
6: [x]← Apply_Contractor(x, [x], f(x) ≤ 0)
7: P ′ ← instrument(P, [x])
8: return P ′

With CSP components being set up, we contract our domain starting with Cout, where
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Algorithm 5: Apply_Contractor.
Input: Varibles x, Domains [x], Constraints f(x) ≤ 0

1: [x]′ ← Cout([x], f(x))
2: if [x]′ = ∅ then
3: P ′ ← P
4: else
5: Sout ← [x] \ [x]′
6: [x]′′ ← Cin([x]′, f(x))
7: Sin ← [x]′ \ [x]′′
8: Sboundary ← [x]′′
9: end if

10: return Sboundary ∪ Sout

the domain will be reduced to exclude the region outside the solution, which violates the

property. If the resulting set of the domain [x]′ is empty, it means that the domain will violate

the property. There is no need to prune the search space (lines 2 and 3 of Algorithm 5).

Otherwise, the difference between the result from the outer contractor [x]′ and the original

domain [x] will yield Sout, as demonstrated in line 10 of Algorithm 4. After that, we apply

the inner contractor Cin to remove the intervals inside the solution where the property holds.

Similar to the outer contractors, the difference between the two sets [x]′′ and [x]′ will yield

the set inside the solution Sin. Note that box difference will yield not necessarily one box but

rather a finite set of boxes [80]. The resulting domain from the contractor [x]′′ will be our

boundary area, where [x]′′ ⊆ Sboundary. With Sout, Sin and Sboundary, now we can instrument

the program for the BMC engine to search for a counterexample in Sout and Sboundary while

removing Sin from the search-space.

The instrumentation will be done using the assume(expr) directive, where we constrain

the search space indicated by the expression expr, which the contractors produced. Note that

instrumenting assume(expr) directive is not a trivial task since we need to ensure where the

pruned intervals are in the program context, especially regarding loops. If Sin is at the end

of the loop, we add the assume(Sout ∪ Sboundary) to remove these unnecessary loop steps in

the loop. However, if Sin is at the beginning or middle of the loop, we discussed it further in

Section 4.5.

Algorithm 4 describes the high-level domain application of the contractor process. Ini-

tially, the CSP components are defined in lines 1,2,3 and the set of program constraints is

collected, each constraint being modelled as a relation over program variables. The contrac-

tor associated with each constraint is then applied iteratively. These contractors operate by
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removing portions of the variable domains that cannot possibly satisfy the constraint, pro-

gressively refining the domains until a fixpoint is reached or a limit is reached. In implemen-

tation, contractors are instantiated using libraries such as IBEX, where standard contractors

(e.g., forward-backward contractors for inequalities) are composed to form a contractor vec-

tor. Algorithm 4 thus formalises the overall framework for domain pruning prior to symbolic

execution.

Algorithm 5 details the application of a single contractor to a specific variable domain.

Given a current domain and a constraint, the contractor checks whether a refinement is possi-

ble based on interval arithmetic and constraint propagation rules. If so, it updates the domain

accordingly; otherwise, it preserves the original domain. The key to this operation is main-

taining soundness: no feasible solutions are removed. The implementation realises this by

carefully distinguishing between outer and inner contractors depending on the type of con-

straint involved, ensuring that feasible intervals are not inadvertently excluded.

The impact of these algorithms is substantial. By integrating domain reduction prior to

symbolic execution, the verification process avoids exploring infeasible program paths, sig-

nificantly reducing SMT solver query sizes and improving overall verification performance.

We will use the illustrative example in Fig. 4.4 to demonstrate the application of the steps

of Algorithm 4. Note that we have two variables in this program x and y, which will be x1 and

x2 in the CSP space, respectively, where x = {x1, x2}. For the domains, after the analysis,

they will be x1 = [1,Maxint] and x2 = [0, 1000] with [x] = [1,Maxint] × [0, 1000], while

the constraint will be x1 ≥ x2 (because the assert is x >= y) where f(x) ≤ 0 ⇒ f(x) =

x2 − x1 ≤ 0. Therefore, our constraints will be x2 − x1 ≤ 0 for the outer contractor and

x2 − x1 > 0 for the inner contractor. In this case, however, the outer contractor returned

the same domain, which means it cannot be contracted from the outside because there are

no values in the domain [x] guaranteed to be outside the solution, thus Sout = ∅. Fig. 4.5

illustrates the outcome of the inner contractor on the program (line 6 of Algorithm 4), where

the domain was reduced from [x]′ = [1,Maxint] × [0, 1000] to [x]′′ = [1, 1000] × [1, 1000]

where Sin = {[1000,Maxint]×[0, 1000], [0, 1000]×[0, 1]} and Sboundary ← [x]′′. An example

of the instrumentation employed is illustrated in Fig. 4.6. The assume(expr) directive here

is placed in the loop, where the values change for variables. It is placed in this location to

guide the verifier not to check steps further in the loop because these steps represent Sin,

where the property is guaranteed to hold.
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1 #include <assert.h>

2 int main() {

3 int x = 1, y = 0;

4 while (y < 1000

5 && __VERIFIER_nondet_int()) {

6 x = x + y;

7 y = y + 1;

8 }

9 assert(x >= y);

10 return 0;

11 }

Fig. 4.4. C program extracted from sv-benchmarks/c/loop-lit/afnp2014.c

Fig. 4.5. afnp2014.c search space before and after contractors.

4.3 Implementation

The implementation of the proposed approach follows the Algorithm 4 and goes into the

following steps, as described below. Though it has limitations, we will discuss them further

in Section 4.3.5. A background description of ESBMC and its extension with contractors is

available in Appendix B.

4.3.1 Property Analysis

This step will analyse the property used as a constraint in the CSP (cf. definition16). We start

with parsing each expression in the assert directive, which is carried by converting from

the syntax of ESBMC GOTO-program to the IBEX syntax. Figures 4.7b and 4.7a illustrate
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1 #include <assert.h>

2 int main() {

3 int x = 1, y = 0;

4 while (y < 1000

5 && __VERIFIER_nondet_int()) {

6 x = x + y;

7 y = y + 1;

8 assume(x <= 1000);

9 }

10 assert(x >= y);

11 return 0;

12 }

Fig. 4.6. afnp2014.c after applying contractors.

both syntaxes, where we notice that IBEX syntax is more strict in its structure than ESBMC’s

syntax. For example, (x > 1)+1 is allowed in ESBMC’s syntax but not IBEX. Furthermore,

IBEX syntax does not have an operator for ! =, which makes it hard to convert some expres-

sions. While parsing an expression, we build a list of variables inside the assertions, which

we will use later to analyse intervals. We have two lists updated from this procedure: a list

of variables and a list of constraints.

4.3.2 Interval Analysis

Interval analysis builds intervals for each variable in the assert statements. These intervals

will serve as domains for the CSP. The current implementation now utilizes --interval-

analysis option in ESBMC and parses each assume directive inserted by it. At each assume

directive, we check whether the variable used is in our list, and if it is, we update its interval.

4.3.3 Interval Methods (Apply Contractor)

For contractors, we chose IBEX library.2 IBEX is a C++ library for constraint processing over

real numbers. It started in 2007 as an open-source academic project that provides algorithms

for handling non-linear constraints. RealPaver [182] is also a C++ interval solver that deals

with CSPs involving non-linear constraints. It is more focused on robust global optimisation

using interval arithmetic. We choose IBEX over RealPaver because of its ability to easily in-

tegrate with other solvers and tools, providing more versatility in mixed-integer programming
2http://www.ibex-lib.org/
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n ∈ V scalar values
x ∈ X program variable
⊙ ::= + | − | ∗ | ... binary operator
⧀ ::= < | ≤ | == | ... comparison operator
E ::= scalar expressions

| n scalar constant
| x variable
| E ⊙ E binary operation

B ::= Boolean expressions
| E ⧀ E Compare two expressions

L ::= logical expression
| B
| B ∧ B and
| B ∨ B or

(a) IBEX Syntax.
E ::= scalar expressions

| n scalar constant
| x variable
| E ⊙ E binary operation
| E ⧀ E Compare two expressions
| E ∧ E and
| E ∨ E or
| ¬E not
| Typecast(E ) typecast

...
(b) ESBMC goto-program Syntax.

Fig. 4.7. Syntax

and broader application support.

The contractor type used is the forward-backward contractor. With the constraint and the

variables parsed from the first step and domains from the second step, we create the contractor

with the constraint complement to reduce the intervals inside the solution. As described

previously, the contractor will need a CSP; at this point, we should have all the components

to apply it. We have the list of constraints, the variables, and their domains. The resulting

domains from the contractor will represent where the property may be violated, thus limiting

the search space for BMC.
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4.3.4 Modify Original Program

With the resulting intervals, we compare them to the original and insert the assume directive

based on the difference. This is to tell BMC to ignore the instructions (loop iterations), which

will result in holding the property.

4.3.5 limitations

In property analysis (cf. Section 4.3.1), we support a limited range of one-to-one conversions,

restricting the types of transformations applicable to expressions. While these conversions

work for simple cases, more complex expressions need different handling. For example, IBEX

does not support the != operator, which can be represented as a union of intervals. Similarly,

expressions such as (x>1)+1, valid in GOTO-program syntax, are not allowed in IBEX due

to stricter rules that prevent adding logical expressions to scalars. As shown in Fig. 4.7a,

IBEX enforces a clear distinction between logical and numerical expressions, making these

conversions more complicated. Additionally, we handle only one constraint at a time, and

expressions with unsupported operators such as !=, ==, &&, and || are not converted as they

fall outside IBEX’s capabilities.

A key challenge with ESBMC’s interval analysis is that the resulting intervals can be too

broad, leading to overly conservative results that may obscure useful insights for contrac-

tors. This reduces the analysis effectiveness. Furthermore, the lack of floating-point inter-

val analysis may present challenges in future applications since IBEX exclusively handles

double types. Systems requiring precise numerical analysis would struggle with this lim-

itation. Thus, the current gaps in operator support, handling of complex conversions, and

interval precision highlight improvements, such as better interval accuracy, support for more

complex expressions, and floating-point interval analysis to enhance system precision and

usability.
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4.4 Experimental Evaluation

4.4.1 Objectives

The objective of this experimental evaluation is to assess the impact of integrating contrac-

tors—an interval method—into the Bounded Model Checking (BMC) process. This assess-

ment is structured to provide empirical evidence addressing the core research questions for-

mulated in Chapter 1 (Section 1.4). Specifically:

EG1 To evaluate the extent to which contractors reduce the state space in BMC. This

objective aligns directly with Research Question 1, which investigates whether

numerical methods, particularly contractors, can effectively reduce the search

space in verification techniques.

EG2 To measure computational improvements in terms of CPU time and memory

consumption. This objective supports Research Question 2, which examines the

impact of contractor integration on resource consumption, including processing

time and memory efficiency.

EG3 To determine whether the incorporation of contractors preserves soundness and

completeness of the verification. This objective addresses Research Question 3,

which seeks to verify that the integration of contractors does not compromise

the soundness or completeness of BMC as a verification framework.

4.4.2 Description of the Setup

We chose ESBMC [106] as our BMC engine due to its incremental algorithms and its inte-

gration with benchexec. We executed ESBMC with the same set of options of SV-COMP

2022, differing only on the strategy chosen (i.e., incremental-bmc). following set of op-

tions: --incremental-bmc, which enables the incremental BMC; --unlimited-k-steps,

which removes the upper limit of iteration steps in the incremental BMC algorithm; --goto-

contractor to enable our method. Experimental results that do not use the contractor were

taken from SV-COMP 20223. We compare our results with state-of-the-art tools from SV-
3https://sv-comp.sosy-lab.org/2022/results/results-verified/
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COMP 2022. These tools include CBMC [107] for its success over the years. Veriabs [183],

which is the SV-COMP 2022 champion in this category and the runner-up CPA Checker

2.1 [184] and Verifuzz [185]. SV-COMP score system consists in: (+2) for correct true, (+1)

for correct false, (-32) for incorrect true, and (-16) for incorrect false.

All experiments were conducted on an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

and 160GB of RAM. We set time and memory limits of 900 seconds and 15GB for each

benchmark, respectively. Finally, we present the results by showing the verification time and

scores. All presented execution times are CPU times, i.e., only the elapsed periods spent in the

allocated CPUs. Furthermore, memory consumption is the amount of memory that belongs to

the verification process and is currently present in RAM (i.e., not swapped or otherwise not-

resident). CPU time and memory consumption were measured with the benchexec tool [156]

(commands available on the supplementary page). We did not enable swapping or turbo

during our experiments, and all executed tools were restricted to a single core.

4.4.3 Description of the Benchmarks

We evaluate our approach using 7044 tasks in unreach-call benchmarks from SV-COMP

2022 [186], which can be described as verifying whether exists an execution path that can lead

a benchmark to an assertion failure. This category contains benchmarks extracted from var-

ious domains (e.g., linux drivers, recursion, unbounded loops, algorithms, real-world, etc.).

Due to massive arithmetic computation within loops, this category can result in many time-

outs (i.e., a tool can not verify it in a given time constraint); they fit our approach. All tools,

benchmarks, and evaluation results are available on a supplementary web page4. For detailed

information about the benchmark structure and scoring methodology used in this evaluation,

refer to Appendix A

4.4.4 Results

ESBMC with contractors had been evaluated on unreach-call property in 13 subcategories

in SV-COMP. Table 4.1 shows our comparison results with other state-of-the-art BMC tools.

Our approach showed its effectiveness in multiple subcategories regarding score and resource
4https://doi.org/10.5281/zenodo.6949341
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consumption. In detail, we improved ESBMC incremental-BMC in Arrays, ControlFlow,

ECA, Heap, and Loops.

The experimental results show that our method helped BMC efficiently reduce re-

source consumption, including a reduction of 75% of memory usage while verifying

1% more benchmarks than our baseline, thus successfully answering EG2.

Our approach demonstrated its capabilities in these benchmarks by achieving scores equal

to or higher than those of ESBMC Incremental-BMC. We have the lead in subcategories XCSP

and AWS-C-Common, and we are a close second in Floats. Also, our approach ranked third

in our comparison of Loops, Arrays, and Heap categories. This shows how valuable con-

tractors are in real-world programs because we scored higher than other tools and decreased

the verification time and memory. However, contractors could not improve the score in other

categories, for it was not applicable in the current implementation. The cases where contrac-

tors could not be applied are due to our naive approach to detecting monotonicity and due to

it only supporting a subset of operators (cf. Subsection 4.3.5).

While the observed consistency in correct and incorrect verification results—main-

tained within a margin of 0.01%—serves as empirical evidence suggesting that the

integration of contractors does not negatively impact the verification outcomes, this

observation alone does not constitute a formal proof of soundness or completeness.

As defined in Definitions 15 and 16, soundness and completeness are theoretical

properties that require formal guarantees beyond empirical behaviour.

Thus, although our results are aligned with the expected outcomes of a sound and

complete verification process, they should be interpreted as supporting evidence

rather than definitive proof. This empirical consistency strengthens our confidence in

the implementation’s reliability and supports the achievement of Experimental Goal

3 (EG3), but we acknowledge that formal verification or theoretical analysis would

be necessary to rigorously prove soundness and completeness in the general case.

One of the main issues in BMC is dealing with lengthy loops. Our approach focuses on

dealing with loops and pruning the unnecessary steps to conclude the verification. Loops cat-

egory has 14 subcategories categorized the same as SV-COMP 2022 as shown in Table 4.2.

In particular, our approach performed better in four of these subcategories than plain ES-
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BMC. For example, we checked the subcategory of loops; we got remarkable results com-

pared to plain ESBMC. The same applies to loop-new, loop-zilu, loops-crafted-1 and

nla-digbench-scaling. We also got better scores and time consumption results than the

champion tool Veriabs. In particular, in the subcategory loop-simple, verifythis and

nla-digbench-scaling.

The greatest performance improvements with contractors were observed in the LoopLit

and BitVectors subcategories. In LoopLit, contractors effectively narrowed loop bounds,

significantly reducing the number of iterations explored during symbolic execution. In BitVectors,

contractors constrained variable ranges involved in bitwise operations, simplifying the gen-

erated verification conditions. These gains are attributed to the presence of tight, statically

analyzable constraints that lend themselves well to interval-based domain reduction. In con-

trast, benchmarks involving dynamic memory and concurrency exhibited more modest im-

provements due to the complexity and unpredictability of their constraints.

In the loops category, we find our approach shows improvement of ESBMC perfor-

mance by at least 2% and achieves EG1.

However, we scored lower in loop-acceleration because some benchmarks timed out,

which cost us 3 scores. Our approach also has some shortcomings: we do not deal with

multiple lengthy loops in this version. That is why we got the same score in some subcat-

egories. We achieved the most critical objectives by saving CPU time, decreasing memory

consumption, and improving the scores. Additionally, we scored reasonably well in most

categories, with 2 being the lead. However, this version of our approach does not apply to

some benchmarks, so we see some score differences. Also, we noticed our approach did not

perform well in one particular benchmark and reported a false negative. The benchmark is in

bitvectors, representing the overflow problem. Another issue with the implementation is

that we do not apply the contractors when it comes to an unsupported operator. This is also a

reason for the score not improving in some subcategories. Moreover, the lack of accuracy in

the interval analysis option in ESBMC hindered the performance of the contractors. Because

the intervals were not accurate and the result of the contractor did not help reduce the search

space. In the future, we will work to overcome this limitation.
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Fig. 4.8. Monotone vs non-monotone.

4.5 Threats to the validity

As mentioned in Section 4.2, we only apply the contractor if the contracted area is at

the end of the loop. For example, given a variable x = X0 that is incremented inside a

non-deterministic loop x++ up to a max value of Xmax, if the contractor result (e.g., X =

[X0, Xmax]) was reduced from the upper bound (i.e., X < Xn < Xmax, where X < Xn is

the contracted region) we can safely skip the instructions (iterations) that exceed the upper

bound. However, suppose the contracted area was at the beginning of the loop (i.e., the

reduced interval from the lower bound). In that case, we cannot guarantee the correctness

of the verification results, as the method cannot reason about the minimum quantity of loop

iterations. In the previous example, reducing from the lower bound (i.e., X > Xn ∧ X <

Xmax) cannot be contracted as it would skip instructions.

Similarly, the program’s monotonicity for variables also affects the verification results. For

example, a variable y that may be non-deterministically incremented or decremented cannot

be contracted. Illustrated in Figure 4.8 are two programs; one is monotone (here, y would

always increment), and the other is not (here, y can increment and decrement at any state).

Dots represent states, and blank lines and grey areas represent a property. Assume we start

from the origin point; the first program can safely use an assume directive to skip the states

guaranteed to hold the property. However, that is not the case with the second program, and

we will end up in the same situation as mentioned before, where the area reduced is at the
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beginning of the loop. Nevertheless, this time, it is in the middle.

4.6 Conclusion

In the domain of Interval Analysis and Methods, the creation of contractors utilizing In-

terval Methods has rendered their applications more practical by mitigating the complexity

inherent in such methods [139]. We assert that a similar advantageous impact can be achieved

by incorporating contractors in interval analysis applied to the static analysis of programs. In

this research, we have extended the application of contractors to prune the search space within

Bounded Model Checking (BMC) techniques. Experimental results illustrate the consequen-

tial impact on open-source C benchmarks, wherein certain categories witnessed an increase

in scores accompanied by a reduction in resource consumption.

Specifically, employing interval methods via contractors expedited the incremental BMC

verification process. A comparative analysis between verification with and without contrac-

tors’ applications reveals notable differences, with 32 additional benchmarks successfully

verified, particularly evident when pruning the search space of programs featuring loops. Fur-

thermore, our approach demonstrated competitive performance against state-of-the-art tools

in BMC, achieving a lead in two subcategories.

Importantly, the proposed methodology preserves the soundness and completeness of the

BMC technique by consistently producing the same verification outcome. However, it ne-

cessitates further development to encompass additional cases and enhance overall scores.

Prioritising the implementation of support for more operators and refining interval analysis

stands out as critical for achieving the most impact improvements in verification results in

scores and resource consumption.
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Chapter 5

Contractors in abstract interpretation

5.1 Introduction

In formal methods and static analysis, abstract interpretation is widely regarded as a pow-

erful method for approximating program behavior [81], [144]. However, one of the central

difficulties with abstract interpretation is balancing the requirement for precision with ensur-

ing the analysis remains computationally tractable [144]. This chapter introduces the con-

cept of contractors as one solution to alleviate this problem, particularly in the context of

interval analysis. Contractors are interval-based methodologies for contracting the intervals

representing possible values for program variables to improve the precision of abstract in-

terpretations. This chapter discusses the use of contractors on conditional statements—more

precisely, on if -statements and loops—illustrating how contractors can be systematically in-

tegrated into interval analysis to obtain more precise results by pruning intervals using con-

tractors and reducing the search space which is the goal of this thesis.

5.2 Methodology

In this section, we explore contractors’ application in the context of interval analysis within

the abstract interpretation framework. Contractors are tools for improving the precision of

abstract interpretation in numerical computations by contracting intervals. Our primary focus

is the application of contractors in conditional expression evaluations, typically if statements

and loops. Such types of expressions may involve variables, often represented by intervals.

We do this by constructing the three basic components of a constraint satisfaction problem

(CSP) (cf. Definition 16): the condition as constraint, the variables involved in the condition,
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5.2. METHODOLOGY

and the domains of these variables obtained by interval analysis (cf. Section 2.6.5). In doing

so, we utilise contractors to narrow down these intervals.

When applicable, contractors utilize rigorous interval arithmetic to narrow the intervals

representing the possible values of variables iteratively. The contraction process reduces the

width of these intervals, converging to a more precise and accurate state space description.

This iterative aspect of contraction allows the progressive elimination of infeasible values to

improve the intervals until they nearly represent the actual range of possibilities.

A particularly valuable benefit that comes along with the use of contractors in abstract

interpretation is its ability to decrease the precision loss occurring while widening (cf. Def-

inition 25) is taking place. Widening is one approach to ensuring the termination of the

analysis by state space over-approximation; quite often, this leads to a loss in precision [187].

The contractors overcome this issue by mitigating some lost precision by ensuring soundness

and preserving the precision of the analysis itself. This improvement is beneficial for appli-

cations requiring accuracy, such as those in safety-critical systems or numerical calculations,

where even small inaccuracies may cause large deviations.

For example, consider the code fragment in Figure 5.1a. It starts with assigning the vari-

ables with random values (i.e., [−∞,∞]) and then limiting the values with assume directive

to [0, 10] and [10,∞] for x_1 and x_2 respectively. Next, we encounter the if statement.

Now, we construct our CSP in this context where the variables are x_1 and x_2 are our vari-

ables x1, x2, domains are [0, 10] and [10,∞] for x1 and x2 respectively, and our constraint

which is the if statement condition x2−x1 ≤ 10. With all CSP components ready, we con-

struct our contractor as seen in Figure 5.1d. We plug in our intervals for the two variables,

and we get x1 = [0, 10] with no change and x2 = [10, 20] with a notable reduction. Thus,

we gained precision in intervals inside the if statement. Listing 5.1 shows the difference of

goto program in ESBMC execution where the red highlighted lines are from interval analysis

without the contractor and the green lines were added when using the contractor.
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5.3. IMPLEMENTATION: IBEX CONTRACTOR

1 #include <assert.h>

2 int main() {

3 int x_1 = __VERIFIER_nondet_int();

4 int x_2 = __VERIFIER_nondet_int();

5

6 assume(x_1 <= 10 && x_1 >= 0 && x_2 >= 10);

7

8 if(x_2 − x_1 <= 10)

9 assert(x_1 − x_2 <= 0);

10

11 return 0;

12 }

(a) contractor example in abstract interpretation.

10 20 30 40

10

20

30

40

x 2
−
x 1
≤
10

[x]

x1

x2

(b) Before Contractors.

10 20 30 40

10

20

30

40

x 2
−
x 1
≤
10

[x]

x1

x2

(c) After Contractors.

f(x) ≤ 0 I = (−∞, 0]

f(x) : y = x2 − x1 − 10 [y] = I ∩ ([x2]− [x1]− 10) Forward-step

f(x)−1
x1

: x1 = x2 − y − 10 [x1] = [x1] ∩ ([x2]− [y]− 10) Backward-step

f(x)−1
x2

: x2 = y + x1 + 10 [x2] = [x2] ∩ ([y] + [x1] + 10) Backward-step

(d) Contractor steps for the example in Fig 5.1a.

Fig. 5.1. Example illustrating contractors in abstract interpretation.

5.3 Implementation: Ibex Contractor

For contractors, we chose the IBEX library.1 IBEX is a C++ library dedicated to con-

straint processing over real numbers. It started in 2007 as an open-source academic project

that provides algorithms for handling non-linear constraints. RealPaver [182] is also a C++

interval solver that solves constraint satisfaction problems (CSPs) with non-linear constraints.

Its main focus is on rigorous global optimization using interval arithmetic. We choose IBEX
1http://www.ibex-lib.org/
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5.3. IMPLEMENTATION: IBEX CONTRACTOR

1 main (c:@F@main):

2 DECL signed int x_1;

3 DECL signed int return_value$___VERIFIER_nondet_int$1;

4 ASSIGN return_value$___VERIFIER_nondet_int$1=NONDET(signed int);

5 ASSIGN x_1=return_value$___VERIFIER_nondet_int$1;

6 DECL signed int x_2;

7 DECL signed int return_value$___VERIFIER_nondet_int$2;

8 ASSIGN return_value$___VERIFIER_nondet_int$2=NONDET(signed int);

9 ASSIGN x_2=return_value$___VERIFIER_nondet_int$2;

10 ASSUME x_1 <= 10 && 0 <= x_1 && x_2 <= 2147483647 && 10 <= x_2

11 IF !(x_2 − x_1 <= 10) THEN GOTO 2

12 −ASSUME x_2 <= 2147483647 && 10 <= x_2 && x_1 <= 10 && 0 <= x_1

13 +ASSUME x_2 <= 20 && 10 <= x_2 && x_1 <= 10 && 0 <= x_1

14 ASSERT x_1 − x_2 <= 0

15 2: RETURN: 0

16 END_FUNCTION // main

Listing 5.1. The GOTO program for the example in Figure 5.1a. The red lines are the lines removed and
replaced with green lines as a result of using contractors.

over RealPaver because it can easily be integrated with multiple solvers and tools, thus pro-

viding more flexibility in mixed-integer programming and broader application support.

The following steps are taken to apply the contractor in the given program.

1. Enable Ibex Contractor Flag: Configuration of ESBMC to utilise the Ibex library for

interval analysis. The flag --interval-analysis-ibex-contractor is used along

with --interval-analysis.

2. Conditional GOTO and ASSERTS in ESBMC Analysis: ESBMC identifies a condi-

tional GOTO statement during the execution path analysis. These conditional statements

are in the form IF cond THEN GOTO label. They represent either an if, if-else,

or a loop. Asserts can be in two forms: assert() from assert.h or user-defined

__VERFIER_assert().

3. Parsing Condition to Ibex: The condition from the GOTO statement is parsed into

Ibex for analysis. Figure 4.7 illustrate the difference in syntax. A GOTO expression

may not be converted to IBEX expression because it does not fit the syntax. There are

two exceptions; one is when the parser encounters a A != B expression, it will convert

it into A > B || A < B. The other exception is when the parser encounters a negation

or unary operator !, where it will take the complement of the expression encapsulated

in the negation.
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5.4. EVALUATION

4. Reading Current Intervals for Variables: Retrieval of current intervals (ranges of

values) for variables involved in the condition. This is done via a list created by interval

analysis to represent the program’s current state. Primarily, it has three lists: one for

integers, floats, and one for wrapped intervals. In this work, we are only interested in

the integers list.

5. Applying the Ibex Contractor: Ibex contractor is applied to refine the intervals based

on the condition. The contractor used is the forward-backward contractor 18, and it is the

outer contractor variant. The inner contractor has not been used explicitly here because

interval analysis will analyse a conditional statement’s TRUE and FALSE paths. In the

TRUE path, IBEX gets the condition as it is. Meanwhile, in the FALSE path, IBEX gets

the negation or the complement of that condition, which makes ESBMC apply the outer

and inner contractors. An optimisation could be done here by storing the expressions

and creating complements rather than repeatedly parsing them.

6. Converting Results to ESBMC Expressions: The results from Ibex are converted back

into expressions that ESBMC can understand. This step is not as trivial as it may seem

due to the conversion from double to int and its variations (long, unsigned int,

char). One case to be aware of is converting from the max int number represented in

double back to int. So, conditions are set in place to prevent getting the wrong values.

Another measure is rounding. When rounding numbers back to integers, we take the

floor for the upper bound and the ceiling for the lower bound.

7. Updating ESBMC Interval Analysis: The updated intervals from Ibex are passed back

to ESBMC for continued analysis.

5.4 Evaluation

5.4.1 Objectives

This experiment will compare results from performing two strategies incremental-BMC and

k-induction (cf. Definitions 3, 4). Our experiment will include three methods in each strategy:

plain strategy, strategy with interval analysis, and strategy with interval analysis utilizing

contractors. The comparison will be made regarding CPU time, memory consumption, and
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5.4. EVALUATION

SV-COMP score. SV-COMP score system consists of (+2) for correct true, (+1) for correct

false, (-32) for incorrect true, and (-16) for incorrect false. This evaluation will answer the

following main experimental goals:

EG1 (Efficiency) Do the contractors prune the search space to consume fewer re-

sources (CPU time, Memory) when verifying programs with ESBMC?

EG2 (Soundness and completeness) Does the use of contractors affect the correct-

ness or completeness of the verification results for both incremental BMC and

k-induction?

EG3 (Trade-off) What are the trade-offs in time and memory usage when using con-

tractors, and is there a point where using contractors becomes inefficient?

5.4.2 Setup

We executed ESBMC with the same set of options of SV-COMP 2024, differing only on the

strategy chosen (i.e., k-induction or incremental-bmc), following this set of options:

--incremental-bmc, which enables the incremental BMC.

--k-induction, which enables the k-induction.

--unlimited-k-steps removes the upper limit of iteration steps in the incremental

BMC algorithm.

--interval-analysis to enable interval analysis (ESBMC’s abstract interpretation

engine).

--interval-analysis-ibex-contractor to enable our method utilizing contrac-

tors.

We limit our test to compare with baseline ESBMC to focus the test on the effect of contractors

on ESBMC’s abstract interpretation engine. This means we will not compare it with other

tools as their performance is irrelevant in this comparison because we want to focus on the

performance of the contractors in the same context.

All experiments were conducted on an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz

and 160GB of RAM. We set time and memory limits of 900 seconds and 15GB for each
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benchmark, respectively. Finally, we present the results by showing the verification time and

scores. All presented execution times are CPU times, i.e., only the elapsed periods spent in the

allocated CPUs. Furthermore, memory consumption is the amount of memory that belongs to

the verification process and is currently present in RAM (i.e., not swapped or otherwise not-

resident). CPU time and memory consumption were measured with the benchexec tool [156]

(commands available on the supplementary page). We did not enable swapping or turbo

during our experiments, and all executed tools were restricted to a single core.

5.4.3 Benchmarks

We evaluate our approach using 11282 tasks in unreach-call benchmarks from SV-COMP

2024 [155], which can be described as verifying whether exists an execution path that can

lead a benchmark to an assertion failure. This category contains benchmarks extracted from

different domains (e.g., linux drivers, recursion, unbounded loops, algorithms, real-world,

etc.). Due to massive arithmetic computation within loops, this category can result in many

timeouts (i.e., a tool can not verify it in a given time constraint); they fit our approach. All

tools, benchmarks, and evaluation results are available on a supplementary web page2. For

detailed information about the benchmark structure and scoring methodology used in this

evaluation, refer to Appendix A

5.4.4 Results

Given the experimental goals described above (EG1-EG3), the results offer insights into how

the contractor method performs relative to incremental-BMC and k-induction strategies. The

discussion below focuses on the implications of using contractors for each experimental goal.

Tables 5.6 and 5.7 show this evaluation’s results overview across categories.

Overall, in incremental-BMC, contractors took slightly more CPU time by 0.18% and

memory increased by 0.02% than interval analysis but still less than plain incremental. Sim-

ilarly, k-induction showed insignificant changes in CPU time (0.43% increase) and memory

(2.20% decrease) if we compare interval analysis with and without contractors.

2https://drive.google.com/drive/folders/1gQw8Gf5uAsXKkbVTjndbkB6n1bs4Cil_?usp=
sharing
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5.4. EVALUATION

1 ...

2 int init(void)

3 {

4 int tmp ;

5

6 {

7 if ((int )r1 == 0) {

8 if ((int )id1 >= 0) {

9 if ((int )st1 == 0) {

10 if ((int )send1 == (int )id1) {

11 if ((int )mode1 == 0) {

12 ...

13 if ((int )id6 != (int )id8) {

14 if ((int )id7 != (int )id8) {

15 tmp = 1;

16 } else {

17 tmp = 0;

18 }

19 } else {

20 tmp = 0;

21 }

22 }

23 ...

Listing 5.2. pals_lcr.8.ufo.BOUNDED-16.pals+Problem12_label03.c code snippet. It shows many
if nested to finally reach the assignment of tmp to 1.

However, looking closely at the individual benchmark results, we notice a major decrease

in time in some benchmarks. For example, one benchmark3 time with interval analysis was

875 seconds. With contractors, the benchmark was verified in 211 seconds. This decrease is

because contractors made some variable intervals (within interval analysis) smaller by half.

In Listing 5.2, we show part of the code where intervals differ from interval analysis with-

out and with contractors. When this code was transformed into GOTO language (ESBMC

internal representation 4), we show the difference in Listing 5.3 where both GOTO files are

identical with the lines added because of the contractor are highlighted in green. Particularly,

the variables starting with the prefix id are of type char, meaning they have an initial interval

from -128 to 128 (i.e., [−128, 127]). Some intervals were reduced to [0, 127] with the con-

tractor. This reduction in intervals made the solver determine the satisfiability faster, which

led to faster verification time.

1 init (c:@F@init):

2 DECL signed int tmp;

3 ASSIGN tmp=NONDET(signed int);

3pals_lcr.8.ufo.BOUNDED-16.pals+Problem12_label03.c
4Documentation of GOTO-program can be found at https://ssvlab.github.io/esbmc/

documentation.html
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4 IF !((signed int)r1 == 0) THEN GOTO 121

5 IF !((signed int)id1 >= 0) THEN GOTO 119

6 IF !((signed int)st1 == 0) THEN GOTO 117

7 +ASSUME id1 <= 127 && 0 <= id1

8 IF !((signed int)send1 == (signed int)id1) THEN GOTO 115

9 IF !((signed int)mode1 == 0) THEN GOTO 113

10 IF !((signed int)id2 >= 0) THEN GOTO 111

11 IF !((signed int)st2 == 0) THEN GOTO 109

12 +ASSUME id2 <= 127 && 0 <= id2

13 IF !((signed int)send2 == (signed int)id2) THEN GOTO 107

14 IF !((signed int)mode2 == 0) THEN GOTO 105

15 ...

16 +ASSUME id8 <= 127 && 0 <= id8 && id5 <= 127 && 0 <= id5

17 IF !((signed int)id5 != (signed int)id8) THEN GOTO 7

18 IF !((signed int)id6 != (signed int)id7) THEN GOTO 5

19 +ASSUME id8 <= 127 && 0 <= id8 && id6 <= 127 && 0 <= id6

20 IF !((signed int)id6 != (signed int)id8) THEN GOTO 3

21 IF !((signed int)id7 != (signed int)id8) THEN GOTO 1

22 ASSIGN tmp=1;

23 GOTO 2

24 1: ASSIGN tmp=0;

25 2: GOTO 4

Listing 5.3. GOTO program produced by ESBMC from
pals_lcr.8.ufo.BOUNDED-16.pals+Problem12_label03.c with interval analysis and another time with
interval analysis contractors. The files are almost identical with the lines added by using contractors in green

Over the Sequentialized category, we see a decrease in memory usage. However, in Com-

bination, we see an increase. In both cases, the difference is less than 5% of total memory.

However, when we look at some benchmarks, we see a substantial decrease in memory, espe-

cially in the Sequentialized category; therefore, we make two additional Tables 5.8 5.9, which

show only benchmarks that resulted in either TRUE or FALSE and removed all timeouts and

out of memory. In this table, all methods have the same score. However, we cannot say the

same for CPU time and memory. We notice that the Sequentialized category took less time

(11.62%) and less memory (24.65%) when using contractors with incremental-BMC and took

less time (5.28%) and less memory (17.38%) when using contractors with k-induction.

To determine why interval analysis with and without the contractor differ in time and mem-

ory, we will closely examine one of the benchmarks that showed a decrease in CPU time and

memory. pals_lcr-var-start-time.3.2.ufo.UNBOUNDED.pals.c.v+sep-reducer.c

showed CPU time of 519 s, 532 s, and 265 s in plain k-induction, k-induction with interval

analysis, and k-induction with interval analysis with contractors, respectively. It also showed

1GB, 1GB, and 0.5GB in memory. When we examine the code, we notice a lot of conditions

leading to values that would reach the error state. Listing 5.4 shows a snippet of the code

we are examining. When we compare GOTO files for interval analysis without contractors
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Table 5.1. Here, we show the percentage increase in CPU time (CPU) and memory consumption (Mem)
when comparing interval analysis with and without contractors when they both reach the same status. This
table is an extension of Tables. 5.8 and 5.9. In category Sequentialized, contractors consumed less CPU by
11.62%. While in category ProductLines contractors consumed more CPU by 13.49%

Category Incremental-BMC K-induction
CPU Mem CPU Mem

Arrays 1.16% 1.69% 0.78% 1.69%
BitVectors -1.78% 3.60% -2.72% 3.74%
ControlFlow 6.68% 2.21% 4.74% 2.40%
ECA 2.73% 2.24% 2.56% 1.25%
Floats -3.19% 0.82% 0.60% 1.10%
Heap 0.54% 3.53% 1.64% 3.12%
Loops -0.08% 2.21% 0.90% 1.64%
ProductLines 13.49% 2.97% 15.95% 2.94%
Recursive 1.05% 1.81% 0.82% 1.82%
Sequentialized -11.62% -24.65% -5.28% -17.38%
XCSP 0.78% 2.51% -0.70% 2.92%
Combinations 0.00% 2.30% 2.37% 1.38%
Hardware -0.21% 0.19% 0.16% 0.16%
Hardness 2.56% 3.36% -0.20% 1.46%
Total 0.05% 0.70% 0.86% 0.78%

to GOTO files for interval analysis with contractors, we notice that some if statements were

removed.

Illustrated in Listing 5.5, we show a sample of the if statements removed. The reason

for removing them is that the contractor was able to keep track (through interval analysis) of

variables (namely st1, st2, and st3) involved in each if statement in Listing 5.4. Thus, the

contractor guaranteed that these if statement conditions would always be true, which made

the other branch of this if statement entirely omitted because it was unreachable. Likewise,

if the condition is always false, the if branch is omitted, and a GOTO would take the pro-

gram’s execution directly to the else branch. Therefore, The memory required to verify such

benchmarks is reduced from the baseline.

On the other hand, we see an increase in CPU time in Productlines category. We closely

examined the benchmarks and noticed that most verification tasks were solved in an average of

1.9 and 2.2 seconds in interval analysis without and with contractors, respectively. This leads

us to the conclusion that the overhead introduced when using the contractors is amplified here

due to the low values and verification time.
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1 int init__tmp;

2 if (((int)r1) == 0)

3 {

4 if (((((int)alive1) + ((int)alive2)) + ((int)alive3)) >= 1)

5 {

6 if (((int)id1) >= 0)

7 {

8 if (((int)st1) == 0)

9 {

10 if (((int)send1) == ((int)id1))

11 {

12 if (((int)mode1) == 0)

13 {

14 if (((int)id2) >= 0)

15 {

16 if (((int)st2) == 0)

17 {

18 ...

Listing 5.4. pals_lcr-var-start-time.3.2.ufo.UNBOUNDED.pals.c.v+sep-reducer.c file from
Sequentialized category. Where contractors consumed significantly less CPU and memory. The code shows
nested if statements that manipulate variable values to reach an error state eventually. All the conditions in
the if statements are considered constraints for the contractors.

1

2 DECL signed int check__tmp;

3 ASSIGN check__tmp=NONDET(signed int);

4 −IF !((signed int)st1 + (signed int)st2 + (signed int)st3 <= 1) THEN

GOTO 38

5 −IF !((signed int)r1 < 3) THEN GOTO 37

6 ASSIGN check__tmp=1;

7 ASSIGN __return_1471=1;

8

9

10 IF (signed int)mode1 == 0 THEN GOTO 36

11 −IF !((signed int)r1 == 255) THEN GOTO 5

12 +GOTO 5

13 RETURN: 0

14 −5: ASSIGN r1=(unsigned char)((signed int)r1 + 1);

15 +5: ASSIGN r1=1;

16 ASSIGN node1__m1=p3_old;

17

18

19 ASSIGN check__tmp=NONDET(signed int);

20 −IF !((signed int)st1 + 2 <= 1) THEN GOTO 47

21 +GOTO 45

22 −RETURN: 0

23 −47: ASSIGN check__tmp=0;

24 +45: ASSIGN check__tmp=0;

25 ASSIGN __return_4237=0;

Listing 5.5. GOTO file comparison for file
pals_lcr-var-start-time.3.2.ufo.UNBOUNDED.pals.c.v+sep-reducer.c produced by ESBMC
interval analysis with and without contractors. We are comparing the files where the use of contractor
removes the red highlighted lines, and the use of contractor adds the green highlighted lines.
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EG1 (Efficiency) When we look at the total CPU time and memory increases by the

contractor, in both strategies, they are less than 1%. The addition of contractors

introduces minimal overhead regarding CPU time and memory usage. However,

the contractors also helped save time and memory in certain categories. Thus,

EG1 is achieved.

In the case of EG2, we can use the score metric to check whether there is any effect on

soundness (cf. for Definition 1) and completeness (cf. for Definition 2). The score is the

number of benchmarks where verification succeeded, either by proving correctness (TRUE)

or showing counterexamples (FALSE). The scores show some interesting trends for all cate-

gories. We will discuss the changes in Incremental-BMC and k-induction separately.

Table 5.2. Scores of Incremental-BMC, incremental-BMC with interval analysis, incremental-BMC with
interval analysis utilizing contractors.

Category # of files Incremental-BMC Interval analysis Contractors
Arrays 431 112 112 112
BitVectors 49 57 57 57
ControlFlow 66 -463 -462 -462
ECA 1263 297 297 299
Floats 1076 867 864 867
Heap 240 289 289 289
Loops 790 759 759 759
ProductLines 597 453 453 453
Recursive 162 132 132 132
Sequentialized 584 231 231 236
XCSP 119 159 159 159
Combinations 671 431 429 428
Hardware 1224 349 349 349
Hardness 4010 568 568 570
Total 11282 4241 4237 4248

In Table 5.2, contractors scored higher than other configurations. The categories where

scores increased: The ECA category, with its 1, 263 benchmarks, showed a slight increase in

performance. The score increased from 297, obtained using interval analysis, to 299 when

contractors were used. Another category, Sequentialized, also improved after the introduc-

tion of contractors, with scores increasing from 231 to 236. Similarly, Hardness category

increased from 568 to 570.
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Table 5.3. This table shows the number of benchmarks that resulted in all statuses. Comparing
Incremental-BMC, incremental-BMC with interval analysis, incremental-BMC with interval analysis utilizing
contractors. We see that contractors have increased the number of correctly verified benchmarks while
maintaining the same number in incorrectly verified benchmarks.

status Incremental-BMC Interval analysis Contractor
correct 3386 3383 3391

correct true 1447 1446 1449
correct false 1939 1937 1942

incorrect 27 27 27
incorrect true 17 17 17

incorrect false 10 10 10
unknown 7869 7872 7864

On the other hand, some categories remained stable. The scores in the BitVectors, Heap,

and XCSP categories did not change even after adding contractors, meaning no negative im-

pact was caused on these benchmarks. In the Combination category, the score has decreased

to 428 when using the contractors which is the only negative result in this table.

These results show that adding contractors to interval analysis for incremental BMC ei-

ther preserves or slightly increases the verification score. Importantly, these improvements

are obtained without sacrificing any soundness or completeness of the analysis. Moreover,

Table 5.3 shows that contractors were able to solve more benchmarks and did not introduce

any new false positives or false negatives.

Table 5.4. Scores of k-induction, k-induction with interval analysis, k-induction with interval analysis
utilizing contractors.

Category # of files K-induction Interval analysis Contractors
Arrays 431 114 114 114
BitVectors 49 57 57 57
ControlFlow 66 -439 -439 -439
ECA 1263 1064 1071 1030
Floats 1076 626 628 625
Heap 240 295 295 295
Loops 790 765 777 779
ProductLines 597 605 783 783
Recursive 162 132 132 132
Sequentialized 584 227 229 230
XCSP 119 159 159 159
Combinations 671 444 441 440
Hardware 1224 593 591 591
Hardness 4010 7092 7090 7092
Total 11282 11734 11928 11888
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Incremental-BMC benefited from using contractors for score metrics. However, the same

cannot be said for k-induction. Table 5.5 shows the difference in scores for using contrac-

tors with k-induction. Most categories remained the same (Arrays, Bitvectors, ControlFlow,

Heap, ProductLines, Recursive, XCSP, Hardness), two categories benefited slightly (Loops,

Sequentialized), and three categories have reduced scores (ECA, Floats, Combination).

These results indicate that while contractors can enhance scores in some cases, they may

also lead to slight reductions in others. This variability suggests that contractors’ impact

on scores depends on the specific characteristics of the benchmarks, as discussed in List-

ing. 5.5. Moreover, the ECA category has seen the most discrepancy in benchmark status.

Some benchmarks reached a status when using interval analysis without contractors; when

using contractors, they timeout and vice versa. Because ECA contains one of the largest if

statements in all benchmarks. Listing 5.6 shows a sample of the many if statements in each

file, and each file contains around 5000 lines of code. Examining the verification time of

some benchmarks, we notice that the overhead introduced is high in this category, especially

with k-induction. While interval analysis benefited from contractors in some benchmarks, in

other benchmarks, it suffered greatly, leading to this decrease in score.

1 if((((a24==13) && ( a17 <= −108 && (((a5==4) && (input == 2)) && ((189 <

a2) && (281 >= a2))))) && (a7==12))){

2 a17 = ((((((a17 − 0) * 9) / 10) / 5) % 109) − −93);

3 a7 = 14;

4 a24 = 15;

5 a5 = 3;

6 return −1;

7 } else if((((a5==3) && (((−108 < a17) && (111 >= a17)) && ((a24==13) &&

(((a7==12) || (a7==13)) && (input == 4))))) && ((189 < a2) && (281 >= a2

)))){

8 a7 = 12;

9 return 26;

10 } else if(...

11

Listing 5.6. sample from ECA category benchmark files.

Table 5.5 shows the number of benchmark files with each status. Unlike incremental BMC,

contractors suffered from k-induction. However, the number of incorrect results remained the

same, meaning we maintained the same soundness and completeness in k-induction.
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Table 5.5. This table shows the number of benchmarks that resulted in all statuses. Comparing k-induction,
k-induction with interval analysis, k-induction with interval analysis utilizing contractors. We notice that
while interval analysis without contractors solved more files overall, contractors were able to tie with plain
k-induction when it comes to the number of correct false. Overall, all methods produced the same number of
incorrect results.

status K-induction Interval analysis Contractor
correct 7282 7377 7359

correct true 5364 5463 5441
correct false 1918 1914 1918

incorrect 37 37 37
incorrect true 17 17 17

incorrect false 20 20 20
unknown 3963 3868 3886

EG2 (Soundness and completeness) Although contractors did not increase the score

in k-induction, in both strategies, the number of incorrect results remained the

same for the same benchmark files. Thus, achieving EG2.

Integrating contractors with interval analysis in incremental BMC significantly enhances

verification. While this introduces some overhead, the benefits of the improvement in the

verification score pay off for the added costs. Contractors improve the precision of interval

analysis and, thus, increase the chances of either proving properties or finding bugs.

In k-induction, contractors’ application is especially useful when they enhance scores.

However, the impact of these will vary from case to case. When contractors result in a re-

duced score, deeper analysis is required to understand the root cause and develop strategies to

mitigate the negative effects. Employing heuristics to determine when contractors are most

effective in a given codebase can further optimize their application and maximize the overall

verification efficiency.

EG3 (Trade-off) In incremental-BMC, the overhead introduced when using contrac-

tors is minimal. While k-induction has seen a slight decline in score due to the

overhead in the ECA category. This makes us conclude that EG3 is partially

achieved and can be enhanced in future work.

The results show that contractors produced greater performance improvements in Incremental-

BMC than in k-induction. This difference is primarily due to the overhead introduced by con-

tractors during k-induction. In Incremental-BMC, contractors are applied at each bounded
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step to refine variable domains, resulting in immediate reductions in SMT query complexity

and solver runtime. However, in k-induction, contractors must be re-applied at every in-

duction step, across both the base case and the inductive step, which significantly increases

preprocessing time. The cumulative overhead of repeated domain contraction offsets much of

the potential performance gain. Consequently, while contractors still help reduce the search

space in k-induction, their net benefit is less pronounced compared to Incremental-BMC.

Generally, adding contractors to interval analysis is rewarding and worth considering in

both incremental BMC and k-induction. The minimal impact on efficiency and the poten-

tial for improved scores make contractors a valuable addition to interval analysis techniques.

However, researchers should assess their verification tasks’ specific needs and constraints to

make informed decisions about their use.

5.5 Conclusion

This chapter shows the application of contractors within the framework of abstract inter-

pretation. Its aim was to tackle a number of challenges within the software verification area,

particularly state space explosion, through the proper embedding of interval methods and

contractors to enhance both precision and performance in an abstract interpretation analysis.

Implementation emphasized the Ibex contractor, a tool capable of iteratively reducing vari-

able domains in abstract domains and preserving soundness and completeness of the verifica-

tion. The contractors’ applications demonstrate considerable solution space reduction and the

establishment of a basis for further accurate handling of the constraints. The integration op-

timised the detection of runtime errors, such as null pointer dereferences and memory leaks,

by increasing the analysis of program behaviours while maintaining the accuracy of results.

Moreover, we presented a comprehensive evaluation that detailed the objectives, exper-

imental setup, metrics, and results. The study’s outcome revealed that, in certain cases, it

significantly reduced the consumption of computational resources, notably CPU time and

memory consumption, when compared with conventional abstract interpretation approaches.

The use of contractors enabled a more focused exploration of the state space, thus partially

overcoming the drawbacks of over-approximation inherent in abstract interpretation. Indeed,

as shown by the experimental results, it is an important improvement in dealing with com-
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plex program structures and nonlinear properties, where traditional approaches usually suffer

from scalability issues.

Looking ahead, the lessons learned from this chapter open up new avenues for investi-

gation. Subsequent research in this area could focus on integrating contractors with other

abstract domains or developing hybrid methods that combine abstract interpretation with dy-

namic techniques, such as fuzzing. Additionally, performance optimizations, by paralleliza-

tion or distributed computing, would also be very effective in increasing the applicability of

these contractors to large-scale real-world software systems.

In summary, Chapter 5 describes the effect of contractors in the field of abstract interpreta-

tion, focusing on how they can be used to scale up and increase the effectiveness of software

verification methods. This effort marks a step toward more solid and practical verification

frameworks that can cope with the growing complexity of modern-day software systems.

115



5.5. CONCLUSION

Ta
bl

e
5.

6.
C

om
pa

ris
on

of
In

cr
em

en
ta

l-B
M

C
,I

nt
er

va
lA

na
ly

si
s,

an
d

C
on

tra
ct

or
sP

er
fo

rm
an

ce
.T

he
fir

st
se

ti
sp

la
in

In
cr

em
en

ta
l-B

M
C

,t
he

se
co

nd
is

in
cr

em
en

ta
l-B

M
C

w
ith

in
te

rv
al

an
al

ys
is

,a
nd

th
e

th
ird

is
in

cr
em

en
ta

l-B
M

C
w

ith
in

te
rv

al
an

al
ys

is
w

ith
co

nt
ra

ct
or

s

C
at

eg
or

y
#

fil
es

In
cr

em
en

ta
l-B

M
C

In
te

rv
al

A
na

ly
si

s
C

on
tra

ct
or

s
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

C
PU

Ti
m

e
(s

)
M

em
or

y
(M

B
)

Sc
or

e
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

A
rr

ay
s

43
1

28
8,

09
2

96
9,

75
3

11
2

28
6,

66
1

1,
05

7,
80

6
11

2
28

7,
75

4
1,

06
0,

05
8

11
2

B
itV

ec
to

rs
49

13
,3

81
16

,2
74

57
13

,4
27

16
,1

88
57

13
,4

13
16

,3
13

57
C

on
tro

lF
lo

w
66

16
,3

19
48

,7
18

-4
63

16
,0

05
47

,1
09

-4
62

16
,0

69
47

,1
65

-4
62

EC
A

12
63

90
2,

15
6

4,
96

7,
63

6
29

7
90

9,
18

8
3,

94
5,

52
0

29
7

91
1,

04
4

3,
97

9,
00

1
29

9
Fl

oa
ts

10
76

38
3,

53
8

4,
88

7,
40

1
86

7
37

8,
77

1
5,

34
3,

63
1

86
4

37
9,

27
1

5,
34

0,
14

5
86

7
H

ea
p

24
0

54
,5

44
11

8,
03

7
28

9
54

,6
73

11
8,

18
1

28
9

54
,6

74
11

7,
34

8
28

9
Lo

op
s

79
0

29
9,

18
2

51
2,

96
3

75
9

30
0,

15
1

51
1,

12
0

75
9

30
0,

28
8

50
9,

64
1

75
9

Pr
od

uc
tL

in
es

59
7

21
5,

08
2

36
6,

58
0

45
3

21
5,

16
6

39
0,

95
9

45
3

21
5,

26
1

39
1,

67
3

45
3

Re
cu

rs
iv

e
16

2
63

,3
10

17
2,

59
2

13
2

63
,7

43
17

1,
80

5
13

2
63

,6
77

17
0,

57
5

13
2

Se
qu

en
tia

liz
ed

58
4

16
8,

30
2

4,
45

5,
32

4
23

1
16

8,
64

9
4,

45
6,

33
0

23
1

17
7,

71
2

4,
39

5,
89

0
23

6
X

C
SP

11
9

13
,8

13
13

,7
60

15
9

13
,8

11
13

,7
83

15
9

13
,8

27
13

,9
46

15
9

C
om

bi
na

tio
ns

67
1

29
7,

52
2

60
0,

12
8

43
1

30
3,

22
7

62
9,

83
5

42
9

30
3,

59
6

64
6,

22
8

42
8

H
ar

dw
ar

e
12

24
81

2,
65

6
1,

74
5,

22
2

34
9

77
2,

70
2

2,
87

3,
98

7
34

9
77

2,
62

5
2,

87
4,

84
7

34
9

H
ar

dn
es

s
40

10
3,

34
2,

41
3

2,
86

6,
77

5
56

8
3,

34
2,

40
7

2,
87

5,
03

8
56

8
3,

34
1,

54
2

2,
89

3,
30

9
57

0
To

ta
l

11
28

2
6,

87
0,

30
9

21
,7

41
,1

63
42

41
6,

83
8,

58
2

22
,4

51
,2

92
42

37
6,

85
0,

75
2

22
,4

56
,1

37
42

48

116



5.5. CONCLUSION

Ta
bl

e
5.

7.
C

om
pa

ris
on

of
pl

ai
n

K-
in

du
ct

io
n,

In
te

rv
al

A
na

ly
si

s,
an

d
C

on
tra

ct
or

sP
er

fo
rm

an
ce

.T
he

fir
st

se
ti

sp
la

in
K-

in
du

ct
io

n,
th

e
se

co
nd

is
K-

in
du

ct
io

n
w

ith
in

te
rv

al
an

al
ys

is
,a

nd
th

e
th

ird
is

K-
in

du
ct

io
n

w
ith

in
te

rv
al

an
al

ys
is

w
ith

co
nt

ra
ct

or
s

C
at

eg
or

y
#

fil
es

K-
In

du
ct

io
n

In
te

rv
al

A
na

ly
si

s
C

on
tra

ct
or

s
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

C
PU

Ti
m

e
(s

)
M

em
or

y
(M

B
)

Sc
or

e
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

A
rr

ay
s

43
1

28
2,

12
0

1,
08

6,
09

3
11

4
28

1,
89

6
1,

14
1,

28
9

11
4

28
3,

38
8

1,
14

4,
96

8
11

4
B

itV
ec

to
rs

49
13

,3
92

16
,1

64
57

13
,3

90
16

,0
61

57
13

,3
69

16
,3

17
57

C
on

tro
lF

lo
w

66
5,

53
6

37
,8

32
-4

39
5,

46
6

37
,8

26
-4

39
5,

48
7

37
,9

58
-4

39
EC

A
12

63
60

6,
04

0
4,

72
3,

72
1

10
64

61
6,

48
8

4,
48

7,
39

5
10

71
61

7,
56

7
4,

07
4,

40
9

10
30

Fl
oa

ts
10

76
34

0,
52

5
4,

74
3,

06
3

62
6

33
7,

53
3

5,
21

0,
99

6
62

8
33

8,
34

9
5,

20
0,

96
2

62
5

H
ea

p
24

0
52

,0
96

10
6,

88
6

29
5

52
,0

22
11

4,
35

4
29

5
51

,9
74

11
2,

77
4

29
5

Lo
op

s
79

0
30

0,
35

0
51

9,
48

8
76

5
29

4,
77

6
51

3,
68

4
77

7
29

4,
28

9
51

3,
93

8
77

9
Pr

od
uc

tL
in

es
59

7
14

6,
81

0
25

2,
97

3
60

5
66

,6
53

12
2,

03
9

78
3

66
,7

96
12

3,
06

7
78

3
Re

cu
rs

iv
e

16
2

63
,2

73
17

2,
94

7
13

2
63

,4
60

17
2,

78
4

13
2

63
,4

77
17

0,
94

8
13

2
Se

qu
en

tia
liz

ed
58

4
17

2,
31

7
4,

53
3,

89
0

22
7

17
1,

89
0

4,
53

3,
09

1
22

9
18

3,
07

9
4,

48
9,

66
0

23
0

X
C

SP
11

9
13

,8
30

13
,7

91
15

9
13

,8
39

13
,7

15
15

9
13

,8
25

13
,9

21
15

9
C

om
bi

na
tio

ns
67

1
29

8,
90

1
61

4,
37

4
44

4
30

0,
56

5
61

2,
35

0
44

1
30

1,
44

5
61

6,
61

4
44

0
H

ar
dw

ar
e

12
24

70
3,

72
2

1,
58

9,
18

2
59

3
66

4,
81

7
2,

77
6,

49
5

59
1

66
4,

87
3

2,
77

9,
01

6
59

1
H

ar
dn

es
s

40
10

54
2,

81
3

71
1,

18
4

70
92

54
3,

29
4

71
2,

69
2

70
90

54
2,

91
5

71
9,

04
2

70
92

To
ta

l
11

28
2

3,
54

1,
72

6
19

,1
21

,5
90

11
73

4
3,

42
6,

08
9

20
,4

64
,7

71
11

92
8

3,
44

0,
83

4
20

,0
13

,5
93

11
88

8

117



5.5. CONCLUSION

Ta
bl

e
5.

8.
C

om
pa

ris
on

of
In

cr
em

en
ta

l-B
M

C
,I

nt
er

va
lA

na
ly

si
s,

an
d

C
on

tra
ct

or
sP

er
fo

rm
an

ce
.T

he
fir

st
se

ti
sp

la
in

In
cr

em
en

ta
l-B

M
C

,t
he

se
co

nd
is

in
cr

em
en

ta
l-B

M
C

w
ith

in
te

rv
al

an
al

ys
is

,a
nd

th
e

th
ird

is
in

cr
em

en
ta

l-B
M

C
w

ith
in

te
rv

al
an

al
ys

is
w

ith
co

nt
ra

ct
or

s.
Th

is
ta

bl
e

sh
ow

so
nl

y
th

e
be

nc
hm

ar
ks

w
e

so
lv

ed
by

al
lm

et
ho

ds
an

d
pr

od
uc

ed
ei

th
er

TR
U

E
or

FA
LS

E.
Th

is
co

m
pa

ris
on

is
m

ad
e

to
co

m
pa

re
re

so
ur

ce
co

ns
um

pt
io

n
fa

irl
y.

C
at

eg
or

y
#

fil
es

In
cr

em
en

ta
l-B

M
C

In
te

rv
al

A
na

ly
si

s
C

on
tra

ct
or

s
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

C
PU

Ti
m

e
(s

)
M

em
or

y
(M

B
)

Sc
or

e
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

A
rr

ay
s

43
1

99
6

9,
92

7
11

2
99

3
10

,2
37

11
2

1,
00

5
10

,4
10

11
2

B
itV

ec
to

rs
49

76
6

2,
28

8
57

81
2

2,
27

9
57

79
8

2,
36

1
57

C
on

tro
lF

lo
w

66
45

9
4,

10
1

-4
63

34
5

4,
19

4
-4

63
36

8
4,

28
6

-4
63

EC
A

12
63

33
,9

46
27

2,
69

7
29

2
40

,5
69

29
3,

02
5

29
2

41
,6

77
29

9,
59

8
29

2
Fl

oa
ts

10
76

18
,3

21
88

,7
47

86
2

17
,0

33
89

,5
71

86
2

16
,4

91
90

,3
03

86
2

H
ea

p
24

0
70

8
8,

45
6

28
9

62
3

8,
39

9
28

9
62

6
8,

69
6

28
9

Lo
op

s
79

0
15

,2
66

37
,4

92
75

9
16

,1
76

38
,1

62
75

9
16

,1
64

39
,0

07
75

9
Pr

od
uc

tL
in

es
59

7
62

2
20

,9
72

45
3

70
4

21
,1

63
45

3
79

9
21

,7
91

45
3

Re
cu

rs
iv

e
16

2
2,

25
3

9,
61

6
13

2
2,

28
0

9,
61

3
13

2
2,

30
4

9,
78

7
13

2
Se

qu
en

tia
liz

ed
58

4
5,

26
9

31
,6

34
23

1
5,

31
4

31
,6

38
23

1
4,

69
6

23
,8

39
23

1
X

C
SP

11
9

2,
10

0
7,

27
2

15
9

2,
09

8
7,

27
3

15
9

2,
11

4
7,

45
5

15
9

C
om

bi
na

tio
ns

67
1

40
,4

07
16

0,
77

0
42

8
45

,8
85

17
2,

78
4

42
8

45
,8

85
17

6,
76

2
42

8
H

ar
dw

ar
e

12
24

24
,1

96
30

6,
01

5
34

9
24

,6
30

31
1,

09
5

34
9

24
,5

80
31

1,
67

5
34

9
H

ar
dn

es
s

40
10

1,
38

7
18

,7
92

56
8

1,
38

6
18

,8
85

56
8

1,
42

1
19

,5
19

56
8

To
ta

l
11

28
2

14
6,

69
7

97
8,

77
8

42
28

15
8,

84
9

1,
01

8,
31

7
42

28
15

8,
92

7
1,

02
5,

49
0

42
28

118



5.5. CONCLUSION

Ta
bl

e
5.

9.
C

om
pa

ris
on

of
pl

ai
n

K-
in

du
ct

io
n,

In
te

rv
al

A
na

ly
si

s,
an

d
C

on
tra

ct
or

sP
er

fo
rm

an
ce

.T
he

fir
st

se
ti

sp
la

in
K-

in
du

ct
io

n,
th

e
se

co
nd

is
K-

in
du

ct
io

n
w

ith
in

te
rv

al
an

al
ys

is
,a

nd
th

e
th

ird
is

K-
in

du
ct

io
n

w
ith

in
te

rv
al

an
al

ys
is

w
ith

co
nt

ra
ct

or
s.

Th
is

ta
bl

e
sh

ow
so

nl
y

th
e

be
nc

hm
ar

ks
w

e
so

lv
ed

by
al

lm
et

ho
ds

an
d

pr
od

uc
ed

ei
th

er
TR

U
E

or
FA

LS
E.

Th
is

co
m

pa
ris

on
is

m
ad

e
to

co
m

pa
re

re
so

ur
ce

co
ns

um
pt

io
n

fa
irl

y.

C
at

eg
or

y
#

fil
es

K-
In

du
ct

io
n

In
te

rv
al

A
na

ly
si

s
C

on
tra

ct
or

s
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

C
PU

Ti
m

e
(s

)
M

em
or

y
(M

B
)

Sc
or

e
C

PU
Ti

m
e

(s
)

M
em

or
y

(M
B

)
Sc

or
e

A
rr

ay
s

95
1,

05
1

10
,1

10
11

4
1,

34
8

10
,5

00
11

4
1,

35
8

10
,6

78
11

4
B

itV
ec

to
rs

35
77

7
2,

29
1

57
77

5
2,

27
7

57
75

4
2,

36
2

57
C

on
tro

lF
lo

w
60

40
6

4,
68

5
-4

39
39

7
4,

71
2

-4
39

41
6

4,
82

5
-4

39
EC

A
63

7
75

,8
50

42
3,

01
6

98
6

72
,7

33
41

3,
61

0
98

6
74

,5
98

41
8,

79
0

98
6

Fl
oa

ts
55

4
15

,7
10

78
,8

86
62

3
15

,7
32

79
,7

57
62

3
15

,8
27

80
,6

35
62

3
H

ea
p

18
3

73
3

8,
64

1
29

5
72

8
8,

65
2

29
5

74
0

8,
92

2
29

5
Lo

op
s

46
2

18
,8

45
48

,8
68

76
3

18
,7

10
49

,3
76

76
3

18
,8

79
50

,1
84

76
3

Pr
od

uc
tL

in
es

43
5

83
3

26
,0

90
60

5
84

8
25

,9
05

60
5

98
3

26
,6

67
60

5
Re

cu
rs

iv
e

93
2,

25
1

9,
61

6
13

2
2,

22
9

9,
62

0
13

2
2,

24
7

9,
79

5
13

2
Se

qu
en

tia
liz

ed
18

7
4,

80
7

28
,4

28
22

7
4,

87
2

28
,3

95
22

7
4,

61
5

23
,4

61
22

7
X

C
SP

10
6

2,
11

6
7,

24
9

15
9

2,
12

6
7,

24
0

15
9

2,
11

1
7,

45
1

15
9

C
om

bi
na

tio
ns

38
3

41
,4

96
18

3,
41

9
43

3
43

,2
14

18
4,

38
7

43
3

44
,2

37
18

6,
93

8
43

3
H

ar
dw

ar
e

47
0

24
,9

13
32

8,
26

9
59

1
25

,8
22

40
8,

29
5

59
1

25
,8

63
40

8,
93

8
59

1
H

ar
dn

es
s

35
62

13
9,

19
4

39
6,

83
3

70
88

13
9,

64
9

39
8,

62
1

70
88

13
9,

37
3

40
4,

45
6

70
88

To
ta

l
72

62
32

8,
98

2
1,

55
6,

40
0

11
63

4
32

9,
18

3
1,

63
1,

34
5

11
63

4
33

2,
00

0
1,

64
4,

10
2

11
63

4

119



Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

This thesis has explored the integration of contractor-based interval methods into three key

software verification techniques: Fuzzing, Bounded Model Checking (BMC), and Abstract

Interpretation. The primary aim was to mitigate the state space explosion problem, which

presents a major barrier to the scalability of these methods.

Research Questions

This research was structured around the following core research questions:

1. RQ1: To what extent can integrating a numerical method into verification techniques

effectively reduce the search space?

2. RQ2: To what extent can the integration of interval methods—particularly contrac-

tors—into verification tools reduce computational resource consumption, such as mem-

ory and processing time?

3. RQ3: Does the integration of interval methods, particularly contractors, into verifica-

tion frameworks preserve the soundness and completeness of these techniques?

Research Objectives

The research was conducted with the following objectives:
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6.1. SUMMARY OF CONTRIBUTIONS

• O1: Integrate contractor-based interval methods into fuzzing, BMC, and abstract inter-

pretation frameworks.

• O2: Evaluate the impact of these integrations on reducing the search space.

• O3: Assess the improvements in computational performance, including CPU time and

memory consumption.

• O4: Determine whether the proposed methods preserve the soundness and complete-

ness of verification results.

Key Findings and Answers to Research Questions

RQ1 (Search Space Reduction): Across the case studies, contractors were effective in re-

ducing the search space by refining input domains and eliminating infeasible paths. In BMC

(Chapter 4), they enabled more targeted symbolic execution through domain pruning. In

fuzzing (Chapter 3), contractors guided the generation of meaningful inputs by skipping un-

satisfiable conditions. These outcomes validate that the application of contractors aligns with

Objectives O1 and O2.

RQ2 (Computational Resource Consumption): Benchmarks from Chapters 3–5 reveal

that contractors generally reduced computational costs. For example, in the Sequentialized

category (Chapter 5), CPU time was reduced by 11.62%. However, some overheads were ob-

served in specific categories such as ProductLines. These results indicate that while con-

tractors improve performance in most cases, their benefit is context-dependent, thus fulfilling

Objective O3.

RQ3 (Soundness and Completeness): Verification outcomes remained consistent with the

baseline tools, with correct and incorrect results maintained within a 0.01% margin. This

empirical stability provides strong evidence that soundness and completeness are preserved

in practice. However, this does not constitute a formal proof, and further theoretical validation

is recommended. The empirical evidence supports the achievement of Objective O4.

In summary, the integration of contractors has been shown to reduce search space, im-

prove computational efficiency, and maintain verification reliability across multiple software
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6.2. DISCUSSION OF RESEARCH IMPLICATIONS

verification paradigms. These findings substantiate the thesis’s contribution to enhancing the

scalability and practicality of automated software verification methods.

6.2 Discussion of Research Implications

The results have important implications for the domain of software verification. The meth-

ods developed during this thesis have made tools like fuzzers and model checkers more scal-

able for analysing complex, real-world software systems by tackling the problems caused

by the state space explosion problem. These advances are important in safety-critical sys-

tems, such as aviation, healthcare, and the automotive industry. Furthermore, the integration

of contractors fills in existing gaps in verification methods, thus increasing accuracy while

reducing computational needs. This dual benefit has the potential to change industry stan-

dards, making automated verification more accessible to a broader range of developers and

researchers.

The study makes a methodological contribution by showing the possibility of integrat-

ing interval methods into different verification frameworks. Contractors’ flexibility extends

beyond a single domain, allowing them to be used in a broad range of software testing appli-

cations, including those related to security-critical applications and general software quality

assurance.

6.3 Future Work

The findings of this study pave the way for multiple directions for future inquiry:

• Advanced Optimisation Techniques: Develop adaptive contractors that change dynami-

cally according to the state space characteristics. Machine learning models for predict-

ing optimal parameters are to be explored; such an approach may enhance the efficiency

and adaptability of contractors in all sorts of scenarios.

• Improved Integration of Tools: It is necessary to improve the integration of contractors

with complementary software verification tools and frameworks, especially hybrid ap-

proaches that combine static and dynamic analysis. This improvement would enable
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6.4. CONCLUDING REMARKS

more widespread use in different classes of software systems, including those deployed

in industrial and real-time settings.

• Real-time Applications: Explore the use of contractors in real-time systems where com-

putational efficiency and accuracy are critical. This exploration includes applications in

autonomous vehicles, where immediate decision-making depends on trustworthy soft-

ware verification.

• Collaborative Approaches: Discuss how contractors might be combined with other ad-

vanced verification techniques, like AI-based fuzzing or formal verification, to construct

hybrid approaches that leverage the strengths of each.

The present thesis has demonstrated that the integration of interval methods and contrac-

tors in software verification frameworks improves their scalability and effectiveness. This

thesis has made improvements to current methods to mitigate the state space explosion prob-

lem further, making automated verification more possible and effective for complex systems.

The contributions presented in this work bring theoretical improvements and provide con-

crete tools and methodologies that researchers and practitioners can apply. While there are

challenges and opportunities to improve, the methodologies and results presented in this work

represent an important step toward ensuring the reliability and safety of software systems in

a range of critical domains. The potential of the techniques presented here is huge and opens

the way for further innovation within the field, laying the foundations for future research in

the push of boundaries in automated software verification even further.

6.4 Concluding Remarks

The history of testing, from the early engineering approach to modern software develop-

ment, demonstrates its critical role in validating system performance, reliability, and safety.

testing is a bridge from theoretical design to practical implementation, saving the world from

failures whose consequences could be disastrous.

Testing is vital in software development to confirm that systems meet specified require-

ments while being safe, reliable, and secure. Inadequate testing may lead to significant finan-

cial consequences, safety hazards, and security vulnerabilities. More comprehensive testing
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6.4. CONCLUDING REMARKS

strategies, both manual and automated, have become indispensable in validating correctness,

reliability, and security in software, especially in safety-critical environments.

This thesis substantially contributes to addressing the challenges of software verification

by introducing interval analysis and contractors to mitigate the state space explosion problem.

The proposed techniques systematically extend the search space while preserving soundness

and completeness by integrating contractors in fuzzing, bounded model checking (BMC), and

abstract interpretation frameworks. This new approach increases the scalability and efficiency

of software verification, as shown by extensive benchmarking while reducing computational

costs and maintaining accuracy in identifying potential vulnerabilities.

This research widens the scope of existing verification methodologies and responds to one

of the overarching needs: ensuring that software systems are resilient, secure, and dependable.

These principles can drive further improvements in software quality assurance, reducing risks

associated with the security of technological frameworks supporting our modern existence.
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Appendix A

Benchmark Suites

This appendix provides a detailed description of the benchmark suites employed in this

thesis—SV-COMP (Software Verification Competition) and Test-Comp (Testing Compe-

tition)—as well as the associated scoring mechanisms. These benchmarks are the de facto

standards for evaluating software verification and test-generation tools. Their inclusion in

this work ensures methodological rigour, fairness, and reproducibility of results.

A.1 SV-COMP: Software Verification Competition

SV-COMP1 is an annual competition that assesses the capabilities of automated software

verifiers. It focuses on C and C++ programs, providing a wide-ranging collection of verifica-

tion tasks that reflect real-world and synthetic use cases. The primary goal of SV-COMP is

to compare verification tools based on their precision, soundness, scalability, and efficiency

in proving or refuting properties of software systems.

Each verification task comprises a program annotated with specifications, typically ex-

pressed as assertions. Tools are required to determine whether these specifications hold

(TRUE) or are violated (FALSE). If the analysis is inconclusive—due to a timeout, crash, or

incomplete reasoning—the result is recorded as UNKNOWN.

Tasks are organised into categories, each addressing a distinct class of verification chal-

lenges. These are further subdivided into subcategories that reflect varying levels of com-

plexity, domain-specific characteristics, or particular features of the source programs. The

major categories and their subcategories for SV-COMP 2024 include:
1https://sv-comp.sosy-lab.org/
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A.1. SV-COMP: SOFTWARE VERIFICATION COMPETITION

• ReachSafety: Focuses on verifying reachability properties, particularly the absence of

assertion violations. Subcategories include:

– ReachSafety-Arrays – programs involving array manipulations,

– ReachSafety-BitVectors – bit-level operations and overflows,

– ReachSafety-ControlFlow – intricate control flow patterns,

– ReachSafety-ECA – event-condition-action systems,

– ReachSafety-Floats – floating-point computations,

– ReachSafety-Heap – dynamic memory and pointer analysis.

• MemSafety: Evaluates memory safety properties such as absence of invalid derefer-

ences, memory leaks, or double-free errors. Subcategories include:

– MemSafety-InvalidDereference,

– MemSafety-InvalidFree,

– MemSafety-MemCleanup.

• ConcurrencySafety: Focuses on multi-threaded programs, aiming to detect data races,

deadlocks, and assertion violations in concurrent contexts.

• NoDataRace: Verifies the absence of data races in concurrent programs.

• Termination: Concerns itself with proving program termination, which is crucial for

sound reasoning about loops and recursive functions.

• NoOverflow: Verifies the absence of signed and unsigned integer overflows.

• SoftwareSystems: Consists of larger and more complex programs taken from real-

world software projects. This category assesses the scalability and robustness of tools

under realistic conditions.

• ProductLines: Focuses on software with configurable features (e.g., via preprocessor

macros).
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A.2. TEST-COMP: TESTING COMPETITION

• ControlFlowIntegers: Targets programs with intensive control-flow and integer vari-

able use.

The scoring system in SV-COMP rewards correctness and penalises unsoundness. A cor-

rect TRUE or FALSE yields positive points, while an incorrect classification results in signif-

icant penalties. For instance, correctly reporting a violation might grant +1 point, while a

wrong result (e.g., reporting TRUE when a violation exists) incurs a penalty as large as −16

points. UNKNOWN results typically receive a neutral score (0), but frequent UNKNOWNs can neg-

atively affect a tool’s overall standing by reducing its coverage.

The SV-COMP scoring model promotes not only high precision but also discourages spec-

ulative or unsound outputs. This directly aligns with this thesis’s emphasis on preserving

soundness and completeness, particularly when introducing new analysis mechanisms such

as interval contractors.

A.2 Test-Comp: Testing Competition

Test-Comp2 focuses on automated test-case generation rather than formal verification. Its

goal is to evaluate how effectively tools can produce test inputs that expose bugs, achieve

high coverage, or satisfy specific criteria in C programs. The competition benchmarks are

diverse, ranging from simple toy examples to complex system-level programs, and are chosen

to challenge the breadth and depth of test-generation strategies.

In contrast to SV-COMP, the scoring in Test-Comp is based on quantitative metrics such

as statement and branch coverage, bug detection, and efficiency. Tools are ranked based on

the amount of code they can exercise through generated tests. Higher code coverage and

successful bug findings lead to increased scores. Execution time and energy consumption

are also considered, with more efficient tools receiving favourable assessments.

Test-Comp 2023 organises its benchmarks into two primary categories, each containing

multiple subcategories:

• Cover-Error: This category assesses the ability of tools to generate test cases that reach

error conditions. Subcategories include:
2https://test-comp.sosy-lab.org/
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A.2. TEST-COMP: TESTING COMPETITION

– ReachSafety-Arrays

– ReachSafety-BitVectors

– ReachSafety-ControlFlow

– ReachSafety-ECA

– ReachSafety-Floats

– ReachSafety-Heap

– ReachSafety-Loops

– ReachSafety-ProductLines

– ReachSafety-Recursive

– ReachSafety-Sequentialized

– ReachSafety-XCSP

– ReachSafety-Hardware

– SoftwareSystems-BusyBox-MemSafety

– SoftwareSystems-DeviceDriversLinux64-ReachSafety

• Cover-Branches: This category evaluates the extent of branch coverage achieved by the

generated test cases. Subcategories mirror those of Cover-Error, focusing on the same

program sets but with coverage specifications.

The scoring system in Test-Comp is based on quantitative metrics:

• Bug Finding: A tool earns +1 point for each test suite that successfully triggers a spec-

ification violation within the time limit. No points are awarded otherwise.

• Code Coverage: The score corresponds to the fraction of branches covered, as reported

by the TestCov tool. For example, achieving 80% branch coverage yields 0.8 points.
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• Efficiency: Tools are ranked based on the total CPU time consumed for successful test

generations. In cases of equal scores, tools with lower cumulative CPU time are ranked

higher.

Meta-categories aggregate performance across multiple subcategories, with scores nor-

malised to ensure fairness regardless of category size. This structure allows for a comprehen-

sive assessment of a tool’s capabilities across diverse testing scenarios.

In this thesis, Test-Comp is used to benchmark the fuzzing-based tool FuSeBMC and its

contractor-augmented version, FuSeBMC_IA. The results demonstrate how contractors con-

tribute to improving coverage and bug-finding capability by refining input generation and

pruning infeasible execution paths. These insights are key to answering the research ques-

tions on scalability and effectiveness.

A.3 Relevance to This Thesis

By employing SV-COMP and Test-Comp, this thesis benefits from standardised, peer-

reviewed benchmarks that ensure comparability and reproducibility. These benchmarks pro-

vide not only a robust framework to assess the correctness and performance of verification

tools but also a neutral environment to evaluate the integration of interval-based contractors.

The scoring methodologies reinforce the importance of sound and efficient analysis—cen-

tral themes of this research. By examining the results within these benchmarks, the thesis

is able to provide concrete, empirical answers to the stated research questions concerning

search-space reduction, computational overhead, and the preservation of verification guaran-

tees.
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Appendix B

Tool Foundations

This appendix presents the foundational tools utilised in this thesis: FuSeBMC1 and ES-

BMC2. These verification frameworks provide the infrastructure upon which the proposed

contractor-based interval analysis techniques were implemented and evaluated. Their capa-

bilities and extensibility were key to validating the methods developed throughout the thesis.

B.1 FuSeBMC

FuSeBMC, or Fuzzing with Symbolic Execution-Based Model Checking, is a hybrid soft-

ware testing tool designed to enhance the efficiency of test case generation for C programs. It

achieves this by combining dynamic fuzzing, symbolic execution, and lightweight static anal-

ysis. Originally developed for the Testing Competition (Test-Comp), FuSeBMC is optimised

to maximise code coverage and detect assertion violations and memory errors. It uses smart

seed generation techniques and abstract interpretation to increase the likelihood of exposing

bugs, especially in complex or constraint-heavy program paths.

In this thesis, FuSeBMC was extended to incorporate interval analysis using contractors,

resulting in a modified tool referred to as FuSeBMC_IA. The integration of contractors al-

lows the tool to discard infeasible paths early in the fuzzing process, thereby guiding input

generation toward valid and high-value execution traces. This enhancement not only reduces

computational overhead but also improves the quality and precision of generated test cases.

The empirical impact of this integration is discussed in detail in Chapter 3.
1https://github.com/fusebmc/fusebmc
2https://github.com/esbmc/esbmc
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B.2. ESBMC

B.2 ESBMC

ESBMC, the Efficient SMT-Based Model Checker, is a state-of-the-art verification frame-

work for C and C++ programs. It employs bounded model checking techniques supported

by SMT solvers to verify a range of software properties including memory safety, arithmetic

correctness, and control-flow reachability. ESBMC operates by translating input code into an

intermediate representation (GOTO-programs), performing symbolic execution, and encod-

ing verification conditions as SMT queries.

In the context of this thesis, ESBMC was used as the host platform for two complemen-

tary investigations. First, as described in Chapter 4, contractors were integrated into the

bounded model checking pipeline to refine variable domains prior to SMT solving. This

optimisation was designed to reduce the complexity of SMT encodings by narrowing the

state space without losing precision. Second, Chapter 5 details the application of contractors

within ESBMC’s abstract interpretation engine. This integration improved the expressive-

ness of interval-based abstract domains, enabling more accurate approximations of program

behaviour during fixpoint computations.

B.3 Contextual Relevance to the Thesis

Both FuSeBMC and ESBMC were selected not only for their established performance in

verification competitions, but also for their open architecture and flexibility. These attributes

enabled the seamless integration of interval analysis and contractor methods developed in this

research. Rather than constructing new tools from the ground up, the thesis demonstrates how

existing, widely-used frameworks can be effectively enhanced with numerical techniques to

improve software verification outcomes.

The originality of the work lies in the novel design and integration of contractor-based

methods within these tools. The extended versions—FuSeBMC_IA and the contractor-

enhanced ESBMC—represent new contributions to the field. They are capable of addressing

core verification challenges such as state space explosion and resource overhead while pre-

serving soundness and completeness. These extensions significantly improve the scalability

and precision of verification across both dynamic and static analysis domains.
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Appendix C

Teaching and Volunteering Experience

C.1 Graduate Teaching Assistant

During my PhD studies, I worked as a Graduate Teaching Assistant (GTA) at the University

of Manchester for two years. This role gave me invaluable experience in teaching and assisting

students in various courses. My responsibilities included:

• Robotics Course: I assisted students in practical and theoretical aspects of robotics,

helping them understand key concepts and guiding them through hands-on projects.

Additionally, I participated in demonstrations for UCAS visitors, where I showcased the

robotics projects to prospective students and answered their queries about the course and

university life.

• Software Security Course: I also supported the Software Security course, providing

guidance during lab sessions and helping students resolve technical issues related to

security vulnerabilities, secure coding practices, and verification techniques.

This teaching experience allowed me to develop my communication and mentoring skills

while reinforcing my knowledge of robotics and software security.

C.2 Volunteering Experience

In addition to my teaching responsibilities, I actively participated in volunteering activi-

ties. I was involved with the Saudi Students Club in Manchester, where I contributed to

organizing an event to celebrate Saudi Founding Day. My role in the event included:
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C.2. VOLUNTEERING EXPERIENCE

ة د ا شه

ر ي د ق ت و ر  شك

لتأسيس ا يوم  حفل  فعاليات  في  لفاعلة  ا ومشاركته  المبذولة  لجهوده  اً   ر تقدي

السعودي 2024

بمانشستر السعوديين  الطلبة  نادي  نظمه  الذي 

إلى: فخر  بكل  قدم  ت

لسلمي ا ر  ب جا م.  بلادي ل ا عبدالله 

حفل ل ا ر  ي مد ة ب طل ل ا دي  ا ن ئيس  ر

2 0 2 4 ر  نشست ما ب ين  ي د سعو ل ا

مهند عبدالله الدغيم 

Manchester, 27 February 2024

Fig. C.1. Certificate of Appreciation Awarded outstanding voluntary contributions during the Saudi Founding
Day event organised by the Saudi Students Club in Manchester, United Kingdom, on 27 February 2024.

• Assisting in the planning and organising of the event, ensuring that all logistical details

were taken care of.

• Engaging with attendees, promoting cultural awareness, and highlighting the historical

significance of Saudi Founding Day.

Volunteering for this event was a fulfilling experience, allowing me to contribute to my

community and promote Saudi culture in Manchester.
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