
UNIVERSIDADE FEDERAL DO AMAZONAS – UFAM

INSTITUTO DE COMPUTAÇÃO – ICOMP

PROGRAMA DE PÓS-GRADUAÇÃO EM INFORMÁTICA – PPGI

An Automated Method for Neural Network
Quantization Refinement

João Batista Pereira Matos Júnior

Manaus, Brasil

2025

João Batista Pereira Matos Júnior

An Automated Method for Neural Network
Quantization Refinement

Tese de doutorado apresentada ao Programa
de Pós-Graduação em Informática, da Univer-
sidade Federal do Amazonas, como requisito
parcial para a obtenção do título de Doutor
em Informática, na Área de concentração em
Sistemas Embarcados e Engenharia de Soft-
ware.

Supervisor: Lucas Carvalho Cordeiro
Co-supervisor: Eddie Batista de Lima Filho

Manaus, Brasil
2025

Ficha Catalográfica

Elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

 An Automated Method for Neural Network Quantization
Refinement / João Batista Pereira Matos Júnior. - 2025.
 130 f. : il., color. ; 31 cm.

 Orientador(a): Lucas Carvalho Cordeiro.
 Coorientador(a): Eddie Batista de Lima Filho.
 Tese (doutorado) - Universidade Federal do Amazonas,
Programa de Pós-Graduação em Informática, Manaus, 2025.

 1. Redes Neurais. 2. Quantização. 3. Verificação Formal de
Equivalência. 4. Equivalência Funcional. 5. Sistemas Críticos para
Segurança. I. Cordeiro, Lucas Carvalho. II. Batista de, Eddie. III.
Universidade Federal do Amazonas. Programa de Pós-Graduação
em Informática. IV. Título

M433a Matos Júnior, João Batista Pereira

Ministério da Educação
Universidade Federal do Amazonas

Coordenação do Programa de Pós-Graduação em Informática

FOLHA DE APROVAÇÃO

"AN AUTOMATED METHOD FOR NEURAL NETWORK QUANTIZATION
REFINEMENT"

JOÃO BATISTA PEREIRA MATOS

Tese de Doutorado defendida e aprovada pela banca examinadora constituída pelos
professores:

Prof. Dr. Lucas Carvalho Cordeiro - Presidente

Prof. Dr. Thierson Couto Rosa - Membro Externo

Prof. Dr. Leandro Buss Becker - Membro Externo

Prof. Dr. Raimundo da Silva Barreto - Membro Interno

Dr. Eddie Batista de Lima Filho - Membro Externo

Manaus, 18 de fevereiro de 2025.

Documento assinado eletronicamente por Eddie Batista de Lima Filho,
Usuário Externo, em 19/02/2025, às 13:36, conforme horário oficial de
Manaus, com fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de
outubro de 2015.

Anexo CPPGI-ICOMP 2462510 SEI 23105.005926/2025-85 / pg. 5

Documento assinado eletronicamente por Leandro Buss Becker, Usuário
Externo, em 19/02/2025, às 15:26, conforme horário oficial de Manaus, com
fundamento no art. 6º, § 1º, do Decreto nº 8.539, de 8 de outubro de 2015.

Documento assinado eletronicamente por Lucas Carvalho Cordeiro,
Professor do Magistério Superior, em 19/02/2025, às 15:37, conforme
horário oficial de Manaus, com fundamento no art. 6º, § 1º, do Decreto nº
8.539, de 8 de outubro de 2015.

A autenticidade deste documento pode ser conferida no site
https://sei.ufam.edu.br/sei/controlador_externo.php?
acao=documento_conferir&id_orgao_acesso_externo=0, informando o código
verificador 2462510 e o código CRC 7133BC05.

Avenida General Rodrigo Octávio, 6200 - Bairro Coroado I Campus Universitário

Senador Arthur Virgílio Filho, Setor Norte - Telefone: (92) 3305-1181 / Ramal 1193
CEP 69080-900, Manaus/AM, coordenadorppgi@icomp.ufam.edu.br

Referência: Processo nº 23105.005926/2025-85 SEI nº 2462510

Anexo CPPGI-ICOMP 2462510 SEI 23105.005926/2025-85 / pg. 6

This work is dedicated to my wife Geovanna, my family, and my friends for their support
and understanding throughout this journey of study.

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior - Brasil (CAPES) - Finance Code 001. This work was partially supported
by Amazonas State Research Support Foundation - FAPEAM - through the POSGRAD
project.

“Everything should be made as simple as possible, but no simpler.”
(Albert Einstein)

Abstract
In the rapidly evolving field of artificial intelligence, deep neural networks (DNNs) have
become integral to numerous applications, from autonomous vehicles to healthcare sys-
tems. However, the increasing size and complexity of DNNs pose significant challenges
for deployment in resource-constrained and safety-critical environments due to high com-
putational and memory demands. This dissertation addresses the critical problem of
neural network quantization, which aims to reduce the precision of network parameters
to enhance efficiency while preserving functional behavior. The primary contribution
is the development of the Counterexample-Guided Quantization for Neural Networks
(CEG4N) framework, which integrates formal equivalence verification (FEV)—a technique
that rigorously verifies that two models exhibit identical behavior—into the quantization
process. Methodologically, CEG4N employs an iterative optimization loop that leverages
formal verification tools to systematically detect and correct discrepancies between the
original and quantized models, thus ensuring their functional equivalence (FE). Experi-
mental evaluations conducted on benchmark datasets, including Iris, Seeds, MNIST, and
CIFAR-10, demonstrate that CEG4N effectively maintains model accuracy and behavioral
integrity, outperforming traditional quantization methods such as the greedy path following
quantization (GPFQ), particularly in smaller and sparse networks. While scalability to
larger models remains challenging due to increased computational overhead associated
with formal verification methods, the proposed framework significantly advances the ro-
bustness and reliability of quantized neural networks. Moreover, this research underscores
the importance of integrating formal verification into quantization to optimally balance
efficiency and accuracy. Ultimately, these contributions facilitate the deployment of neural
networks in environments with stringent resource and reliability constraints, promoting
safer and more efficient artificial intelligence systems.

Keywords: Neural networks, quantization, formal equivalence verification, functional
equivalence, resource-constrained environments, safety critical systems.

Resumo
No campo em rápida evolução da inteligência artificial, redes neurais profundas (DNNs)
tornaram-se essenciais em diversas aplicações, desde veículos autônomos até sistemas de
saúde. No entanto, o aumento no tamanho e na complexidade dessas redes apresenta
desafios significativos para sua implementação em ambientes com restrições de recursos
e críticos para segurança, devido às altas demandas computacionais e de memória. Esta
dissertação aborda o problema crítico da quantização de redes neurais, cujo objetivo é
reduzir a precisão dos parâmetros das redes para aumentar a eficiência sem comprometer
seu comportamento funcional. A principal contribuição é o desenvolvimento do arcabouço
Quantização Guiada por Contraexemplos para Redes Neurais (CEG4N), que integra a
Verificação Formal de Equivalência (FEV)—uma técnica que rigorosamente verifica se dois
modelos apresentam comportamento idêntico—ao processo de quantização. Metodologi-
camente, o CEG4N emprega um ciclo iterativo de otimização que utiliza ferramentas de
verificação formal para detectar e corrigir sistematicamente discrepâncias entre os modelos
original e quantizado, garantindo assim sua equivalência funcional (FE). Avaliações experi-
mentais realizadas em benchmarks como Iris, Seeds, MNIST e CIFAR-10 demonstram que
o CEG4N mantém efetivamente a precisão e integridade comportamental dos modelos,
superando métodos tradicionais de quantização como quantização por seguimento de cami-
nho guloso (GPFQ), especialmente em redes menores e esparsas. Embora a escalabilidade
para modelos maiores permaneça um desafio devido ao alto custo computacional associado
aos métodos de verificação formal, o arcabouço proposto avança significativamente na
robustez e confiabilidade das redes neurais quantizadas. Além disso, esta pesquisa ressalta
a importância da integração da verificação formal com a quantização para equilibrar
de maneira ótima eficiência e precisão. Em última análise, estas contribuições facilitam
a implementação de redes neurais em ambientes com rigorosas restrições de recursos e
confiabilidade, promovendo sistemas de inteligência artificial mais seguros e eficientes.

Palavras-chave: Redes Neurais, Quantização, Verificação Formal de Equivalência, Equi-
valência Funcional, Ambientes com Recursos Limitados, Sistemas Críticos para Segurança.

List of Figures

Figure 1 – A simple artificial NN. 23
Figure 2 – An overview of CEG4N’s architecture, highlighting the relationship

between main modules and their inputs and outputs. 55

List of Tables

Table 1 – Summary of experiments for tuning Genetic Algorithm Parameters. . . 56
Table 2 – Summary of the CEG4N’s results for the Iris benchmark. 75
Table 3 – Summary of the CEG4N’s results for the Seeds benchmark. 76
Table 4 – Summary of the CEG4N’s results for the MNIST benchmark. 77
Table 5 – Summary of the CEG4N’s results for the MNIST benchmark. 78
Table 6 – Summary of the CEG4N’s results for the MNIST benchmark. 79
Table 7 – Summary of the CEG4N’s results for the CIFAR benchmark. 79
Table 8 – Summary of the CEG4N’s results for the ACAS Xu benchmark. 80
Table 9 – Summary of the CEG4N’s results for the ACAS Xu benchmark. 81
Table 10 – Comparison using Top-1 accuracy for NNs from dataset Iris quantized

using CEG4N and GPFQ . 84
Table 11 – Comparison using Top-1 accuracy for NNs from dataset Seeds quantized

using CEG4N and GPFQ . 85
Table 12 – Comparison using Top-1 accuracy for NNs from dataset MNIST quantized

using CEG4N and GPFQ . 86

List of abbreviations and acronyms

ACAS Xu Airborne Collision Avoidance System Xu Dataset

AI Artificial Intelligence

AM Abstractions Module

ASIC Application-Specific Integrated Circuit

BNN Binarized Neural Network

BMC Bounded Model Checking

BSM Bits Search Module

CEG4N Counterexample-guided neural network quantization framework

CESBMC CEG4N in combination with ESBMC tool

CNN Convolutional Neural Network

CNNEQUIV CEG4N in combination with NNEquiv tool

DNN Deep Neural Network

DL Deep Learning

EC Equivalence Checking

EG1, EG2, ... Evaluation Goals

ESBMC Efficient SMT-Based Model Checker

EV Equivalence Verification

FEV Formal Equivalence Verification

FE Functional equivalence

FPGA Field-Programmable Gate Array

FPA Floating-Point Arithmetic

FV Formal Verification

GAN Generative Adversarial Network

GA Genetic Algorithm

GPE Geometric Path Enumeration

GPFQ Gradient-based Post-Training Quantization

GPU Graphics Processing Unit

HAQ Hardware-Accelerated Quantization

IoT Internet of Things

MNIST Modified National Institute of Standards and Technology Dataset

MSE Mean Squared Error

NN Neural Network

NNE Neural Network Equivalence

NNEV Neural Network Equivalence Verification

NNs Neural Networks

NNEQUIV Neural Network Equivalence Verifier

N. CEs Number of counterexamples

O.Ac. Original Accuracy

ONNX Open Neural Network Exchange

PTQ Post-Training Quantization

Q.Ac. Quantized Accuracy

QAT Quantization-Aware Training

QNN Quantized Neural Network

ReLU Rectified Linear Unit Activation Function

RNN Recurrent Neural Network

SAT Boolean Satisfiability

Sigm Sigmoid activation function

SMT Satisfiability Modulo Theories

TanH Hyperbolic Tangent activation function

VM Verifier Module

List of symbols

% Percentage

δ Input Space Bounds

f Original Neural Network function

f ′ Quantized Neural Network function

f ′′ De-quantized Neural Network function

Q Quantization function

J (b) Cost function for quantization parameters

b Bit width vector for NN layers

bmin, bmax Minimum and maximum bit width for quantization

Rδ Critical input regions

Rδ=0 Critical data points

G Equivalence verification function

X δ Set of counterexamples for equivalence verification

⋍ Equivalence relation between [f] and [f ′]

I Input domain

O Output domain

L Number of layers in a neural network

W(l) Weight matrix for layer [l]

b(l) Bias vector for layer [l]

z(l) Non-activated output for layer [l]

a(l) Activated output for layer [l]

σ Activation function

b Bit-width for quantization

s Scale factor

z Zero-point

α, β Quantization range for real values

α′, β′ Quantization range for quantized values

Qb General quantization function

Q′
b Quantization mapping function

Q′′
b Dequantization function

|| · ||p [Lp]-norm

ϵ Tolerance level in norm-based equivalence

⋍ General equivalence relation

≈1 Classification-based equivalence relation

∽p,ϵ Norm-based equivalence relation

Contents

1 INTRODUCTION . 19
1.1 Background . 19
1.2 Motivation . 20
1.3 Problem Statement . 20
1.4 Objectives . 21
1.5 Publications . 21
1.6 Thesis Structure . 22

2 THEORETICAL FOUNDATIONS 23
2.1 Neural Networks (NNs) . 23
2.2 Background on NNs . 24
2.2.1 NN Notation . 25
2.3 Quantization . 26
2.3.1 Introduction . 27
2.3.1.1 Quantization Mapping . 29
2.3.2 Quantization of NNs . 32
2.3.3 Practical considerations . 32
2.3.3.1 Mixed-precision quantization . 33
2.3.3.2 Weight quantization . 33
2.3.3.3 Bias quantization . 33
2.3.3.4 Activation quantization . 34
2.4 Neural network equivalence . 34
2.4.1 Types of functional equivalence . 35
2.4.2 Formal verification of NN equivalence . 37
2.4.3 SMT Encoding . 38
2.4.4 GPE encoding . 39
2.5 Summary . 40

3 COUNTER-EXAMPLE GUIDED NEURAL NETWORK QUANTI-
ZATION REFINEMENT (CEG4N) 42

3.1 Introduction . 42
3.2 Equivalent Quantization Problem . 43
3.2.1 Discussion on the assumptions . 44
3.2.2 Formal equivalence verification in neural networks quantization 45
3.2.3 Importance of quantization scheme choices 49
3.3 Iterative Quantization Framework . 50

3.3.1 Simplification of the NN equivalence constraints 51
3.3.2 Formalization . 53
3.4 Iterative Quantization Framework Implementation 55
3.4.1 Bits Search Module (BSM) . 56
3.4.2 Abstractions Module (AM) . 57
3.4.3 Verifier Module (VM) . 57
3.4.4 Clarification on Input Quantization vs. Input-layer Quantization 58
3.4.5 High-level overview of a CEG4N execution 59
3.4.6 Algorithmic choices and justifications . 59
3.5 Summary . 60

4 EVALUATION AND RESULTS . 62
4.1 Evaluation goals . 62
4.2 Evaluation metrics . 63
4.3 Evaluation benchmarks . 65
4.3.1 Datasets . 66
4.3.1.1 ACAS Xu . 66
4.3.1.2 MNIST . 66
4.3.1.3 Seeds . 67
4.3.1.4 Iris . 67
4.3.1.5 CIFAR-10 . 67
4.3.2 Description of NNs models . 68
4.4 Evaluation of CEG4N using different benchmarks and equivalence

properties . 69
4.4.1 Benchmarks selection . 69
4.4.2 Optimizer configuration . 69
4.4.3 Verifiers . 70
4.4.4 Lower and upper bounds configuration . 70
4.4.5 Generations and population size configuration 71
4.4.6 Initial set of counterexamples configuration 71
4.4.7 Equivalence properties configuration . 72
4.4.8 Time limit configuration . 73
4.4.9 Collected metrics . 73
4.5 Evaluation of the quality of the QNNs generated by CEG4N 73
4.5.1 Benchmark selection . 74
4.5.2 Input sample set configuration . 74
4.5.3 Test set configuration . 74
4.5.4 Collected metrics . 74
4.6 Data and Tools Availability . 74
4.7 Presentation of Results . 75

4.8 Summary . 87

5 DISCUSSION . 90
5.1 Analysis of results . 90
5.1.1 Addressing the quantization challenge for NNs in low-resource domains . . . 90
5.1.2 To develop a framework for NN quantization 90
5.1.3 Evaluating the efficacy of the CEG4N framework 90
5.1.4 Exploring the scalability and applicability of the CEG4N framework 91
5.1.5 Advancing the field of NN quantization 91
5.2 Implications of our findings . 92
5.3 Limitations and challenges . 93
5.4 Summary . 94

6 RELATED WORK . 97
6.1 NN quantization . 97
6.2 Background on FV for NNs . 100
6.3 Background on NN Equivalence Checking 101
6.4 Related Work . 102
6.4.1 Concerns and limitations of NNs . 103
6.4.2 Impact of Quantization on Model Accuracy and Performance 104
6.4.3 Preserving the functional behavior of QNNs 105
6.4.4 Limitations of FV and FEV . 107
6.4.5 The need for a new approach . 109
6.5 Summary . 110

7 CONCLUSION AND FUTURE WORK 112
7.1 Summary of key contributions . 112
7.2 Summary of key findings . 113
7.3 Future directions . 115
7.3.1 Improving the scalability of the FEV techniques 115
7.3.2 Improving the efficiency of EC techniques 117
7.3.3 Exploring a more diverse set of NN structures 118
7.3.4 Investigating alternative quantization approaches 118
7.3.5 Robustness of quantized NNs against adversarial attacks 118
7.3.6 Support for QAT techniques . 119
7.4 Final thoughts . 119

REFERENCES . 120

19

1 Introduction

1.1 Background
Over recent decades, artificial intelligence (AI) has significantly evolved from simple

computational models to complex algorithms capable of intricate tasks (LECUN; BENGIO;
HINTON, 2015; RUSSELL; NORVIG, 2021). Central to this progress are deep neural
networks (DNNs), sophisticated computational models inspired by the human brain’s
neural structure, enabling advanced data processing (KRUSE et al., 2016). These advance-
ments in deep learning (DL) have resulted in powerful neural networks (NNs), excelling in
various applications, including image recognition, natural language processing, and strate-
gic decision-making (KRIZHEVSKY; SUTSKEVER; HINTON, 2012; GOODFELLOW;
BENGIO; COURVILLE, 2016; SILVER et al., 2016).

The widespread adoption of DNNs across industries—from smartphones to au-
tonomous vehicles—has led to increasingly complex models that are computationally
intensive and resource-demanding (SZE et al., 2017; CHEN et al., 2020). This complexity
poses substantial challenges in resource-constrained environments, necessitating more
efficient computational methods to ensure universal applicability.

Quantization techniques have emerged as a promising solution to these challenges,
reducing the precision of NN computations from high-precision floating-point arithmetic
(FPA) to lower-precision formats, such as fixed-point arithmetic (JACOB et al., 2017;
LIN; TALATHI; ANNAPUREDDY, 2016). Such techniques significantly decrease model
size, computational requirements, and energy consumption, thereby enabling efficient
deployment in resource-limited environments (HAN; MAO; DALLY, 2016; NAGEL et al.,
2021). However, quantization introduces new challenges, particularly regarding maintaining
accuracy and ensuring the reliability of NNs, especially in safety-critical applications, where
small errors can lead to significant negative outcomes (JACOB et al., 2017; HUBARA et
al., 2017).

Reliability, in this context, refers to a quantized neural network’s ability to con-
sistently perform as expected across varying operational conditions, whereas accuracy
specifically measures the correctness of predictions against ground truth data. Thus,
preserving both accuracy and reliability during quantization is critical, motivating the ex-
ploration of rigorous methodologies to ensure these properties are maintained in quantized
models.

Chapter 1. Introduction 20

1.2 Motivation
Ensuring a proper balance between efficiency and accuracy in quantized neural

networks (QNNs) has become a vital research priority, particularly for safety-critical
applications such as autonomous vehicles and healthcare devices. In these domains, ro-
bustness—the capacity to perform reliably despite input variations—and reliability—the
consistency of correct operation over time—are critical requirements.

Existing quantization techniques typically measure performance degradation using
statistical methods based on accuracy and loss metrics. While informative, these methods
fail to comprehensively address subtle behavioral changes caused by quantization, which
could be crucial in safety-critical contexts. These limitations underscore the need for more
rigorous verification frameworks that can ensure QNNs retain their original functional
behavior.

Formal verification (FV) techniques, which mathematically prove system properties,
provide a promising approach to addressing this gap. However, traditional FV methods
are often decoupled from the quantization process, leading to inefficient iterative cycles
of quantization and verification (JACOB et al., 2017; HUANG et al., 2017). Integrating
FV into the quantization process could streamline this workflow, allowing for immediate
feedback and adjustment of quantization parameters, thus ensuring functional equivalence
between original NNs and their quantized counterparts.

1.3 Problem Statement
This thesis addresses the critical challenge of ensuring that neural network quan-

tization does not alter the original network’s functional behavior. Current quantization
approaches primarily focus on preserving accuracy metrics but overlook detailed behav-
ioral equivalence. Such oversight is problematic in safety-critical systems, where minor
behavioral discrepancies can have significant real-world consequences.

While several quantization methods demonstrate effectiveness in general bench-
marks, they do not guarantee reliability or robustness against all potential inputs, par-
ticularly adversarial scenarios (GHOLAMI et al., 2022; LOHAR et al., 2023). Statistical
accuracy measures alone are insufficient as they do not adequately reflect the vulnerabilities
and nuanced behavioral changes introduced by quantization.

To robustly address these issues, this thesis proposes leveraging equivalence checking
(EC), a formal verification approach explicitly designed to assess the behavioral equivalence
between two neural networks (BÜNING; KERN; SINZ, 2020; ELEFTHERIADIS et al.,
2022). EC ensures quantized models replicate the original model’s decision-making processes
precisely, thereby providing a rigorous methodology suitable for safety-critical applications.

Chapter 1. Introduction 21

1.4 Objectives
The goal of this thesis is to develop a robust framework for neural network quan-

tization that ensures functional behavioral equivalence between original and quantized
models. To systematically achieve this goal, the following specific objectives have been
identified:

• Investigate the behavioral impact of NN quantization: Analyze how quanti-
zation affects neural network behavior, specifically addressing accuracy, robustness,
reliability, and vulnerability to adversarial inputs.

• Develop a modular, iterative quantization framework: Design and implement
a quantization methodology integrating formal verification to ensure functional
behavior preservation.

• Integrate formal equivalence verification: Establish equivalence checking as a
core component of the quantization process to rigorously verify behavioral equivalence
between original and quantized models.

• Propose optimization-based quantization methods: Create optimization strate-
gies within the quantization framework aimed at balancing efficiency gains with
strict preservation of original neural network behavior.

• Evaluate and validate the proposed framework: Empirically validate the
developed methodologies using various benchmarks and neural network architectures,
demonstrating their effectiveness compared to existing techniques.

Achieving these objectives will significantly advance the field, providing both
theoretical insights and practical tools to safely and efficiently deploy quantized neural
networks in constrained environments.

1.5 Publications
The methodologies and results developed in this thesis have been disseminated

through peer-reviewed publications, underscoring their relevance and contributions to the
scientific community.

Our research introduced the Counterexample Guided Neural Network Quantization
Refinement (CEG4N) framework, a novel technique integrating search-based quantization
with formal equivalence checking. This method ensures that neural networks retain their
functional behavior after quantization, crucial for deploying reliable and efficient neural

Chapter 1. Introduction 22

networks in resource-constrained environments. The initial concept and preliminary evalu-
ations of CEG4N demonstrated its effectiveness on various benchmarks, highlighting up
to 72% accuracy improvement over state-of-the-art quantization techniques (MATOS et
al., 2022).

Further development and extensive experimental validation of the CEG4N frame-
work extended its capabilities and applications. We refined the equivalence checking
process, enhancing the precision of behavioral equivalence guarantees between original and
quantized neural networks. The improved version of the CEG4N framework was validated
using diverse benchmarks, including deep convolutional neural networks and safety-critical
applications like the ACAS Xu system, achieving models with up to 163% better accuracy
compared to existing techniques (MATOS et al., 2024).

These contributions have advanced the intersection of neural network quantiza-
tion and formal verification, providing robust methodologies for maintaining functional
correctness in quantized models.

1.6 Thesis Structure
The remainder of this thesis is structured as follows:

Chapter 2 presents the theoretical foundations of neural networks, quantization
methods, formal verification, and relevant optimization approaches, clearly defining the
research problem.

Chapter 3 details the proposed iterative quantization refinement framework, explic-
itly integrating equivalence checking and optimization methods, along with underlying
assumptions and limitations.

Chapter 4 describes empirical validation processes, presenting comparative analyses
against existing quantization and verification methods.

Chapter 5 critically analyzes the results, discusses implications for deployment in
resource-constrained systems, and addresses potential limitations and future improvements.

Chapter 6 surveys existing literature on quantization techniques, formal verification
methodologies, and current challenges in preserving functional behavior.

Chapter 7 summarizes the thesis contributions, highlights its significance, and
outlines directions for future research.

23

2 Theoretical Foundations

In this chapter we present the background theory that are fundamental for the
understanding the research conducted in this thesis. It covers the basics of NNs, quantization
processes, and the principles of formal equivalence verification. It also explores optimization
techniques relevant to NN quantization. The mathematical formulation of the research
problem is presented, providing a clear and precise statement of what problem this thesis
aims to solve.

2.1 Neural Networks (NNs)
An NN consists of multiple layers of interconnected nodes that resemble a direct

graph, and each node acts as an artificial neuron that emulates the functions of a biological
neuron. NNs are structured with layers of nodes, or neurons, linked by edges that symbolize
weights. As illustrated in Figure Figure 1, NN consists of three types of layers: an input
layer, an output layer, and one or more hidden layers.

Input #1

Input #2

Input #3

Input #4

Input #5

Input #6

Output #1

Output #2

Output #3

Output #4

Output #5

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 1 – A simple artificial NN.

Each of the layers plays a key role in the functionality of the NN. The input layer
is the first layer of the NN, which receives the initial data for processing. Each neuron
in the input layer represents a feature of the input dataset. The hidden layers, in turn,

Chapter 2. Theoretical Foundations 24

lie between the input and output layers and are termed “hidden” because they do not
directly interact with the external environment, i.e., they neither observe the input data
nor produce the final output. The complexity and capacity of the NN increases with the
number of hidden layers and neurons within them, enabling the NN to capture more
complex patterns and relationships in the data. Finally, the output layer produces the
final result of the NN, delivering the prediction or classification based on the input data.
The structure of the output layer varies depending on the specific task, such as regression,
binary classification, or multi-class classification.

2.2 Background on NNs
AI encompasses a wide range of technologies capable of performing tasks that

require human intelligence. These technologies include reasoning, learning, problem-solving,
perception, and understanding language (ANANTRASIRICHAI; BULL, 2020). Machine
Learning (ML), a subset of AI, focuses on algorithms that allow computers to learn from
and make predictions or decisions based on data. ML has advanced various fields, including
predictive maintenance in Industry 4.0 (BERTOLINI et al., 2021). Deep Learning (DL), a
further subset of ML, uses NNs with many layers (deep NNs) to analyze various forms of
data. Its capabilities extend to image recognition, natural language processing, and more
complex data interpretation tasks (LECUN; BENGIO; HINTON, 2015).

NNs, inspired by the neuronal structure of the human brain, consist of intercon-
nected nodes or neurons that process and transmit signals (KRUSE et al., 2016). These
networks can learn and adapt, making them versatile tools for various computational
tasks (RUSSELL; NORVIG, 2021). NNs have been juxtaposed with traditional statistical
methods, often in a comparative context, to understand their predictive and classification
capabilities across different applications (PALIWAL; KUMAR, 2009).

NNs represent a foundational technology in AI, offering unparalleled capabilities in
pattern recognition, data analysis, and predictive modeling. Their diverse architectures
enable them to tackle various tasks, from simple classifications to complex problem-solving
across various domains.

NN architectures define the structure and function of these systems (KRUSE et al.,
2016), including the arrangement of neurons and layers, connections between neurons, and
the methods of data processing and signal transmission within the network (KRUSE et
al., 2016). Typically, the architecture of an NN is tied to a particular application domain,
indicating what sets of problems a particular NN is better-suited for (AHAMED, 2016;
HAPPEL; MURRE, 1994). Notable architectures and key applications are discussed below.

Feedforward NNs (FFNNs) are the simplest NNs where connections between the
nodes do not form a cycle. This architecture is particularly highlighted in comparative

Chapter 2. Theoretical Foundations 25

studies with statistical techniques for prediction and classification (PALIWAL; KUMAR,
2009). An example of using FFNNs in radiology highlights this architecture’s utility in
pattern recognition and signal detection, offering better accuracy than human observers in
certain diagnostic tasks (BOONE; SIGILLITO; SHABER, 1990).

Convolutional NNs (CNNs) are widely used in processing visual imagery, character-
ized by convolutional layers that automatically and adaptively learn spatial hierarchies of
features from input images (LI et al., 2020). CNNs have revolutionized image processing
and computer vision, offering superior performance in image classification, object detection,
and more (EGMONT-PETERSEN; RIDDER; HANDELS, 2002).

Recurrent NNs (RNNs) (DAS et al., 2023) and long short-term memory (LSTM)
(HOCHREITER; SCHMIDHUBER, 1997) are used for sequential data or where the order
and context of the data are critical, such as in time series analysis or natural language
processing. NNs have significantly improved the performance of language models (ZHOU
et al., 2020), enabling breakthroughs in machine translation (SENNRICH; HADDOW;
BIRCH, 2015), sentiment analysis (ZHANG et al., 2023), and automated content creation
(KABRA et al., 2022).

Indeed, NNs have found applications across various fields due to their versatility
and powerful learning capabilities (PALIWAL; KUMAR, 2009; KRUSE et al., 2016). In
healthcare and biomedicine, NN applications range from diagnostics and medical imaging
analysis to predicting disease outbreaks, highlighting their potential to improve patient
care and health outcomes (WEISS et al., 2022). In financial analysis and prediction,
NNs have been utilized for stock market prediction, fraud detection, and customer data
analysis, demonstrating their adaptability to analyze complex financial systems (WONG;
SELVI, 1998). In environmental modeling and climate analysis, they have been employed
in predicting weather patterns and analyzing climate change impacts and environmental
monitoring, showcasing their ability to handle large-scale, complex data sets (MAIER;
DANDY, 2000).

2.2.1 NN Notation

NNs (NNs) represent non-linear multivariate functions f : I ⊂ Rn → O ⊂ Rm

where I and O denote the input and output domains, and n is the dimension of the input
space and m is the dimension of the output space. Internally, an NN is structured as a
directed graph comprising a set of L hidden layers. In a feedforward NN, the neurons in
each layer l = {1, ..., L} are connected to those in the preceding layer l − 1, each applying
a linear transformation followed by a non-linear transformation. Additionally, the neurons
in the first layer l = 1 serve as placeholders for the NN’s input, while those in the last

Chapter 2. Theoretical Foundations 26

layer l = L represent the function f ’s output. Formally, for a network with L layers:

f(x) = fL(fL−1(...f1(x))),

where x denotes an input sample from the input domain I. The output of the last layer of
the NN is usually considered the output of the function f on a specific input x, and is
normally denoted as y = f(x). Except for the last layer, the output y(l) of each of the other
layers (i.e., the hidden layers) is computed by applying both an affine and a non-linear
transformation. The non-activated and activated outputs of layer L, denoted by z(l) and
al), respectively, are:

z(l) = W(l) · a(l−1) + b(l), (2.1)
a(l) = σ(z(l)), (2.2)

where W(l) ∈ Rml−1×ml represents the weight matrix, b(l) ∈ Rml the bias matrix, and
σ : Rml → Rml the non-linear activation function. And a(0) = x is the NN’s input.

Popular activation functions include the Rectified Linear Unit (ReLU), the sigmoid
(Sigm), and the hyperbolic tangent (TanH). ReLU is the most common and widely used
activation function. The ReLU function can be defined as:

ReLU(z(l)) = max{0, z(l)}. (2.3)

This notation supports expressing the arithmetic for both fully-connected and
convolutional layers. Note that the Equation 2.1 can be written in terms of matrix
multiplication and addition as follows:

z
(l)
0

z
(l)
1
...

z(l)
m

=

w(l)

0,0 . . . w(l)
0,n

w(l)
1,0 . . . w(l)

1,n
...

w(l)
m,0 . . . w(l)

m,n

a(l−1)

0

a(l−1)
1
...

a(l−1)
m

 +

b(l)

0

b(l)
1
...

b(l)
m

 ,

where the matrix W(l) is dense in fully-connected layers and sparse in convolutional ones
(BISHOP, 2006).

2.3 Quantization
In this Section, we present the fundamental concepts of NN quantization and

fixed-point hardware accelerators that support the algebraic operations of QNNs. We

Chapter 2. Theoretical Foundations 27

begin by outlining the hardware rationale and explaining typical quantization methods
and their characteristics. Subsequently, we dive into the practical aspects concerning layers
frequently encountered in contemporary NNs and how they impact fixed-point accelerators.

2.3.1 Introduction

Quantization refers to limiting high-precision values, such as single-precision floating-
point numbers, to a finite set of lower-precision values, such as integers. This procedure
is characterized by three key parameters: bit-width b, scale factor s, and zero point z.
The bit-width b, which represents the number of bits available (or the desired number
of bits to represent the quantized data), sets the limits for the quantization range. That
is, it determines both the quantization process’s precision and the quantized data’s size.
The scale factor is responsible for aligning the quantized value range with the input data
range and setting the increment size between successive quantization levels. The zero-point
moves the quantization grid to accurately represent a specific value, which may not be
zero.

As mentioned above, quantization refers to mapping a set of real number values to
a set of discrete integer values. However, it can also involve the reverse process, in which
these discrete quantized values are mapped back to a floating-point representation, in
the process called de-quantization. This dual nature of quantization is crucial for various
applications. Having the capability to establish this two-way connection enables achieving
a compromise between the effectiveness and conciseness of quantized information, enabling
one to closely mimic the precision and range of the original data when required. Achieving
this equilibrium is crucial for efficiently applying quantization in technology and computing.

The bit-width refers to the number of bits used to encode individual floating-
point values within a finite, limited set of quantized values, determining the quantization
resolution. That is the number of discrete levels or steps that can be represented. For
example, an 8-bit quantization allows 28 different levels or values, while a 32-bit quantization
allows for 232 levels. Choosing an appropriate bit-width is crucial for balancing the quantized
data’s precision and the storage or computational resources required to handle the data. A
lower bit-width results in smaller data sizes and lower computational complexity, but can
lead to higher quantization error and loss of information. Conversely, a higher bit-width
reduces the quantization error but at the cost of increased data size and computational
requirements.

Quantization ranges setting refers to the process of defining the quantization range
(also known as the clipping range), that is, the arbitrary definition of a set of minimum
and maximum limit values for the input data (floating point data), in the form of the
range [α, β]. The process of selection of α and β is commonly known as calibration. One
simple option is to utilize the minimum/maximum values of the input data for setting the

Chapter 2. Theoretical Foundations 28

clipping range, that is, let x be a floating-point input value, and X be the set of all know
input values, such that x ∈ X , thus:

α = min
x∈X

x

β = max
x∈X

x
(2.4)

Another possibility for selecting the clipping range is to establish it according to the
minimum/maximum values, as shown below:

xmin = |min
x∈X

x|

xmax = |min
x∈X

x|

−α = β = max
x∈{xmin,xmax}

x

(2.5)

Similarly, another significant range is represented by [α′, β′], which establishes the
lower and upper limits that the quantized format can encode. This other range can be seen
as the clipping range for the quantized values (which will be further discussed in Section
Section 2.3.1.1). However, this range is defined more simply based on the bit-width chosen
for the quantization process. For example, in an 8-bit quantization system, quantized
values can range from 0 to 255, meaning that any input value must be mapped or scaled to
fall within this range [α′ = 0, β′ = 255]. Furthermore, the definition of [α′, β′] is determined
by whether signed or unsigned integers ranges desired for quantization. For example, the
[α′, β′] range for a signed integer quantization is defined as follows. Let b be the bit-width,
thus the minimum and maximum values (α′, β′) can be computed in relation to b as
follows:

α′ = −2b−1

β′ = −2b−1 − 1,
(2.6)

while the [α′, β′] range for an unsigned integer quantization is defined as follows. Let b the
bit-width, thus the minimum and maximum values (α′, β′) can be computed in relation to
b as follow:

α′ = 0
β′ = 2b−1

(2.7)

The selection of quantization intervals directly impacts the level of detail and
precision of the quantized values, which in turn influences the faithfulness of the data
representation (GHOLAMI et al., 2022). Optimal quantization intervals can help reduce
data loss and maintain the fundamental features of the initial data in quantized form.

Chapter 2. Theoretical Foundations 29

The main consideration when setting intervals is to find a balance between clipping and
rounding errors and how they affect information loss during quantization (NAGEL et al.,
2021; JACOB et al., 2017).

In quantization, the scale factor is a crucial multiplier employed to modify the
range of input data values. It plays a vital role in ensuring that the original input data
range is effectively represented in the quantized format by appropriately scaling the data
up or down to align with the desired range, thereby minimizing any substantial loss of
information. Thus, to compute the scaling factor, one must first define the desired bit-width
and then compute the quantization ranges (as discussed in Section Section 2.3.1.1). With
the computed quantization ranges,the scaling factor is computed as:

s = S(α, β, α′, β′) = β − α

β′ − α′ (2.8)

The zero-point refers to a specific value representing the real number zero within
the quantized data range. It acts as an offset in the quantization formula, enabling the
mapping of real-valued inputs, which may include negative numbers, to positive integers
in the quantized output. The zero-point integration into the quantization formula can be
seen in Equations Equation 2.10 and Equation 2.12 in Section 2.3.1.1, respectively.

In quantization, not all values can be perfectly aligned with their real-number
equivalents due to the limited precision imposed by the bit-width. The zero-point ensures
that the quantization process can accurately represent zero and, by extension, values
around zero, which is critical for maintaining the integrity of input data with positive
and negative values. By carefully choosing the zero-point along with the scale factor,
quantization can minimize information loss and preserve the relative distribution of the
original data values. The zero point can be computed as follows:

z = Z(α, β, α′, β′) =
⌊

βα′ − αβ′

β − α

⌉
(2.9)

2.3.1.1 Quantization Mapping

Mathematically, quantization can be expressed as a mapping function Q′
b : Rm×p →

Im×p, which takes a floating point value x ∈ Rm×p | α ≤ x ≤ β and transforms it into a
⌊-bit integer x′ ∈ Im×p | α′ ≤ x′ ≤ β′. Given a floating point value x, one can transform it
into an integer value x′ within the grid of integers {α′, ..., β′}, as defined below:

x′ = Q′
b(x, z, α′, β′) = clip

(⌊
x

s

⌉
+ z, α′, β′

)
, (2.10)

where x represents the high-precision value to be quantized, b denotes the bit-width for
quantization, and s is the scaling factor for x relative to b, and z is the zero-point. The clip

Chapter 2. Theoretical Foundations 30

term denotes the clipping function that ensures that the quantized values remain within
the specified lower and upper bounds α′ and β′, respectively. The details of the clipping
function are presented in Section Section 2.3.1.1. Lastly, ⌊·⌉ denotes the rounding of the
values to the nearest integer.

Dequantization involves converting quantized values back into a more continuous
format or of higher precision, typically involving floating-point numbers. In quantization,
values are transformed from a larger, often continuous set to a smaller, discrete set to
simplify complexity and storage demands. Therefore, dequantization acts as the inverse
process of quantization. By utilizing the same parameters employed during quantization,
such as bit-width ⌊, scale factor s, and zero-point z - dequantization enables the recreation
of the original data from their quantized form as accurately as possible. This is achieved by
approximating the low-precision (quantized) value to its original high-precision counterpart.
Essentially, dequantization closes the gap between the efficiency of quantization and the
necessity for precise data representation.

Mathematically, dequantization can be expressed as a mapping function Q′′
b :

Im×p → Im×p, which takes a ⌊-bit integer value x′ ∈ Im×p | α′ ≤ x ≤ β′ and transforms
it into a floating-point value x′′ ∈ Rm×p | α′ ≤ x ≤ β′. Given a integer value x′, one can
transform it into an floating-point value x′′ | x′′ ≈ x, as follows:

x′′ = s(x′ − z)
= s(Q′

b(x, z, α′, β′)− z)
(2.11)

Combining the definitions of quantization (defined in Section Equation 2.10), and
dequantization defined above, one can formalize a general function for uniform quantization,
in the form of Qb : Rm×p → Rm×p, defined as follows:

x′′ = Qb(x) = s
[
clip

(⌊
x

s

⌉
+ z, α, β

)
− z

]
(2.12)

Notice that until now the formalization of quantization and de-quantization has
been using a real value x, this serves the purpose of simplifying the notation being used.
However, the formalization of Qb is flexible enough to allow the real value x to be replaced
by a vector x of floating-point values and also a matrix X of floating-point values.

The formalization provided for the quantization mapping function Qb is indeed
generalized and versatile enough to be extended naturally from scalar real values to vectors
x ∈ Rm and matrices X ∈ Rm×p. The notation employed initially utilized scalar values x

primarily for clarity and simplicity. Nonetheless, the mathematical expressions defined
in equations (2.10), (2.11), and particularly (2.12), remain valid and applicable when
generalized to multidimensional arrays.

Explicitly, when generalizing from a scalar x to a vector x or a matrix X, each
operation such as scaling, rounding, clipping, and offsetting (via zero-point z) should

Chapter 2. Theoretical Foundations 31

be applied element-wise. Therefore, for a vector x = [x1, x2, . . . , xm], the quantization-
dequantization function Qb is computed independently for each element, as follows:

x′′ = Qb(x) = s
[
clip

(⌊x
s

⌉
+ z, α′, β′

)
− z

]
,

where the operations clip, round, and arithmetic are understood as applied element-wise.

Similarly, for matrices, X = [xij] ∈ Rm×p, the quantization-dequantization mapping
is also applied element-wise:

X′′ = Qb(X) = s
[
clip

(⌊X
s

⌉
+ z, α′, β′

)
− z

]
.

In this generalized context, each element of the input vector or matrix undergoes
the same quantization-dequantization process independently, ensuring consistency and
simplicity of implementation, while maintaining mathematical rigor and clarity.

In practice, the quantization process will have the possibility of having values outside
the range of α, β, therefore, the quantized value x′′ will also be outside the range of α′, β′. If
the integer grid is signed, then a typical choice is to define (α′, β′) = (−2b−1, 2b−1−1). On the
other hand, if the integer grid is unsigned, a typical choice is to define (α′, β′) = (0, 2b− 1).
To ensure no integer or floating-point overflows or unintended quantization errors, the
quantization process requires the clipping step. That is, values of x that fall outside of this
interval are coerced into its limits, resulting in a clipping error. To minimize this error, one
can define a larger quantization range by increasing the scale factor. However, increasing
the scale factor results in higher rounding errors. As noted by Nagel et al. (NAGEL et
al., 2021), the rounding error lies in the range [−1

2s, 1
2s]. This is a trade-off an important

aspect to consider in the quantization mapping and a justification to why we can only
approximate the original floating point value x, therefore, quantization errors must be
assumed.

In symmetric quantization, the clipping range is defined following Equation Equa-
tion 2.6 in Section Section 2.3.1, and, in addition, the zero-point is fixed at zero, that
is, z = Z(α, β, α′, β′) = 0. The name symmetric quantization comes from the symmetric
relation between the parameters α and β, that is, α = −β. In the asymmetric quantization,
the clipping range may not be symmetric with respect to the origin (GHOLAMI et al.,
2022), i.e., −α ̸= β, hence the name asymmetric quantization. For example, one way to
achieve asymmetric quantization would be to define the quantization ranges accordingly
to Equation Equation 2.4 in Section Section 2.3.1. This approach is not the only way to
achieve asymmetric quantization, but it provides a rather suitable example.

Asymmetric quantization often results in a tighter clipping range compared to
symmetric quantization (GHOLAMI et al., 2022), as it allows for more control over the
zero-point offset. That is, by moving the zero-point towards the sparser region of the

Chapter 2. Theoretical Foundations 32

input data, consequently, more quantization levels are made available for the denser
region. Symmetric quantization, on the other hand, can be seen as a specific instance of
asymmetric quantization; that is, it is a simplified version of the general asymmetric case.
It has two advantages: (1) it is a good choice for distributions that are roughly symmetric
around zero, and (2) it allows the complete removal of the zero-point as a term in the the
quantization and de-quantization formulas, therefore simplifying them.

2.3.2 Quantization of NNs

The are a number of different strategies that can be followed to quantize NNs
(JACOB et al., 2017; LIN; TALATHI; ANNAPUREDDY, 2016), that can result in
many combinations of parameters being quantized or not. In this section, for the sake of
simplification, the focus will be to provide a basic notation for the quantization of NNs.
Consider a FFNN f as defined in Equation 2.1 and Equation 2.2. Call Bf the set whose
elements b(l) ∈ Bf are the bit widths for each layer h in f . Given the de-quantization
process in Equation 2.11 and the non-activated output in Equation 2.1, we can describe
the non-activated output z′′

(l) of a quantized layer l as:

z′′ = Q(z(l), b(l))
= Q(b(l), b(l)) +Q(W(l), b(l))Q(a(l), b(l))
= b′′

(l) + W′′
(l)a′′

(l)

(2.13)

Notice that in the notation above the input, the weight, and the bias are quantized using
the same bit-width b(l). This is a valid quantization approach, however it is not the only
one. There other approaches that allow the input, the weight, and the bias to have a
bit-widths associated with them. However, the notation to express that is quite heavy
and does not bring clarity. Also notice that the clipping ranges were omitted from this
notation.

2.3.3 Practical considerations

When quantizing neural networks (NNs) with multiple layers, there exists a wide
range of quantization options, including the quantization method, granularity, and bit-
width. Granularity, in this context, refers to the level at which quantization is applied,
such as per-layer, per-channel, or per-tensor quantization, each offering different trade-offs
between precision, computational efficiency, and hardware implementation complexity.
This section delves into and examines some practical factors that can help narrow down
the search space for selecting appropriate quantization strategies.

Chapter 2. Theoretical Foundations 33

2.3.3.1 Mixed-precision quantization

Homogeneous bit-width, such as single precision quantization, is widely supported
by hardware. Nevertheless, employing single precision for all weights and quantizations
restricts the ability to identify the best quantization parameters for individual layers, or
even for specific weights and quantizations within each layer.

Recent studies have also delved into incorporating heterogeneous bit-width or
mixed-precision techniques. Mixed-precision quantization involves using different levels
of precision for various parts of a model (such as layers and activations), providing a
customized way to optimize performance while managing computational requirements.
Nonetheless, this approach increases the intricacy of the quantized model since additional
arithmetic operations are needed to handle conversions between different precisions within
the NN graph.

2.3.3.2 Weight quantization

Weight quantization aims to reduce the precision of the weights of NN layers,
typically from floating-point to lower-bit-width formats like integer representations. This
process significantly reduces the size and computational complexity of the model. Since
weight parameters account for the majority of the memory requirements of a NN, and are
involved in the most expensive computations and data transfer operations during runtime.
The benefits of weight quantization include improved model efficiency, with faster inference
times and lower power consumption.

However, there are several considerations and relevant aspects to consider when
implementing weight quantization. One of the main challenges is managing the trade-off
between model size/computational efficiency and the accuracy of the model. Quantization
can lead to a loss in precision, which, in some cases, may result in a decrease in model
performance. This is especially critical for the quantization of weights because weights
are where NNs store their learned knowledge, and each layer may have different data
distributions and information density. Therefore, the choice of quantization schemes and
parameters may affect layers differently.

Weights are typically quantized without requiring calibration data (GHOLAMI et
al., 2022). Symmetric quantization is commonly used to quantize weights because setting
the zero point to zero can decrease the computational cost during inference (WU et al.,
2020b).

2.3.3.3 Bias quantization

The bias account for only a small fraction of the parameters in a NN. However,
as each entry in a quantized bias vector is added to many of these output activations,

Chapter 2. Theoretical Foundations 34

meaning that even small errors in the quantized bias vector can have widespread effects on
the NN’s outputs (JACOB et al., 2017). Quantization errors do not just introduce random
noise but can systematically skew the output activations in one direction or another, i.e.,
they introduce an overall bias or an error component with a non-zero average (JACOB
et al., 2017). So is imperative to evaluate and apply the right quantization scheme for
bias. Another thing to consider is that, when quantizing both weights and activations
(inputs to the layers), it’s crucial to align their scale factors to ensure that the quantized
dot product (between weights and activations) remains accurate. This alignment affects
how biases are quantized and re-scaled, making it necessary to carefully manage the scale
factors for biases to maintain overall NN performance.

There are several approaches and recommendations for bias quantization. Bias
is often quantized and stored with higher precision, such as a 32-bit (NAGEL et al.,
2021; JACOB et al., 2017). Moreover, employing an increase in precision for bias vectors
serves a crucial purpose. It helps to prevent errors in the quantization of the bias vector
from skewing activations output (JACOB et al., 2017). And also facilitates compatibility
with the MAC operations in fixed-point arithmetic. In another direction, asymmetric
quantization can be more beneficial, since it can better accommodate the range of bias
values without loss of information.

The approaches and recommendations discussed above inherently add complexity
to the bias quantization scheme. As they add many more factors to consideration. A
simpler approach also supported by the literature is called bias absorption (JACOB et
al., 2017; BHALGAT et al., 2020). In this approach, the bias is absorbed into the weights
matrix, allowing for a more uniform treatment of the quantized parameters. That is,
weights and bias have the quantization parameters. It should be noted that this approach
may require adjustment of the subsequent layers to account for the absorbed bias(NAGEL
et al., 2019).

2.3.3.4 Activation quantization

Usually, an overall recommendation is that unsigned symmetric quantization is
well suited for one-tailed distributions, such as ReLU activations. In contrast, hyperbolic
tangent activations should rely on signed symmetric quantization. Anyway, both strategies
may be applied if an activation function is suitably modified.

2.4 Neural network equivalence
Neural network equivalence (NNE) refers to the concept that different NN archi-

tectures or configurations can produce the same output for a given input. Understanding
equivalence in NNs is crucial for several reasons, including model optimization, simplifi-

Chapter 2. Theoretical Foundations 35

cation, and interpretability. In this section we will explore the various aspects of NNE,
including mathematical foundations, types of equivalence, and implications for ML.

At its core, NNE is rooted in the mathematical properties of functions and transfor-
mations. A NN can be viewed as a complex function composed of simpler, parameterized
functions (e.g., activation functions, weight matrices). Mathematically, let f : I → O and
f ′ : I → O be two arbitrary NNs, where I ∈ Rn and O ∈ Rm are their common input
and output spaces, respectively. Thus, the two NNs f and f ′ are considered equivalent if:

f(x) ⋍ f ′(x)

, for all inputs x in the input domain of the function. Here, ⋍ defines a proper equivalence
relation.

In this thesis we focus on functional equivalence which extends the concept of NNE
by emphasizing the identical output behavior of different NNs under various transforma-
tions. This concept is particularly important in theoretical computer science and ML for
understanding the foundational aspects of NN behavior and transformations. Research
often explores how small changes in NN structure or weights can lead to functionally
equivalent NNs.

Research on NN optimization and transformations frequently investigates conditions
under which functionally equivalent models can be derived. Notable studies by LeCun et
al. (CUN; DENKER; SOLLA, 1990) and Han et al. (HAN et al., 2015) have significantly
contributed to understanding and achieving functional equivalence in NNs. These studies
highlight methods to reduce model complexity while retaining the same functional behavior,
which is crucial for efficient deployment and scalability of NN models.

Next, we will provide the definition and discuss some types of NNE.

2.4.1 Types of functional equivalence

There are several types of equivalence in NNs, each with distinct implications
and applications. Currently, the literature reports the following definitions of types of
equivalence (ELEFTHERIADIS et al., 2022; TEUBER et al., 2021; BÜNING; KERN;
SINZ, 2020; PAULSEN et al., 2020; PAULSEN; WANG; WANG, 2020):

Strict equivalence

Strict equivalence (SE) occurs when two NNs produce the exact same output for every
possible input. This requires that for any given input, the output values are identical across
both NNs. This is the strongest form of equivalence, implying that the NNs implement
the same function, despite potentially having different internal structures or parameter
values. SE is considered a type of functional equivalence because it pertains to the exact

Chapter 2. Theoretical Foundations 36

numerical match of the outputs, ensuring that both networks behave identically for all
inputs.

Definition 2.4.1 (Strict equivalence) Consider two NNs f : I → O and f ′ : I → O.
Then, f and f ′ are strictly equivalent, i.e., f ≡ f ′, if and only if the following holds:

∀ x ∈ I, f(x) = f ′(x). (2.14)

SE is crucial in scenarios where any deviation in outputs is unacceptable. This form of
equivalence is necessary when the exact output values are critical to the application, and
any discrepancy could lead to significant errors or failures. While SE is a rigorous form
of verification that ensures two NNs produce identical outputs for every input, it often
proves impractical in real-world applications for several reasons. For example, achieving
and verifying SE can be computationally expensive and time-consuming which may not
be practical. For such applications, approximate forms of equivalence may be necessary
and useful.

Classification based equivalence

Classification based equivalence (CBE) occurs when two NNs produce the same class
prediction for every possible input. This means that, for each input, the index of the
maximum value in the output layer (i.e., the class label with the highest probability) is
identical for both networks. This is a more relaxed type of equivalence, that is, it is an
approximate form of equivalence as it does not require the actual output values to be the
same, only that they lead to the same classification decision.

Definition 2.4.2 (Classification based equivalence) Consider two NNs f : I → O
and f ′ : I → O. Then, f and f ′ are equivalent, i.e., f ≈1 f ′, if and only if the following
holds:

∀ x ∈ I, argmax1f(x) = argmax1f
′(x). (2.15)

CBE is particularly useful, as the name suggests, in classification tasks where the exact
output values are less important than the final classification decision. In many applications,
requiring exact output matches is unnecessarily stringent. Often, allowing the outputs
to be close enough instead of exact matches is sufficient to ensure the networks perform
the desired task effectively. For instance, in image recognition tasks, it is often sufficient
to ensure that two different NNs identify the same object in an image. This is crucial in
applications like medical image analysis, where different models might be used to ensure
consistency in diagnosis, or in transfer learning scenarios, where a model fine-tuned on a
specific dataset should produce the same classifications as the original model.

Norm based equivalence

Chapter 2. Theoretical Foundations 37

Norm based equivalence (NBE) occurs when the outputs of two NNs are close to each other
within a specified tolerance ϵ. This means that, for every input, the difference between
the outputs of the two networks, measured by a chosen norm (typically the Lp norm),
does not exceed ϵ. NBE is a more flexible form of equivalence compared to SE and allows
for minor variations in the outputs, thus also bein an approximate form of equivalence.
It is considered a type of functional equivalence because it pertains to the numerical
similarity of the functions represented by the networks. Common choices of norms are: the
Manhattan norm L1 where p = 1; the Euclidean norm L2 where p = 2; and the infinity
norm L∞ where p =∞.

Definition 2.4.3 (NBE) Consider two NNs f : I → O and f ′ : I → O, p ∈ {1, 2,∞},
and an ϵ > 0. Then, f and f ′ are equivalent, i.e., f ∽p,ϵ f ′, if and only if the following
holds:

∀ x ∈ I, ||f(x)− f ′(x)||p ≤ ϵ. (2.16)

NBE is useful in scenarios where minor differences in output values are acceptable and do
not significantly impact the overall performance or behavior of the network. This is common
in regression tasks, generative models, and scenarios involving numerical approximations.
For example, in weather prediction models, slight differences in output temperatures might
be tolerable as long as they fall within a certain acceptable range.

In addition, CBE, although being a relaxed form of SE, also imposes a hard
requirement but not as stringent or inflexible as in the case of the latter. NBE, in turn, is
a flexible form of equivalence and often does not imposes such a hard requirement. As
noted by Eleftheriadis et al.(ELEFTHERIADIS et al., 2022), SE is a true equivalence
relation, that is, it is reflexive (f ≡ f for any NN f), symmetric (f ≡ f ′ iff f ′ ≡ f),
and transitive (f ≡ f ′ and f ′ ≡ f ′′ implies f ≡ f ′′). However, approximate forms of
equivalence are only reflexive and symmetric and may not always satisfy the transitivity
property.

2.4.2 Formal verification of NN equivalence

Verifying NN equivalence using formal verification techniques involves defining the
NNE verification problem, where the objective is determining if two NNs, denoted as f

and f ′, produce outputs that are equivalent according to a specified equivalence relation,
for all inputs within a given input set I. The equivalence relation, denoted by ⋍, can
represent SE (≡), as CBE (≈1), or NBE with a norm parameter p and within a tolerance
ϵ (∽p,ϵ). The task is to verify whether f(x) ⋍ f ′(x) holds true for every x in the input set
I. Then, definition of formal verification of NN equivalence is as follows.

Chapter 2. Theoretical Foundations 38

Definition 2.4.4 (NN equivalence verification problem) Given two NNs f and f ′,
an equivalence relation ⋍∈ {≡,≈1,∽p,ϵ}, and the parameters p and ϵ, the NN equivalence
verification problem consists in checking if f(x) ⋍ f ′(x),∀x ∈ I.

The definition of equivalence can vary based on different criteria and parameters.
And in practice, checking the equivalence for all possible inputs in the input domain I is
infeasible. Often, an input space sampling strategy is employed to generate a representative
set of inputs for which the outputs will be compared. This can be done through uniform
sampling, importance sampling, or other techniques. In addition, it is common practice to
express the input space in terms of input regions defined as bounded regions around a
specific input. The effective manner this is achieved depends on the specific semantics of
each formal method and will be explained in the following sections.

In this thesis, we use two formal methods to solve this equivalence verification
problem: bounded model checking (BMC) and geometric path enumeration (GPE). BMC
is combined with satifiability modulo theory (SMT) and GPE is combined with reachability
analysis (RA). With SMT, the equivalence property and the NN model are encoded as a
first-order logic formula. SMT restricts the full expressive power of first-order logic to a
decidable fragment. With GPE, the property to be checked and the model are encoded as
linear constraints.

2.4.3 SMT Encoding

The following steps show how to reduce NN equivalence problem to a logical
satisfiability problem: (1) encoding f into an SMT formula ϕ; (2) encoding f ′ into an SMT
formula ϕ′; (3) encoding the relation f ⋍ f ′ into an SMT formula Φ, such that f ⋍ f ′ iff
Φ is not satisfiable; and (4) checking, via SMT solver, whether Φ is satisfiable. If the latter
is true, f and f ′ are not equivalent, and the solver provides a counterexample. Otherwise,
f and f ′ are equivalent.

Checking NN equivalence problem becomes possible by relying on the negation of
f ⋍ f ′, i.e., by encoding it as a formula that asserts the existence of an input x ∈ I and
two outputs y, y′ ∈ O where (y = f(x) and y′ = f ′(x)) such that they do not satisfy the
conditions imposed by ⋍. Indeed, we check if

∃x ∈ I; y, y′ ∈ O; y = f(x) ∧ y′ = f ′(x) ∧ y ̸= y′,

in the SE case. For NBE, we check if

∃x ∈ I; y, y′ ∈ O; y = f(x) ∧ y′ = f ′(x) ∧ ||y − y′||p > ϵ,

and for the CBE we check if

∃x ∈ I; y, y′ ∈ O; y = f(x) ∧ y′ = f ′(x) ∧ argmax1 y ̸= argmax1 y′,

Chapter 2. Theoretical Foundations 39

In summary, checking whether the formula y = f(x) ∧ y′ = f ′(x) ∧ y ≠ y′ is
unsatisfiable can be further expressed as

ϕ := y = f(x)
ϕ′ := y′ = f ′(x)
Φ := ϕ ∧ ϕ′ ∧ y ̸= y′.

(2.17)

Similarly, checking whether the formula y = f(x) ∧ y′ = f ′(x) ∧ ||y − y′||p > ϵ is
unsatisfiable can be expressed as

ϕ := y = f(x)
ϕ′ := y′ = f ′(x)
Φ := ϕ ∧ ϕ′ ∧ ||y − y′||p > ϵ.

(2.18)

In addition, the input of an NN f is a vector x = {x1, ..., xn} ∈ Rn, and some
limitation regarding it may be necessary. This constraint can then be added as

n∧
j=1

xj − δ ≤ xj ≤ xj + δ. (2.19)

In practice, this defines a limiting region between xj−δ and xj+δ around every point xj ∈ x,
where equivalence is more likely. It works as another relaxation factor for equivalence
because the associated properties should hold only for a restricted input domain. It is also
corroborated by the notion that we expect the same behavior from a close neighbor of an
input. In addition, it can also be linked to real conditions of a given application, such as
its equivalence method and input deviation and magnitude. However, this does not mean
that our technique is limited to small input ranges. Instead, it is important to choose a
range that preserves the relationship between x and y and is also according to a specific
application.

2.4.4 GPE encoding

Tran et al. (TRAN et al., 2019a) proposed GPE, a formal method for verifying
NNs’ safety properties and later expanded by Teuber et al. (TEUBER et al., 2021) for
the verification of NN equivalence properties. This section provides a brief description
how it encodes NNs and equivalence property into a verification problem. The complete
explanation regarding GPE can be found in its original paper (TEUBER et al., 2021).

Definition 2.4.5 (Generalized Star Set (TRAN et al., 2019a)) A generalized start
set Θ is a tuple ⟨c, G, P ⟩ where c ∈ Rn is the center, G = (g1, ..., gm) ∈ Rn×m is the gener-
ator matrix, and P ⊆ Rm is a polytope defining a conjunction of linear constraints. The
set represented by Θ is then defined as

Θ = {x ∈ Rn | ∃α ∈ P : x = c + Gα}.

Chapter 2. Theoretical Foundations 40

Assume there are two NNs f and g representing piecewise linear functions. Fur-
thermore, assume that the goals is to verify whether f(x) = g(x) for the input domain
I ≡ ⟨ c, G, P ⟩. Since f and g are piecewise linear, there exist a tiling T ≡ {P ′} of the
input domain I such that I = {x ∈ Rn | ∃P ′ ∈ T ∧ α ∈ P ′ : x = c + Gα}. Moreover,
for each tile P ′ ∈ T , we require both f and g to be linear, i.e., f(x) = cf + Gfα and
g(x) = cg + Ggα for α ∈ P ′, where (cf , cg, Gf , Gg) are specific to each tile P ′. The NNs f

and g are equivalent if cf = cg and Gf = Gg for each tile P ′.

The GPE method computes the tiling T via repeated reachability analysis as
follows. First, the input domain I is propagated through NN f , outputting a union of star
sets. Then, each set is projected back onto the input space and propagated through NN
g, leading to a further union of star sets whose elements, once projected onto the input
domain, represent the tiles P ′ ∈ T .

2.5 Summary
In this chapter, we provided the foundational background theory necessary to

understand the research conducted in the dissertation. We covered the basics of neural
networks (NNs), the process and mathematical framework of quantization, and the prin-
ciples of neural network equivalence verification. Additionally, optimization techniques
relevant to NN quantization were discussed, and concluded with a formal definition of the
research problem.

Our discussion on NNs began with an overview of their structure, which includes
input, hidden, and output layers, and explains their role in modeling complex, non-linear
relationships. NNs were mathematically formalized as multi-layered functions, with detailed
explanations of layer transformations and activation functions such as ReLU, sigmoid, and
tanh.

Quantization, a process of mapping high-precision values to lower-precision repre-
sentations, was explored in detail, with focus on key parameters such as bit-width, scale
factor, and zero-point. We presented various quantization methods, including symmetric
and asymmetric quantization, and discussed their trade-offs in terms of precision and
computational efficiency. The role of quantization in NNs was described, with attention to
weights, biases, and activations, and strategies like mixed-precision and bias absorption
are highlighted.

Finally, neural network equivalence (NNE), which examines when different NNs
produce the same output for given inputs, was introduced. We defined strict equivalence,
classification-based equivalence, and norm-based equivalence, providing formal mathemati-
cal definitions and examples. Techniques for verifying equivalence, such as satisfiability
modulo theories (SMT) and geometric path enumeration (GPE), were presented as formal

Chapter 2. Theoretical Foundations 41

methods used to solve the NNE verification problem.

42

3 Counter-Example Guided Neural Network
Quantization Refinement (CEG4N)

3.1 Introduction
Techniques for NNs quantization have become a crucial method for deploying

advanced ML models on devices with limited resources, such as mobile devices, embedded
systems, and Internet of Things (IoT) devices. Although quantization reduces the memory
usage and computational demands of NNs, it introduces challenges in maintaining the
functional performance of the NN, particularly in fields where accuracy and correct
behavior are critical. For example, many embedded systems have safety requirements
which makes NNs with erratic or unreliable behavior unacceptable. Therefore, ensuring that
the quantized network retains the same functionality as the original network is essential.

NN behavior, as described in this thesis, refers to the specific operational patterns
or responses exhibited by a NN f when given a particular set of inputs x. This behavior is
identified by the relationship that maps the input data points to their respective outputs,
where each output y is represented as y = f(x). To maintain consistent behavior, a NN must
generate the same or nearly identical outputs for the same inputs, even after undergoing
transformations such as quantization. Thus, in the context of quantization, the behavior
of a NN remains intact if, for every input x within a specified vicinity around a critical
data point x′, both the original NN f and its quantized counterpart f ′ produce equivalent
outputs, meeting the condition f(x) = f ′(x). This parity ensures that the fundamental
operational characteristics of the NN are preserved, notwithstanding the decrease in
precision resulting from quantization. The deployment of NNs in resource-constrained
environments necessitates the application of quantization techniques to reduce the model’s
precision from floating-point (e.g., 32 bits) to lower-bit representations. However, this
transformation is known to introduce discrepancies to the numerical operations of an
NN, altering its functional behavior, and potentially leading to deviations in output
for given inputs. In domains where the specific behavior of a NN is crucial, such as
medical diagnostics, autonomous driving, and financial forecasting, such deviations are
unacceptable. Therefore, there is a need for methods that allow quantization without
affecting the network’s essential functionality. The challenge, therefore, lies in quantizing
the NN (denoted as f) into a lower-precision version f ′ without altering its behavior for a
defined set of critical inputs and their surroundings.

In this chapter, we are going to discuss the problem of guaranteeing the behavioral
equivalence between a full-precision NN and its quantized version, and how to address it.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 43

Specifically, we are going to formalize the problem and the quantization method that offers
formal guarantees on behavioral equivalence, discuss the our fundamental assumptions,
and the important details and aspects of our proposed method.

3.2 Equivalent Quantization Problem
Given a NN (NN) f : Rn → Rm with L layers, and its quantized version f ′ : Rn →

Rm, our objective is to find a quantization scheme that ensures the outputs of f and
f ′ are equivalent over a specified set of critical input regions, while minimizing the cost
associated with the quantization (e.g., reducing the bit widths of its parameters).

Let X = {x1, x2, . . . , xc} ⊂ Rn denote a set with C critical data points. Around
each critical point xc = xi, 1 ≤ i ≤ c, we define a region Rc,δ as the set of points within a
radius δ:

Rc,δ = {x ∈ Rn | ∥x− xc∥ ≤ δ}.

Let Rδ = ⋃C
c=1Rc,δ be the union of all such regions. Our goal is to ensure that the

outputs of f and f ′ are equivalent for all inputs in Rδ. We define equivalence in terms of
an equivalence relation ⋍ between the outputs of two NNs, which could represent exact
equality (≡) or approximate equality within a tolerance (∼p,ϵ). Specifically, for all x ∈ Rδ,
we require satisfy the following constraint:

f(x) ⋍ f ′(x).

Let b = (b1, b2, . . . , bL) be a vector where each bl denotes the bit width used to
quantize the parameters of layer l in the network f . Additionally, consider the constants
bmin and bmax to be the minimum and maximum bit widths allowed for quantization.
They define the lower and upper bounds for the quantization bit width, which guarantee
correctness for the quantization process and the generation of valid quantized models.
They can also be regarded as initialization and termination criteria; as a feasible b can
not be such that every bl in it are equal to either the upper or the lower bounds, the
optimization process must stop, as no valid quantized model can be generated outside
them. The quantization process is represented by a function Q that maps the original
network f and the bit width vector b to the quantized network f ′:

f ′ = Q(f, b).

We introduce a cost function J (b) that quantifies the cost associated with the
quantization parameters b. This cost could represent some metric related to the number
of bits to represent the quantized NN weights or a combination of other factors such as
memory usage, computational efficiency, and energy consumption.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 44

To formally ensure the equivalence between f and f ′ over the critical regions Rδ, we
define a constraint function G(f, f ′,Rδ). This function has an underlying formal technique
that solves the NN equivalence problem defined as f(x) ⋍ f ′(x) for all x ∈ Rδ, and returns
a set of counterexamples Xδ. If the equivalence constraint is satisfied, G returns an empty
set (i.e., Xδ = ∅), and Xδ ̸= ∅ otherwise. The constraint in the optimization can be defined
as:

G(f, f ′,Rδ) =

Xδ = ∅, if f(x) ⋍ f ′(x) for all x ∈ Rδ,

Xδ ̸= ∅, otherwise.

Our optimization problem is thus formulated as:

minimize J (b)
subject to G(f, f ′,Rδ) = Xδ = ∅

f ′ = Q(f, b)
bo = {bl|bmin ≤ bl ≤ bmax,∀l = 1, 2, . . . , L}

(3.1)

The goal is to find a bit width vector b that minimizes the cost J (b) while
ensuring that the quantized network f ′ remains equivalent to the original network f

over the critical regions Rδ. The constraint ∥f(x) − f ′(x)∥ ≤ ϵ for all x ∈ Rδ ensures
that the quantized network f ′ approximates the original network f within a specified
tolerance over the regions of interest. The function J (b) captures the trade-off between
quantization precision and cost, encouraging the use of lower bit widths to reduce resource
consumption while maintaining acceptable performance. The quantization function Q
applies quantization to the weights and biases of each layer in f . The bit widths b determine
the precision of quantization for each layer, influencing both the approximation error and
the resource usage of the quantized network f ′.

This formalization provides a precise mathematical framework for the problem of
EQ of NNs. We defined it as an optimization problem, where the task is minimizing the
quantization bit widths b under the constraint that the quantized network f ′ behaves
equivalently to f within specified regions of interest. Solving this optimization problem
involves determining the bit widths b that achieve the desired trade-off between resource
efficiency and functional equivalence.

3.2.1 Discussion on the assumptions

This method relies on having a comprehensive and representative set of critical
points X that reflects the fundamental behavioral traits of the NN f . It also supposes that
for every data point in X , there is a designated area where the NN’s behavior remains
stable. These assumptions are crucial as they suggest a thorough understanding of the
specific domain and the NN’s behavior, which may not always be entirely achievable.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 45

The optimization problem described here is inherently complex due to several
factors. Firstly, the quantization process involves discrete decision-making, leading to a
non-convex optimization landscape. Secondly, the formal equivalence checking function G
adds a layer of computational complexity, as it requires the verification the behaviors of f

and f ′ across potentially infinite number of points within the defined set of critical input
regions Rδ. In other words, equivalence verification must cover a large search space. Lastly,
the need to balance the trade-off between the quantization granularity (determined by b)
and the preservation of behavioral integrity makes the optimization problem challenging
to solve efficiently. The complexity of this optimization problem may require advanced
algorithms, possibly involving heuristic or approximation methods, to find a solution that
is practically acceptable within reasonable computational times.

The implication is that quantizing NNs while maintaining their functional char-
acteristics poses a complex challenge that involves mathematical, computational, and
domain-specific factors. Framing this issue as an optimization problem highlights the
complexities of achieving quantization without sacrificing the behavior integrity of the
quantized NNs. The assumptions emphasize the importance of expertise in the field and
the thoughtful choice of essential data points and their respective vicinity areas, while the
intricacy of the optimization process underscores the requirement for advanced algorithms
that can handle the trade-off between efficient resource utilization and preserving the
network’s behavior.

3.2.2 Formal equivalence verification in neural networks quantization

The equivalence verification problem, represented by the function G, plays a pivotal
role in ensuring that a quantized neural network f ′ retains the functional behavior of the
original full-precision network f . The formal equivalence verification task involves checking
whether f(x) ⋍ f ′(x) holds for all x ∈ Rδ, a requirement that translates into a formal
specification suitable for computational solvers.

Formal methods provide a rigorous framework for analyzing the equivalence problem
by transforming it into a set of specifications that a solver can verify. The key elements in
this transformation include:

• A neural network f that operates in floating-point precision, i.e., the original model,
where f(x) denotes the output for input x;

• The network f transformed into a quantized version f ′, i.e., the quantized model,
using the quantization function Q;

• The input space around critical points, i.e., the critical Regions Rδ, where equivalence
must be verified;

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 46

• The equivalence relation ⋍ that defines the acceptable level of agreement, ranging
from exact equality (f(x) = f ′(x)) to approximate equivalence within a tolerance
(|f(x)− f ′(x)| ≤ ϵ).

These elements are encoded as formal specifications, which solvers use to exhaus-
tively check the behavior of f and f ′ over Rδ. A failure to meet the equivalence criteria
results in counterexamples where the behavior diverges.

Two prominent formal verification techniques, Bounded Model Checking (BMC)
and Geometric Path Enumeration, have been employed in the context of neural network
verification. BMC translates the verification problem into a satisfiability problem, repre-
sented as a set of logical formulas over a bounded domain. Solvers, such as SAT/SMT
solvers, explore this domain to identify counterexamples. BMC has been widely used to
verify neural network properties, but its application to verifying equivalence between net-
works with different precisions remains unexplored. Geometric path enumeration, in turn,
focuses on decomposing the input space into regions defined by the activation patterns
of neurons. Each region is treated as a geometric polytope where the network behaves
as a linear function. While effective for exact equivalence checking between networks, it
does not extend to networks with mixed or differing precisions, such as floating-point and
quantized networks.

Applying FEV to NNs with different precisions introduces significant challenges.
First we have to consider the possibility of not being able to correctly encode and express
quantization semantics in the verification model. Quantized models often involve non-
linear operations like clipping, rounding, and re-scaling, which are difficult to model
mathematically. Often requiring approximation to be considered, which increases the
chances of the inconsistencies between the concrete quantized model and the model being
verified. Another point is the complexity of certain quantization approaches, for example,
mixed-precision quantization where the quantized networks can have layers of varying
precisions (e.g., 8-bit weights and floating-point activations). This would require encoding
diverse arithmetic behaviors within a unified verification framework. And we must consider
the error propagation in quantized models. The quantization errors propagate through
layers, complicating the analysis of cumulative effects on the network’s output. This
become even more challenging if the quantization schemes apply some technique to correct
and minimized the errors being propagated.

To address these challenges, we propose a novel approach: once the original network
f is quantized to f ′, we de-quantize f ′ into a floating-point network f ′′ and perform
equivalence checking between f and f ′′. De-quantization involves translating quantized
weights and operations back into their floating-point representations. This approach
simplifies verification by ensuring that the equivalence problem is framed entirely within the

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 47

domain of floating-point arithmetic. The validity of this strategy relies on the preservation
of quantization semantics during de-quantization. Specifically:

• quantized weights are mapped to floating-point values while retaining the same
numerical representation within their quantization range;

• any inaccuracies introduced during quantization are captured in f ′′, ensuring that
f ′′ faithfully reflects the behavior of f ′ under the original quantization constraints;

• the process guarantees that re-quantizing f ′′ reproduces f ′ without additional errors.

By using f ′′ as a proxy for f ′ during verification, we sidestep the complexities of
quantized arithmetic while maintaining the integrity of the equivalence problem. Henceforth,
references to quantized networks in the context of equivalence verification pertain to the
de-quantized network representation.

De-quantization can be rigorously designed to ensure that each quantized value is
mapped back to its exact floating-point equivalent within the quantization range. This
process relies on deterministic mappings, where the boundaries of quantization levels are
precisely defined. Any discrepancies arising during quantization (e.g., rounding errors) are
inherently embedded in f ′. By directly translating these effects into f ′′, we ensure that
f ′′ mirrors f ′ in terms of behavior. A carefully designed de-quantization step, validated
against edge cases (e.g., extreme weights or activations), can minimize the risk of numerical
instability. Empirical tests on standard benchmarks can further substantiate this claim.
By design, de-quantization does not alter the underlying computation but translates it
into a domain (floating-point arithmetic) that enables equivalence checking. This ensures
that errors are neither corrected nor amplified. Techniques such as interval arithmetic or
sensitivity analysis can be used to formally verify that f ′′ captures the same error profile
as f ′. These methods provide a robust mathematical framework for quantifying error
preservation. The proposed method can be tested on networks with known quantization
artifacts. Validation of consistent behavior across f ′ and f ′′ would demonstrate the efficacy
of the approach.

Uniform symmetric post-training quantization, in simple terms, is rounding to the
nearest point of an evenly-spaced lattice. Hence the only discrepancy between a stored
integer weight and its reconstructed floating-point value is the rounding residue.

Lemma 3.2.1 Given a uniform symmetric quantiser with scale s and zero-point z, the
mapping

Q−1(Q(w)) = w + εw

satisfies |εw| ≤ s/2 for every weight w. Consequently, for any layer the de-quantised weight
matrix differs from the realised integer matrix by at most s/2 in each entry.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 48

Corollary 3.2.2 (Layer-wise propagation error) Let a linear layer act on an input
vector x as y = Wx + b. Assume the integer implementation stores Ŵ = Q(W) and
de-quantises it to W ′ = Q−1(Ŵ) = W + E, where every entry of E obeys |Eij| ≤ s/2 by
Lemma 3.2.1. Then the output produced by W ′ differs from the exact-real-weight output by

∥Ex∥∞ ≤ s

2 ∥x∥1,

so the discrepancy is at most (s/2) ∑
j|xj|. Because the quantiser scale s is a calibrated

constant, this bound can be propagated layer-by-layer (via each layer’s operator norm or by
additive accumulation for residual links) to obtain a closed-form network-level error that
is typically many orders of magnitude smaller than the numerical tolerances assumed in
existing safety-verification tools. Thus verifying the floating-point surrogate f ′′ is sound:
every concrete execution of the integer circuit f ′ lies within the norm-ball proven for f ′′.

A similar “half-step” reconstruction bound is explicitly invoked for neural networks
by Jacob et al. 2018 (JACOB et al., 2017) and Banner et al. 2019 (BANNER; NAHSHAN;
SOUDRY, 2019). Layer-wise error-propagation arguments in the same spirit are presented
by Lee et al. (LEE; JEONG; BAE, 2019) and by Li et al.(LI et al., 2022).

For every input x ∈ Rδ we wish to guarantee

∥f(x)− f ′(x)∥ ≤ ε.

This is ensured if the following two inequalities hold:

∥f(x)− f ′′(x)∥ ≤ ε− α and ∥f ′(x)− f ′′(x)∥ ≤ α,

because their conjunction implies the desired bound by the triangle inequality.

The constant
α = sup

x∈Rδ

∥f ′(x)− f ′′(x)∥

is the network-level half-step reconstruction error. It is obtained analytically—without
any solver intervention—by propagating Lemma 3.2.1 and Corollary 3.2.2 through the
network: each linear or convolutional layer ℓ with quantiser scale sℓ contributes at most
(sℓ/2) ∥x∥1 at its input, and these contributions are composed along the forward path (and
added at residual junctions) to yield a closed-form, data-independent bound α.

Since α is fixed once the network architecture and quantiser scales are fixed, the
verification problem presented to the solver reduces to proving the tighter condition
∥f(x)− f ′′(x)∥ ≤ ε−α. The second inequality, ∥f ′(x)− f ′′(x)∥ ≤ α, is already guaranteed
by the analytical error bound, thereby justifying the sound use of the floating-point
surrogate f ′′ in place of the integer circuit f ′ during formal verification.

The reversibility of the mapping can be established through formal verification
methods, ensuring that every floating-point representation in f ′′ maps directly back to

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 49

its quantized counterpart in f ′ within the same quantization range. Special cases such as
saturation or clipping can be explicitly modeled in the de-quantization step to ensure that
they are preserved. For instance, introducing flags or metadata for saturated values can
help maintain consistency during re-quantization. Extensive testing on diverse network
architectures and quantization schemes (e.g., uniform, non-uniform) would reinforce
confidence in the reversibility claim. For instance, experiments could confirm that re-
quantizing f ′′ consistently yields f ′ across different datasets and configurations.

Tools and algorithms for verifying floating-point operations are well-established and
highly optimized. By framing the problem entirely within this domain, the proposed method
leverages these mature resources. Directly verifying f ′′ against f ′ often requires reasoning
across two different arithmetic domains (floating-point and quantized). This cross-domain
complexity can lead to inefficiencies and increased verification times. Introducing f ′′ creates
a structured intermediate step that aligns well with existing verification tools. Empirical
comparisons of verification times and resource usage for the proposed method versus direct
approaches can substantiate its practicality.

The de-quantization process can be extended to handle non-uniform quantization
by incorporating the specific quantization parameters (e.g., non-linear scaling factors)
into the translation step. The method is not tied to a particular quantization scheme but
rather to the principles of reversible mapping and error preservation. These principles
can be adapted to diverse quantization methods through appropriate design. Testing the
approach on networks employing non-uniform or dynamic quantization can demonstrate
its generality. Metrics such as fidelity, error consistency, and verification success rates can
provide quantitative evidence of robustness.

This discussion establishes the foundation for ensuring equivalence between full-
precision and quantized networks through de-quantization. The next section will delve into
the specifics of the quantization scheme itself, outlining the methodology for scaling and
parameterizing the quantization process to align with equivalence verification requirements.

3.2.3 Importance of quantization scheme choices

The proposed quantization scheme begins with a floating-point neural network (f)
operating in 32-bit precision and systematically reduces the precision of its weights, biases,
and activations to integers ranging from 2 to 32 bits. This reduction is achieved using
uniform and symmetric quantization for weights and biases and uniform and asymmetric
quantization for activations.

Quantization involves the following steps:

• precision assignment, where, for each NN layer, weights, biases, and activations share
the same bit width, denoted by bl, ensuring consistent precision throughout the layer;

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 50

• scaling, where each quantization operation uses scaling factors α and β, which depend
on the target bit width and the range of values in the original network;

• input-layer quantization, where the input layer is quantized to minimize the risk of
overflows and ensure bounded arithmetic in subsequent layers.

Quantization introduces challenges, particularly in the input-layer quantization step.
While quantizing the input-layer ensures consistency across the remaining layers, it risks
altering the representation of input features, which may affect the network’s interpretability
and performance. Careful calibration of scaling parameters and quantization ranges is
necessary to mitigate these risks.

By aligning the quantization process with the equivalence verification framework,
we ensure that the resulting quantized (and de-quantized) networks remain amenable to
formal analysis. The next section will explore how this quantization scheme is integrated
into an iterative optimization process to achieve behavioral equivalence while minimizing
resource usage.

3.3 Iterative Quantization Framework
The complex task of quantizing NNs while preserving their functional behavior in

resource-constrained environments presents significant computational challenges. Given the
intricacies involved, an iterative quantization approach offers a viable strategy to address
this challenge by decomposing the overarching quantization problem into two distinct, yet
interrelated, sub-problems. In this section we discuss how to reformulate the optimization
problem defined in (3.1) into an iterative quantization problem. This methodology entails,
first, the optimization problem, focusing on identifying feasible quantization parameters,
and second, the equivalence verification problem, which involves verifying the equivalence
of the original and quantized networks over a set of critical input region Rb. By iterating
between these two problems, one can systematically navigate the optimization landscape,
addressing both the efficiency of quantization and the preservation of functional behavior.

The iterative framework conceptualizes the quantization process as a cycle of
optimization and formal equivalence verification. Initially, the optimization problem is
tackled to find the quantization parameters b that reduce the size of the model and the
computational requirements without having to consider the equivalence constraint. This
step involves optimizing an objective function J (b), which measures the effectiveness of
quantization in terms of resource efficiency. The challenge lies in navigating the parameter
space to find a quantization strategy that minimizes resource consumption while potentially
preserving the network’s functional behavior intact.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 51

Following the optimization phase, the focus shifts to the constraint problem, where
the equivalence of the original and quantized networks is assessed. Given the set of
quantization parameters b derived from the optimization phase, this step involves verifying
whether the quantized network f ′ behaves equivalently to the original network f for all
critical data points within X and their neighboring data points. This verification process
is computationally intensive and constitutes significant complexity in the optimization
problem. The difficulty of verifying equivalence across the entire set of critical data points
underscores the necessity of an iterative approach, where each cycle refines the quantization
parameters based on concrete results of equivalence checks.

3.3.1 Simplification of the NN equivalence constraints

To mitigate the computational burden of NN equivalence constraints in the opti-
mization step, the iterative optimization framework incorporates a strategy to use concrete
critical data inputs derived from the verification process to further constrain the optimiza-
tion problem. Recalling the original optimization problem and the discussion in Section
3.1, the fundamental assumption is that there exists a collection of critical data points that
represent the functional characteristics of the original NN f and that must be maintained
in the quantized NN f ′. Another assumption is the presence of a surrounding area near
these critical points where the desired functional behavior is also evident.

Therefore, the goal of the NN equivalence verification process is to prove that two
NNs share the same functional behavior for all critical data points and their surrounding
area. This can ultimately be reduced to proving that there is no such data point in the
surrounding area of a critical point for which the functional behavior of the two NNs
is not the same. If such a data point exists, it serves as a proof of the falsehood of the
equivalence. Thus, it is considered to be a counterexample. Having a counterexample is
extremely important and relevant, since checking whether a counterexample is valid or not
is significantly less computationally expensive than finding it. To the potential limitations
of this simplification, such as the risk of not covering all critical input regions entirely. The
idea is to leverage on existing formal equivalence verification techniques. Such techniques
offer guarantees of soundness and completeness on the solution they provide. What gives
assurance that all critical input regions entirely.

If the solver cannot prove or disprove the equivalence property, several conclusions
can be drawn depending on the specific circumstances. One common issue is that the
solver might run out of time or computational resources, resulting in an inconclusive result.
To address this, additional computational resources or alternative verification methods
might be considered.

The simplification of the NN equivalence constraints acknowledges that comparing
the outputs of two NNs for specific inputs is substantially simpler than verifying their

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 52

equivalence for all possible inputs within the surrounding region of a critical data point.
By integrating feedback from the verification process—specifically, the outcomes of com-
paring network outputs for selected critical inputs, that is, the counterexamples—into
the optimization problem, the framework narrows the search space for the quantization
parameters. In other words, the constraints imposed to the optimization become simpler
and tractable. This feedback loop allows for a more focused and potentially more efficient
optimization process, where the parameters are tuned not only for resource efficiency but
also for behavioral preservation based on actual equivalence outcomes (STURSBERG et
al., 2004).

The foundation of the proposed simplification is rooted in the field of formal methods.
It is widely acknowledged that solving a verification problem is much more challenging
than confirming the correctness of a concrete solution (OBERKAMPF; TRUCANO, 2002).
Formal methods involve various approaches and resources to design, implement, and
validate systems with the aim of demonstrating correctness with respect to a defined set
of properties (HOFER-SCHMITZ; STOJANOVIć, 2020; URBAN; MIN’E, 2021). The
contrast between the complexity of solving a verification problem and the simplicity of
validating the correctness of a concrete solution can be understood through multiple
conceptual and computational structures (MENDIAS et al., 2002). Let’s re-define the
simplification in the equivalence constraints as:

G(f, f ′,Rδ=0) =

Xδ=0 = ∅, if f(x) ⋍ f ′(x) for all x ∈ Rδ=0,

Xδ=0 ̸= ∅, otherwise.

Note that we can simplify the equivalence constraints by simply forcing the δ to 0.
Thus we can define Rδ=0 as:

Rδ=0 =
C⋃

c=1
Rc,δ=0,

and since δ = 0 we can define Rc,δ as:

Rc,δ = {x | x = xc ∧ xc ∈ X}.

That is, we made the set of critical regions Rδ=0 be exactly the set of critical points X .
From a formal verification perspective, this is still valid verification problem, and way
easier to solve. Another implication is that, if a formal method allows one to construct
formal abstract models of the NNs f and f ′ with a high degree of fidelity, one could replace
the need for a formal method to solve the equivalence problem in function G, and work
directly with the concrete models f and f ′. Since the equivalence problem can now simply
be solved by checking if the outputs of f and f ′ satisfy the equivalence relation. This way
the optimization problem won’t need to absorb and deal with the semantics of the formal
equivalence verification method. Likewise, the formal equivalence verification method
won’t need to absorb and deal with the complexities of the optimization and quantization.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 53

This is another advantage of our iterative quantization method, the quantization (i.e., the
optimization problem in our method) and the equivalence verification can be solved by
completely independent techniques and tools. As long as we are able to effectively construct
and express the mathematical models of the NNs f and f ′ for both of the problems. That
is, ensure the quantization and equivalence verification are working with the same NNs, to
minimize discrepancies and imprecision.

3.3.2 Formalization

In this section, we reformulate the problem of equivalent quantization of neural
networks (NNs) as an iterative optimization problem. The objective remains to find a
quantization scheme that ensures the outputs of the original NN f and its quantized version
f ′ are equivalent over specified critical input regions while minimizing the cost associated
with the quantization. The iterative approach divides the problem into two complementary
subproblems at each iteration. The firs, the Bit Search Problem defines the problem
of finding a feasible bit width vector that satisfies the original optimization problem’s
objective and constraints. And second, the Equivalence Verification Problem, defines
the problem of verifying the equivalence of f and f ′ with the bit width vector found, and
update the critical input regions based on the verification results.

The formalization of our iterative method follows the notation provided in Section
3.2. Given a neural network f : Rn → Rm with L layers, we aim to find a quantization
bit width vector bo = (bo

1, bo
2, . . . , bo

L) that minimizes the quantization cost while ensuring
equivalence over a set of critical input points Ro

δ=0 at iteration o. At each iteration o, the
set of critical input regions Ro

δ=0 is defined as:

Ro
δ=0 =

o−1⋃
i=1
X i

δ=0,

where X i
δ=0 is the set of counterexamples generated from the Equivalence Verification

Problem at iteration i. Initially, Ro=0
δ=0 may be an empty set or contain predefined critical

points.

The Bit Search Problem is formulated as:

min
bo

J (bo)

s.t. G(f, f ′
o,Ro

δ=0)
f ′

o = Q(f, bo),
bmin ≤ bo

l ≤ bmax, ∀l = 1, 2, . . . , L.

(3.2)

Here, J (bo) is the cost function associated with the bit widths bo, ⋍ denotes the equivalence
relation between f and f ′

o outputs, Q is the quantization function mapping f and bo to
f ′

o, and bmin and bmax are the minimum and maximum allowable bit widths.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 54

After obtaining bo from the Bit Search Problem, the next step is the Equivalence
Verification Problem is solved, whith the goal of formally verifying the equivalence of f

and f ′
o over the critical regions Rδ, where δ is a positive constant. Notice that δ > 0, in

the Equivalence Verification Problem the equivalence constraints are define over input
region set, not concrete input sets as in Bit Search Problem. The critical regions R0

δ are
defined as:

Rδ =
C⋃

c=1
Rc,δ,

with each region Rc,δ centered at a critical point xc:

Rc,δ = {x ∈ Rn | ∥x− xc∥ ≤ δ}.

The equivalence verification function G remains the same but we now label its
outputs based on the iteration o, and is defined as:

G(f, f ′
o,Rδ) =

∅, if f(x) ⋍ f ′
o(x), ∀x ∈ Rδ,

X o
δ , otherwise,

where X o
δ is the set of counterexamples found. The iterative process proceeds as follows:

Initialize t← 1, Ro=0
δ ← ∅

Repeat // Bit Search Problem
Solve

bt ← arg min
bt
J (bt)

s.t. f(x) ⋍ f ′(x), ∀x ∈ Rt
δ=0,

f ′ = Q(f, b), bmin ≤ bl ≤ bmax, ∀l.

// Equivalence Verification Problem
Quantize f using b to obtain f ′.
Compute X t

δ=0 = G(f, f ′,Rδ).
Update Rt+1

δ=0 ← Rt
δ=0 ∪ X t

δ=0;
t← t + 1;
Until X t−1

δ=0 = ∅ or termination criteria met.
Algorithm 1: Counterexample Guided Quantization Refinement Algorithm

In the Bit Search Problem, the equivalence constraint is applied to the updated
set of critical data points Ro=t

δ=0, which changes at each iteration based on the counterex-
amples found. The optimization focuses on ensuring equivalence at these specific points,
allowing for efficient computation. In the Equivalence Verification Problem, the verifi-
cation is performed over the constant set of critical regions Rδ. This distinction ensures
that while the bit search adapts to new counterexamples, the verification consistently
assesses equivalence over the broader input space of interest.

This iterative method assumes that: 1) the initial critical regions Rδ are representa-
tive of the NN’s essential behaviors; 2) the equivalence verification process can effectively

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 55

identify counterexamples when equivalence does not hold; 3) he iterative process converges
to a solution where no counterexamples are found within Rδ.

The optimization’s complexity arises from: 1) he discrete nature of quantization
bit widths, leading to a combinatorial search space; 2) he equivalence verification over
continuous regions Rδ, which is computationally intensive; 3) he iterative updates to Ro=t

δ=0,
potentially increasing the problem size at each iteration.

Advanced optimization techniques or heuristics may be required to find acceptable
solutions within reasonable computational times. While convergence to an optimal solution
is desirable, it may not always be achievable due to: 1) the potential for an infinite loop if
new counterexamples are continually found; the possibility that the minimum allowable
bit widths bmin are reached without achieving equivalence. Termination criteria, such as a
maximum number of iterations or acceptable tolerance levels, should be defined to ensure
practical applicability.

By reformulating the Equivalent Quantization Problem as an iterative process
involving the Bit Search and Equivalence Verification subproblems, we create a dynamic
framework that adapts to the NN’s behavior. This approach allows for a targeted search
for feasible bit widths while ensuring functional equivalence over critical input regions,
balancing quantization efficiency and network performance.

3.4 Iterative Quantization Framework Implementation
The proposed framework, termed CEG4N, implements a counterexample-guided

optimization approach to solve the equivalent quantization problem. It addresses the two
sub-problems defined previously (Section 3.3.2): optimization of bit widths and formal
verification of neural network equivalence. CEG4N is composed of three modules, each
fulfilling a distinct role within the iterative quantization framework, as illustrated in Figure
2.

Start Bits Search Module Abstractions Module Verifier Module Success

Failure

Neural network f

Set of initial counterexamples
Set of properties
Module parameters

Bits sequence
b is found.

Property Ψ does not hold. Counterex-
ample xc is added to the counterexam-
ples set Rc

δ=0.

Property
Ψ
holds.

Unable to find
bits sequence
b.

Out of mem-
ory, Timeout,
etc.

Figure 2 – An overview of CEG4N’s architecture, highlighting the relationship between
main modules and their inputs and outputs.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 56

3.4.1 Bits Search Module (BSM)

The Bits Search Module (BSM) implements an optimization process using a genetic
algorithm (GA). Genetic algorithms are heuristic optimization techniques inspired by
biological evolution, employing mechanisms such as selection, crossover, and mutation
to evolve populations of candidate solutions toward optimality. The BSM begins with
an initial population of candidate bit-width configurations for each neural network (NN)
layer, represented as vectors of integers constrained within user-defined bounds (2-32 bits).

Three distinct objective functions are employed within the BSM:

• Single Objective: Minimizes the overall bit-width uniformly across layers.

• Multi-objective (Pareto-optimal): Balances between minimizing bit widths and
maintaining model accuracy, generating a Pareto front of candidate solutions.

• Weighted Objective: Incorporates neuron-count-based weighting, emphasizing
quantization precision in layers with higher neuron density and thus greater compu-
tational impact.

The genetic algorithm configurations were empirically tuned (see Table 1), resulting
in a recommended population size of 5 and approximately 100 generations per neural net-
work layer. This choice balances computational feasibility with the likelihood of identifying
near-optimal bit-width configurations. Explicit termination criteria based on generation
count prevent indefinite computation.

Table 1 – Summary of experiments for tuning Genetic Algorithm Parameters.

Number of Layers Generations Population Percentage of optimal solutions

7 800 5 100
7 750 5 100
7 700 5 98
7 50 5 0
2 250 5 100
2 200 5 100
2 150 5 96
2 50 5 30

In Table 1, we report a summary of experiments conducted to tune the parameters
of the Genetic Algorithm, more precisely, the number of generations. For example, a
NN with 2 layers would require a brute force algorithm to search for 522 combinations of
bits widths for the quantization. Similarly, a NN with 7 layers would require a brute force
algorithm to search for 527 combinations of bits widths. We conducted a set of experiments
where we ran the GA one hundred times with a different number of generations options

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 57

ranging from 50 to 1000. In addition, we fixed the population size to 5. From our findings,
the GA needs about 100 to 110 generations per layer to find the optimal bit width solution
for each run.

3.4.2 Abstractions Module (AM)

The Abstractions Module (AM) translates the original and quantized neural net-
works into representations suitable for formal verification. Currently, two primary abstrac-
tion formats are supported:

• ONNX (Open Neural Network Exchange): Models trained in PyTorch (PASZKE
et al., 2019) are exported to ONNX (BAI et al., 2019), enabling accurate reproduction
of neural network behavior without loss in performance or accuracy.

• C/C++ Abstraction: Neural networks are abstracted explicitly into C-language
models performing double-precision arithmetic. These abstractions precisely encode
neural network computations, differing only in their precision of weights and biases
between original (floating-point) and quantized (fixed-point) models.

The AM maintains two synchronized but distinct versions of the neural networks:
an optimization-oriented Python implementation for use by the BSM, and a verification-
oriented abstraction compatible with formal verification tools in the Verifier Module.

3.4.3 Verifier Module (VM)

The Verifier Module (VM) evaluates the equivalence of neural networks according
to formally defined properties. Currently, the VM integrates two verification techniques:

• Bounded Model Checking (BMC) using ESBMC (GADELHA et al., 2018; MON-
TEIRO; GADELHA; CORDEIRO, 2022), a verification tool capable of generating
explicit counterexamples when equivalence properties are violated.

• Geometric Path Enumeration (GPE) using NNEQUIV (TEUBER et al., 2021),
focusing on enumerating activation patterns to verify neural network equivalence.

Counterexample management within the VM involves a two-step validation process
to ensure robustness against spurious counterexamples. Initially identified counterexamples
are subjected to a validation check directly against both the original and quantized networks.
Only those inputs that definitively demonstrate functional divergence influence subsequent
optimization iterations. Timeout values for verification were empirically determined,
establishing a limit of 25 minutes per verification instance to balance computational
practicality with verification depth.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 58

Equivalence verification leverages two types of properties:

• TOP equivalence: Ensures identical class predictions for classification tasks.

• EPSILON equivalence: Ensures outputs differ by no more than a specified
tolerance (e.g., ϵ = 0.05), particularly suitable for regression tasks.

The equivalence properties are encoded into C language assertions compatible with
ESBMC, using non-deterministic inputs to represent regions around critical data points,
as described next. As an example, suppose a NN f , for which x ∈ X is a safe input and
y ∈ O is the expected output of f(x). We now show how one can specify the equivalence
properties. For this example, consider that the function f can produce the outputs of f

in floating-point arithmetic, while f ′ produces the outputs of f in fixed-point arithmetic
(i.e., quantization). First, the concrete NN input x is replaced by a non-deterministic one,
which is achieved using the command nondet_float from the ESBMC.

Listing 3.1 – Definition of concrete and symbolic input domain in EBMC.
f loat x0 = −1.0;
f loat x1 = 1 . 0 ;
f loat s0 = nondet_f loat () ;
f loat s1 = nondet_f loat () ;

Listing 3.2 – Definition of input constraints in EBMC.
const f loat EPS = 0 . 5 ;
__ESBMC_assume(x0 − EPS <= s0 && s0 <= x0 + EPS) ;
__ESBMC_assume(x1 − EPS <= s1 && s1 <= x1 + EPS) ;

Listing 3.3 – Definition of output constraints in EBMC.
__ESBMC_assert(f (s0 , s1) == fq (s0 , s1)) ;

3.4.4 Clarification on Input Quantization vs. Input-layer Quantization

To avoid ambiguity, it is crucial to distinguish between input quantization and
input-layer quantization explicitly:

• Input Quantization: Refers to directly quantizing the network inputs themselves,
altering input feature values into lower precision representations. This process impacts
data precision and potentially degrades feature quality.

• Input-layer Quantization: Refers specifically to quantizing weights, biases, and
activations of the first computational layer after the inputs, ensuring stable arithmetic

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 59

operations without modifying the raw input data. CEG4N employs input-layer quan-
tization to prevent arithmetic overflow and minimize representational inaccuracies,
preserving the original input feature fidelity.

3.4.5 High-level overview of a CEG4N execution

An execution instance of CEG4N proceeds iteratively, structured as follows:

1. Initialization with the original neural network, initial counterexamples, BSM param-
eters, and specified equivalence properties.

2. Execution of the BSM to identify candidate bit-width configurations.

3. If no feasible configuration is found within the generation limit, CEG4N terminates
unsuccessfully.

4. Otherwise, the AM translates neural networks into verification-ready abstractions.

5. The VM evaluates the abstractions against equivalence properties.

6. Upon successful verification, the quantized network solution is finalized.

7. If verification fails, new validated counterexamples are added to the optimization
constraints, and the process returns to Step 2.

8. The iterative process continues until no new counterexamples are found or until a
global timeout criterion is met.

3.4.6 Algorithmic choices and justifications

The employment of a genetic algorithm in the BSM was guided by the discrete
and combinatorial nature of bit-width optimization. Heuristic optimization approaches,
like genetic algorithms, effectively navigate complex optimization landscapes, offering
practical solutions where exact optimization methods become computationally prohibitive.
Empirical analyses (see Section 3.4.1) justified choosing a population size of 5 and a limit
of approximately 100 generations per network layer as sufficient for reliably converging
toward near-optimal solutions. The timeout and verification limits set in the VM balance
thoroughness with computational resources, ensuring timely and actionable outcomes.
Finally, rigorous two-step validation of counterexamples ensures that optimization iterations
are robust, accurately guided by valid equivalence violations.

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 60

3.5 Summary
In this chapter, we discussed a framework for achieving EQ of NNs to ensure their

functionality is preserved when reducing precision for deployment in resource-constrained
environments and safety critical applications. The core challenges addressed include
maintaining behavioral equivalence between the original and quantized NNs and optimizing
quantization parameters to minimize resource usage. The key topics we covered in this
chapter are as follows.

1. Equivalent Quantization Problem Formalization:

• defines the task of quantizing an NN f into f ′ such that they produce equivalent
outputs over a specified critical region Rδ;

• behavioral equivalence is characterized by an equivalence relation (⋍) that can
be exact (≡) or approximate (∼p,ϵ);

• optimization is formulated to minimize a cost function J (b) while satisfying
constraints on equivalence and bit width (bmin, bmax).

2. Iterative Quantization Framework:

• proposes an iterative method combining optimization (bit search) and formal
equivalence verification;

• counterexamples (Xδ) from failed equivalence checks refine the quantization
process in subsequent iterations;

• simplifies constraints by focusing on equivalence at critical data points (Rδ=0).

3. Formal Equivalence Verification:

• techniques include Bounded Model Checking (BMC) and Geometric Path
Enumeration (GPE);

• introduces a novel approach of de-quantizing f ′ into f ′′ to leverage floating-point
arithmetic for equivalence verification.

4. Quantization Scheme:

• uses uniform quantization for weights and biases and asymmetric quantization
for activations;

• addresses trade-offs between precision reduction and functional accuracy through
scaling parameters.

5. Framework Implementation (CEG4N):

Chapter 3. Counter-Example Guided Neural Network Quantization Refinement (CEG4N) 61

• composed of three modules, i.e., Bits Search Module (BSM), which uses
genetic algorithms to optimize bit widths, Abstractions Module (AM),
which translates NNs into verification-ready formats (e.g., ONNX, C/C++),
and Verifier Module (VM), which ensures equivalence using tools like ESBMC
and NNEQUIV.

• iteratively refines bit widths using counterexamples until equivalence is achieved
or constraints are met.

In conclusion, we examined and discussed the challenges and computational com-
plexity of EQ, and offered a systematic solution that integrates optimization and formal
methods to preserve NN functionality in quantized settings.

62

4 Evaluation and Results

This chapter presents the evaluation of the CEG4N framework we proposed in
Chapter 3. In the following sections, we state our evaluation goals, explain the benchmarks
and metrics used in the evaluation and analysis, and explain how CEG4N was applied
to different NN architectures and datasets. The results compare different configurations
of CEG4N and also compare it with an existing quantization technique. Our evaluation
aims to highlight the effectiveness of CEG4N in preserving the behavior integrity of NNs
post-quantization. We also critically analyze the results in the context of the proposed
evaluation goals.

4.1 Evaluation goals
In this section, we outline the primary objectives of our experimental evaluation of

the CEG4N framework, designed to address the challenge of quantizing neural networks
(NNs) to lower-precision versions without compromising their functional integrity. Our
evaluation is structured around six specific goals: assessing the framework’s effectiveness,
analyzing performance metrics, evaluating equivalence-checking techniques, and examining
the quality of quantized models. Additionally, we investigate the impact of maintaining
equivalence constraints on accuracy and model size reduction. This comprehensive evalu-
ation thoroughly explains CEG4N’s capabilities and limitations in various quantization
scenarios. Our experimental evaluation has the following list of goals:

EG1 - Assess the effectiveness of CEG4N
Demonstrate that CEG4N can generate quantized NNs that are verifiably equivalent
to their original counterparts. This goal involves testing whether the integration of
formal equivalence verification ensures the behavioral integrity of quantized NNs.
It also verifies that performance metrics, such as accuracy and efficiency, remain
consistent post-quantization.

EG2 - Analyze performance metrics
Identify the strengths and limitations of the CEG4N framework in solving the
quantization problem. This goal aims to analyze the framework’s performance,
identifying key metrics that reflect its efficiency and reliability in different scenarios.
It should help us pinpoint the areas where CEG4N excels and where it might need
improvements, providing a comprehensive understanding of its capabilities and
potential drawbacks in various quantization scenarios.

Chapter 4. Evaluation and Results 63

EG3 - Evaluate equivalence-checking techniques
Compare CEG4N’s performance with different configurations, such as varying
verification tools and constraints. Assess different FEV techniques and their impacts
on CEG4N’s performance. This goal seeks to understand how different settings and
parameters affect the framework’s performance, helping to identify the most effective
configurations for various use cases.

EG4 - Perform quality assessment of quantized models
Evaluate the quality of the quantized models generated by CEG4N in terms of
accuracy degradation and equivalence constraint satisfaction. This goal focuses on
ensuring that the quantized models meet high standards of quality and perfor-
mance, maintaining the functional integrity of the original models while undergoing
quantization.

EG5 - Evaluate the impact of NNE on the QNNs accuracy
Investigate how maintaining equivalence constraints between the original and quan-
tized NNs impacts the overall accuracy of the quantized models. This goal focuses on
understanding whether equivalence guarantees can be achieved without significantly
compromising performance metrics such as accuracy and how different levels of
equivalence might influence model behavior.

EG6 - Evaluate the impact of NNE on the NN size reduction
Explore the balance between reducing the size of the NN models through quantization
and maintaining the FE to the original models. This goal aims to determine the
extent to which model size can be optimized without adversely affecting the network’s
integrity and performance, ensuring that quantized models remain efficient and
reliable for practical applications.

4.2 Evaluation metrics
In this section, we explore the metrics used in our evaluation to assess the perfor-

mance and effectiveness of the CEG4N framework. The metrics align with the established
goals and provide a structured framework for our experiments and analysis. By relating
the metrics to the evaluation goals, we can ensure that they provide meaningful insights
into the performance, effectiveness, and reliability of the CEG4N framework. This struc-
tured approach helps systematically evaluate the framework and set the basis for future
improvements and research. The complete list of metrics is:

Chapter 4. Evaluation and Results 64

Timeout Failures: The number of times the CEG4N framework exceeded the predefined
time limit for the verification step during the experiments. This metric is directly related
to assessing the efficiency of the CEG4N framework (EG3). High timeout failures indicate
areas where the framework may need optimization or improvement in handling complex
verification tasks. This metric helps identify bottlenecks in the verification process, ensuring
that the framework can operate within practical time limits in real-world applications.

Verification Failures: The number of failures observed in the Verifier Module during the
experimental evaluation indicates the robustness of the verification module. This metric
is linked to validating the integration of formal equivalence verification (EG1, EG4). A
lower rate of verification failures suggests a more robust verification module supporting
the integrity of the quantized NNs. Ensuring the reliability of the verification process is
critical for maintaining the safety and functionality of the quantized models in practical
deployments.

Quantization Failures: Instances of failure in the Search Module during the experi-
mental evaluation, assessing the effectiveness of the optimization method in tackling the
quantization issue. This metric evaluates the effectiveness of the optimization technique
used in CEG4N (EG2, EG3). Quantization failures indicate challenges in the optimization
process, highlighting areas for improvement. Understanding these limitations is important
for improving the framework’s handling of diverse NN architectures.

Successful Quantizations: Instances of successful termination of the quantization frame-
work indicate the framework’s ability to adaptively quantize different NN architectures.
This metric measures the overall success of the quantization framework (EG2, EG3). A
high success rate demonstrates the framework’s capability to adaptively quantize NNs
without significant loss of functionality, validating its practical applicability in creating
functional quantized models for various scenarios.

Iterations Count: The number of iterations required to complete the quantization
process. This metric indicates the efficiency of the quantization process (EG2, EG3).
Fewer iterations suggest a more efficient optimization process, while a higher count might
indicate potential inefficiencies. Optimizing this metric helps in reducing computation time
and resources, making the framework more suitable for real-time or resource-constrained
applications.

Counterexamples Count: The count of counterexamples produced during the iterations
is used to refine the quantization. This metric reflects the iterative refinement process during
quantization (EG3, EG5). A higher count of counterexamples indicates a more rigorous
refinement process, potentially leading to more accurate quantized models. Ensuring the
robustness of the quantization process involves continuously improving the model based
on identified weaknesses.

Chapter 4. Evaluation and Results 65

Original Accuracy: The accuracy of the original NN models on their respective datasets.
This metric serves as a baseline to measure the impact of quantization on model perfor-
mance (EG3, EG5). Comparing original accuracy with post-quantization accuracy helps
in assessing any performance degradation. This is essential for evaluating the trade-offs
between model accuracy and the benefits of quantization, such as reduced model size and
increased efficiency.

Accuracy Drop: The loss in accuracy before and after quantization, validating the
framework’s effectiveness in maintaining the integrity of NN functionalities. This metric
measures the impact of quantization on model performance (EG3, EG6). Minimal accuracy
drop indicates that the framework preserves the functional behavior of the original model.
It is crucial to ensure that quantized models remain effective in their application domains,
especially in safety-critical tasks where accuracy is paramount.

Equivalence Count: The number of quantized networks that satisfy the specified
equivalence constraints. This metric assesses whether the quantized models meet the
specified equivalence constraints (EG1, EG4, EG5). Ensuring equivalence is crucial for
maintaining the integrity and expected behavior of the models. Validating the reliability
of the quantized models ensures that they perform consistently with the original models,
which is important for user trust and adoption in real-world applications.

The rationale behind our choice for these metrics considers some principles. Practical
aspects such as the following: (1) they allow us to analyze and interpret the collected data,
ensuring that we can understand the differences in the framework we propose and existing
methods; (2) they allow us to consider practical implications of our findings; and (3) they
allow us to extract insights that can iteratively refine our framework, emphasizing areas
such as enhancing verification processes, reducing quantization failures, and maintaining
accuracy post-quantization.

Ultimately, the chosen metrics should not only validate the effectiveness of the
proposed framework and techniques but also offer insights into potential areas for further
research and development. This ensures the continual advancement of methodologies for
quantifying NNs that address both current and future challenges in the field.

4.3 Evaluation benchmarks
Our experimental setup was designed to provide an evaluation that utilized a

diverse set of datasets and models to ensure appropriate testing of the CEG4N framework
across various scenarios. These benchmarks cover a wide range of network architectures
and applications.

Chapter 4. Evaluation and Results 66

4.3.1 Datasets

We selected a variety of datasets to comprehensively evaluate the performance of
the CEG4N framework. Each dataset was chosen for its relevance to different application
domains and its ability to test different aspects of NN performance post-quantization.

4.3.1.1 ACAS Xu

Acas Xu, which stands for Airborne Collision Avoidance System Xu, is an advanced
version of collision avoidance systems used for manned aircraft tailored for the unique
dynamics of UAVs (JULIAN et al., 2016). It is integral to the domain of autonomous
systems and air traffic control. The dataset consists of inputs and outputs derived from
simulations of various encounter scenarios between UAVs. These scenarios include a wide
range of potential conflicts, varying in factors such as initial positions, velocities, headings,
and altitudes of the UAVs involved. Each entry encapsulates a specific state of the UAVs,
represented by a set of numerical features. The outputs are the recommended advisories
or actions that the UAV should take to avoid a collision, determined by the NN model
trained on the dataset.

The primary purpose of the Acas Xu dataset is to provide a robust foundation for
evaluating the performance of NNs in making real-time, safety-critical decisions. By using
this dataset, researchers and engineers can assess the decision-making capabilities of these
systems under a variety of simulated conditions that reflect real-world complexities and
uncertainties. Furthermore, the dataset serves as a benchmark for comparing different NN
architectures and training methodologies, facilitating advancements in the development of
more reliable and efficient collision avoidance systems. This dataset was chosen to evaluate
the impact of quantization on NNs used in safety-critical applications.

4.3.1.2 MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset is
a widely recognized and extensively utilized resource within the field of ML and pattern
recognition (LECUN; CORTES, 2005). This dataset comprises a collection of 70,000
grayscale images of handwritten digits, each size-normalized and centered within a fixed-
size 28x28 pixel frame. The images are divided into two subsets: a training set containing
60,000 images and a test set containing 10,000 images. Each image is associated with a
corresponding label that denotes the digit it represents, ranging from 0 to 9. This labeling
facilitates supervised learning, wherein models are trained to learn the mapping between
images and their respective labels.

One of the key features of the MNIST dataset is its pre-processing, which involves
the normalization and centering of the digits. This step ensures that the digits are presented
consistently, minimizing variations that could potentially affect the performance of ML

Chapter 4. Evaluation and Results 67

models. Despite its simplicity, the MNIST dataset poses several challenges, such as the
need for models to generalize well from the training set to the test set, handle variations
in handwriting styles, and maintain accuracy despite the limited resolution of the images.

4.3.1.3 Seeds

The seeds dataset is used in ML and statistical analysis for classification tasks.
This dataset contains measurements of geometrical properties of kernels belonging to
three different varieties of wheat: Kama, Rosa, and Canadian (CHARYTANOWICZ et
al., 2010). Each entry in the dataset represents a single seed, characterized by seven
numerical attributes that describe various morphological features, such as area, perimeter,
compactness, length of kernel, width of kernel, asymmetry coefficient, and length of the
kernel groove.

The dataset is structured to facilitate analysis. Each record contains values for
each of the seven attributes followed by a class label indicating the variety of wheat. The
balanced composition of the dataset, containing an equal number of samples from each
wheat variety, provides a robust foundation for training and testing classification models.

4.3.1.4 Iris

The Iris dataset is widely recognized in ML and statistics, originally introduced
by the British biologist and statistician Ronald A. Fisher in his 1936 paper, "The Use
of Multiple Measurements in Taxonomic Problems" (FISHER, 1936). It consists of 150
observations, each representing an individual iris flower. These observations are evenly
distributed across three species of iris: Iris setosa, Iris versicolor, and Iris virginica, with
each species represented by 50 observations. The dataset is characterized by four primary
features, which are the measurements of the following attributes of the iris flowers: sepal
length, sepal width, petal length, and petal width.

The relatively small size of the dataset allows for rapid computation and straight-
forward visualization, aiding in the comprehension of complex concepts in data science
and ML.

4.3.1.5 CIFAR-10

The CIFAR-10 dataset is a widely used benchmark in ML and computer vision, cre-
ated by Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton (KRIZHEVSKY; SUTSKEVER;
HINTON, 2012). It comprises 60, 000 color images, each with dimensions of 32x32 pixels,
categorized into ten distinct classes. The dataset is divided into a training set of 50,000
images and a test set of 10,000 images. Each image is represented in RGB format and
contains 3 channels corresponding to the components of red, green, and blue.

Chapter 4. Evaluation and Results 68

The CIFAR-10 dataset serves as a standard benchmark for evaluating the perfor-
mance of different ML algorithms, particularly CNNs. Despite its simplicity compared to
more extensive datasets, CIFAR-10 presents a non-trivial challenge due to the variability
in object poses, backgrounds, and lighting conditions within each class.

4.3.2 Description of NNs models

To evaluate the CEG4N framework, we tested it on various NNs trained on the
aforementioned datasets. These NNs were chosen to cover multiple architectures and
complexities, ensuring a comprehensive assessment of the framework’s performance.

For the ACAS Xu dataset, we evaluated CEG4N on nine pre-trained NNs (BAK;
LIU; JOHNSON, 2021), each containing six layers and 300 ReLU nodes. These networks
were obtained from the VNN benchmarks.

For the MNIST dataset, we evaluated CEG4N on nine NNs. Three models contain
a single layer with 10, 25, and 50 ReLU nodes, following the architecture described by
Eleftheriadis et al. (ELEFTHERIADIS et al., 2022). Three other models, obtained from
the VNN’s benchmarks, have 2, 4, and 6 layers, each with 256 ReLU nodes. The remaining
three models were trained using resized MNIST images, similar to the first three single-layer
ones. Additionally, we employed 8x8 resized images to reduce dimensionality and provide
invariance to small image distortions.

For the Seeds dataset, we evaluated CEG4N on four NNs containing a single layer
with 4, 6, 10, and 15 ReLU nodes. These networks were specifically trained for evaluating
CEG4N.

For the Iris dataset, we evaluated CEG4N on three NNs containing two layers with
4, 10, and 15 ReLU nodes in each. These networks were trained specifically for evaluating
CEG4N.

For the CIFAR-10 dataset, we evaluated CEG4N on two pre-trained NNs from
VNN. One network has 3 convolutional and two linear layers, each with 250 neurons,
while the other has two convolutional and two linear layers, each with 250 neurons. Both
networks use only ReLU activations.

This diverse set of NNs, tested across multiple datasets, allows for a thorough
evaluation of the CEG4N framework’s effectiveness in different scenarios, ensuring robust
and reliable results.

Chapter 4. Evaluation and Results 69

4.4 Evaluation of CEG4N using different benchmarks and equiva-
lence properties
Here, we discuss some experiments we planned to evaluate CEG4N’s performance

on different benchmarks, configurations, and equivalence properties. These experiments aim
to address our evaluation goals EG1, EG2, and EG3; see Section 4.1 for more details. With
this evaluation, we want to understand if it can generate QNNs with guarantees of preserved
FE. The experiments also allow us to better understand CEG4N’s strengths and limitations.
We also want to evaluate the configuration options we have for CEG4N. Moreover, the
proposed methodology presents inherent flexibility, allowing verifiers, constraints, and
other parameters to be easily changed and promptly evaluated. Below, we provide an
overview of the steps required to configure and run the experiments using CEG4N.

1. Model selection: Choose a model architecture from the selected benchmark dataset.

2. Select and configure an optimizer: Select NSGA-II as the optimizer to be used, define
values for the bit width options, define the number of generations and population
size, and specify the initial set of counterexamples.

3. Select and configure a verifier: Select an verifier, specify the equivalence type, specify
the input space bounds, and define a timeout value.

4. Execution: Run CEG4N with the specified configurations.

5. Data collection: Record the relevant metrics.

In the remaining of this section, we discuss each step in the overview above and
dive into the details of the parameter selection and configuration options we highlighted
in it.

4.4.1 Benchmarks selection

In the SC1 we ran experiments using the NNs of the following benchmarks: Acas Xu, Iris,
Seeds, MNIST, and CIFAR. The complete description of the benchmarks and the NNs is
given in Section 4.3.

4.4.2 Optimizer configuration

As explained in Section Section 3.3.2, we use a search-based optimization algorithm
(NSGA-II) in the BSM implementation to find optimal bit widths for NN quantization.
The choice of NSGA-II is motivated by its multi-objective nature, allowing it to effectively

Chapter 4. Evaluation and Results 70

balance trade-offs between different objectives and constraints. Below, we outline the key
configuration details and rationales for our the BSM setup.

In conclusion, the configuration of the BSM was designed to accommodate the
precision requirements of different NN frameworks and programming languages while
ensuring efficient and accurate quantization. The NSGA-II algorithm’s multi-objective
approach allows for effective balancing of various constraints and objectives, making
it suitable for the quantization of our diverse set of NN benchmarks. NSGA-II was
chosen over other optimization algorithms due to its ability to handle multiple objectives
simultaneously, such as minimizing bit width while functional integrity. Previous studies
have demonstrated NSGA-II’s superiority in dealing with complex, multi-dimensional
optimization problems, making it an ideal choice for our application(WANG et al., 2021b;
REZK et al., 2022).

4.4.3 Verifiers

We run our experiments with two formal equivalence verifiers: ESBMC and NNEQUIV.

4.4.4 Lower and upper bounds configuration

First we need to inform BSM of the bounds for the search space of the optimization.
In this case we set to lower and upper bounds to 2 and 32, respectively. This implies
that the quantization schemes found by the BSM only contain combinations of bit width
values between 2 and 32. A lower bound of 2 was chosen because it is the first valid
integer that does not break our quantization scheme, ensuring that minimal bit widths
still provide meaningful quantization without losing critical information. The upper bound
of 32 matches the maximum number of bits typically used for integer representation in
many NN frameworks, such as PyTorch and ONNX, and in programming languages like C.

Additionally, while the upper bound could be higher depending on the precision
of NN weights, the standard choice for training and storing weights is single-precision
floating-point format, which is commonly supported. Using 32 bits aligns with this standard
and ensures compatibility across various platforms and frameworks. Studies in literature
have shown that bit widths beyond 32 do not significantly improve performance for most
practical applications, thus justifying our upper limit. Setting a greater lower bound or a
lower upper bound is possible. For example, if the lower and upper bounds were set to 8
and 16, the practical implication would be that the quantization schemes found by the
BSM would only contain bit widths values between 8 and 16.

Chapter 4. Evaluation and Results 71

4.4.5 Generations and population size configuration

The number of generations and the population size are parameters we need to specify
for the BSM. We configured the BSM to run for 1000 generations with a population of
50 individuals. These numbers were determined empirically by incrementally testing to
ensure the GA could find a solution for all benchmarks. Specifically, we conducted multiple
trials where we provided an empty Rt=0

δ=0 to BSM and varied the number of generations: if
the outputted bt matched a vector such that b = 2∀n ∈ bt, then GA could find a solution
within the given number of generations. We found that 1000 generations and a population
of 50 individuals consistently produced solutions across various NN architectures and
sizes. This empirical approach ensured that the chosen numbers were sufficient for our
experiments. For different use cases, depending on the size of the NNs, it may be necessary
to fine-tune these parameters to avoid premature convergence to sub-optimal solutions
genetic, to ensure diversity, and to thoroughly explore the solution space.

4.4.6 Initial set of counterexamples configuration

The initial setup of CEG4N involves selecting a representative sample for each class from
the datasets to establish a baseline for the initial set Rt=0

δ=0 and the equivalence properties.
This was done by randomly selecting one representative sample for each class from the
datasets. For example, we selected ten samples for MNIST and 3 for Iris. The samples do
not necessarily have to be from the benchmark dataset and can include synthetic data.
In our experiments, we used real data from the chosen datasets. This choice is justified
by three factors: (1) the practical aspect of using samples from the benchmarks ensures
relevance to real-world data, (2) the representativeness of the test set maintains diversity
in the initial population, and (3) the added variability in our experiments enhances the
robustness of the evaluation. Random selection mitigates biases that could arise from
systematic sampling, ensuring a fair evaluation of the framework’s performance.

The definition of the initial set of counterexamples is straightforward. We simply
add each sample to the respective set. For example, we selected 10 samples for MNIST,
then these ten samples were used as the counterexamples for the MNIST experiments.
Similarly, we selected 3 samples from the Iris dataset, then these 3 samples are used
as the counterexamples for the Iris experiments. The set of counterexamples Rt=0

δ=0 is
an important aspect of CEG4N optimization strategy, and its definition has practical
implications and a direct effect on the CEG4N’s ability to quantize the NNs. If we recall
our discussion of CEG4N in Section 3.4, the counterexamples constrain and, therefore,
guide the optimization done in the BSM in the right direction. Not defining an initial or
non-representative set can result in inefficient optimization in BSM.

Chapter 4. Evaluation and Results 72

4.4.7 Equivalence properties configuration

To perform the equivalence verification we need to define: the original NN f , which is
automatically done by a NN from the benchmarks; the QNN, whic is automatically done
by CEG4N at runtime; the definition of the equivalence type, which is the CBE in our
experiments with classifiers; and the definition of input space bounds, which also defined
based on input samples. The main difference is that, instead of using concrete inputs from
this sample set, we have to calculate a lower and upper bound for each input sample based
on a specified input bound value δ.

The specification of the equivalence properties was defined by: (1) selecting one
real input sample for each class (similar to the definition of Rt=0

δ=0), at random; (2) choosing
CBE, and (3) selecting an input bound value δ. Regarding the latter, we have defined
three possible values for δ (see Eq. Equation 2.19): δ = [0.01, 0.03, 0.05]. Such values are
defined based on input bounds reported by other works on NNE ((PAULSEN et al., 2020;
TEUBER et al., 2021; ELEFTHERIADIS et al., 2022)) and were selected empirically,
based on input data and experiments, and reflect the full structure here: benchmarks with
narrow input range and CBE, which usually leads to tighter input regions. In addition,
studies in the literature usually adopt only one, while our work provides a margin for its
discussion. As an example, MNIST, which has 10 output classes, we could define a total
of 3 sets with 10 input constraints each.

For Acas Xu, we followed the same strategy used by Teuber et al. (TEUBER et
al., 2021), i.e., NBE as equivalence form, while the choices for the input space bounds of
the equivalence properties are δ = [0.1, 0.3, 0.5]. Again, three different values were adopted
for δ, also empirically, but now taking into account Acas Xu’s aspects: broader input range
and NBE. The use of norms in the verification of properties of Acas Xu benchmarks (and
other similar benchmarks (ELEFTHERIADIS et al., 2022)) is common in the literature
(KATZ et al., 2017; PAULSEN et al., 2020; TEUBER et al., 2021).

If we revisit the definition of approximate equivalence Section 2.4, we must choose
two additional parameters, namely p and ϵ. The value for ϵ is usually chosen according to the
application domain of the NNs being verified so that it is possible to prove equivalence and,
simultaneously, the resulting NNs are useful, i.e., they present tolerable output differences.
It is also possible to find an optimal ϵ by incrementally looking at counterexamples and
deciding if, from the user perspective, their outputs are equivalent(BAK; LIU; JOHNSON,
2021). Ultimately, we decided for ϵ = 0.05 as it means a maximum difference of 10% in
Acas Xu’s scores. In addition, such a value was also adopted by Teuber et al. (TEUBER
et al., 2021). Finally, we chose p =∞ due to efficiency reasons (KATZ et al., 2017) and
also aimed at consistency across different verifiers, which was also adopted by Teuber et
al. (TEUBER et al., 2021).

Chapter 4. Evaluation and Results 73

4.4.8 Time limit configuration

A timeout is important to ensure termination and should ideally not be arbitrary. In the
case of this experimental evaluation, each verification of the equivalence property has a
time limit to complete, and it should take at most 20 minutes. This time is consistent
across all verifiers and experiments. It was based on hardware configuration, expected
run-time, and other aspects, but different limits can be set to suit distinct scenarios. There
is no ideal value since it depends on computational resources and the specific use case
and applications. If one can allow longer timeout values, it is advised to opt for longer
timeouts, although it impacts the overall execution time of CEG4N. Our choice for 20
minutes was made because it suited our experimental needs; however, we were aware of
this choice likely leading to more timeout observations.

4.4.9 Collected metrics

The metrics recorded during the experiments included: 1) the number of iterations; 2) the
number of counterexamples; 3) the quantization scheme or the bits for each layer in QNN;
and 4) the outcome of each experiment. The Section 4.2 gives a full discussion of these
metrics.

4.5 Evaluation of the quality of the QNNs generated by CEG4N
Here we discuss some experiments we planned to evaluate the quality of QNNs

generated by CEG4N. These experiments aim to address our evaluation goals EG4, EG5,
and EG6; see Section 4.1 for more details. In summary, we want to understand the impact
of preserving equivalence property in the QNNs. Additionally, we want to compare the
QNNs generated by CEG4N with QNNs generated by other quantization tools. Below
is a structured overview of the steps we performed to conduct the quality evaluation
experiments.

1. Benchmark selection: choose a NN from the selected benchmark dataset.

2. Quantization by CEG4N: quantize the neural networks using CEG4N and record
the initial counterexamples used.

3. Input sample set selection: define a set of samples for quantization purposes.

4. Quantization by GPFQ: quantize the same neural networks using GPFQ with the
specified quantization scheme (Bits) and initial counterexamples.

5. Test set select: define a set of samples for validation purposes.

Chapter 4. Evaluation and Results 74

6. Accuracy measurement: measure and record the accuracy of both the original and
quantized neural networks, calculating the accuracy drop.

4.5.1 Benchmark selection

The selection of the benchmarks is based on whether or not the benchmark is a classification.
For this reason, only the following benchmarks satisfy this criteria: Iris, Seeds, MNIST,
and CIFAR.

Two quantization tools were evaluated: CEG4N and GPFQ.

4.5.2 Input sample set configuration

The GPFQ algorithm allows us to specify a set of representative input samples which it
uses to improve the quality of the QNNs it generates. For simplification purposes, we use
the same input samples contained in the set of counterexamples that needs to be specified
for CEG4N.

4.5.3 Test set configuration

To evaluate the quality of QNNs generated by the quantization tools we used in this
experimentation, we need to validate the QNNs against some real and representative input
samples.

4.5.4 Collected metrics

Metrics recorded included the accuracy of the original neural network, the accuracy of the
quantized neural networks, and the accuracy drop. For simplification purposes, we use the
test dataset of each benchmark.

4.6 Data and Tools Availability
Our experiments are based on publicly available benchmarks. All tools, benchmarks,

and results employed here are available on the supplementary web pages <https://zenodo.
org/record/7126601> and <https://codeocean.com/capsule/1811188/tree>. We invite
the scientific community and readers in general to download, set up, and experiment with
the tool.

https://zenodo.org/record/7126601
https://zenodo.org/record/7126601
https://codeocean.com/capsule/1811188/tree

Chapter 4. Evaluation and Results 75

4.7 Presentation of Results
We start the presentation of results for our first set of experiments as described in

Section 4.4. To recapitulate, we want to achieve the experimental goals EG1, EG2, and
EG3, by showing that CEG4N can successfully generate QNNs verifiably equivalent to their
original counterparts. In practical terms, we want to: 1) perform an empirical scalability
study to help us evaluate the computational demands for quantizing and verifying the
equivalence of NN models and (2) evaluate different equivalence-checking techniques and
their impacts on the performance of CEG4N. Our findings are presented as follows: Table 2
contains the results for the Iris benchmarks; Table 3 contains the results for the Seeds
benchmarks, the results for the MNIST benchmarks are presented in Table 4, Table 5,
and Table 6; Table 7 contains the results for the CIFAR benchmarks; and the results for
the Acas Xu benchmarks are in Table 8 and Table 9.

The tables contain the metrics we collected during the experiments and information
that identifies the configuration with which CEG4N is used in the experiment for the
respective metrics. Specifically, the column names and their definitions are: Model - tells the
specific benchmark, Verifier - informs if ESBMC or NNQUIV was used in the experiment,
δ - discloses the parameter δ (see Eq. (2.19)) which specify the input space bounds of the
equivalence properties; No. Iter. - shows the number of iterations until CEG4N terminated,
No. CEs - informs the number of counterexamples found by CEG4N, Bits - informs the
last quantization scheme passed to VM containing the bit width for each layer of the NN;
and Status - tells the CEG4N’s termination status.

Table 2 – Summary of the CEG4N’s results for the Iris benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status

iris_4x2 ESBMC 0.01 1 0 3,3,3 SQ
0.03 1 0 3,3,3 SQ
0.05 11 10 12,10,10 SQ

NNEQUIV 0.01 1 0 3,3,3 SQ
0.03 1 0 3,3,3 VF
0.05 3 2 4,2,3 SQ

iris_10x2 ESBMC 0.01 2 1 3,3,2 SQ
0.03 3 2 4,2,4 SQ
0.05 7 6 8,7,9 SQ

NNEQUIV 0.01 2 1 2,3,4 SQ
0.03 3 2 2,3,4 SQ
0.05 2 0 3,2,4 SQ

iris_15x2 ESBMC 0.01 1 0 2,2,3 SQ
0.03 1 0 2,2,3 SQ
0.05 8 7 QF

NNEQUIV 0.01 1 0 2,2,3 SQ
0.03 1 0 2,2,3 SQ
0.05 1 0 2,2,3 SQ

Chapter 4. Evaluation and Results 76

Table 3 – Summary of the CEG4N’s results for the Seeds benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status
seeds_4x1 ESBMC 0.01 1 0 3,3 SQ

0.03 1 0 3,3 SQ
0.05 9 8 12,13 SQ

NNEQUIV 0.01 1 0 3,3 SQ
0.03 1 0 3,3 SQ
0.05 2 1 4,4 SQ

seeds_6x1 ESBMC 0.01 1 0 4,2 SQ
0.03 4 4 12,12 SQ
0.05 8 9 12,12 SQ

NNEQUIV 0.01 1 0 4,2 SQ
0.03 2 2 4,3 SQ
0.05 2 1 4,3 SQ

seeds_10x1 ESBMC 0.01 2 1 3,4 SQ
0.03 13 14 18,12 SQ
0.05 3 4 6,4 TO

NNEQUIV 0.01 2 1 3,4 SQ
0.03 2 1 4,3 SQ
0.05 2 1 4,4 SQ

seeds_15x1 ESBMC 0.01 4 3 5,2 SQ
0.03 5 5 8,6 TO
0.05 7 8 8,7 TO

NNEQUIV 0.01 2 1 5,2 SQ
0.03 2 1 4,4 SQ
0.05 3 1 5,3 SQ

The termination status can classified into four possible outcomes: 1) successful
Quantization (SQ), meaning that CEG4N ran for one or more iterations and was able
to produce a QNN; 2) timeout (TO), which means CEG4N was unable to verify the
equivalence property within a given time limit previously set; 3) quantization failure (QF),
which means that CEG4N was unable to find a suitable qantization scheme to quantize a
given NN; and 4) verification failure (VF), which means that some error occurred during
the equivalence verification step, e.g., exceptions thrown by the VM have occurred.

In summary, CEG4N running with ESBMC (CESBMC) successfully generated
QNNs for 17 out of 81 runs, considering all datasets, which account for 20.99% of all
processes. In addition, CEG4N running with NNQUIV (CNNQUIV) was successful in 33
out of 81 runs, representing 40.74% of all processes. Most of the CEG4N’s failures, with
ESBMC, was due to timeouts, with 55 occurrences, representing 67.90% of the total. In
contrast, CEG4N with NNQUIV resulted in 30 timeouts, i.e., 37% of the total.

Such a difference in timeouts can be attributed to many factors. For example,
ESBMC, as an approach based on bounded model checking (BMC), is known to suffer

Chapter 4. Evaluation and Results 77

Table 4 – Summary of the CEG4N’s results for the MNIST benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status
mnist-64-10x1 ESBMC 0.01 1 0 4,5 TO

0.03 1 0 4,5 TO
0.05 1 0 4,5 TO

NNEQUIV 0.01 2 1 4,5 SQ
0.03 2 1 4,5 SQ
0.05 3 6 QF

mnist-64-25x1 ESBMC 0.01 1 0 3,3 TO
0.03 1 0 3,3 TO
0.05 1 0 3,3 TO

NNEQUIV 0.01 2 3 5,6 SQ
0.03 6 10 6,5 SQ
0.05 4 11 QF

mnist-64-50x1 ESBMC 0.01 1 0 2,3 TO
0.03 1 0 2,3 TO
0.05 1 0 2,3 TO

NNEQUIV 0.01 2 1 2,6 SQ
0.03 3 5 5,8 TO
0.05 1 0 2,3 TO

from scalability issues, which greatly diminishes its ability to support larger NNs (SENA
et al., 2021) and can be seen in more detail in some tables. In Table 2 and Table 3,
which show information regarding CESBMC runs for the Iris and Seeds datasets (at most
two layers with less than 20 node each), respectively, only three timeouts were noticed.
However, if we take a look at Table 4, Table 5, Table 6, Table 7, and Table 8, which show
information regarding CESBMC runs for MNIST, CIFAR-10, and Acas Xu benchmarks,
respectively, which are composed mostly by medium to large NNs (at most eight layers),
the number of timeouts presents a significant increase. Indeed, no successful execution
could even be identified. Moreover, the rare runs with a timeout, with the dataset Seeds
processed by CESBMC, also happened with (1) NNs containing more than 10 neurons per
layer, (2) more than 4 iterations, and (3) larger constraint regions (δ = 0.03 and 0.05),
which reinforces the explanation based on NN complexity and BMC scalability. We can
check such cases in detail in Table Table 3. In summary, combining factors (1) and (3)
mostly contributes to timeouts. The more neurons an NN has, the more operations it has
to perform (and CEG4N). Besides, the bigger the δ value, the bigger the search space a
verifier has to cover.

Although runs with CNNQUIV suffered from fewer timeouts, it’s interesting that
ESBMC required more iterations overall than CNNQUIV. Considering only the successful
runs, CESBMC needed, on average, 4 iterations to produce a QNN, while CNNQUIV
used 2. The explanation for this behavior is that ESBMC can find counterexamples that

Chapter 4. Evaluation and Results 78

Table 5 – Summary of the CEG4N’s results for the MNIST benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status
mnist-784-10x1 ESBMC 0.01 1 0 3,4 TO

0.03 1 0 3,4 TO
0.05 1 0 3,4 TO

NNEQUIV 0.01 1 0 3,4 SQ
0.03 2 2 3,6 SQ
0.05 7 9 17,21 SQ

mnist-784-25x1 ESBMC 0.01 1 0 3,5 TO
0.03 1 0 3,5 TO
0.05 1 0 3,5 TO

NNEQUIV 0.01 1 0 3,5 SQ
0.03 1 0 3,5 TO
0.05 1 0 3,5 TO

mnist-784-50x1 ESBMC 0.01 1 0 3,2 TO
0.03 1 0 3,2 TO
0.05 1 0 3,2 TO

NNEQUIV 0.01 1 0 3,2 SQ
0.03 1 0 3,2 TO
0.05 1 0 3,2 TO

NNQUIV is not. Since ESBMC and NNQUIV use different verification approaches, i.e.,
SMT and reachability analysis, respectively, the obtained results are expected to eventually
diverge for some verification instances. In addition, NNQUIV produces many spurious
counterexamples, which is not beneficial to our scheme. Indeed, CEG4N already expects
that the verifiers can eventually produce spurious counterexamples, which are ruled out as
explained in Section Section 3.4.3.

Quantization failures are another possible type of error, which can occur only in
QM. One may notice that CESBMC presented only 9 cases, i.e., 11.11%, while 12 were
identified for CNNQUIV. i.e., 14.81%. A possible explanation is that the search for the
bits sequence is highly non-linear and highly dependent on the set of counterexamples
Rδ=0 QM receives at a given iteration, which makes this optimization problem a hard one
to solve. We should also consider that new constraints are added to the search problem
after each iteration, which makes it even harder to solve. This is corroborated by the fact
that most quantization failures occurred after 2 or more runs.

Our experiments show many quantization-failure events for Acas Xu’s benchmarks.
One explanation for that is that some of those NNs are highly sensitive to errors introduced
by quantization processes, which affects their behaviors. Thus, in such a context, NNs
may easily violate the constraint f(x) ⋍ f q(x),∀x ∈ Ro during the step performed by
BSM. In addition, for other NNs, a higher value for ϵ can also help increase the chance of
a successful quantization. However, in the specific scenario used here, we used an ϵ value

Chapter 4. Evaluation and Results 79

Table 6 – Summary of the CEG4N’s results for the MNIST benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status
mnist-256x2 ESBMC 0.01 1 0 4,3,5 TO

0.03 1 0 4,3,5 TO
0.05 1 0 4,3,5 TO

NNEQUIV 0.01 1 0 4,3,5 TO
0.03 1 0 4,3,5 TO
0.05 1 0 4,3,7 TO

mnist-256x4 ESBMC 0.01 1 0 3,2,3,3,4 TO
0.03 1 0 3,2,3,3,4 TO
0.05 1 0 3,2,3,3,4 TO

NNEQUIV 0.01 1 0 3,2,3,3,4 TO
0.03 1 0 3,2,3,3,4 TO
0.05 1 0 3,2,3,3,4 TO

mnist-256x6 ESBMC 0.01 1 0 3,2,3,3,4,3,4 TO
0.03 1 0 3,2,3,3,4,3,4 TO
0.05 1 0 3,2,3,3,4,3,4 TO

NNEQUIV 0.01 1 0 3,2,3,3,4,3,4 TO
0.03 1 0 3,2,3,3,4,3,4 TO
0.05 1 0 3,2,3,3,4,3,4 TO

Table 7 – Summary of the CEG4N’s results for the CIFAR benchmark.

Model Verifier δ No. Iter. No. CEs. Bits Status
cifar10_2_255 ESBMC 0.01 1 0 9,5,6,6,6 TO

0.03 1 0 7,8,6,6,6 TO
0.05 1 0 10,5,6,6,6 TO

NNEQUIV 0.01 1 0 7,8,6,6,6 VF
0.03 1 0 QF
0.05 1 0 9,5,6,7,7 VF

cifar10_8_255 ESBMC 0.01 1 0 4,8,6,7 TO
0.03 1 0 6,8,6,8 TO
0.05 1 0 4,8,6,7 TO

NNEQUIV 0.01 1 0 4,8,6,7 VF
0.03 1 0 4,8,6,7 VF
0.05 1 0 QF

based on other works, which should be adequate for our benchmarks (TEUBER et al.,
2021).

Indeed, the conditions presented in the last paragraph probably prevented CEG4N
from producing QNN candidates for VM. Moreover, successful runs mostly failed with
timeouts. The main factors behind the latter are (1) the size of the NN in the number of
neurons and (2) the number of features in the input space. Indeed, Acas Xu’s NNs are
mostly affected by the NN size problem, as they present 300 neurons in total. MNIST, in

Chapter 4. Evaluation and Results 80

Table 8 – Summary of the CEG4N’s results for the ACAS Xu benchmark.

Model Verifier δ No. Iter. Bits Status
ACASXU_1_1 ESBMC 0.1 1 QF

0.3 1 QF
0.5 1 QF

ACASXU_1_2 ESBMC 0.1 1 12,9,8,9,7,9,5 TO
0.3 1 QF
0.5 1 11,7,7,8,9,9,7 TO

ACASXU_1_3 ESBMC 0.1 1 QF
0.3 1 QF
0.5 1 QF

ACASXU_1_4 ESBMC 0.1 1 5,6,5,6,6,8,4 TO
0.3 1 6,6,7,6,6,7,4 TO
0.5 1 QF

ACASXU_1_5 ESBMC 0.1 1 5,6,6,6,6,7,4 TO
0.3 1 5,6,6,6,6,7,4 TO
0.5 1 8,6,7,5,5,7,4 TO

ACASXU_1_6 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 5,9,4,2,6,4,4 TO
0.5 1 2,2,2,2,2,6,4 TO

ACASXU_1_7 ESBMC 0.1 1 2,2,2,2,2,4,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

ACASXU_1_8 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

ACASXU_1_9 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

turn, NNs have 64 or 784 features in the input space that, from the verification perspective,
result in a very large search space dimension to cover. In addition, CIFAR-10’s NNs are
affected by both factors, having 1024 features in the input space and thousands of neurons
in total.

Regarding ACAS Xu, we find it possible to tune p and ϵ so we mitigate most of the
associated quantization failures. That is, use a different norm (we use the L∞-norm), and
an allowing the difference in the outputs of the NNs to be larger. A different norm may
imply a different meaning for equivalence and a larger ϵ a more loosely defined equivalence
property. However, it should be done carefully so the resulting QNNs are still applicable
and the chosen verifier can perform accordingly. Notice that, quantization failures occur
in the context of the BSM, where equivalence is measured over concrete input samples (or
counterexamples). The implication is that poorly defining these parameters can result in
NNs with distinct outputs generated by the BSM.

Chapter 4. Evaluation and Results 81

Table 9 – Summary of the CEG4N’s results for the ACAS Xu benchmark.

Model Verifier δ No. Iter. Bits Status
NNEQUIV 0.1 1 QF

0.3 1 QF
0.5 1 10,9,9,7,12,10,8 SQ

NNEQUIV 0.1 1 QF
0.3 1 7,8,7,8,9,9,5 TO
0.5 1 QF

NNEQUIV 0.1 1 QF
0.3 1 QF
0.5 1 8,7,8,8,8,9,6 TO

NNEQUIV 0.1 1 QF
0.3 1 5,6,5,6,6,8,4 TO
0.5 1 7,6,6,6,6,7,4 SQ

NNEQUIV 0.1 1 7,8,5,6,7,7,8 TO
0.3 1 5,6,6,6,6,7,4 SQ
0.5 1 QF

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,6,4 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 VF
0.5 1 2,2,2,2,2,2,2 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

The last type of failures are the verification ones, which only occur in VM. We
noticed them only when running CNNQUIV, with a total of 6 cases, i.e., a failure rate
of 7.4%. They were caused by exceptions thrown by NNQUIV’s software dependencies.
However, it is unclear that a flaw in NNQUIV caused those exceptions. As we did not
notice any verification failures with ESBMC, this can indicate its maturity when compared
with NNQUIV.

The number of counterexamples is a critical indicator in the context of the CEG4N
tool experiments. This metric represents the instances where the VM identified discrepancies
between the original and quantized models, requiring the BSM to make adjustments in
the next iteration to achieve equivalence. ESBMC managed to find counterexamples more
consistently than NNEQUIV, that is, considering the same NNs and equivalence properties,
and disconsidering the timeouts, ESBMC found more counterexamples. For example, for
the Iris benchmarks, ESBMC found 26 against 5 counterexamples found by NNEQUIV.

Chapter 4. Evaluation and Results 82

And for the Seeds benchmarks, ESBMC found 56 counterexamples, while NNEQUIV
found only 10. This suggests better handling of verification within bounded regions.

For simpler models like Iris and Seeds, an increase in δ generally led to more
counterexamples. This indicates that larger bounded regions introduce more potential
points of failure in the quantized models. This can be attributed to being more sensitive
to quantization and less likely to hold the equivalence. This helps us understand particular
cases such as (iris_4x2, ESBMC, δ =0.05), (seeds_4x1, ESBMC, δ = 0.05), (seeds_10x1,
ESBMC, δ =0.03) where CEG4N run for more than 10 iterations until finally finding a
QNN. The counterexamples found that the more iterations CEG4N has to run, the bigger
the bit widths in the quantization scheme. When few or no counterexamples are found
the quantization scheme tend to become stable at lower bit width values, see the results
for iris_15x2 and seeds_15x1 with NNEQUIV as examples. For more complex NNs like
MNIST and CIFAR, our results showed fewer counterexamples or none at all, often due to
the verifier timing out before completing the verification process. ESBMC was particularly
affected and frequently timed out, resulting in no counterexamples being reported.

The increase in counterexamples with larger input space regions (δ) suggests that
ensuring equivalence becomes more computationally intensive as the input space expands.
This indicates a trade-off between the size of the input region and the computational
resources required. The results for seeds_10x1 and seeds_15x1 with ESBMC serve as
an examples of that, and also the results for mnist-64-50x1 and mnist-784-50x1 with
NNEQUIV are another examples.

Finally, the choice of VM is also important. As shown here, CESBMC and CN-
NQUIV present different behaviors that may suit a given scenario. For instance, regarding
large NNs, CNNQUIV seems to be a clear choice. Moreover, if new verification tech-
niques are introduced, one may consider other VM options, which our framework can
accommodate due to its modularity.

These results answer our evaluation goals EG1, EG2, and EG3. Overall, these
experiments show that CEG4N can successfully produce equivalent QNNs.

For simpler models, such as those in the Iris and Seeds benchmarks, CEG4N often
achieves successful quantization. oth ESBMC and NNEQUIV verifiers showed successful
quantization in many instances, particularly for simpler benchmarks. This suggests that
CEG4N is robust in ensuring FE across different verification methods. Also, CEG4N
adjusted the quantization scheme (number of bits) effectively for different bounded regions,
achieving successful quantization in several configurations. This adaptability helps optimize
the computational load by tailoring the quantization process based on the specified input
region. This indicates that the tool effectively quantizes these models without requiring
extensive computational resources. General observations are:

Chapter 4. Evaluation and Results 83

• verifier performance: ESBMC often resulted in timeouts, especially for larger and
more complex models like those in the MNIST and CIFAR benchmarks. While
NNEQUIV showed better performance in some benchmarks (e.g., Iris, Seeds), it also
had issues with verification and quantization failures.

• impact of the bound region r: generally, as δ increased, the difficulty of achieving suc-
cessful quantization increased, as indicated by more iterations and counterexamples
and the occurrence of failures or timeouts.

• NN complexity: simpler NNs (e.g., smaller Iris and Seeds NNs) were more likely to
be successfully quantized. While more complex NNs (e.g., larger MNIST and CIFAR
NNs) posed significant challenges for both verifiers. Scalability should be a point of
concern for larger NN models.

• quantization scheme: successful quantization often required varying the bit schemes,
particularly for larger models. Higher complexity in the bit configuration was some-
times necessary for achieving SQ.

In our second set of experiments, we want to achieve the remaining experimental
goals, i.e., EG4, EG5, and EG6. We primarily want to understand the impact of quantization
processes performed by CEG4N on the accuracy of the resulting NNs compared with other
post-training quantization techniques.

We selected the models for which CEG4N presented successful quantization pro-
cesses and proceeded to quantize them also using GPFQ. Next, we collected the accuracy
of the original and QNNs to compare them. Tables Table 10 Table 11, and Table 12
summarize the accuracy of the models quantized with CNNQUIV, CESBMC, and GPFQ,
using the Iris, Seeds, and MNIST benchmarks. However, there was no successful run
regarding CESBMC with MNIST, as already mentioned. We do not report the accuracy
of CIFAR-10’s NNs from VNNCOMP since CEG4N could not quantize them. Also, we do
not report the accuracy of Acas Xu’s models. It happened partially because of the same
problem identified with the VNNCOMP’s models but mainly because GPFQ requires
access to training and test datasets, which are not public for Acas Xu.

The tables are organized as follows. Column Model shows the name of the NN
models, Quantizer tells the name quantization technique (i.e., CESBMC, CNNQUIV,
or GPFQ), δ informs the value used to define quantization Equivalence Properties, and
columns Original Accuracy, Quantized Accuracy, and Accuracy Drop show the accuracy
of the original and QNNs and their difference, respectively. Lastly, the column Equivalence
Status tells whether original and QNNs are equivalent. The Accuracy Drop is positive if
the QNN has a worse accuracy when compared with its original model. Otherwise, it is
negative.

Chapter 4. Evaluation and Results 84

Table 10 – Comparison using Top-1 accuracy for NNs from dataset Iris quantized using
CEG4N and GPFQ

Model Quantizer δ O.Ac. Q.Ac. Ac.D. Eq.St.
iris_4x2 GPFQ 0.010 86.667 60.000 -26.667 False
iris_4x2 CESBMC 0.010 86.667 86.667 0.000 True
iris_4x2 CNNQUIV 0.010 86.667 86.667 0.000 True
iris_4x2 GPFQ 0.030 86.667 60.000 -26.667 False
iris_4x2 CESBMC 0.030 86.667 86.667 0.000 True
iris_4x2 GPFQ 0.050 86.667 40.000 -46.667 False
iris_4x2 CESBMC 0.050 86.667 86.667 0.000 True
iris_4x2 CNNQUIV 0.050 86.667 93.333 6.667 True
iris_10x2 GPFQ 0.010 90.000 36.667 -53.333 False
iris_10x2 CESBMC 0.010 90.000 96.667 6.667 True
iris_10x2 CNNQUIV 0.010 90.000 93.333 3.333 True
iris_10x2 GPFQ 0.030 90.000 36.667 -53.333 False
iris_10x2 CESBMC 0.030 90.000 86.667 -3.333 True
iris_10x2 CNNQUIV 0.030 90.000 93.333 3.333 True
iris_10x2 GPFQ 0.050 90.000 36.667 -53.333 False
iris_10x2 CESBMC 0.050 90.000 90.000 0.000 True
iris_10x2 CNNQUIV 0.050 90.000 96.667 6.667 True
iris_15x2 GPFQ 0.010 90.000 93.333 3.333 False
iris_15x2 CESBMC 0.010 90.000 86.667 -3.333 True
iris_15x2 CNNQUIV 0.010 90.000 86.667 -3.333 True
iris_15x2 GPFQ 0.030 90.000 93.333 3.333 False
iris_15x2 CESBMC 0.030 90.000 86.667 -3.333 True
iris_15x2 CNNQUIV 0.030 90.000 86.667 -3.333 True
iris_15x2 GPFQ 0.050 90.000 93.333 3.333 False
iris_15x2 CNNQUIV 0.050 90.000 86.667 -3.333 True

Our findings show that the highest drops in accuracy for NNs generated by CN-
NQUIV where 3.3% for Iris, 21.43% for Seeds, and −6.20% for MNIST. For NNs quantized
with CESBMC, the highest drops were 3.3% for Iris and 21% for Seeds. Regarding GPFQ,
the highest noticed drops were 53.3% for Iris, −47.61% for Seeds, and −3.41% for MNIST.
Such results are interesting and show that an increase in accuracy is even possible, which
we briefly discuss next.

On the one hand, the highest accuracy drop for CEG4N-generated NNs coincides
with (δ = 0.01) (See Table Table 10). Indeed, small δ values increase the chance of not
finding counterexamples to drive the quantization process, which favors the generation of
poorly QNNs. For higher δ values (δ = 0.03) and (δ = 0.05), we notice that the highest
accuracy drop is 3.3%. On the other hand, for GPFQ, the highest accuracy drops involve
the Iris and Seeds benchmarks. We believe the GPFQ’s performance is due to two factors:
1) GPFQ relies on representative data (e.g., data from the training dataset), which is more

Chapter 4. Evaluation and Results 85

Table 11 – Comparison using Top-1 accuracy for NNs from dataset Seeds quantized using
CEG4N and GPFQ

Model Quantizer δ O.Ac. Q.Ac. Ac.D. Eq.St.
mnist_64_10x1 GPFQ 0.010 79.040 79.480 0.440 False
mnist_64_10x1 CNNQUIV 0.010 79.040 77.900 -1.140 True
mnist_64_10x1 GPFQ 0.030 79.040 79.480 0.440 False
mnist_64_10x1 CNNQUIV 0.030 79.040 77.900 -1.140 True
mnist_64_25x1 GPFQ 0.010 83.420 81.960 -1.460 False
mnist_64_25x1 CNNQUIV 0.010 83.420 82.820 -0.600 True
mnist_64_25x1 GPFQ 0.030 83.420 81.960 -1.460 False
mnist_64_25x1 CNNQUIV 0.030 83.420 83.220 -0.200 True
mnist_64_50x1 GPFQ 0.010 84.600 82.410 -2.190 False
mnist_64_50x1 CNNQUIV 0.010 84.600 77.280 -7.320 True
mnist_784_10x1 GPFQ 0.010 90.260 86.850 -3.410 False
mnist_784_10x1 CNNQUIV 0.010 90.260 89.170 -1.090 True
mnist_784_10x1 GPFQ 0.030 90.260 86.850 -3.410 False
mnist_784_10x1 CNNQUIV 0.030 90.260 89.940 -0.320 True
mnist_784_10x1 GPFQ 0.050 90.260 90.330 0.070 True
mnist_784_10x1 CNNQUIV 0.050 90.260 90.260 0.000 True
mnist_784_25x1 GPFQ 0.010 91.940 91.660 -0.280 False
mnist_784_25x1 CNNQUIV 0.010 91.940 91.350 -0.590 True
mnist_784_50x1 GPFQ 0.010 92.150 91.240 -0.910 False
mnist_784_50x1 CNNQUIV 0.010 92.150 85.950 -6.200 True

difficult for small datasets; and 2) small models are more sensitive to quantization.

Overall, the accuracy of models quantized with CEG4N is better for the Iris and
Seeds benchmarks. This observation can be explained by differences in the quantization
strategy of the techniques. GPFQ uses midthread quantization a form of scalar quantization.
It quantizes each weight or value independently to the nearest quantization level centered
around zero and reduces the precision of each weight independently. GPFQ quantization
approach promotes sparsity in the quantized weights, forcing the small weights to zero.
Iris and Seeds NNs are small models and have sparse weight matrix. Thus, the fact that
the weight matrix of the NNs (NNs) being already sparse can explain the accuracy drop.
GPFQ may introduce additional sparsity by setting small weights to zero. If a network is
already sparse, further increasing sparsity can degrade performance because even fewer
weights are left to contribute to the network’s functionality. This can severely impact the
network’s ability to learn and generalize from the data.

On the other hand, the accuracy of models quantized with GPFQ is better for
the MNIST benchmarks, but only by a small margin. The underlying objectives of the
quantization techniques can explain this observation. CEG4N, although an optimization-

Chapter 4. Evaluation and Results 86

Table 12 – Comparison using Top-1 accuracy for NNs from dataset MNIST quantized
using CEG4N and GPFQ

Model Quantizer δ O.Ac. Q.Ac. Ac.D. Eq.St.
mnist_64_10x1 GPFQ 0.010 79.040 79.480 0.440 False
mnist_64_10x1 CNNQUIV 0.010 79.040 77.900 -1.140 True
mnist_64_10x1 GPFQ 0.030 79.040 79.480 0.440 False
mnist_64_10x1 CNNQUIV 0.030 79.040 77.900 -1.140 True
mnist_64_25x1 GPFQ 0.010 83.420 81.960 -1.460 False
mnist_64_25x1 CNNQUIV 0.010 83.420 82.820 -0.600 True
mnist_64_25x1 GPFQ 0.030 83.420 81.960 -1.460 False
mnist_64_25x1 CNNQUIV 0.030 83.420 83.220 -0.200 True
mnist_64_50x1 GPFQ 0.010 84.600 82.410 -2.190 False
mnist_64_50x1 CNNQUIV 0.010 84.600 77.280 -7.320 True
mnist_784_10x1 GPFQ 0.010 90.260 86.850 -3.410 False
mnist_784_10x1 CNNQUIV 0.010 90.260 89.170 -1.090 True
mnist_784_10x1 GPFQ 0.030 90.260 86.850 -3.410 False
mnist_784_10x1 CNNQUIV 0.030 90.260 89.940 -0.320 True
mnist_784_10x1 GPFQ 0.050 90.260 90.330 0.070 False
mnist_784_10x1 CNNQUIV 0.050 90.260 90.260 0.000 True
mnist_784_25x1 GPFQ 0.010 91.940 91.660 -0.280 False
mnist_784_25x1 CNNQUIV 0.010 91.940 91.350 -0.590 True
mnist_784_50x1 GPFQ 0.010 92.150 91.240 -0.910 False
mnist_784_50x1 CNNQUIV 0.010 92.150 85.950 -6.200 True

based quantization technique, does not prioritize loss minimization (and hence accuracy
maximization) as its primary goal. Instead, it focuses on ensuring equivalence between the
original and quantized models. This means that CEG4N aims to preserve the inherent
characteristics of the original model in the quantized version. On the other hand, GPFQ
explicitly incorporates loss minimization into its objective, directly aiming to enhance model
accuracy post-quantization. Therefore, while CEG4N ensures model equivalence, GPFQ’s
focus on loss minimization can result in better accuracy measures, as observed in the MNIST
benchmarks. We find that the CEG4N’s NN accuracy performance presents interesting
results, given that it can produce QNNs relying only on a small set of representative data.

We have also conducted another experiment in which NNQUIV was used to
verify equivalence between QNNs generated by GPFQ and their original counterparts.
When at least one counterexample was found for every case, we considered the QNN
not equivalent to the original one. We have observed that, out of 31 NNs generated by
GPFQ, only 8 were in fact equivalent, which represents only 25.8% of the total amount
of resulting NNs. Indeed, GPFQ was not designed to consider equivalence properties in
its quantization approach, while CEG4N was. Nevertheless, these experiments prove that

Chapter 4. Evaluation and Results 87

statistical accuracy measures do not capture equivalence aspects. Moreover, it reinforces
the benefits of formulating guarantees for properties (e.g., equivalence and robustness)
that formal verification techniques can offer. In addition, we noticed that both CEG4N
and GPFQ produced QNNs with better accuracy when compared with their original
counterparts. Indeed, that is possible and has already been reported in the literature since
the quantization techniques act as favorable weight regularization mechanisms that help
NNs prevent biased behavior and provide better generalization (JIN; YANG; LIAO, 2019).

These results answer our experimental goals EG4, EG5, and EG6. Overall, these
experiments show that CEG4N can successfully produce QNNs with accuracy figures
similar to those obtained with other state-of-the-art techniques.

4.8 Summary
In this chapter we presented the experimental evaluation and the empirical findings

of our research. The evaluation was conducted to assess the CEG4N framework’s ability
to quantize NNs while ensuring FE to their original counterparts. Key benchmarks,
metrics, and configurations were examined to evaluate the framework’s performance
comprehensively. Below, we highlight the main topics we presented in this chapter.

The primary objectives of the experimental evaluation were as follows:

• EG1: Effectiveness of CEG4N - Demonstrating the framework’s ability to
generate quantized NNs that are functionally equivalent to their original models.

• EG2: Performance Metrics Analysis - Analyzing the computational efficiency
and scalability of CEG4N across various benchmarks.

• EG3: Equivalence Checking Techniques - Evaluating the impact of different
verifiers (ESBMC and NNEQUIV) on the quantization process.

• EG4: Quality of Quantized Models - Comparing the accuracy of quantized NNs
generated by CEG4N with those produced by other quantization techniques (e.g.,
GPFQ).

• EG5: Impact on Accuracy - Investigating the preservation of accuracy in quantized
models under equivalence constraints.

• EG6: Impact on Model Size Reduction - Assessing the trade-offs between size
reduction and FE.

The evaluation used the following key metrics:

Chapter 4. Evaluation and Results 88

• Timeout Failures: Instances where verification exceeded the time limit.

• Verification Failures: Failures in the verifier module.

• Accuracy Drop: Difference between the accuracy of original and quantized models.

• Equivalence Count: Number of quantized models satisfying equivalence constraints.

Summary of configurations varied across:

• Equivalence relations: Top-1 classification equivalence ≈1, and Norm-based approxi-
mate equivalence p,ϵ

• Output bounds for approximate equivalence: ϵ = 0.05 and p =∞

• Input region bounds: (δ = {0.01, 0.03, 0.05})

• Verifiers: ESBMC and NNEQUIV

• Benchmarks: (Iris, Seeds, MNIST, CIFAR-10, and ACAS Xu)

• CEG4N verification timeout: 20 minutes

Summary of our key finding:

1. Effectiveness and scalability: CEG4N successfully produced quantized models for
simpler benchmarks (e.g., Iris, Seeds) with minimal accuracy drop. However, scala-
bility issues were observed for larger models (e.g., MNIST, CIFAR-10), primarily
due to verifier timeouts

2. Verifier performance: ESBMC demonstrated challenges with larger models due
to bounded model-checking scalability limits, whereas NNEQUIV showed better
performance in these scenarios but occasionally produced spurious counterexamples

3. Accuracy analysis: CEG4N generally preserved or slightly improved model accuracy
compared to original models. GPFQ showed better accuracy for MNIST but failed
equivalence verification for 74.2% of its quantized models

4. Equivalence guarantees: CEG4N consistently ensured FE, whereas GPFQ lacked
this capability

5. Model size reduction: Larger input bounds (δ) and increased NN complexity re-
sulted in more counterexamples and iterations, emphasizing a trade-off between
computational resources and quantization quality

Chapter 4. Evaluation and Results 89

6. CEG4N effectively maintains equivalence in simpler NNs (e.g., Iris, Seeds), achieving
minimal accuracy drops and maintaining functional integrity

7. Larger, complex models like MNIST and CIFAR-10 posed scalability challenges,
especially with ESBMC verifier

8. Equivalence and accuracy of quantized NNs by CEG4N are superior to GPFQ,
particularly for smaller, sparse models

9. Equivalence properties were not ensured by GPFQ, confirming CEG4N’s advantage
in safety-critical applications

Our evaluation and experiments demonstrated CEG4N’s robustness in generating
QNNs with formal guarantees of FE, particularly for simpler benchmarks. While challenges
remain in scalability and computational demands for larger models, the framework shows
promise as a reliable tool for equivalence-aware quantization.

90

5 Discussion

In this chapter we offer a critical analysis of the empirical evaluation conducted in
Chapter 4, providing a reflection on how our findings help addressing the research problem.
The chapter discusses the research implications for deploying NNs in resource-constrained
environments and explores the broader impact on the field. Limitations of the research
and potential areas for improvement are also discussed, providing a balanced view of the
research outcomes.

5.1 Analysis of results
The findings in the preceding section, when examining the research goals, offer

a thorough assessment of the effectiveness and constraints of the CEG4N framework in
tackling the issues of NN quantization in resource-constrained domains. In the following,
we present an evaluation based on the research objectives.

5.1.1 Addressing the quantization challenge for NNs in low-resource domains

The research demonstrates that the CEG4N framework effectively addresses the
challenge of quantizing NNs for deployment in low-resource domains without significant ac-
curacy degradation. Through its innovative approach combining search-based quantization
with equivalence checking, CEG4N minimizes computational requirements while ensuring
that the quantized NN (QNN) behaves similarly to its original version. This achievement
directly aligns with the primary research objective and offers a promising solution to a
significant barrier in the wider application of NNs.

5.1.2 To develop a framework for NN quantization

The development of the CEG4N framework is a cornerstone of the research objec-
tives, aiming to provide a robust solution to NN quantization issues. The research results
detail the framework’s components, including the Bits Search Module (BSM), Abstractions
Module (AM), and Verifier Module (VM), and describe their integrated function in the
iterative process of refining NN quantization. The framework’s successful implementation
and operation, as presented in the research, indicate the achievement of this objective.

5.1.3 Evaluating the efficacy of the CEG4N framework

The research presents extensive experimental evaluation results across various
benchmarks, including ACAS Xu, MNIST, Seeds, Iris, and CIFAR-10 datasets. These

Chapter 5. Discussion 91

results show that the CEG4N framework can successfully produce quantized NNs that
maintain functional equivalence with their original counterparts. Success rates, quantization
bit-width configurations, and instances of verification or quantization failure are discussed,
providing a nuanced understanding of the framework’s efficacy and limitations. The
evaluation results suggest that, while the framework is broadly successful, its performance
can vary depending on the complexity of the NN and the specific demands of the application
domain.

5.1.4 Exploring the scalability and applicability of the CEG4N framework

The analysis of results concerning different NN sizes and architectures suggests that
the CEG4N framework has varying degrees of scalability. As demonstrated in the bench-
marks, success in quantizing smaller networks contrasts with the challenges encountered
with larger, more complex networks, particularly those requiring extensive computation
or possessing many features. These findings indicate that while CEG4N holds significant
promise, further refinement may be necessary to enhance its scalability and applicability
across all NNs, especially in real-world scenarios with strict resource constraints. As shown
in our experimental evaluation, see Chapter 4, a sensible amount of CEG4N executions
failed due to timeouts, especially when attempting the quantization of larger models.
Timeouts indicate an inability of the verification tools to handle large models, highlighting
that scalability is currently an issue. Increasing the time the verification tools are allowed
to run can decrease the observed timeouts. Still, its effectiveness is limited to NNs as large
as the one we list in our experiments. A more rewarding effort would be to invest time in
improving the scalability of FEV tools. This would allow CEG4N to work with NNs larger
than the ones in our experiments.

5.1.5 Advancing the field of NN quantization

The research contributes to the field of NN quantization by presenting a novel
framework that tackles one of the key challenges in the area: the loss of accuracy and
functionality post-quantization. The detailed analysis of the CEG4N framework, alongside
the comprehensive evaluation across multiple benchmarks, offers valuable insights into the
quantization process and the importance of equivalence checking. The findings contribute
to the ongoing dialogue in the field, suggesting pathways for future research and potential
improvements in NN quantization techniques.

Our findings, in relation to the research goals, emphasize the potential of the
CEG4N framework to substantially influence the implementation of NNs in settings with
limited resources. While showing significant achievements, the results also identify areas
that warrant further exploration, especially regarding scalability and the framework’s
suitability for larger NNs. The CEG4N framework marks a notable advancement in NN

Chapter 5. Discussion 92

quantization, providing a hopeful strategy for addressing a key barrier to the extensive
adoption of NNs in environments with resource constraints.

5.2 Implications of our findings
The results of the experimental assessment of the CEG4N framework have important

implications for AI, especially in utilizing (NNs in settings with limited resources. The
research shows the effectiveness of CEG4N in reducing the computational demands of NNs
while maintaining their functionality, which is crucial for applications in environments
with restricted computing resources. By proving the capability to quantize NNs efficiently
and ensuring that their performance remains satisfactory in terms of behavior, not just
computation, this study highlights the potential for wider use of AI technologies in scenarios
like embedded systems, mobile devices, and other platforms where resources are limited.

The observations that GPFQ, despite not being designed to guarantee equivalence,
still produces 25.8% of quantized models that are equivalent to the original and that
CEG4N, while not designed to prioritize accuracy, still preserves a significant amount of
original accuracy has several important implications and conclusions.

Firstly, these findings suggest an inherent overlap between the goals of loss mini-
mization and equivalence preservation in the context of NN quantization. Although GPFQ
focuses on minimizing quantized model loss, a notable percentage of its models remain
equivalent, indicating that achieving low loss can sometimes align with maintaining func-
tional equivalence. This implies that techniques designed to optimize accuracy might also
benefit equivalence, albeit indirectly and inconsistently.

Conversely, CEG4N’s ability to preserve a significant amount of the original accu-
racy, despite its primary focus on behavior equivalence guarantees, indicates that ensuring
equivalence does not necessarily compromise accuracy. This suggests that the constraints
imposed by the equivalence property inherently contribute to preserving the model’s
accuracy.

The key conclusion from these observations is that there is potential for developing
hybrid quantization techniques that can simultaneously optimize for both equivalence and
accuracy. By leveraging the strengths of both approaches, such methods could provide
robust quantization solutions that ensure model reliability without sacrificing performance.
Additionally, these findings highlight the importance of considering multiple objectives
in quantization strategies, as optimizing for one aspect (e.g., accuracy) can inadvertently
benefit another (e.g., equivalence).

Furthermore, these results underline the necessity of FV in the quantization process.
The fact that a considerable proportion of GPFQ’s models were not equivalent despite their

Chapter 5. Discussion 93

accuracy highlights the limitation of relying solely on statistical measures. As incorporated
in CEG4N, FV provides crucial guarantees for applications where reliability and correctness
are paramount.

In summary, these observations imply that achieving a balance between equivalence
and accuracy is feasible and beneficial. They also point towards the potential development
of more sophisticated quantization methods that incorporate formal verification and
accuracy optimization to produce reliable and high-performing quantized NNs.

Moreover, the study emphasizes the significance of equivalence verification during
the quantization phase, presenting a systematic approach to guarantee that the performance
of quantized models remains consistent with their initial requirements. This is especially
crucial for applications with high safety requirements like autonomous driving and medical
diagnosis, where even slight deviations in model performance could lead to substantial
outcomes. By incorporating search-based quantization and equivalence verification, CEG4N
introduces a framework that addresses the demand for computational effectiveness while
ensuring model precision and dependability.

5.3 Limitations and challenges
While CEG4N has made significant contributions, it is important to highlight

some limitations and obstacles. One major constraint is the computational complexity of
equivalence checking, especially when dealing with large and intricate NNs. This complexity
hinders the scalability of CEG4N, indicating a necessity for more effective verification
methods that can handle more complex models. Moreover, the research primarily revolves
around ReLU-activated NNs, potentially restricting its relevance to networks utilizing
alternative activation functions or structures, like recurrent NNs (RNNs) or generative
adversarial networks (GANs).

Although the results demonstrated that CEG4N can generate QNNs while maintain-
ing equivalence with the original ones, it is important to acknowledge that the architecture
of the NNs (NNs) used in our evaluation may not fully represent the current state-of-
the-art. The NNs employed in our evaluation had a limited number of layers and ReLU
nodes compared to the more advanced models that can consist of hundreds of layers and
thousands of ReLU nodes. The primary challenge arises from the current limitations of
state-of-the-art verification algorithms, such as SMT or GPE, which struggle to scale
to large NNs. Consequently, CESBMC and CNNEQUIV could only quantize 20% and
40% of the selected benchmarks, respectively, due to timeouts. Despite most unsuccessful
quantization attempts, we have demonstrated that CEG4N is a feasible and adaptable
approach, paving the way for enhancements with verifiers beyond ESBMC and NNEQUIV.

Scalability emerged as a significant limitation in our research, particularly affecting

Chapter 5. Discussion 94

the performance and applicability of the CEG4N framework. The high rate of timeouts
observed with ESBMC, accounting for 67.90% of the total runs, underscores its struggles
with handling larger and more complex NNs. This issue was particularly pronounced
in datasets like MNIST, CIFAR-10, and AcasXu, where the computational demands
overwhelmed the verifier, leading to substantial delays and incomplete processes. Even
though NNQUIV showed better scalability with a lower timeout rate of 37%, it still faced
challenges with larger networks. The need for multiple iterations further exacerbated
these issues, highlighting the inherent difficulty in verifying and quantizing extensive NNs
within a reasonable timeframe. These scalability challenges indicate that while CEG4N is
effective for smaller models, there is critical to enhance the verification processes to ensure
the framework can efficiently manage larger and more complex NNs. Addressing these
limitations is crucial for expanding the practical applicability of CEG4N to a broader
range of real-world scenarios.

The NN equivalence is relatively recent and lacks a well-established set of bench-
marks that researchers can utilize. We address this limitation by proposing new benchmarks
and the utilization of new datasets and NNs models, and ensuring they are made public
available. While the benchmark selections in the experiments provide a good starting point,
there is ample room for additional contributions. This study introduces a framework for
NN quantization that integrates NN equivalence verification as a crucial process element.
This distinctive approach differentiates our work from existing literature, as no directly
comparable method is currently available. Moreover, our emphasis is on the practical
and feasible aspects of this innovative quantization approach and the formalization of
NN equivalence in terms of functional equivalence. Therefore, our discussion does not
extensively explore the relationship between NN equivalence, functional equivalence, ro-
bustness verification, and their impact on NN accuracy and error, as our primary focus is
on practical implementation rather than theoretical discussions.

An additional research gap lies in investigating the trade-offs between the level of
quantization detail and the model’s performance. The research predominantly focuses on
uniform quantization methods and does not delve into mixed-precision techniques that
could enhance precision and resource efficiency. Furthermore, the influence of quantization
on the model’s ability to withstand adversarial attacks has not been examined, leading to
uncertainties regarding the security implications of using quantized models in adversarial
settings.

5.4 Summary
In this chapter, we critically evaluated the findings of our research, emphasizing

their contribution to addressing NN (NN) quantization challenges in resource-constrained

Chapter 5. Discussion 95

environments. We explored the implications for deploying NNs, highlighted the limitations
of the proposed framework (CEG4N), and identified potential areas for improvement.
Bellow we highlight the key aspects we covered in this chapter include.

Analysis of Results:

• The CEG4N framework effectively quantizes NNs while preserving functional equiva-
lence, demonstrating minimal accuracy degradation.

• Components of CEG4N—Bits Search Module (BSM), Abstractions Module (AM),
and Verifier Module (VM)—function iteratively to refine NN quantization.

• Evaluation across benchmarks (e.g., ACAS Xu, MNIST, Seeds, Iris, CIFAR-10)
confirms the framework’s efficacy but also reveals scalability issues, especially for
larger networks.

• Scalability challenges, primarily due to verification tool limitations, restrict the
framework’s applicability to larger models. Addressing these challenges could improve
its utility in real-world scenarios.

Implications of findings:

• CEG4N enables effective deployment of NNs in resource-constrained environments,
with potential applications in embedded systems and mobile devices.

• The interplay between loss minimization and equivalence preservation highlights
opportunities for hybrid quantization techniques.

• The necessity of equivalence verification (EV) is emphasized, especially for high-stakes
applications like autonomous driving and medical diagnosis.

Limitations and challenges:

• Computational complexity of EV limits scalability for larger NNs.

• Focus on ReLU-activated networks restricts applicability to other architectures, such
as recurrent NNs (RNNs) or generative adversarial networks (GANs).

• Current benchmarks lack diversity, and additional research is required to explore
trade-offs in quantization precision, robustness, and resistance to adversarial attacks.

• Mixed-precision quantization techniques remain unexplored.

Contributions and future work:

Chapter 5. Discussion 96

• Introduced a novel framework integrating search-based quantization with EV.

• Proposed new benchmarks for NN quantization evaluation.

• Identified areas for improvement, including better scalability of verification tools
and exploration of mixed-precision quantization.

97

6 Related work

This chapter surveys the literature on NN quantization, focusing on employed
techniques, challenges encountered in preserving functional behavior post-quantization,
and the role of formal equivalence verification and optimization in maintaining integrity.
It starts by reviewing the topics of NN, NN quantization, FV techniques for NNs, and
equivalence checking. Then, it identifies gaps in current methodologies and related work,
underscoring the need for an effective approach to address these challenges.

In addition, it explores the existing research on the challenges and methodologies
related to NN quantization, a process crucial for reducing the model size and computational
requirements, and its impact on model behavior and performance. Furthermore, the
literature review highlights the importance of explainability and safety in AI systems,
particularly in high-stakes applications such as aerospace and edge computing. It also
discusses the role of FV techniques in ensuring the functional equivalence and security of
QNNs. Through this examination, the related work section aims to identify the gaps and
limitations in NN quantization methodologies and proposes potential directions for future
research to address these challenges.

In summary, this review situates the thesis within the broader field of NN re-
search and quantization techniques, setting a foundation for it. It sets the necessary
background so any reader can understand the meaning and relevance of each investigation
and contribution.

6.1 NN quantization
NN quantization techniques have garnered significant attention due to their ability

to compress NN models by reducing the precision of the weights and activations to lower bit
widths (JACOB et al., 2017). This significantly decreases memory footprint, computational
complexity, and power consumption, which is especially beneficial for deploying deep
learning models on edge devices with limited resources (CHEN et al., 2020).

Quantization in NNs is a process that involves several key areas, including but
not limited to the types of quantization, quantization-aware training (QAT) (NGUYEN;
ALEXANDRIDIS; MOUCHTARIS, 2020), post-training quantization (PTQ) (WANG et
al., 2018), and the study of the impact of quantization on model accuracy and performance.
These techniques are pivotal for deploying sophisticated NNs on resource-constrained
environments, precision-sensitive applications, and safety-critical systems.

One fundamental aspect of quantization is the distinction between uniform and

Chapter 6. Related work 98

non-uniform quantization. Uniform quantization involves uniformly mapping continuous
or large sets of values to a smaller set. In contrast, non-uniform quantization adapts to the
distribution of the quantized parameters for better efficiency and accuracy (JACOB et al.,
2017; BASKIN et al., 2018; GHOLAMI et al., 2022). Notably, non-uniform quantization
has shown potential in achieving higher accuracy with minimal computational resources by
adjusting to the data’s inherent distribution (GAO et al., 2022; GHOLAMI et al., 2022).
Furthermore, fast non-uniform quantization techniques that achieve efficiency and accuracy
without extensive training or access to full training sets are highlighted, showcasing their
applicability across various computer vision tasks (GAO et al., 2022). This efficiency makes
them particularly valuable for real-world applications.

Quantization can be further classified as symmetric or asymmetric quantization,
also often referred to as scale and affine quantization, respectively. The distinction between
them lies in the choice of the clipping ranges. The choice between symmetric and asym-
metric quantization is another critical consideration. Symmetric quantization centers the
quantization range around zero, whereas asymmetric quantization allows for an arbitrary
range, potentially improving the quantization of activations that do not center around
zero(JACOB et al., 2017; NAGEL et al., 2021; GHOLAMI et al., 2022). The choice between
asymmetric and symmetric quantization depends on the data distribution and the specific
requirements of the NN application (JACOB et al., 2017; NAGEL et al., 2021).

Weight quantization focuses on reducing the bit-width of the weights of the NN,
while activation quantization applies to the activations (outputs of layers). Both types are
crucial for compressing NNs but might require different strategies to maintain performance.
For instance, some techniques emphasize quantizing both weights and activations through
a differentiable non-linear function that can be optimized end-to-end, showing superior
performance in image classification and object detection tasks (YANG et al., 2019).

QTA involves simulating the effects of quantization during the training process,
allowing a model to adjust its parameters to minimize the loss in accuracy caused by
quantization. Besides, it is known for achieving better accuracy for quantized models than
post-training quantization methods. However, it requires access to the training dataset
and involves fine-tuning with quantization in mind(NAGEL et al., 2021; GHOLAMI et al.,
2022).

PTQ applies quantization after the model has been trained. It is a simpler approach
that does not require retraining but can sometimes lead to significant accuracy loss,
especially for models quantized to very low bit-widths. Strategies have been developed to
mitigate these losses, making PTQ a viable option for many applications (NAGEL et al.,
2021; GHOLAMI et al., 2022).

Mixed-precision quantization employs different precision levels for different network
parts based on their sensitivity to quantization. This approach allows for higher precision

Chapter 6. Related work 99

where needed while still benefiting from the reduced complexity in other parts of the
network. In summary, it allows for a better trade-off between model size, computational
efficiency, and accuracy, effectively balancing quantization requirements (GARG et al.,
2021).

Another significant advancement in the field is Hardware-Accelerated Quantization
Hardware-Accelerated Quantization (HAQ). HAQ is a technique that involves designing
or using hardware specifically optimized for quantized models, such as FPGAs or ASICs.
These platforms can offer significant speedups and efficiency gains for quantized models
by exploiting hardware features tailored to low-precision arithmetic. HAQ allows critical
parts of a network to retain higher precision while less critical parts are quantized more
aggressively(CHEN et al., 2021).

Several studies have explored mixed-precision quantization techniques, emphasizing
the optimization-based strategies for allocating bit-widths across different layers or parts
of NNs. These methods aim to balance the precision of NN parameters with preserving
functional behavior integrity.

Wang, Ma, and Yang (WANG; MA; YANG, 2023) introduced a hardware-aware
mixed precision quantization framework utilizing reinforcement learning to predict op-
timal bit-width allocation. Their approach adapts to low bit-width requirements and
aims to maintain model accuracy while reducing computational resources. This method
demonstrates the potential for intelligent and universal application in mixed precision
quantization and embedded model deployment .

Chen, Wang, and Cheng (CHEN; WANG; CHENG, 2021) formulated mixed-
precision quantization as a discrete constrained optimization problem, employing a second-
order Taylor expansion to approximate the objective function . They introduced an efficient
method to compute the Hessian matrix, reformulating the problem as a Multiple Choice
Knapsack Problem (MCKP) and solving it via a greedy search algorithm. This principled
approach is computationally efficient and has shown superiority over existing methods.

The technique proposed by Kimhi et al. (KIMHI et al., 2022), performs quantization
by optimizing bit-width allocation by simulating specific hardware performance. Their
method, aimed at reducing exploration space and carbon footprint, shows a significant trade-
off improvement between accuracy and hardware efficiency. Author’s approach highlights
the importance of tailored bit allocation strategies for specific hardware deployments.

Moreover, evolutionary methods and crossbar-aware strategies have also been ex-
plored, focusing on automatically determining optimal bit-widths and enhancing robustness
to non-ideal effects in RRAM-based accelerators (LIU et al., 2021; PENG et al., 2022).
These approaches emphasize quantization strategies’ dynamic and adaptive nature to meet
various constraints, including hardware limitations and model accuracy.

Chapter 6. Related work 100

In conclusion, the evolution of NN quantization techniques continues to push
the boundaries of model efficiency and performance. From uniform and non-uniform
quantization to hardware-accelerated approaches, the field is rich with innovative strategies
designed to meet the diverse demands of modern neural network applications.

6.2 Background on FV for NNs
FV for NNs is a crucial area of research that focuses on proving or ensuring that an

NN behaves as expected for all possible inputs. This is particularly important for safety-
critical applications such as autonomous vehicles, medical diagnosis systems, and financial
forecasting. QNNs, which use reduced precision for both computations and storage, present
unique challenges and opportunities for FV due to their computational efficiency and
potential alterations in behavior or performance due to quantization.

FV for NNs aims to ensure that a network behaves as expected under all possible
inputs, which is crucial for safety-critical applications. Research by Seshia et al. (SESHIA
et al., 2018) surveys the landscape of formal specifications for deep NNs, highlighting the
importance of high-quality formal specifications for meaningful verification . Narodytska
(NARODYTSKA, 2018) provides an overview of approaches to verifying NN properties,
including encoding networks into Integer Linear Programs and using global optimization
techniques.

Applying formal methods to machine learning, including NNs, introduces soundness,
precision, and scalability challenges. These methods are limited when verifying systems that
include machine-learned components, highlighting the need for advanced FV techniques
(URBAN; MIN’E, 2021). One major challenge in the FV of NNs is scalability due to the
high computational complexity involved in verifying large networks. Webb et al. (WEBB
et al., 2018) propose a statistical verification approach that estimates the probability
of property violations, offering a way to assess network robustness and scale to larger
networks.

The literature on FV of NNs has applied various methodologies, including Satisfia-
bility Modulo Theories (SMT)/SAT solving, model checking, interval analysis, abstraction
methods, reachability analysis, and mixed-integer linear programming (MILP) (KATZ et
al., 2017; HUANG et al., 2017; NARODYTSKA, 2018; HUANG et al., 2020). Here are
examples of papers that exemplify major techniques in this field.

Verification of QNNs, which trade numerical precision for computational efficiency,
poses unique challenges. Henzinger et al. (HENZINGER; LECHNER; ZIKELIC, 2020)
show that verifying the bit-exact implementation of QNNs is PSPACE-hard, presenting
heuristics to make verification more scalable. They developed a symbolic verification
framework using SMT-based model checking to verify vulnerabilities in ANNs, especially

Chapter 6. Related work 101

under conditions of quantization errors (SENA et al., 2021). Song et al, 2021 proposed a
tool for verifying QNNs using SMT-Based Model Checking. Besides, they introduced a
novel approach in which the NN and the safety properties are translated/encoded into
C/C++ program and handled to FV tool that can verify properties of C/C++ programs
(SONG et al., 2021).

Amir et al. (AMIR et al., 2020) presented an SMT-based technique for verifying
binarized NNs, which are popular for memory and energy-efficient. This approach includes
optimizations integrated into the SMT procedure and a method for parallelizing verification
queries. Cheng et. al, 2017 studied the FV of Binarized NNs (BNNs) by encoding the
verification problem as a combinational miter (BRAYTON; MISHCHENKO, 2010) and
transforming it into a propositional satisfiability (SAT) problem, utilizing optimizations
to enhance scalability (CHENG; NüHRENBERG; RUESS, 2017).

Boudardara et al. (BOUDARDARA et al., 2023) argued that abstraction methods
are crucial for simplifying NN models, making verification faster and more feasible. They
conclude that abstraction techniques for activation functions and model size reduction are
particularly promising for feed-forward NNs. Ehlers (EHLERS, 2017), in turn, introduced
an approach for verifying feed-forward NNs with piece-wise linear activation functions
using global linear approximations and specialized verification algorithms for inferring
additional node phases. Tran et al., 2017 proposed novel reachability algorithms for exact
and over-approximation analysis of DNNs using star sets, improving verification speed
significantly compared to previous methods (TRAN et al., 2019b).

6.3 Background on NN Equivalence Checking
At its core, equivalence checking, or formal equivalence verification, aims to ascertain

that two models—typically an original and a modified version—behave identically across
all possible inputs. This is challenging due to the high-dimensional input space of NNs
and their non-linear nature(WANG et al., 2019; TEUBER et al., 2021).

Formal equivalence verification for NNs is a critical research area focusing on the
validation and verification of NN models, ensuring that transformations or optimizations
of a model do not alter its intended functionality(TEUBER et al., 2021). This topic
is especially relevant in safety-critical applications, such as autonomous vehicles, med-
ical diagnosis systems, and financial services, where the correctness of NN decisions is
paramount(TEUBER et al., 2021; SAJI; AGRAWAL; SOOD, 2022). The literature on this
subject spans theoretical frameworks, methodologies, and practical applications, reflecting
its interdisciplinary nature and the growing interest in making AI systems reliable and
trustworthy.

Various mathematical frameworks, including Boolean satisfiability (SAT) solvers,

Chapter 6. Related work 102

Satisfiability Modulo Theories (SMT)(MUNAKATA et al., 2023; ELEFTHERIADIS et al.,
2022; MATOS et al., 2022), and other formal methods, have been adapted for equivalence
verification (BÜNING; KERN; SINZ, 2020; TEUBER et al., 2021; SESHIA et al., 2018).
These frameworks provide the theoretical underpinnings for developing algorithms capable
of handling the complexity of NNs.

Symbolic propagation techniques use symbolic representations of NN computa-
tions to analyze equivalence. These methods can handle certain transformations and
optimizations in NNs by abstracting their computations symbolically(KHEDR; FERLEZ;
SHOUKRY, 2020).

Partitioning strategies divide the input space into smaller, more manageable re-
gions to manage the complexity and scalability of verification. By verifying equivalence
in each region separately, these strategies can provide guarantees for the entire input
space(SELIGMAN; SCHUBERT; KUMAR, 2015; CHENG; NüHRENBERG; RUESS,
2017).

Bounded model checking (BMC) approaches have been adapted for NNs, setting
bounds on the inputs or the depth of computation for verification purposes. While not
exhaustive, BMC can efficiently identify discrepancies in many practical scenarios (MATOS
et al., 2024; ELEFTHERIADIS et al., 2022).

6.4 Related Work
In recent years, deploying NNs in various domains, especially in safety-critical and

resource-constrained environments, has raised significant concerns regarding their efficiency,
reliability, and interoperability (SZE et al., 2017; CHEN et al., 2020). As NNs become
increasingly prevalent, the need to optimize these models for deployment on hardware
with limited resources while ensuring their accuracy and robustness has become a focal
point in the field of DL (HAN et al., 2015; WANG et al., 2018).

It is crucial to understand the gaps in existing research to effectively address the
challenges of NN quantization. Quantization, while essential for deploying DNN models in
resource-constrained environments, often introduces errors that compromise these models’
accuracy and functional behavior (LOHAR et al., 2023). The literature highlights the
need for interpretable, reliable, and secure AI systems, especially in safety-critical and
resource-constrained contexts (CHEN et al., 2020; HUANG et al., 2020). This underscores
the importance of balancing model compression with performance preservation (JACOB
et al., 2017; LOHAR et al., 2023).

The primary concern is that current quantization techniques overlook quantized
models’ behavioral integrity (LOHAR et al., 2023). They often rely on statistical measures

Chapter 6. Related work 103

that do not fully capture the impact of quantization on model behavior, potentially leading
to significant performance degradation in specific scenarios (LOHAR et al., 2023). Further-
more, existing methods fail to guarantee that quantized models will behave equivalently
to their full-precision counterparts across all possible inputs (LOHAR et al., 2023).

It is worth noticing that the present thesis proposes a novel quantization technique
that addresses these limitations. The proposed method ensures that quantized models
maintain their original decision-making processes and functional behavior by focusing on
formal verification and equivalence checking. The following sections delve into the related
work, exploring the current state of quantization techniques and identifying the gaps this
research seeks to fill.

6.4.1 Concerns and limitations of NNs

The problem of quantization changing the behavior of NNs has been a critical
focus in the field of DL, especially regarding the efficient deployment of these models on
hardware with limited resources. Quantization compresses NNs by reducing the numerical
precision of weights and activations, which can significantly affect their functional behavior
due to the introduced quantization error. The challenge is minimizing this impact while
balancing model size, computational efficiency, and accuracy.

In safety-critical domains, AI and ML models must be accurate and interpretable
by humans. This ensures that decisions made by AI systems can be understood and trusted
by end-users (BRUNTON et al., 2020).

The integration of NNs and AI in safety-critical applications requires careful
consideration. Such applications demand high reliability (HUANG et al., 2020), robust-
ness (YANG et al., 2021), safety (KATZ et al., 2017; HUANG et al., 2017), and explain-
ability (Barredo Arrieta et al., 2020). For instance, in the aerospace industry, there is a
critical need for interpretable and certifiable machine learning techniques to ensure flight
safety and efficiency (BRUNTON et al., 2020).

In resource-constrained environments, such as Internet of Things (IoT) networks,
edge computing emerges as a solution that brings processing closer to data sources, reducing
latency and bandwidth use. However, applying AI in these contexts involves challenges like
managing computational complexity and ensuring efficient resource orchestration (CHEN
et al., 2020; BOURECHAK et al., 2023).

Applying AI in environments with limited computational resources requires algo-
rithms optimized for efficiency(JACOB et al., 2017; NAGEL et al., 2021). Techniques
for model optimization, like model compression (CHENG et al., 2018; MARINÓ et al.,
2023), which includes model pruning(LAHAV; KATZ, 2021; HAN; MAO; DALLY, 2016)
and quantization (XU et al., 2018; CAI et al., 2020), are crucial for enabling smart

Chapter 6. Related work 104

applications in such contexts (BOURECHAK et al., 2023). In both safety-critical and
resource-constrained environments, ensuring the privacy and security of data processed by
AI systems is paramount. Techniques such as secure multi-party computation, homomor-
phic encryption, and differential privacy are being explored to address these concerns (WU
et al., 2020a).

6.4.2 Impact of Quantization on Model Accuracy and Performance

Quantization can significantly reduce model size and computational requirements,
enabling deployment on edge devices (JACOB et al., 2017). However, this often comes at
the cost of reduced model accuracy. The extent of accuracy loss and performance gain
depends on various factors, including the quantization strategy, model architecture, and
application domain (JACOB et al., 2017; MISHRA; GUPTA; DUTTA, 2020; NAGEL
et al., 2021). A critical area of research is understanding and mitigating the impact of
quantization on model performance. Techniques such as knowledge distillation, where a
quantized (student) model is trained to mimic a full-precision (teacher) model, and robust
training methods to improve the quantized model’s generalization are among the strategies
explored. More advanced techniques, such as QAT and mixed-precision quantization, have
been developed to mitigate accuracy loss while maximizing performance benefits.

Quantization techniques have garnered significant attention due to their ability
to compress NN models without severely compromising performance (JACOB et al.,
2017; MISHRA; GUPTA; DUTTA, 2020). These techniques are pivotal for deploying
sophisticated models on portable devices with limited computational resources, memory,
and power (HAN et al., 2015; HAN; MAO; DALLY, 2016). A range of quantization methods
exists, each with its unique strategy and focus. For instance, some techniques emphasize
quantizing both weights and activations through a differentiable non-linear function that
can be optimized end-to-end, showing superior performance in image classification and
object detection tasks (YANG et al., 2019; HUBARA et al., 2017). Others have delved
into post-training quantization (PTQ) and quantization-aware training (QAT) as methods
to mitigate the impact of quantization noise on network performance, with PTQ being
highlighted for its minimal requirements and QAT for enabling lower bit quantization with
competitive results (NAGEL et al., 2021).

Guo (GUO, 2018) provides a comprehensive review of QNNs and presents a deep
dive into the current challenges and trends in the field, emphasizing the balance between
predictive performance and computational efficiency. The topic of vector quantization for
NNs has been explored by Chu and Bose Vector quantization of NNs(CHU; BOSE, 1998),
who demonstrated the trade-offs between implementation complexity and performance
through various quantization schemes. Fast non-uniform quantization techniques that
achieve efficiency and accuracy without extensive training or access to full training sets

Chapter 6. Related work 105

are highlighted, showcasing their applicability across various computer vision tasks (GAO
et al., 2022).

Several methods have been suggested for NN quantization, showing encouraging
outcomes on machine learning benchmarks (CHENG et al., 2018; LIN; TALATHI; ANNA-
PUREDDY, 2016; ZHOU et al., 2017; HAN; MAO; DALLY, 2016; ZHANG; ZHOU; SAAB,
2023). However, these schemes are not suitable for safety-critical systems, primarily due to
two factors (HUANG et al., 2017; HUANG et al., 2020; SENA et al., 2021; SONG et al.,
2021; LOHAR et al., 2023). First, they usually monitor the loss and accuracy degradation
of quantized NNs (QNNs) with statistical measures defined in the training set (YANG et
al., 2020; GHOLAMI et al., 2022; LOHAR et al., 2023). In other words, the emphasis is
on dynamically evaluating the classification accuracy of specific test datasets. The second
factor is that these models lack soundness as they cannot ensure accurate classification for
every possible input (GHOLAMI et al., 2022; LOHAR et al., 2023). Such a characteristic
is crucial in the context of safety-critical systems (LOHAR et al., 2023).

Statistical accuracy measures do not capture the vulnerability of a network to
adversarial input. There may be specific inputs for which the behavior of an NN degrades
significantly (GHOLAMI et al., 2022; HUANG et al., 2017). These metrics are paramount
for evaluating the performance and security of QNNs but do not fully capture the impact of
quantization on the NN’s behavior. While they provide insights into the overall performance
of QNNs, they also offer a high-level view that might overlook subtle yet critical changes
in model behavior due to quantization. For instance, minor shifts in decision boundaries
might not significantly impact overall accuracy but could lead to incorrect predictions for
specific inputs.

6.4.3 Preserving the functional behavior of QNNs

The literature on preserving QNNs functional behavior highlights several challenges
and solutions in the field. In the following, an overview based on the recent papers offers
insights into the challenges and advancements in the field of QNNs, focusing on preserving
functional behavior while optimizing for efficiency and performance.

In terms of quantization and its effects. Quantization applied to NNs refers to
representing weights and activations in low-precision formats and poses challenges such as
performance degradation due to quantization errors. A comprehensive review by Guo (GUO,
2018) discusses different aspects and current trends in the field of QNNs, highlighting the
balance between model size reduction and performance preservation. Liang et al. (LIANG
et al., 2021), in turn, provided a comprehensive survey on network compression techniques,
including pruning and quantization, to accelerate DNN while maintaining high accuracy.
Besides, Xu et al. (XU et al., 2023) introduced a novel framework for image classification
that incorporates innovative quantization functions and self-distillation methods to reduce

Chapter 6. Related work 106

quantization errors and improve model performance.

Chatterjee, A. and Varshney, L. (CHATTERJEE; VARSHNEY, 2017) developed
an approach to quantizing deep networks using high-rate quantization theory, aiming
for an optimal quantizer that minimizes performance loss while significantly reducing
model size. Umuroglu, Y. and Jahre M. (UMUROGLU; JAHRE, 2017) addressed the
challenge of deploying QNNs on mobile CPUs, where operations on highly quantized
datatypes are not natively supported. They proposed a streamlining flow to convert QNN
inference operations to integer ones, demonstrating a significant speedup with minimal loss
of accuracy. Hubara et al. (HUBARA et al., 2016) introduced a method to train QNNs
with low-precision weights and activations, achieving model performance comparable to
its 32-bit counterparts.

Several studies focus on synchronization and control issues in quantized memristive
and chaotic NNs. For example, (SUN et al., 2020) and (WANG et al., 2021a) explore
quantized synchronization control in memristive NNs with time-varying delays, proposing
quantized control schemes to ensure synchronization with reduced computational complex-
ity. (PARK et al., 2017) tackle the quantization of memory-augmented NNs (MANNs),
identifying memory address as a primary source of performance degradation in quantized
MANNs and proposing robust quantization methods to address this challenge.

Contrary to the general belief that quantization always leads to performance
degradation, some studies have found that quantization can sometimes improve accuracy
by imposing regularization on weight representations and achieving significant memory
reductions. This finding is presented in Quantization of deep NNs for accurate edge
computing (CHEN et al., 2021).

To address these concerns, the field of FV offers a set of techniques designed
to ensure the correct behavior of systems (CLARKE et al., 2018). FV methods aim to
mathematically prove the correctness of algorithms, providing guarantees that they meet
certain specifications (CORDEIRO; FISCHER; MARQUES-SILVA, 2012; BESSA et al.,
2016; RAMALHO et al., 2013). In the context of NNs, these techniques can be applied
to assess properties such as robustness and safety (HUANG et al., 2017; YANG et al.,
2021), ensuring that an NN behaves as expected, even in the face of adversarial inputs
and exploitation attempts (HUANG et al., 2017; GEHR et al., 2018). Verifying NN safety
is a challenging task but several recent approaches and tools have been proposed and are
already available (RUAN; HUANG; KWIATKOWSKA, 2018; KATZ et al., 2017; SENA
et al., 2021; SONG et al., 2021).

In this direction, some works propose specific verification techniques for QNNs
(ZHOU et al., 2017; ZHANG et al., 2022; ZHANG; SONG; SUN, 2023). However, these
techniques tend to focus on preserving loss, accuracy, and robustness to adversarial inputs
as a proxy for NN behavior, which, to some extent, suffers from the same problems

Chapter 6. Related work 107

discussed earlier. Focusing on adversarial robustness is essential, given the increasing
sophistication of adversarial attacks (HENDRYCKS; DIETTERICH, 2019). However, this
approach primarily assesses QNN “security” rather than fidelity to an original counterpart,
i.e., it does not assess the degree of fidelity a QNN presents regarding an original NN.
Consequently, it does not guarantee that a quantized model faithfully represents the
decision-making process of its predecessor.

Consequently, a proper way to ensure that a QNN has preserved its behavior
compared to its original counterpart is to reformulate the verification problem under the
notion of equivalence checking (EC) (BÜNING; KERN; SINZ, 2020; TEUBER et al., 2021;
ELEFTHERIADIS et al., 2022). EC, a specific form of formal verification, states that
two NNs are equivalent when they produce similar outputs for the same inputs in a given
domain. It involves verifying that two NN versions, e.g., before and after quantization,
behave identically under a wide range of conditions. This process is vital to ensure that
quantization techniques can produce QNNs that are safe to be deployed in resource-
constrained environments. In other words, it ensures that QNNs do not compromise the
integrity or safety of the systems that rely on them. Thus, the risks associated with NN
quantization can be mitigated through EC.

6.4.4 Limitations of FV and FEV

Scalability and efficiency are the main issues with FEV applications in NN. As NNs
become more complex, scalability remains a significant challenge for formal equivalence
verification. Research is ongoing into more efficient algorithms and heuristics that can
handle the scale of modern NNs (SHIH; DARWICHE; CHOI, 2019; DETHISE; CANINI;
NARODYTSKA, 2021).

The coverage of non-linear transformations pose significant challenges to existing
verification methods. Developing techniques that can accurately and efficiently verify
equivalence in non-linearity presence is an area of active research (NARODYTSKA, 2018;
HENZINGER; LECHNER; ZIKELIC, 2020).

Integrating formal equivalence verification into NN development and deployment
pipelines is crucial for its adoption. Efforts to make these tools more accessible and to
educate practitioners on their importance are needed(NARODYTSKA, 2018; HENZINGER;
LECHNER; ZIKELIC, 2020).

In computational theory, problems are classified into complexity classes based on
the resources needed for resolution (LOUI, 1996). P (polynomial time) and NP (nondeter-
ministic polynomial time) are two primary classes. P encompasses problems solvable in
polynomial time, making them relatively simple. At the same time, NP includes problems
where a potential solution can be verified in polynomial time, even if finding the solution is

Chapter 6. Related work 108

challenging. Verification tasks often fall under NP-hard or undecidable categories, requiring
substantial computational resources for resolution if solvable. On the other hand, validating
a solution’s correctness (verification) typically falls within P, making it computationally
more manageable(LOUI, 1996; GAO; XU, 2014; GHANEM; SINIORA, 2021).

The verification process can be understood by comparing search problems with
decision problems. When dealing with a verification problem, one must explore many po-
tential states or arrangements to demonstrate the existence or absence of specific behaviors
or characteristics(BELLARE; GOLDWASSER, 1991). As the size of the system increases,
the search space expands exponentially, making this a computationally demanding task.
On the contrary, validating the correctness of a solution constitutes a decision problem,
where the focus is on confirming whether a given solution or proof satisfies the defined
criteria (LOVASZ et al., 1991). This verification step does not involve examining every
possible state, but involves directly assessing the solution against the established criteria.

In the realm of FV, establishing the correctness of a system entails developing a
demonstration that shows that the system’s actions conform to its specifications across all
potential inputs and scenarios (CLARKE; GRUMBERG; PELED, 1999; BAIER; KATOEN,
2008). This task can be highly challenging due to its intricate nature and many conditions
that must be considered. On the other hand, validating a proof’s correctness involves
verifying its logical progression to confirm its compliance with logical and mathematical
principles (NIPKOW; PAULSON; WENZEL, 2002; AVIGAD; HARRISON, 2014). This
validation process is typically more direct as it does not involve creating the proof but
scrutinizing an already established one .

Model checking and theorem proving are two methodologies within formal methods
that illustrate this concept. Model checking focuses on automatically validating finite-state
concurrent systems against specified properties (CLARKE; GRUMBERG; PELED, 1999;
BAIER; KATOEN, 2008). The main difficulty arises from the state explosion issue, where
the number of states increases exponentially with the quantity of components. Nonetheless,
checking if the model upholds this property for a given state becomes uncomplicated once
a particular model is confirmed to meet a property. On the other hand, theorem proving
entails establishing proofs for theorems related to a system (GORDON; MELHAM, 1993;
HARRISON, 2009). Constructing these proofs can be highly intricate, yet verifying that
the proof steps adhere to logical principles is comparatively more straightforward.

The challenge in addressing verification issues stems from the requirement to
examine a comprehensive range of options and guarantee correctness under all possible
circumstances. On the contrary, validating the correctness of a solution involves confirming
a particular case against established criteria, a task that is less computationally intensive
and easier to grasp conceptually. This core differentiation highlights the difficulties and
strategies in utilizing formal system development and verification methods.

Chapter 6. Related work 109

6.4.5 The need for a new approach

Preserving the functional behavior of QNNs involves addressing quantization effects
on performance, developing efficient deployment strategies, and exploring novel quantization
and control techniques. The balance between model size reduction and accuracy retention
remains a primary focus, with ongoing research to overcome these challenges. As the
literature review shows, several attempts have been made to address and tackle the trade-
off between model compression and performance degradation. The literature review on
NN quantization in the previews sections and the discussions regarding how quantization
changes the behavior of NNs reveal several gaps and limitations in existing quantization
methodologies. These gaps highlight the complexity and challenges in achieving effective
quantization without compromising NN performance.

Current quantization techniques often overlook the behavioral integrity of quantized
models and the changes introduced by quantization that may cause them to behave
slightly differently than their floating-point counterparts – often using the performance
metrics of floating-point models as those for quantized models without considering the
alterations caused by quantization (YANG et al., 2022). The accuracy gap between full-
precision and quantized models is partially attributed to quantization error. Research
in binary quantization, which maps values to -1 and 1, indicates the need to analyze
different scaling strategies and develop novel quantization techniques that minimize this
error(POURANSARI; TUZEL, 2020).

The noise introduced by quantization is a significant factor leading to performance
degradation. There is a critical need for algorithms that mitigate the impact of quantization
noise on network performance(JACOB et al., 2017; NAGEL et al., 2021). The Minimum
Squared Error (MSE) criterion is often used to measure the discrepancy between the
original (high-precision) weights and the quantized (low-precision) weights (CHOUKROUN;
KRAVCHIK; KISILEV, 2019). The goal is to minimize this error during quantization
to ensure that the quantized network performs as closely as possible to the original
network (CHOUKROUN; KRAVCHIK; KISILEV, 2019).

MSE quantifies the average squared difference between the original and quantized
weights. By minimizing this error, you aim to retain the original network’s behavior as
much as possible. The lower the MSE, the closer the quantized network’s behavior is to
the original network. NNs are highly sensitive to weight changes, as small perturbations
in weights can significantly alter their behavior(CHOUKROUN; KRAVCHIK; KISILEV,
2019). Therefore, minimizing the MSE helps preserve the network’s behavior by ensur-
ing that the quantized weights closely resemble the original weights (XU et al., 2018;
CHOUKROUN; KRAVCHIK; KISILEV, 2019). Minimizing MSE in quantization can
contribute to maintaining the network’s ability to generalize to unseen data and perform
well on various tasks (PARK; AHN; YOO, 2017). This is because the quantized network

Chapter 6. Related work 110

retains similar weight distributions and thus similar decision boundaries compared to the
original network.

However, there are limitations to the assumption that minimizing MSE guarantees
behavior preservation in QNNs. NNs are inherently nonlinear systems. Minimizing the MSE
may not fully capture the complex interactions between weights and activations (XU et al.,
2018). Even a small change in weights can lead to nonlinear effects that unexpectedly alter
the network’s behavior. NNs often exhibit robustness to small perturbations in weights.
However, quantization introduces significant perturbations, especially in low-precision
settings. Minimizing MSE may not adequately address the network’s sensitivity to such
perturbations, leading to behavior divergence. Minimizing MSE may lead to overfitting
the quantized network to the training data, especially if the quantization process is not
regularized properly. Overfitting can hinder the network’s generalization of unseen data
and adaptation to different tasks. For complex NN architectures with multiple layers,
non-linear activations, and intricate weight dependencies, minimizing MSE alone may not
capture the full behavioral preservation requirements. Other factors such as activation
distributions, layer interactions, and task-specific behaviors need to be considered(LIU;
CAI; ZHUANG, 2021).

The growing need to formally verify NNs, especially to prove equivalence between
an original and a compressed version, emphasizes the complexity of existing approaches.
Exploring formal equivalence checking in this area could provide a more rigorous foundation
for evaluating quantization strategies. Equivalence checking could be crucial in developing
and evaluating such algorithms, ensuring that quantization does not significantly alter the
network’s behavior. This gap points to the need for new evaluation criteria that account
for model equivalence in quantization, which could be supported by formal equivalence
checking. This area reveals the potential of integrating formal equivalence checking more
deeply into quantization processes to improve accuracy and computational efficiency.

In summary, while existing quantization and verification techniques for QNNs focus
on essential aspects of model performance and security, they fall short of providing a
broader view of how quantization affects a model’s behavior. Consequently, this thesis
proposes the CEG4N method to fill this gap by ensuring that quantized models remain
true to the decision-making process, that is, the desired behavior of their original versions.

6.5 Summary
This chapter provides an extensive review of literature on neural network (NN)

quantization and related topics, identifying key methodologies, challenges, and gaps. Key
points include:

Chapter 6. Related work 111

• Neural Networks (NNs) are foundational tools in artificial intelligence (AI) with
diverse applications, but their deployment on resource-constrained environments
necessitates efficient compression techniques like quantization;

• NN quantization reduces model precision, leading to smaller memory footprints and
lower computational costs, but it can also impact model accuracy and functional
behavior;

• The literature highlights several quantization methods, including uniform and non-
uniform quantization, post-training quantization (PTQ), quantization-aware training
(QAT), mixed-precision quantization, and hardware-accelerated quantization (HAQ);

• Challenges in quantization include preserving functional behavior, minimizing quan-
tization noise, and ensuring robustness in safety-critical applications like aerospace
and edge computing;

• Formal Verification (FV) and Equivalence Checking (EC) techniques are essential to
ensure that quantized neural networks (QNNs) maintain functional equivalence with
their full-precision counterparts, especially for high-stakes applications;

• Existing quantization methods often rely on statistical measures for accuracy evalua-
tion, which may not fully capture the behavioral equivalence of quantized models;

• Gaps in current methodologies include insufficient consideration of behavioral in-
tegrity, scalability issues in verification processes, and limited integration of formal
methods into quantization workflows;

• The need for advanced FV techniques and novel quantization approaches that
prioritize equivalence checking is emphasized, aiming to bridge the gap between
model compression and functional integrity.

These findings establish the foundation for the proposed CEG4N method, which
integrates formal equivalence checking to ensure that quantized models preserve the original
functional behavior of NNs.

112

7 Conclusion and future work

This chapter summarizes this thesis’s key contributions to the NN quantization
field. It reflects on the significance of the thesis findings and their potential applications.
The chapter also outlines directions for future research, suggesting ways to build upon the
thesis research and explore new avenues to improve NN quantization techniques.

7.1 Summary of key contributions
The main contributions of this thesis are:

1. A new FV technique that treats NN equivalence as a SMT problem

2. A new optimization-based quantization technique that formulates quantization as a
multi-objective optimization problem that has equivalence as an objective

3. A modular and automated quantization framework that effectively combines FV and
optimization to preserve the functional behavior of NNs during quantization

4. An empirical scalability study, evaluating the computational demands of quantizing
and verifying the equivalence of neural network models. This includes comparing
different equivalence-checking techniques and their impacts on the performance of
CEG4N

5. Empirical results using multiple benchmarks, including Iris, Seeds, MNIST, and
CIFAR datasets

6. Analysis of the effects of quantization on model accuracy and performance, demon-
strating that maintaining functional equivalence does not necessarily compromise
accuracy

7. Ensures that all tools, benchmarks, and results used in the research are publicly
available, facilitating reproducibility and further research in the field of neural
network quantization

This thesis introduces the CEG4N framework as a notable advancement in NN
quantization. Its primary innovation lies in integrating search-based quantization methods
with EC mechanisms. This integration decreases the computational demands of NN
deployment and preserves the network’s functionality post-quantization. This dual focus
is crucial in resource-constrained settings where optimizing memory and computational
resources is paramount. CEG4N has significantly influenced the field of NN quantization

Chapter 7. Conclusion and future work 113

by merging search-based quantization with EC in a unique manner. This strategy aims
to lessen computational requirements while upholding model accuracy. The research
contributes to understanding how quantization impacts NN performance, paving the
way for future advancements in quantization strategies. Moreover, by leveraging various
validation tools and exploring diverse network structures, the study broadens the potential
applications of quantization methods across various artificial intelligence domains.

The core of this thesis’s methodology lies in recognizing the crucial importance of
preserving the behavioral similarity of NNs (NNs) after quantization. This is achieved
through a systematic optimization and verification process that thoroughly compares
quantized models with their original versions to detect any differences in functionality. A
key feature of this approach is the use of EC, a unique element that distinguishes CEG4N
from other quantization methods that usually employ less stringent accuracy evaluations.

Moreover, this study illustrates how the versatility of the CEG4N framework
extends to many NN architectures and sizes. By conducting thorough experiments on
various benchmarks, encompassing both large and small NNs on datasets like CIFAR-10,
MNIST, Iris, and Seeds, the framework has shown its ability to generate quantized models
that not only maintain behavioral equivalence but also, in some cases, achieve up to
163% higher accuracy compared to state-of-the-art quantization methods. These findings
highlight the significant potential of the framework to improve the efficiency of deploying
NNs in diverse application areas, particularly those where model accuracy and behavior
integrity are crucial.

The CEG4N framework’s importance goes beyond its direct practical uses. It
initiates a change in perspective towards incorporating EC as a key element of the NN
quantization process. This helps fill a crucial gap in implementing advanced AI models in
settings with limited computational and memory capacities. Furthermore, the framework
establishes a solid basis for future research directions, such as developing more effective
EC approaches, broadening quantization techniques to support various network structures,
and exploring the impact of quantization on model resilience to adversarial attacks.

7.2 Summary of key findings
This section presents a comprehensive overview of the significant discoveries and

insights gained from our research on the CEG4N framework for quantizing neural networks
(NNs). These findings highlight CEG4N’s strengths and limitations, providing a detailed
analysis of its performance across various benchmarks and under different conditions. By
examining CEG4N’s effectiveness, scalability, and accuracy preservation capabilities, we
aim to underscore its potential and the areas that require further improvement.

Key discoveries consist of (1) CEG4N can efficiently quantize NNs, resulting in

Chapter 7. Conclusion and future work 114

models that exhibit up to 163% higher accuracy than current cutting-edge methods; (2)
The framework illustrates the significance of EC in preserving the functional integrity of
quantized models;(3) CEG4N showed some degree of versatility, applying to a range of
neural network architectures, from smaller networks like Iris and Seeds to larger ones like
MNIST; (4) Our research showed the viability of a modular quantization framework NN
quantization that provides guarantees of NN equivalence; However, (5) the research also
revealed that CEG4N, encountered significant scalability issues with the verifiers, leading
to a high number of timeouts, especially with larger networks. This highlights the need for
further improvements in the verification process to handle more complex models efficiently.

In addition, our results revealed several interesting patterns and findings. CEG4N,
when running with NNQUIV, exhibited a higher success rate of 40.74%, significantly
outperforming its performance with ESBMC, which had a success rate of 20.99%. This
difference highlights NNQUIV’s greater effectiveness in handling larger and more complex
networks.

A notable issue with ESBMC was its high rate of timeouts, accounting for 67.90% of
the total runs, compared to 37% for NNQUIV. This pattern suggests that ESBMC struggles
with scalability and managing the computational demands of larger neural networks, as
evidenced by the increased timeouts for datasets like MNIST, CIFAR-10, and AcasXu.
Additionally, ESBMC required more iterations, averaging four per successful run, while
NNQUIV averaged only two. This discrepancy can be attributed to the differing verification
approaches, with ESBMC’s SMT approach potentially generating more counterexamples.

Quantization failures were particularly prevalent in the AcasXu benchmarks, indi-
cating that these networks are highly sensitive to errors introduced during quantization.
Higher parameter values r also led to more iterations and increased computational de-
mands, exacerbating quantization challenges. This trend was observed in the Seeds dataset,
where larger r values correlated with increased timeouts and quantization issues.

When comparing the accuracy of QNNs, those generated by CEG4N generally
showed better performance for the Iris and Seeds benchmarks. The accuracy drops for
CEG4N-generated NNs were significantly lower than those for the GPFQ method, which
experienced substantial accuracy losses. For example, GPFQ showed accuracy drops up to
53.3% for Iris, whereas CEG4N’s highest drop was only 3.3% for the same dataset. On
the other hand, for the MNIST benchmarks, GPFQ performed slightly better in terms
of accuracy, although the margin was small. Considering the CEG4N does not seek to
optimize the accuracy of its quantized models, our research suggests that the constraints
imposed by the equivalence property inadvertently contribute to preserving the model’s
accuracy.

Verification failures were only observed with NNQUIV, accounting for 7.4% of the
total runs. These failures were likely due to exceptions thrown by the software dependencies.

Chapter 7. Conclusion and future work 115

In contrast, ESBMC did not exhibit such failures, suggesting greater software maturity
and reliability.

The experiments also showed that both CEG4N and GPFQ could occasionally
improve the accuracy of the original models due to the regularization effect of quantization.
This phenomenon, where quantization acts as a weight regularization mechanism, helps
neural networks prevent biased behavior and enhance generalization. However, it was
clear that ensuring equivalence is a significant challenge for GPFQ, as only 25.8% of the
generated QNNs were found to be equivalent to their original models.

The findings indicate that NNQUIV is more suitable for larger neural networks due
to fewer timeouts and better scalability. At the same time, ESBMC remains reliable for
smaller models with fewer verification failures. These results underscore the importance of
FV techniques in maintaining model equivalence and suggest that CEG4N offers a robust
approach to generating QNNs with comparable accuracy to state-of-the-art techniques,
particularly for smaller datasets.

7.3 Future directions
In this section, we outline several promising avenues for advancing the field of NN

quantization and NN equivalence. We focus on potential future research and directions to
enhance existing methodologies’ efficiency, scope, scalability, and robustness, especially
those whose limitations were highlighted in this thesis. Key areas of focus include improving
the efficiency of EC techniques, exploring a more diverse set of NN structures, investigating
alternative quantization approaches, assessing the robustness of quantized models against
adversarial attacks, and extending the CEG4N framework to support QAT techniques.
Each of these directions presents unique opportunities to address existing challenges
and push the boundaries of what is possible in NN quantization and FEV, ultimately
contributing to more efficient and secure NNs deployment.

7.3.1 Improving the scalability of the FEV techniques

EC or FEV is a cornerstone of the NN quantization performed by CEG4N. It
ensures that the functional integrity of the model is maintained post-quantization. However,
one of the most significant challenges faced by current EC methodologies is timeouts and
scalability, particularly as models grow in size and complexity. Addressing these issues is
crucial for practically deploying quantized models in real-world applications.

Timeouts in EC arise when the verification process exceeds a predefined time limit,
failing to conclusively determine equivalence or discrepancy between the original and
quantized models. These timeouts are especially prevalent in large-scale models where the

Chapter 7. Conclusion and future work 116

vast state space needs to be explored. Future research can explore several strategies to
mitigate timeout issues:

1. One promising approach is incremental verification, where the model is verified in
smaller, manageable segments rather than as a whole. The likelihood of encountering
a timeout is reduced by breaking down the verification task into sub-tasks, each
corresponding to a smaller section of the model. Techniques such as compositional
verification, which assembles the verification results of individual components, could
be particularly beneficial.

2. Heuristics can guide the verification process toward the most likely areas of dis-
crepancy, thereby reducing the search space and the time required for verification.
Machine learning-based heuristics, which learn from past verification instances, can
dynamically adapt to the model’s characteristics, providing a more efficient search
process.

3. Leveraging the power of parallel and distributed computing can significantly reduce
the verification time. By distributing the verification task across multiple processors
or machines, the overall time required can be reduced, thus mitigating timeout issues.
Research into efficient parallel algorithms tailored for EC could further enhance this
approach.

Scalability is another critical challenge in EC, with current techniques often strug-
gling to handle the increasing complexity and size of modern NNs. Several research
directions can be pursued to improve the scalability of these techniques:

1. Probabilistic approaches, such as Monte Carlo methods, can provide scalability
by approximating the EC process. Instead of exhaustively checking all possible
states, these methods sample a subset of states, providing a probabilistic guarantee
of equivalence. This approach can dramatically reduce the computational burden,
making it feasible to verify larger models.

2. Symbolic methods, including Satisfiability Modulo Theories (SMT) solvers, repre-
sent another promising avenue. These methods abstract the model into symbolic
representations, allowing for more efficient manipulation and checking of equiva-
lence. Enhancing the SMT encoding techniques to better handle the specifics of NN
quantization can lead to significant scalability improvements.

3. Techniques such as model reduction, where the complexity of the NN is reduced
without significantly affecting its functionality, can be employed before EC. By
simplifying the model, the verification process becomes more manageable. Research

Chapter 7. Conclusion and future work 117

into advanced reduction techniques that preserve critical model characteristics while
minimizing size could greatly benefit scalability.

4. Developing adaptive verification frameworks that adjust their verification strategy
based on the model’s characteristics can also enhance scalability. These frameworks
can dynamically choose the most appropriate verification technique, effectively
balancing precision and computational resources.

5. Integrating EC into the NN compression process can create a unified framework that
inherently considers verification during model reduction. This integrated approach
can streamline the entire quantization and verification pipeline, making it more
scalable and efficient.

Addressing the issues of timeouts and scalability in EC for NN quantization is
essential for the CEG4N and also means advancing the EC field. Researchers can develop
more robust and scalable verification methodologies by exploring incremental verification,
heuristic-guided approaches, parallel computing, probabilistic methods, symbolic tech-
niques, model reduction, and adaptive frameworks and find applicability in a broader range
of NN architectures. These advancements will benefit CEG4N and significantly impact the
AI landscape by enabling the deployment of quantized NNs across various applications
and environments, ensuring both efficiency and reliability.

7.3.2 Improving the efficiency of EC techniques

Investigating a wider range of methods for verifying equivalence is a compelling
path. For example, analyzing reachability (TEUBER et al., 2021) and encoding using
SMT present viable options for guaranteeing model equivalence after quantization with
enhanced precision and effectiveness. The research conducted by Zhang et al. (ZHANG;
SONG; SUN, 2023) on verifying error bounds introduces a fresh outlook on quantization
and its impact on NN behavior, showcasing the various strategies that can enrich the
advancing field of NN quantization studies.

Enhancing the SMT encoding of the quantization problem to evaluate its efficiency
compared to CEG4N and move towards creating a unified framework for NN compression
and equivalence has the potential to provide novel perspectives and findings in the quanti-
zation domain. Subsequent studies could enhance the formalization of NN equivalence,
such as integrating the QEBVerif approach into CEG4N and conducting comparative
assessments. By integrating advanced quantization and equivalence-verification techniques,
CEG4N is poised to enhance its outcomes by attaining a more optimal trade-off between
precision and scalability.

Chapter 7. Conclusion and future work 118

7.3.3 Exploring a more diverse set of NN structures

While the CEG4N framework marks a significant advancement, its examination of
quantization effects has mainly been limited to feedforward networks utilizing ReLU acti-
vations. However, AI includes many structures, such as recurrent NNs (RNNs), generative
adversarial networks (GANs), and networks that utilize different activation functions. Fu-
ture studies should strive to broaden the scope of quantization and equivalence verification
techniques to encompass these diverse architectures. By delving into the specific challenges
and advantages associated with each type of architecture, researchers can better under-
stand how quantization influences model performance across various AI domains. This
broader perspective will facilitate the creation of more universal and resilient quantization
approaches, ensuring their broad applicability and effectiveness.

7.3.4 Investigating alternative quantization approaches

The CEG4N framework marks a notable advancement in the NN quantization
domain by using a mixed-precision quantization method. This technique allows for different
bit-width precision for weights, biases, and activation functions in each model layer. Such a
sophisticated approach enables a more customized enhancement of computational efficiency
and model effectiveness, enabling resources to be allocated strategically within the model.
While CEG4N introduces innovative layer-specific quantization tactics, there is potential
for additional enhancement and elaboration of these techniques.

Future research efforts could gain insights from further investigating the level of
detail in mixed-precision quantization approaches, focusing on examining the diverse
effects of different bit-width assignments within specific layers of an NN. It is essential
to comprehend how these assignments impact the model’s accuracy, memory utilization,
and computational needs. Additionally, creating adaptive quantization methods that can
flexibly modify bit widths based on the model’s real-time performance and available
resources during training or inference stages could greatly improve the feasibility and
efficiency of deploying NNs in environments with limited resources.

In addition, there is a compelling case for expanding the scope of research to include
innovative quantization methods that extend beyond the current search-based algorithms.
Furthermore, investigating methods that solely depend on integer arithmetic may help
improve the scalability of the verification process in CEG4N.

7.3.5 Robustness of quantized NNs against adversarial attacks

As AI models become increasingly integrated into real-world applications, their
security against adversarial attacks emerges as a paramount concern. By altering model
parameters, the quantization process could inadvertently affect a model’s vulnerability

Chapter 7. Conclusion and future work 119

to such attacks. Future research should, therefore, prioritize the evaluation of quantized
models’ robustness, investigating whether quantization introduces new vulnerabilities or
mitigates existing ones. This line of inquiry is crucial for deploying quantized models in
security-sensitive environments, ensuring that efforts to enhance computational efficiency
do not compromise model security.

7.3.6 Support for QAT techniques

Quantization-aware training represents a promising avenue for enhancing the
efficacy of the quantization process, potentially improving model accuracy and efficiency
by incorporating quantization considerations directly into the training process. Future
research could explore integrating quantization-aware training techniques within the
CEG4N framework, assessing how such techniques impact the EC process and the overall
performance of quantized models. This exploration could lead to more sophisticated
quantization refinement methodologies that preserve and possibly enhance model behavior
post-quantization, further advancing state-of-the-art AI model deployment within resource-
constrained environments.

7.4 Final thoughts
The CEG4N framework is a significant step in pursuing efficient and reliable NN

quantization methods. Its emphasis on EC as a cornerstone of the quantization refinement
process underscores the importance of maintaining model behavior post-quantization,
especially in safety-critical applications. While challenges remain in terms of scalability and
the exploration of alternative quantization strategies, this research paves the way for more
sophisticated approaches to deploying AI models in resource-constrained environments.
Future advancements in this domain will undoubtedly build upon the foundation laid by
CEG4N, driving further innovations in AI efficiency and applicability.

120

References

AHAMED, K. A study on neural network architectures. Computer Engineering and
Intelligent Systems, v. 7, p. 1–7, 2016. No citation in the text.

AMIR, G. et al. An smt-based approach for verifying binarized neural networks. Tools
and Algorithms for the Construction and Analysis of Systems, v. 12652, p. 203 – 222, 2020.
No citation in the text.

ANANTRASIRICHAI, N.; BULL, D. Artificial intelligence in the creative industries: a
review. Artificial Intelligence Review, v. 55, p. 589–656, 2020. No citation in the text.

AVIGAD, J.; HARRISON, J. Formally verified mathematics. Commun. ACM, Association
for Computing Machinery, New York, NY, USA, v. 57, n. 4, p. 66–75, apr 2014. ISSN
0001-0782. Disponível em: <https://doi.org/10.1145/2591012>. No citation in the text.

BAI, J. et al. ONNX: Open Neural Network Exchange. [S.l.]: GitHub, 2019. No citation
in the text.

BAIER, C.; KATOEN, J.-P. Principles of Model Checking. [S.l.]: The MIT Press, 2008.
ISBN 026202649X. No citation in the text.

BAK, S.; LIU, C.; JOHNSON, T. The second international verification of neural networks
competition (vnn-comp 2021): Summary and results. ArXiv:abs/2109.00498, 2021. No
citation in the text.

BANNER, R.; NAHSHAN, Y.; SOUDRY, D. Post training 4-bit quantization of
convolutional networks for rapid-deployment. In: . Proceedings of the 33rd
International Conference on Neural Information Processing Systems. Red Hook, NY,
USA: Curran Associates Inc., 2019. No citation in the text.

Barredo Arrieta, A. et al. Explainable artificial intelligence (xai): Concepts, taxonomies,
opportunities and challenges toward responsible ai. Information Fusion, v. 58, p. 82–115,
2020. ISSN 1566-2535. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S1566253519308103>. No citation in the text.

BASKIN, C. et al. Uniq: Uniform noise injection for non-uniform quantization of neural
networks. arXiv: Learning, 2018. No citation in the text.

BELLARE, M.; GOLDWASSER, S. The complexity of decision versus search. SIAM J.
Comput., v. 23, p. 97–119, 1991. No citation in the text.

BERTOLINI, M. et al. Machine learning for industrial applications: A comprehensive
literature review. Expert Syst. Appl., v. 175, p. 114820, 2021. No citation in the text.

BESSA, I. V. et al. Verification of fixed-point digital controllers using direct
and delta forms realizations. Des. Autom. Embedded Syst., Kluwer Academic
Publishers, USA, v. 20, n. 2, p. 95–126, jun 2016. ISSN 0929-5585. Disponível em:
<https://doi.org/10.1007/s10617-016-9173-5>. No citation in the text.

https://doi.org/10.1145/2591012
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://www.sciencedirect.com/science/article/pii/S1566253519308103
https://doi.org/10.1007/s10617-016-9173-5

References 121

BHALGAT, Y. et al. Lsq+: Improving low-bit quantization through learnable
offsets and better initialization. 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), p. 2978–2985, 2020. Disponível em:
<https://api.semanticscholar.org/CorpusID:216036085>. No citation in the text.

BISHOP, C. Pattern Recognition and Machine Learning. Springer, 2006.
Disponível em: <https://www.microsoft.com/en-us/research/publication/
pattern-recognition-machine-learning/>. No citation in the text.

BOONE, J.; SIGILLITO, V.; SHABER, G. Neural networks in radiology: an introduction
and evaluation in a signal detection task. Medical physics, v. 17 2, p. 234–41, 1990. No
citation in the text.

BOUDARDARA, F. et al. A review of abstraction methods towards verifying neural
networks. ACM Transactions on Embedded Computing Systems, 2023. No citation in the
text.

BOURECHAK, A. et al. At the confluence of artificial intelligence and edge computing in
iot-based applications: A review and new perspectives. Sensors (Basel, Switzerland), v. 23,
2023. No citation in the text.

BRAYTON, R.; MISHCHENKO, A. Abc: An academic industrial-strength verification
tool. In: TOUILI, T.; COOK, B.; JACKSON, P. (Ed.). Computer Aided Verification.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. p. 24–40. ISBN 978-3-642-14295-6.
No citation in the text.

BRUNTON, S. et al. Data-driven aerospace engineering: Reframing the industry with
machine learning. ArXiv, abs/2008.10740, 2020. No citation in the text.

BÜNING, M. K.; KERN, P.; SINZ, C. Verifying equivalence properties of neural networks
with relu activation functions. In: Principles and Practice of Constraint Programming.
[S.l.]: Springer, 2020. (Lecture Notes in Computer Science, v. 12333), p. 868–884. No
citation in the text.

CAI, Y. et al. Zeroq: A novel zero shot quantization framework. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los
Alamitos, CA, USA: IEEE Computer Society, 2020. p. 13166–13175. Disponível em:
<https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01318>. No citation in
the text.

CHARYTANOWICZ, M. et al. Complete gradient clustering algorithm for features
analysis of x-ray images. In: . Information Technologies in Biomedicine. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2010. p. 15–24. ISBN 978-3-642-13105-9. No
citation in the text.

CHATTERJEE, A.; VARSHNEY, L. Towards optimal quantization of neural networks.
2017 IEEE International Symposium on Information Theory (ISIT), p. 1162–1166, 2017.
No citation in the text.

CHEN, W. et al. Quantization of deep neural networks for accurate edgecomputing.
ArXiv, abs/2104.12046, 2021. No citation in the text.

https://api.semanticscholar.org/CorpusID:216036085
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
https://doi.ieeecomputersociety.org/10.1109/CVPR42600.2020.01318

References 122

CHEN, W.; WANG, P.; CHENG, J. Towards mixed-precision quantization of neural
networks via constrained optimization. 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), p. 5330–5339, 2021. No citation in the text.

CHEN, Y. et al. Deep learning on mobile and embedded devices: State-of-the-art,
challenges, and future directions. ACM Comput. Surv., Association for Computing
Machinery, New York, NY, USA, v. 53, n. 4, aug 2020. ISSN 0360-0300. Disponível em:
<https://doi.org/10.1145/3398209>. No citation in the text.

CHENG, C.-H.; NüHRENBERG, G.; RUESS, H. Verification of binarized neural networks.
ArXiv, abs/1710.03107, 2017. No citation in the text.

CHENG, Y. et al. Model compression and acceleration for deep neural networks: The
principles, progress, and challenges. IEEE Signal Processing Magazine, v. 35, n. 1, p.
126–136, 2018. No citation in the text.

CHOUKROUN, Y.; KRAVCHIK, E.; KISILEV, P. Low-bit quantization of neural
networks for efficient inference. 2019 IEEE/CVF International Conference on Computer
Vision Workshop (ICCVW), p. 3009–3018, 2019. No citation in the text.

CHU, W.; BOSE, N. Vector quantization of neural networks. IEEE transactions on neural
networks, v. 9 6, p. 1235–45, 1998. No citation in the text.

CLARKE, E. M.; GRUMBERG, O.; PELED, D. A. Model checking. London, Cambridge:
MIT Press, 1999. ISBN 0-262-03270-8. No citation in the text.

CLARKE, E. M. et al. Handbook of Model Checking. 1st. ed. [S.l.]: Springer Publishing
Company, Incorporated, 2018. ISBN 3319105744. No citation in the text.

CORDEIRO, L.; FISCHER, B.; MARQUES-SILVA, J. Smt-based bounded model
checking for embedded ansi-c software. IEEE Transactions on Software Engineering, v. 38,
n. 4, p. 957–974, 2012. No citation in the text.

CUN, Y. L.; DENKER, J. S.; SOLLA, S. A. Optimal brain damage. In: . Advances
in Neural Information Processing Systems 2. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1990. p. 598–605. ISBN 1558601007. No citation in the text.

DAS, S. et al. Recurrent neural networks (rnns): Architectures, training tricks, and
introduction to influential research. In: . Machine Learning for Brain Disorders.
New York, NY: Springer US, 2023. p. 117–138. ISBN 978-1-0716-3195-9. Disponível em:
<https://doi.org/10.1007/978-1-0716-3195-9_4>. No citation in the text.

DETHISE, A.; CANINI, M.; NARODYTSKA, N. Analyzing learning-based networked
systems with formal verification. IEEE INFOCOM 2021 - IEEE Conference on Computer
Communications, p. 1–10, 2021. No citation in the text.

EGMONT-PETERSEN, M.; RIDDER, D.; HANDELS, H. Image processing with neural
networks - a review. Pattern Recognit., v. 35, p. 2279–2301, 2002. No citation in the text.

EHLERS, R. Formal verification of piece-wise linear feed-forward neural networks. p.
269–286, 2017. No citation in the text.

https://doi.org/10.1145/3398209
https://doi.org/10.1007/978-1-0716-3195-9_4

References 123

ELEFTHERIADIS, C. et al. On neural network equivalence checking using SMT solvers.
In: Formal Modeling and Analysis of Timed Systems. Cham: Springer, 2022. p. 237–257.
ISBN 978-3-031-15839-1. No citation in the text.

FISHER, R. A. The use of multiple measurements in taxonomic problems. Annals of
Eugenics, v. 7, p. 179–188, 1936. No citation in the text.

GADELHA, M. R. et al. Esbmc 5.0: An industrial-strength c model checker. In: 2018
33rd IEEE/ACM International Conference on Automated Software Engineering (ASE).
[S.l.: s.n.], 2018. p. 888–891. No citation in the text.

GAO, Q.; XU, X. The analysis and research on computational complexity. The 26th
Chinese Control and Decision Conference (2014 CCDC), p. 3467–3472, 2014. No citation
in the text.

GAO, Y. et al. Fast non-uniform quantization of neural networks. 2022 7th International
Conference on Cloud Computing and Big Data Analytics (ICCCBDA), p. 8–12, 2022. No
citation in the text.

GARG, S. et al. Confounding tradeoffs for neural network quantization. ArXiv,
abs/2102.06366, 2021. No citation in the text.

GEHR, T. et al. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. 2018 IEEE Symposium on Security and Privacy (SP), p. 3–18, 2018. No
citation in the text.

GHANEM, M.; SINIORA, D. On theoretical complexity and boolean satisfiability. ArXiv,
abs/2112.11769, 2021. No citation in the text.

GHOLAMI, A. et al. A survey of quantization methods for efficient neural network
inference. In: Low-Power Computer Vision. [S.l.]: Chapman and Hall/CRC, 2022. p.
291–326. No citation in the text.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: The MIT
Press, 2016. ISBN 0262035618. No citation in the text.

GORDON, M. J. C.; MELHAM, T. F. Introduction to HOL: a theorem proving
environment for higher order logic. USA: Cambridge University Press, 1993. ISBN
0521441897. No citation in the text.

GUO, Y. A survey on methods and theories of quantized neural networks. ArXiv,
abs/1808.04752, 2018. No citation in the text.

HAN, S.; MAO, H.; DALLY, W. J. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In: 4th International Conference
on Learning Representations. [S.l.: s.n.], 2016. No citation in the text.

HAN, S. et al. Learning both weights and connections for efficient neural networks. In:
Proceedings of the 28th International Conference on Neural Information Processing
Systems - Volume 1. Cambridge, MA, USA: MIT Press, 2015. (NIPS’15), p. 1135–1143.
No citation in the text.

HAPPEL, B. L. M.; MURRE, J. Design and evolution of modular neural network
architectures. Neural Networks, v. 7, p. 985–1004, 1994. No citation in the text.

References 124

HARRISON, J. Handbook of Practical Logic and Automated Reasoning. 1st. ed. USA:
Cambridge University Press, 2009. ISBN 0521899575. No citation in the text.

HENDRYCKS, D.; DIETTERICH, T. G. Benchmarking neural network robustness to
common corruptions and perturbations. ArXiv:abs/1903.12261, 2019. No citation in the
text.

HENZINGER, T.; LECHNER, M.; ZIKELIC, D. Scalable verification of quantized neural
networks (technical report). p. 3787–3795, 2020. No citation in the text.

HOCHREITER, S.; SCHMIDHUBER, J. Long short-term memory. Neural Computation,
v. 9, n. 8, p. 1735–1780, 1997. No citation in the text.

HOFER-SCHMITZ, K.; STOJANOVIć, B. Towards formal verification of iot protocols: A
review. Comput. Networks, v. 174, p. 107233, 2020. No citation in the text.

HUANG, X. et al. A survey of safety and trustworthiness of deep neural networks:
Verification, testing, adversarial attack and defence, and interpretability. Computer
Science Review, Elsevier BV, v. 37, p. 100270, ago. 2020. ISSN 1574-0137. Disponível em:
<http://dx.doi.org/10.1016/j.cosrev.2020.100270>. No citation in the text.

HUANG, X. et al. Safety verification of deep neural networks. In: MAJUMDAR,
R.; KUNČAK, V. (Ed.). Computer Aided Verification. Cham: Springer International
Publishing, 2017. p. 3–29. ISBN 978-3-319-63387-9. No citation in the text.

HUBARA, I. et al. Quantized neural networks: Training neural networks with low
precision weights and activations. ArXiv, abs/1609.07061, 2016. No citation in the text.

HUBARA, I. et al. Quantized neural networks: Training neural networks with low
precision weights and activations. ArXiv:abs/1609.07061, 2017. No citation in the text.

JACOB, B. et al. Quantization and training of neural networks for efficient
integer-arithmetic-only inference. 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, p. 2704–2713, 2017. Disponível em: <https:
//api.semanticscholar.org/CorpusID:39867659>. No citation in the text.

JIN, Q.; YANG, L.; LIAO, Z. A. Towards efficient training for neural network quantization.
ArXiv:abs/1912.10207, 2019. No citation in the text.

JULIAN, K. D. et al. Policy compression for aircraft collision avoidance systems. In:
DASC. [S.l.: s.n.], 2016. p. 1–10. No citation in the text.

KABRA, R. et al. Automated content generation system using neural text generation.
In: JACOB, I. J.; SHANMUGAM, S. K.; BESTAK, R. (Ed.). Data Intelligence and
Cognitive Informatics. Singapore: Springer Nature Singapore, 2022. p. 821–829. ISBN
978-981-16-6460-1. No citation in the text.

KATZ, G. et al. Reluplex: An efficient SMT solver for verifying deep neural networks. In:
International Conference on Computer Aided Verification. [S.l.: s.n.], 2017. No citation in
the text.

KHEDR, H.; FERLEZ, J.; SHOUKRY, Y. Effective formal verification of neural networks
using the geometry of linear regions. ArXiv, abs/2006.10864, 2020. No citation in the
text.

http://dx.doi.org/10.1016/j.cosrev.2020.100270
https://api.semanticscholar.org/CorpusID:39867659
https://api.semanticscholar.org/CorpusID:39867659

References 125

KIMHI, M. et al. Fbm: Fast-bit allocation for mixed-precision quantization. ArXiv,
abs/2205.15437, 2022. No citation in the text.

KRIZHEVSKY, A.; SUTSKEVER, I.; HINTON, G. E. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, v. 60, p. 84–90, 2012. No
citation in the text.

KRUSE, R. et al. Introduction to neural networks. p. 9–13, 2016. No citation in the text.

LAHAV, O.; KATZ, G. Pruning and slicing neural networks using formal verification.
2021 Formal Methods in Computer Aided Design (FMCAD), p. 1–10, 2021. No citation
in the text.

LECUN, Y.; BENGIO, Y.; HINTON, G. Deep learning. Nature, Springer Science and
Business Media LLC, v. 521, n. 7553, p. 436–444, maio 2015. ISSN 1476-4687. Disponível
em: <http://dx.doi.org/10.1038/nature14539>. No citation in the text.

LECUN, Y.; CORTES, C. The MNIST database of handwritten digits. 2005. No citation
in the text.

LEE, K.-H.; JEONG, J.; BAE, S.-H. An inter-layer weight prediction and quantization
for deep neural networks based on a smoothly varying weight hypothesis. ArXiv,
abs/1907.06835, 2019. Disponível em: <https://api.semanticscholar.org/CorpusID:
196831335>. No citation in the text.

LI, Z. et al. Psaq-vit v2: Toward accurate and general data-free quantization for vision
transformers. IEEE Transactions on Neural Networks and Learning Systems, v. 35, p. 17227–
17238, 2022. Disponível em: <https://api.semanticscholar.org/CorpusID:252211787>. No
citation in the text.

LI, Z. et al. A survey of convolutional neural networks: Analysis, applications, and
prospects. IEEE Transactions on Neural Networks and Learning Systems, v. 33, p.
6999–7019, 2020. No citation in the text.

LIANG, T. et al. Pruning and quantization for deep neural network acceleration: A survey.
ArXiv, abs/2101.09671, 2021. No citation in the text.

LIN, D. D.; TALATHI, S. S.; ANNAPUREDDY, V. S. Fixed point quantization of
deep convolutional networks. In: Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48. [S.l.]: JMLR.org, 2016.
(ICML’16), p. 2849–2858. No citation in the text.

LIU, J.; CAI, J.; ZHUANG, B. Sharpness-aware quantization for deep neural networks.
ArXiv, abs/2111.12273, 2021. No citation in the text.

LIU, Z. et al. Evolutionary quantization of neural networks with mixed-precision. ICASSP
2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), p. 2785–2789, 2021. No citation in the text.

LOHAR, D. et al. Sound mixed fixed-point quantization of neural networks. ACM Trans.
Embed. Comput. Syst., Association for Computing Machinery, New York, NY, USA, v. 22,
n. 5s, sep 2023. ISSN 1539-9087. Disponível em: <https://doi.org/10.1145/3609118>. No
citation in the text.

http://dx.doi.org/10.1038/nature14539
https://api.semanticscholar.org/CorpusID:196831335
https://api.semanticscholar.org/CorpusID:196831335
https://api.semanticscholar.org/CorpusID:252211787
https://doi.org/10.1145/3609118

References 126

LOUI, M. Computational complexity theory. ACM Comput. Surv., v. 28, p. 47–49, 1996.
No citation in the text.

LOVASZ, L. et al. Search problems in the decision tree model. In: [1991] Proceedings 32nd
Annual Symposium of Foundations of Computer Science. [S.l.: s.n.], 1991. p. 576–585. No
citation in the text.

MAIER, H.; DANDY, G. Neural networks for the prediction and forecasting of water
resource variables: a review of modelling issues and applications. Environ. Model. Softw.,
v. 15, p. 101–124, 2000. No citation in the text.

MARINÓ, G. C. et al. Deep neural networks compression: A comparative survey and
choice recommendations. Neurocomputing, v. 520, p. 152–170, 2023. ISSN 0925-2312.
Disponível em: <https://www.sciencedirect.com/science/article/pii/S0925231222014643>.
No citation in the text.

MATOS, J. a. B. P. et al. Counterexample guided neural network quantization refinement.
Trans. Comp.-Aided Des. Integ. Cir. Sys., IEEE Press, v. 43, n. 4, p. 1121–1134, abr. 2024.
ISSN 0278-0070. Disponível em: <https://doi.org/10.1109/TCAD.2023.3335313>. No
citation in the text.

MATOS, J. B. P. et al. Ceg4n: Counter-example guided neural network quantization
refinement. In: ISAC, O. et al. (Ed.). Software Verification and Formal Methods for
ML-Enabled Autonomous Systems. Cham: Springer International Publishing, 2022. p.
29–45. ISBN 978-3-031-21222-2. No citation in the text.

MENDIAS, J. et al. Efficient verification of scheduling, allocation and binding in high-level
synthesis. Proceedings Euromicro Symposium on Digital System Design. Architectures,
Methods and Tools, p. 308–315, 2002. No citation in the text.

MISHRA, R.; GUPTA, H. P.; DUTTA, T. A survey on deep neural network compression:
Challenges, overview, and solutions. ArXiv, abs/2010.03954, 2020. Disponível em:
<https://api.semanticscholar.org/CorpusID:222208626>. No citation in the text.

MONTEIRO, F. R.; GADELHA, M. R.; CORDEIRO, L. C. Model checking c++
programs. Software Testing, Verification and Reliability, v. 32, n. 1, p. e1793, 2022. No
citation in the text.

MUNAKATA, S. et al. Towards formal repair and verification of industry-scale deep neural
networks. 2023 IEEE/ACM 45th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion), p. 360–364, 2023. No citation in the text.

NAGEL, M. et al. Data-free quantization through weight equalization and bias correction.
2019 IEEE/CVF International Conference on Computer Vision (ICCV), p. 1325–1334,
2019. Disponível em: <https://api.semanticscholar.org/CorpusID:184487878>. No
citation in the text.

NAGEL, M. et al. A white paper on neural network quantization. ArXiv:abs/2106.08295,
2021. No citation in the text.

NARODYTSKA, N. Formal verification of deep neural networks. 2018 Formal Methods in
Computer Aided Design (FMCAD), p. 1–1, 2018. No citation in the text.

https://www.sciencedirect.com/science/article/pii/S0925231222014643
https://doi.org/10.1109/TCAD.2023.3335313
https://api.semanticscholar.org/CorpusID:222208626
https://api.semanticscholar.org/CorpusID:184487878

References 127

NGUYEN, H. D.; ALEXANDRIDIS, A.; MOUCHTARIS, A. Quantization aware training
with absolute-cosine regularization for automatic speech recognition. In: Interspeech.
[s.n.], 2020. Disponível em: <https://api.semanticscholar.org/CorpusID:226203265>. No
citation in the text.

NIPKOW, T.; PAULSON, L. C.; WENZEL, M. A proof assistant for higher-
order logic. Lecture Notes in Computer Science, 2002. Disponível em: <https:
//api.semanticscholar.org/CorpusID:59771319>. No citation in the text.

OBERKAMPF, W.; TRUCANO, T. Verification and validation in computational fluid
dynamics. Progress in Aerospace Sciences, v. 38, p. 209–272, 2002. No citation in the text.

PALIWAL, M.; KUMAR, U. A. Neural networks and statistical techniques: A review of
applications. Expert Syst. Appl., v. 36, p. 2–17, 2009. No citation in the text.

PARK, E.; AHN, J.; YOO, S. Weighted-entropy-based quantization for deep neural
networks. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
p. 7197–7205, 2017. No citation in the text.

PARK, S. et al. Quantized memory-augmented neural networks. ArXiv, abs/1711.03712,
2017. No citation in the text.

PASZKE, A. et al. Pytorch: An imperative style, high-performance deep learning
library. In: . Advances in Neural Information Processing Systems 32. [S.l.]: Curran
Associates, Inc., 2019. p. 8024–8035. No citation in the text.

PAULSEN, B.; WANG, J.; WANG, C. Reludiff: Differential verification of deep neural
networks. In: ISCE. [S.l.]: Association for Computing Machinery, 2020. p. 714–726. No
citation in the text.

PAULSEN, B. et al. NEURODIFF: Scalable differential verification of neural networks
using fine-grained approximation. 35th IEEE/ACM International Conference on
Automated Software Engineering (ASE), p. 784–796, 2020. No citation in the text.

PENG, J. et al. Cmq: Crossbar-aware neural network mixed-precision quantization via
differentiable architecture search. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, v. 41, n. 11, p. 4124–4133, 2022. No citation in the text.

POURANSARI, H.; TUZEL, O. Least squares binary quantization of neural networks.
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), p. 2986–2996, 2020. No citation in the text.

RAMALHO, M. et al. Smt-based bounded model checking of c++ programs. In: 2013
20th IEEE International Conference and Workshops on Engineering of Computer Based
Systems (ECBS). [S.l.: s.n.], 2013. p. 147–156. No citation in the text.

REZK, N. M. et al. Mohaq: Multi-objective hardware-aware quantization of recurrent
neural networks. J. Syst. Archit., Elsevier North-Holland, Inc., USA, v. 133, n. C, dec
2022. ISSN 1383-7621. Disponível em: <https://doi.org/10.1016/j.sysarc.2022.102778>.
No citation in the text.

https://api.semanticscholar.org/CorpusID:226203265
https://api.semanticscholar.org/CorpusID:59771319
https://api.semanticscholar.org/CorpusID:59771319
https://doi.org/10.1016/j.sysarc.2022.102778

References 128

RUAN, W.; HUANG, X.; KWIATKOWSKA, M. Reachability analysis of deep neural
networks with provable guarantees. In: International Joint Conference on Artificial
Intelligence. [s.n.], 2018. Disponível em: <https://api.semanticscholar.org/CorpusID:
19173163>. No citation in the text.

RUSSELL, S.; NORVIG, P. Artificial Intelligence: A Modern Approach, Global
Edition. Pearson Education, 2021. ISBN 9781292401171. Disponível em: <https:
//books.google.pt/books?id=cb0qEAAAQBAJ>. No citation in the text.

SAJI, S. A.; AGRAWAL, S.; SOOD, S. Formal verification of deep neural networks in
hardware. 2022 IEEE Women in Technology Conference (WINTECHCON), p. 1–6, 2022.
No citation in the text.

SELIGMAN, E.; SCHUBERT, T.; KUMAR, M. K. Formal equivalence verification. p.
225–259, 2015. No citation in the text.

SENA, L. et al. Verifying quantized neural networks using SMT-based model checking.
ArXiv:abs/2106.05997, 2021. No citation in the text.

SENNRICH, R.; HADDOW, B.; BIRCH, A. Neural machine translation of
rare words with subword units. ArXiv, abs/1508.07909, 2015. Disponível em:
<https://api.semanticscholar.org/CorpusID:1114678>. No citation in the text.

SESHIA, S. et al. Formal specification for deep neural networks. p. 20–34, 2018. No
citation in the text.

SHIH, A.; DARWICHE, A.; CHOI, A. Verifying binarized neural networks by angluin-style
learning. p. 354–370, 2019. No citation in the text.

SILVER, D. et al. Mastering the game of go with deep neural networks and tree search.
Nature, v. 529, p. 484–489, 2016. Disponível em: <https://api.semanticscholar.org/
CorpusID:515925>. No citation in the text.

SONG, X. et al. QNNVerifier: A tool for verifying neural networks using SMT-based
model checking. ArXiv:abs/2111.13110, 2021. No citation in the text.

STURSBERG, O. et al. Verification of a cruise control system using counterexample-guided
search. Control Engineering Practice, v. 12, p. 1269–1278, 2004. No citation in the text.

SUN, B. et al. Quantized synchronization of memristive neural networks with time-varying
delays via super-twisting algorithm. Neurocomputing, v. 380, p. 133–140, 2020. No
citation in the text.

SZE, V. et al. Efficient processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, v. 105, n. 12, p. 2295–2329, 2017. No citation in the text.

TEUBER, S. et al. Geometric path enumeration for equivalence verification of neural
networks. in ICTAI, IEEE, Nov 2021. No citation in the text.

TRAN, H.-D. et al. Star-based reachability analysis of deep neural networks. In: FM. [S.l.:
s.n.], 2019. No citation in the text.

TRAN, H.-D. et al. Star-based reachability analysis of deep neural networks. p. 670–686,
2019. No citation in the text.

https://api.semanticscholar.org/CorpusID:19173163
https://api.semanticscholar.org/CorpusID:19173163
https://books.google.pt/books?id=cb0qEAAAQBAJ
https://books.google.pt/books?id=cb0qEAAAQBAJ
https://api.semanticscholar.org/CorpusID:1114678
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:515925

References 129

UMUROGLU, Y.; JAHRE, M. Streamlined deployment for quantized neural networks.
ArXiv, abs/1709.04060, 2017. No citation in the text.

URBAN, C.; MIN’E, A. A review of formal methods applied to machine learning. ArXiv,
abs/2104.02466, 2021. No citation in the text.

WANG, K. et al. Haq: Hardware-aware automated quantization with mixed precision.
2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), p.
8604–8612, 2018. Disponível em: <https://api.semanticscholar.org/CorpusID:102350477>.
No citation in the text.

WANG, X. et al. Towards formal verification of neural networks: A temporal logic based
framework. p. 73–87, 2019. No citation in the text.

WANG, Y.; MA, Z.; YANG, C. A new mixed precision quantization algorithm for neural
networks based on reinforcement learning. 2023 IEEE 6th International Conference on
Pattern Recognition and Artificial Intelligence (PRAI), p. 1016–1020, 2023. No citation
in the text.

WANG, Y. et al. Quantized control for extended dissipative synchronization of chaotic
neural networks: A discretized lkf method. ISA transactions, 2021. No citation in the
text.

WANG, Z. et al. Evolutionary multi-objective model compression for deep neural networks.
IEEE Computational Intelligence Magazine, v. 16, n. 3, p. 10–21, 2021. No citation in
the text.

WEBB, S. et al. Statistical verification of neural networks. arXiv: Machine Learning,
2018. No citation in the text.

WEISS, R. et al. Applications of neural networks in biomedical data analysis. Biomedicines,
v. 10, 2022. No citation in the text.

WONG, B. K.; SELVI, Y. Neural network applications in finance: A review and analysis
of literature (1990-1996). Inf. Manag., v. 34, p. 129–139, 1998. No citation in the text.

WU, H. et al. Research on artificial intelligence enhancing internet of things security: A
survey. IEEE Access, v. 8, p. 153826–153848, 2020. No citation in the text.

WU, H. et al. Integer quantization for deep learning inference: Principles and
empirical evaluation. ArXiv, abs/2004.09602, 2020. Disponível em: <https:
//api.semanticscholar.org/CorpusID:216035831>. No citation in the text.

XU, C. et al. Alternating multi-bit quantization for recurrent neural networks. ArXiv,
abs/1802.00150, 2018. No citation in the text.

XU, X. et al. Quantized graph neural networks for image classification. Mathematics,
2023. No citation in the text.

XU, Y. et al. Deep neural network compression with single and multiple level quantization.
In: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and
Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI
Symposium on Educational Advances in Artificial Intelligence. [S.l.]: AAAI Press, 2018.
(AAAI’18/IAAI’18/EAAI’18). ISBN 978-1-57735-800-8. No citation in the text.

https://api.semanticscholar.org/CorpusID:102350477
https://api.semanticscholar.org/CorpusID:216035831
https://api.semanticscholar.org/CorpusID:216035831

References 130

YANG, H. et al. Neural network quantization based on model equivalence. 2022
International Conference on High Performance Big Data and Intelligent Systems (HDIS),
p. 8–12, 2022. No citation in the text.

YANG, J. et al. Quantization networks. 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), p. 7300–7308, 2019. No citation in the text.

YANG, P. et al. Enhancing robustness verification for deep neural networks via
symbolic propagation. Form. Asp. Comput., Springer-Verlag, Berlin, Heidelberg,
v. 33, n. 3, p. 407–435, jun 2021. ISSN 0934-5043. Disponível em: <https:
//doi.org/10.1007/s00165-021-00548-1>. No citation in the text.

YANG, Y.-Y. et al. A closer look at accuracy vs. robustness. In: Proceedings of the 34th
International Conference on Neural Information Processing Systems. Red Hook, NY, USA:
Curran Associates Inc., 2020. (NIPS’20). ISBN 9781713829546. No citation in the text.

ZHANG, J.; ZHOU, Y.; SAAB, R. Post-training quantization for neural networks with
provable guarantees. SIAM Journal on Mathematics of Data Science, v. 5, n. 2, p.
373–399, 2023. No citation in the text.

ZHANG, W. et al. Sentiment analysis in the era of large language models: A reality check.
ArXiv, abs/2305.15005, 2023. Disponível em: <https://api.semanticscholar.org/CorpusID:
258866189>. No citation in the text.

ZHANG, Y.; SONG, F.; SUN, J. QEBVerif: Quantization error bound verification of
neural networks. In: Computer Aided Verification. Cham: Springer Nature Switzerland,
2023. p. 413–437. ISBN 978-3-031-37703-7. No citation in the text.

ZHANG, Y. et al. Qvip: An ilp-based formal verification approach for quantized neural
networks. Proceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, 2022. No citation in the text.

ZHOU, A. et al. Incremental network quantization: Towards lossless cnns with
low-precision weights. In: 5th International Conference on Learning Representations. [S.l.]:
OpenReview.net, 2017. No citation in the text.

ZHOU, M. et al. Progress in neural nlp: Modeling, learning, and reasoning.
Engineering, v. 6, n. 3, p. 275–290, 2020. ISSN 2095-8099. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S2095809919304928>. No citation in
the text.

https://doi.org/10.1007/s00165-021-00548-1
https://doi.org/10.1007/s00165-021-00548-1
https://api.semanticscholar.org/CorpusID:258866189
https://api.semanticscholar.org/CorpusID:258866189
https://www.sciencedirect.com/science/article/pii/S2095809919304928

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of symbols
	Contents
	Introduction
	Background
	Motivation
	Problem Statement
	Objectives
	Publications
	Thesis Structure

	Theoretical Foundations
	Neural Networks (NNs)
	Background on NNs
	NN Notation

	Quantization
	Introduction
	Quantization Mapping

	Quantization of NNs
	Practical considerations
	Mixed-precision quantization
	Weight quantization
	Bias quantization
	Activation quantization

	Neural network equivalence
	Types of functional equivalence
	Formal verification of NN equivalence
	SMT Encoding
	GPE encoding

	Summary

	Counter-Example Guided Neural Network Quantization Refinement (CEG4N)
	Introduction
	Equivalent Quantization Problem
	Discussion on the assumptions
	Formal equivalence verification in neural networks quantization
	Importance of quantization scheme choices

	Iterative Quantization Framework
	Simplification of the NN equivalence constraints
	Formalization

	Iterative Quantization Framework Implementation
	Bits Search Module (BSM)
	Abstractions Module (AM)
	Verifier Module (VM)
	Clarification on Input Quantization vs. Input-layer Quantization
	High-level overview of a CEG4N execution
	Algorithmic choices and justifications

	Summary

	Evaluation and Results
	Evaluation goals
	Evaluation metrics
	Evaluation benchmarks
	Datasets
	ACAS Xu
	MNIST
	Seeds
	Iris
	CIFAR-10

	Description of NNs models

	Evaluation of CEG4N using different benchmarks and equivalence properties
	Benchmarks selection
	Optimizer configuration
	Verifiers
	Lower and upper bounds configuration
	Generations and population size configuration
	Initial set of counterexamples configuration
	Equivalence properties configuration
	Time limit configuration
	Collected metrics

	Evaluation of the quality of the QNNs generated by CEG4N
	Benchmark selection
	Input sample set configuration
	Test set configuration
	Collected metrics

	Data and Tools Availability
	Presentation of Results
	Summary

	Discussion
	Analysis of results
	Addressing the quantization challenge for NNs in low-resource domains
	To develop a framework for NN quantization
	Evaluating the efficacy of the CEG4N framework
	Exploring the scalability and applicability of the CEG4N framework
	Advancing the field of NN quantization

	Implications of our findings
	Limitations and challenges
	Summary

	Related work
	NN quantization
	Background on FV for NNs
	Background on NN Equivalence Checking
	Related Work
	Concerns and limitations of NNs
	Impact of Quantization on Model Accuracy and Performance
	Preserving the functional behavior of QNNs
	Limitations of FV and FEV
	The need for a new approach

	Summary

	Conclusion and future work
	Summary of key contributions
	Summary of key findings
	Future directions
	Improving the scalability of the FEV techniques
	Improving the efficiency of EC techniques
	Exploring a more diverse set of NN structures
	Investigating alternative quantization approaches
	Robustness of quantized NNs against adversarial attacks
	Support for QAT techniques

	Final thoughts

	References

