
COVID-19 impact statement

The COVID-19 pandemic has reshaped many aspects of our lives, including the pursuit of
knowledge and academic endeavors. As a Ph.D. student, my journey through this difficult
period has been marked by unique challenges and adaptations that have significantly im-
pacted my academic, personal, and professional life. Specifically, at the beginning of my
second year, I found myself alone abroad while my husband and little girl were in a dif-
ferent country, greatly affecting my mental health. Being alone and in lockdown without
the people I love and care about was incredibly difficult. Additionally, the uncertainty sur-
rounding the progression of the pandemic and its impact on my academic schedules and
plans has been a source of anxiety and stress.

After several months, I could finally return to my home country and settle with my fam-
ily. Adapting to working remotely and having remote meetings in different time zones was
challenging.

Black-Box Cooperative Verification Framework For Finding Software
Vulnerabilities in Concurrent Programs

A thesis submitted to the University of Manchester for the degree of
Doctor of Philosophy

in the Faculty of Science and Engineering

2023

Fatimah Khalid Aljaafari
Department of Computer Science

Contents

Contents 2

List of figures 6

List of tables 8

List of publications 9

Terms and abbreviations 10

Abstract 11

Declaration of originality 12

Copyright statement 13

Acknowledgements 14

1 Introduction 16
1.1 Research motivation and challenges . 19
1.2 Scope of the thesis . 20
1.3 Contributions . 21
1.4 Thesis structure . 22

2 Background and literature review 25
2.1 Chapter introduction . 25
2.2 Common software vulnerabilities . 25

2.2.1 Memory-related vulnerabilities . 26
2.2.2 Concurrency-related vulnerabilities 26
2.2.3 User-defined properties . 27

2.3 Detecting software vulnerabilities . 28
2.3.1 Bounded model checking . 28

2.3.1.1 Bounded model checking tools 30
2.3.2 Fuzzing . 31

2.3.2.1 Fuzzing process . 31
2.3.2.2 Types of fuzzers . 32

2

2.3.2.3 Code instrumentation . 35
2.3.2.4 Sanitizers . 36
2.3.2.5 Concurrency-aware gray-box fuzzers 37

2.4 Cooperative verification approach . 40
2.4.1 Verification witness file format . 41
2.4.2 Cooperative/Hybrid verification tools 43

2.5 Other techniques for finding software vulnerabilities in concurrent programs . 45
2.6 Summary . 46

3 Concurrency-aware gray-box fuzzer 48
3.1 Chapter introduction . 48
3.2 Challenges of fuzzing concurrent programs. 48
3.3 Designing a state-of-the-art concurrency-aware gray-box fuzzer 49

3.3.1 OpenGBF framework . 49
3.3.2 Custom LLVM pass instrumentation 52

3.3.2.1 Delay function instrumentation 52
3.3.2.2 Thread-monitoring functions instrumentation 53
3.3.2.3 Information-collecting functions instrumentation 53

3.3.3 Runtime library for the LLVM pass instrumentation functions 53
3.3.3.1 Controlling the thread interleaving 54
3.3.3.2 Limiting the number of active threads: 55
3.3.3.3 Counterexample . 56
3.3.3.4 Harnessing functions . 58

3.3.4 Full illustrative example . 58
3.4 Summary . 62
3.5 Future work . 63

4 EBF: A black-box cooperative verification for concurrent programs 64
4.1 Chapter introduction . 64
4.2 Challenges in designing black-box cooperative verification tool 65
4.3 Designing cooperative black-box verification tool 66

4.3.1 EBF framework . 67
4.3.1.1 Safety proving stage . 67
4.3.1.2 Seed generation stage . 68
4.3.1.3 Falsification stage . 71
4.3.1.4 Results aggregation stage . 71
4.3.1.5 Final witness generation . 73

4.3.2 CPU time allocation . 76
4.4 Summary . 76
4.5 Future work . 77

3

5 Implementation of EBF 79
5.1 Chapter introduction . 79
5.2 OpenGBF design choices . 79

5.2.1 The fuzzer choice . 79
5.2.2 LLVM pass choice . 79
5.2.3 The benchmarks choice . 80

5.3 EBF implementation details . 80
5.3.1 EBF usage . 80

5.3.1.1 LLVM Pass and runtime library individual usage 81
5.3.2 Running example . 81

5.4 Summary . 86

6 EBF evaluation 88
6.1 Chapter introduction . 88
6.2 Evaluation goals . 88
6.3 Evaluating EBF on SV-COMP benchmarks 89

6.3.1 Running SV-COMP benchmark using BenchExec 91
6.3.2 EBF 2.3 participation in SV-COMP 2022 91
6.3.3 EBF 4.0 with different state-of-the-art BMC tools 92
6.3.4 EBF 4.2 participation in SV-COMP 2023 94

6.4 Evaluating EBF on real-world concurrent programs 95
6.4.1 Detecting a data race in wolfMQTT 95
6.4.2 Detecting memory-related vulnerabilities in real-world concurrent

programs . 97
6.4.2.1 pfscan . 98
6.4.2.2 bzip2smp . 99
6.4.2.3 swarm1.1 . 99

6.5 Optimizing EBF’s settings . 99
6.5.1 Maximum number of threads in OpenGBF 100
6.5.2 Maximum amount of delay in OpenGBF 100
6.5.3 Early thread termination in OpenGBF 102
6.5.4 Impact of GBF design choices . 102
6.5.5 CPU time allocation inside EBF . 104

6.6 Analyzing the non-determinism of OpenGBF 104
6.6.1 Non-determinism on SV-COMP 2022 benchmark suite 105
6.6.2 Non-determinism on wolfMQTT and real-world programs 106

6.7 Limitations . 106
6.7.1 Incompleteness of fuzzing for proving safety. 106
6.7.2 Correct seed sequence for the fuzzer. 107

4

6.7.3 Sources of incorrect verdicts in EBF 107
6.7.4 Choice of parameter settings in EBF 108

6.8 Summary . 108
6.9 Future work . 109

7 Conclusions 110
7.1 Future work . 112

References 114

Appendices 133

A Detecting a data race in wolfMQTT 134

B Volunteering for the community 136

Word count: 30000

5

List of figures

1.1 Thesis structure. 24

2.1 Concurrency-related vulnerabilities. 27
2.2 Control-flow graph of two threads (TA and TB). T represents the node (program

location), and A and B represent the edges (program instructions). 29
2.3 The general fuzzing process contains four main components (Monitor, Testcase

generator, Bug detector, and Bug filter). It takes the PUT and seed files as input,
executes the fuzzing process, and generates a report when it crashes. 33

2.4 The witness file in GraphML format Vs. graphical representation for Listing 2.3. 42

3.1 OpenGBF framework, which consists of eight components: C program,
Sanitizer, LLVM Pass executable, Runtime library, AFL++ clang wrapper,
fuzzing process, verdict, and counterexample. 50

3.2 A snippet of the counterexample (witnessInfoAFL_pid) generated by our
OpenGBF resulted from our example presented in 3.1. 57

3.3 Visualization of the memory accesses to variable a in Listing 3.1 60

4.1 EBF framework. 68
4.2 A snippet of the witness file generated from ESBMC corresponds to our example

presented in 3.1. 74
4.3 A snippet of the Final witness file (EBF_thesis_example.c.graphml) generated

from our EBF after aggregating the result. 75

5.1 The EBF output for example 5.1 shows that both engines successfully reach the
assert statement. 83

5.2 The witness file in GraphML format Vs. graphical representation of the witness
for Listing 5.1. 86

6.1 Quantile plot for ConcurrencySafety category in SV-COMP 2022. 93
6.2 Client/broker message passing, clients subscribe to topics, and brokers publish

messages to those topics (derived from [175]). 96

6

6.3 Overview on the bug found by OpenGBF and how wolfMQTT developer fixed it. 97
6.4 The number of bugs (i.e., Correct False verdicts) discovered by OpenGBF in

EBF 4.0 for different values of the threshold on the maximum number of active
threads. 101

6.5 Number of bugs (i.e., Correct False verdicts) detected by OpenGBF in EBF 4.0

for different upper bounds of the random delay distributions. 101
6.6 Number of bugs (i.e., Correct False outcomes) discovered by OpenGBF in EBF

4.0 for different early thread termination strategies. 103
6.7 The difference between OpenGBF, OpenGBF 4.2, and the non-instrumented

GBF in bug detection capabilities for concurrent programs. 103
6.8 Number of bugs (i.e., Correct False outcomes) discovered by EBF 4.0 for

different time allocations between the fuzzer and the BMC. 104
6.9 The results re-run OpenGBF 20 times on SV-COMP 2022. 105
6.10 Non-determinism of OpenGBF across 20 re-runs of the SV-COMP’22 bench-

mark suite. 106
6.11 Non-determinism in wolfMQTT and the real-world programs from Table 6.4

across 20 re-runs. 107

A.1 A complimentary gift from wolfSSL team for finding the data race bug. 134
A.2 Wolfmqtt Github fixed issue. 135

7

List of tables

2.1 Represents the common types of fuzzers (Black-box, Grey-box, and White-box
Fuzzers) and the tools that use these types. 34

2.2 Taxonomy of existing state-of-the-art concurrency-aware gray-box fuzzers,
including the scope of the tool, the vulnerabilities they can detect, the availability
of the source code, and the strategies and mutations they use. 38

2.3 A key data and its meaning for Graph Data for Witness Automata. 43
2.4 A key data and its meaning for Edge Data for Automata Transitions. 43

4.1 EBF reports a program Safe (Verification Successful), Unknown, Unsafe
(Verification Failed) or reports a Conflict by aggregating the outputs of BMC
and GBF. 73

5.1 The flag set supported in EBF. 81

6.1 SV-COMP scoring system. 90
6.2 The results presented by EBF 2.3 and CBMC 5.43 in the Concurrency Safety

category of SV-COMP 2022. 92
6.3 Comparative analysis of the verification outcomes for EBF 4.0 with different

BMC tools “plugged in” against their individual performance on the benchmarks
from the Concurrency Safety category of SV-COMP 2022. 94

6.4 Evaluation of EBF on real-world concurrent programs: For each program, we
provide information about its size in terms of the number of lines of code (LOC),
the number of vulnerabilities detected by EBF (NN), the types of corresponding
vulnerabilities (NT), the median time (in seconds) from 20 EBF re-runs, and
the EBF engine (i.e., ESBMC or OpenGBF) that detected the corresponding
vulnerability. 98

8

List of publications

Published and accepted papers:
F. Aljaafari, R. Menezes, E. Manino, F. Shmarov, M. A. Mustafa, and L. Cordeiro, “Combin-
ing bmc and fuzzing techniques for finding software vulnerabilities in concurrent programs,”
IEEE Access, vol. 10, pp. 121 365–121 384, 2022. doi: 10.1109/ACCESS.2022.3223359

F. Aljaafari, F. Shmarov, E. Manino, R. Menezes, and L. Cordeiro, “EBF 4.2: Black-
Box cooperative verification for concurrent programs (competition contribution),” in Proc.
TACAS (2), ser. LNCS, Springer, 2023

Submitted / In progress / co-authored papers:
K. Alshmrany, M. Aldughaim, A. Bhayat, F. Shmarov, F. Aljaafari, and L. Cordeiro, “FuSeBMC
v4: Improving code coverage with smart seeds via fuzzing and static analysis,” The Formal
Aspects of Computing Journal (FAC),

9

https://doi.org/10.1109/ACCESS.2022.3223359

Abbreviations

BMC Bounded Model Checking

SAT Satisfiability Solver

SMT Satisfiability Modulo Theories

PUT Program Under Test

GBF Gray-Box Fuzzing

OpenGBF Open-source Gray-Box Fuzzing

EBF Ensembles of Bounded Model Checking with Fuzzing

ESBMC Efficient SMT-based Bounded Model Checker

AFL American Fuzzy Lop

IR Intermediate Representation

CFG Control-Flow Graph

SSA Static Single Assignment

AST Abstract Syntax Tree

SV-COMP Software Verification Competition

SAGE Scalable Automated Guided Execution

SMC Stateless Model Checking

POR Partial Order Reduction

VFG Value-Flow Graph

IoT Internet of Things

10

Abstract

Detecting software vulnerabilities in concurrent programs poses a significant challenge
due to the extensive state-space exploration required, with interleavings growing exponen-
tially as the number of program threads and statements increases. Combining different verifi-
cation and testing techniques, at least in theory, achieves better results than individual use. In
theory, combining different verification and testing techniques to detect software vulnerabili-
ties can improve results compared to using them individually. We propose and evaluate EBF
(Ensembles of Bounded Model Checking with Fuzzing) – a technique that combines Bounded
Model Checking (BMC) and Gray-Box Fuzzing (GBF) to detect software vulnerabilities in
concurrent programs. Given the lack of publicly available GBF tools for concurrent pro-
grams, we first propose OpenGBF, a new open-source concurrency-aware gray-box fuzzer
that explores different thread interleavings by instrumenting the program under test (PUT)
with random delays. Then, we develop a cooperative framework that combines the BMC
tool and OpenGBF as follows. On the one hand, we force the BMC tool to provide seed val-
ues to OpenGBF by injecting additional vulnerabilities (error statements) in the PUT, thus
increasing the likelihood of OpenGBF executing paths guarded by complex mathematical
expressions. On the other hand, we aggregate the results of the BMC and OpenGBF tools in
the framework using a decision matrix, thus improving the accuracy of EBF. We evaluate the
performance of EBF compared to state-of-the-art pure BMC tools and demonstrate that it can
produce up to 14.9% more correct witnesses than the corresponding BMC tools alone. More-
over, we show the effectiveness of OpenGBF by illustrating its capability of finding 41.9%
of the vulnerabilities within our evaluation suite, while non-concurrency-aware GBF tools
can only find 0.55%. Finally, thanks to our concurrency-aware OpenGBF, EBF successfully
detects a data race in the open-source wolfMqtt library and reproduces known bugs in several
other real-world concurrent programs, which shows its efficacy in finding vulnerabilities in
real-world concurrent software.

11

Declaration of originality

I hereby confirm that no portion of the work referred to in the thesis has been submitted
in support of an application for another degree or qualification of this or any other university
or other institute of learning.

12

Copyright statement

i The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The Uni-
versity of Manchester certain rights to use such Copyright, including for administrative
purposes.

ii Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988
(as amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii The ownership of certain Copyright, patents, designs, trademarks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv Further information on the conditions under which disclosure, publication and commer-
cialisation of this thesis, the Copyright and any Intellectual Property and/or Reproduc-
tions described in it may take place is available in the University IP Policy (see http:
//documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant
Thesis restriction declarations deposited in the University Library, The University Li-
brary’s regulations (see http://www.library.manchester.ac.uk/about/regulations/)
and in The University’s policy on Presentation of Theses.

13

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

Firstly, I would like to express my heartfelt gratitude to my supervisor, Dr. Lucas Cordeiro,
for his constant encouragement, support, and guidance during my Ph.D. journey. I cannot
imagine a better supervisor; he always supported me and was instrumental in both my research
and personal life. He has also been generous in helping me rebuild confidence and overcome
difficulties. I would also like to thank my co-supervisor, Dr. Mustafa A. Mustafa, for his
guidance, assistance, and invaluable feedback.

Secondly, I would like to express my gratitude to my collaborators, Rafael Menezes,
Edoardo Manino, and Fedor Shmarov, for their guidance, support, and valuable discussions
we had throughout our collaboration. Working alongside them not only enhanced my profes-
sional journey but also facilitated a comfortable and inspiring working environment.

Thirdly, I would like to extend my heartfelt gratitude to my wonderful family for making
my journey to success possible and rewarding. My special thanks go to my dear husband, Ab-
dulateef Alnouaim, who has been my unwavering source of encouragement, motivating me to
reach for my dreams and offering his support whenever needed. I would also like to express
my deep appreciation to my parents, Khalid and Mona, for their constant love and endless
support. Their guidance and belief in me have been instrumental in my achievements. To
my grandparents, whose prayers and words of wisdom have guided my path to success. To
my caring brothers and sisters, thank you for your continuous encouragement. To my beau-
tiful little daughter, Norah, who has been my constant motivation and source of inspiration.
Her patience during my busiest moments is a testament to her remarkable understanding and
support.

Finally, I would like to thank King Faisal University for awarding me the scholarship that
made my education possible. I also sincerely thank my home country for generously funding
my educational journey, enabling me to pursue my dreams and acquire the knowledge and
skills that have shaped my future.

14

.

15

Chapter 1

Introduction

Concurrency is becoming increasingly widespread in present-day software systems due to
the performance benefits provided by multi-core hardware [4][5][1]. Examples of using con-
currency include online banking, auto-pilots, computer games, and railway ticket reservation
systems [6]. Such programs are relatively complex, posing unique challenges compared to
sequential programs. The main reason for such complexity is that it handles multiple threads
sharing the same resources, each with a different execution.

For example, in online banking [7], the issue may occur when two or more users access
their account and transfer money to the same recipient simultaneously, and both transactions
are processed concurrently. Hence, the bank system should ensure that the funds are deducted
correctly from the users’ accounts and transferred to the recipient account without any con-
flicts. So, in this case, the system should protect the read and write operations; failure to do so
will result in software vulnerabilities [7]. Another real-world example is the Heartbleed1 vul-
nerability (CVE-2014-0160) in the OpenSSL cryptographic library, allowing the attacker to
read the memory and obtain sensitive information from the affected system. This information
should be protected.

Software vulnerabilities are the flaws or weaknesses within a program that allows an at-
tacker to perform malicious activities and compromise the security and integrity of the sys-
tem [8]. Concurrent programs also contain software vulnerabilities that an attacker can ex-
ploit [9]. Concurrent programs involve the simultaneous operation of multiple processes or
threads on shared computing resources [10]. Consequently, such programs can feature vulner-
abilities that are specific to concurrency, such as data races, deadlocks, and thread leaks [11],
as well as vulnerabilities that are common to sequential programs, like invalid memory ac-
cesses and memory leaks [12]. Some software vulnerabilities are more severe than others.
For instance, out-of-bounds (an example of invalid memory access) was ranked as the top
issue in the 2022 MITRE ranking2, while data races were placed 22nd. However, ensuring
the correctness and safety of such systems or software is crucial [13].

1https://heartbleed.com/
2https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

16

https://cwe.mitre.org/top25/archive/2022/2022_cwe_top25.html

Software testing is essential to software development; it executes a program or system
to find flaws or errors [14]. The main objectives of software testing are to ensure software
quality, functionality, and performance and to produce reliable results [15]. The process in-
volves executing exhaustive test cases, which is challenging due to the knowledge required of
the systems’ behaviour. Despite the significant resources devoted to software testing, many
existing software still encounter software vulnerabilities [16]. In the case of concurrent pro-
grams, the different possible threads’ interleavings cause the program’s execution to be non-
deterministic [17]. Consequently, some vulnerabilities are difficult to find because they only
happen in a specific thread order, making testing concurrent programs an inherently difficult
task compared with sequential programs [5].

Due to this complex nature of concurrent programs [18], manual testing of such programs
is not always adequate [19]; automated testing and verification are often used [20]. In this
context, there is a wide range of different automated techniques for finding vulnerabilities
in concurrent programs [21][22]. One of the techniques is abstract interpretation [19], a
program analysis technique based on computing fixed-point lattices over abstract semantics
of the system. The classical rule of signs for multiplication can be seen as an example of the
technique where the abstract domain is the sign of a number; one can compute the sign of
multiplication without doing any concrete computation (e.g., two negative numbers will result
in a positive). Another technique is data-flow analysis [23][24], which is the generalization of
the process of computing flow equations for all nodes of a Control-Flow Graph (CFG) [25].
This technique is commonly applied for compiler optimizations (as it is polynomial for bit-
vector problems [26]) [27]. It can be used for more precise safety properties (e.g., privacy
leaks). Among these, two techniques have substantially developed in recent years: Bounded
Model Checking (BMC) and fuzzing [28].

BMC [29] is a formal verification technique that searches for program violations by un-
winding the program to a given bound k. If no property violation is detected, then the value
ofK is increased until the violation is detected, the verification problem becomes intractable,
or the predefined upper bound is reached. Although many different bounded model check-
ers [30]–[34] have been successfully used to verify sequential and concurrent programs, BMC
has several fundamental drawbacks. Specifically, BMC frequently encounters difficulties in
achieving high path coverage (especially for concurrent programs) and reaching deep state-
ments within the code due to the state-space explosion and its reliance on Boolean Satisfia-
bility (SAT) [35] or Satisfiability Modulo Theories (SMT) solvers [36].

The term “fuzz” was introduced by Barton Miller in the 1990s [37]. Miller et al. conducted
an experiment where they tested 90 programs by running them with random inputs. They
found that over 24% of these programs crashed. As a result, they called the term “fuzz” for
the programs that generated these random inputs. Since then, “fuzz testing” or “fuzzing” has
become the name of the technique used to find vulnerabilities through extensive testing with

17

numerous test cases or inputs. Fuzzing [22] is an automated software testing technique used
to detect software vulnerabilities, bugs, and undefined behaviour, mainly for sequential pro-
grams. It involves inputs repeatedly generated and provided to a Program Under Test (PUT);
these inputs often start with some initial guess (seed values). Then, the PUT is executed for
each given sequence of input values; its behaviour is examined for abnormalities, such as
crashes or failures [38]. Fuzzing has several advantages, including its relatively straightfor-
ward integration with existing testing frameworks, high scalability, and, most importantly, the
ability to explore deep execution paths that are not as costly as in BMC [39]. However, fuzzing
has some drawbacks; it often suffers from low branch coverage since the input generation is
based on random mutations [40]. It typically happens when a program features conditional
statements with complex conditions (e.g., input validation functions). Consequently, provid-
ing a good initial seed value for the fuzzing process is essential. Another challenge facing the
fuzzing process is finding vulnerabilities in concurrent programs [41] because the existing
fuzzing techniques do not focus on thread interleavings that affect execution states.

In the past, efforts have been made toward developing a combined verification technique
that harnesses the strengths of both BMC and fuzzing. For example, Ognawala et al. [42]
developed a hybrid framework that combines fuzzing and symbolic execution to improve
function coverage and apply it to general-purpose software. Alshmrany et al. [43] developed
a technique that uses BMC to guide a fuzzer in analyzing sequential C programs. Chowdhury
et al. [44] developed a technique that improves the seed generation of Gray-Box Fuzzing
(GBF) by using BMC as a constraint solver to find execution paths within complex blocks
of code. Nevertheless, given the current knowledge in software verification, no techniques
harness BMC and fuzzing to verify concurrent programs. The question of whether combining
BMC and fuzzing improves bug finding in concurrent programs remains open.

The challenge in answering this fundamental question is threefold. First, while many open-
source BMC tools exist in the literature, all existing concurrency fuzzers are (at least partially)
closed-source. As a result, using any of these concurrency-aware fuzzers requires a major re-
producibility effort. Second, combining BMC and fuzzing techniques for concurrency is not
straightforward, given the lack of existing baselines. Third, BMC and fuzzing are very differ-
ent techniques; their cooperation inside the framework has to be carefully coordinated. We
take inspiration from a trend in automated software verification called cooperative verifica-
tion [45], [46]. In this context, the main idea is to implement a communication interface
between different tools (i.e., a common information exchange format), which allows the ex-
change of partial results (artifacts). By doing so, we can harness the strengths of different
verification techniques and solve more complex problems [47]–[49].

18

1.1. RESEARCH MOTIVATION AND CHALLENGES

1.1 Research motivation and challenges

Generally, BMC and fuzzing detect software vulnerabilities in fundamentally different
ways. As a result, it is natural to ask whether combining the two techniques can lead to
better coverage of the search space and whether combining them can lead to finding more
vulnerabilities than other existing approaches. More precisely, in this Ph.D. thesis, we ask
the following fundamental research question:

Research Question. Does combining bounded model checkers and gray-box fuzzers dis-
cover more concurrency vulnerabilities, and does it do it faster than either approach on their
own?

In addressing this question, we are confronted with many practical design challenges, the
solution of which is central to this PhD thesis:

1. Concurrency-aware gray-box fuzzer. Although there have been recent attempts to fuzz
concurrent programs, no mature, fully open-source tool exists. As a result, designing
such a tool is an important step toward answering our research question. In doing so,
we aim to draw from the lessons learned in the existing literature and implement our
OpenGBF. This tool is representative of a concurrency-aware gray-box fuzzer [1].

However, developing such a concurrency-aware fuzzer tool to fuzz concurrent programs
poses sub-challenges, which are outlined as follows; this challenge and the following
sub-challenges are tackled in Chapter 3:

(a) Thread interleavings: concurrent programs can have different thread interleav-
ings, which leads to different behaviour. Therefore, such a tool requires exploring
different thread interleavings and being thread-aware.

(b) Data races and atomicity violations: concurrent programs can be exposed to dif-
ferent vulnerabilities besides the bugs encountered in sequential programs. Thus,
the concurrency-aware fuzzer should detect these concurrency-related bugs (e.g.,
data race, deadlock, and thread leak) beside the memory-related bugs (e.g., mem-
ory leak, buffer overflow) by generating test inputs that can trigger such vulnera-
bilities.

(c) Scalability: the large number of thread interleavings in concurrent programs makes
fuzzing computationally exhausting. Hence, limiting the number of active threads
during fuzzing is important to reduce the computation overhead.

(d) Non-Deterministic behaviours: reproducing a specific bug in a concurrent pro-
gram is challenging due to the non-deterministic behaviour of concurrent pro-
grams. Thus, the fuzzer requires an approach to reproduce the exact input and
interleavings that lead to the bug.

19

1.2. SCOPE OF THE THESIS

2. Input seed generation. Fuzzers rely on initial seed values as their starting points for
generating (mutating) test cases or inputs. These seeds are critical because they provide
the fuzzer with a foundation to initiate its testing process. Furthermore, seed values are
essential in guiding the fuzzer’s exploration of the program’s search space. However,
when exploring complex path conditions, such as (if(x*x -2*x +1 == 0)), fuzzers
often struggle to explore such program paths effectively. Consequently, providing good
initial seeds that cover most of the program search space is essential to improve the
fuzzer bug-finding capabilities. This challenge is tackled in Section 4.3.1.2.

3. Aggregating BMC and GBF results. By implementing a cooperative framework of
different tools, we risk them returning conflicting results. The main reason is that BMC
depends on abstractions of program execution states and symbolic execution (see Sec-
tion 2.3.1), whereas the fuzzer tests concrete inputs and execution schedules. Hence,
when the two techniques disagree, generating a bug trace from these tools is vital, which
allows us to obtain a more accurate and comprehensive understanding of the bugs. Also,
we can make an informed choice about the final verification result. This challenge is
tackled in Section 4.3.1.4.

4. Resource allocation trade-off. The main disadvantage of using a cooperative frame-
work of different tools is that they all share the same computational resources. We must
decide how many resources to allocate to each tool for a program. Generally, this deci-
sion depends not only on the problem at hand but also on the partial results we obtain
from the tools in the cooperative framework. Specifically, in our cooperative framework,
we combined the tools sequentially, and since the fuzzer requires initial seed values, it
waits for the seeds to be extracted from the BMC, and accordingly, the fuzzing process
starts. We discuss a strategy to optimize our cooperative framework in Section 4.3.2.

1.2 Scope of the thesis

The scope of this Ph.D. thesis is exploring, developing, and evaluating a novel technique
that combines two well-known software verification techniques, Bounded Model Checking
(BMC) and fuzzing, to efficiently address the challenges introduced when verifying concur-
rent programs (i.e., multi-threaded programs written in C language). The main objective is
to harness the strength of both BMC and fuzzing to improve the bug-detection capabilities
and the verification process in general for concurrent programs. Mainly, this thesis aims to:

• Explore the challenges of verifying concurrent programs: we explore the challenges
associated with verifying concurrent programs. We present the limitations of existing
verification techniques and show the need for a technique that can address these chal-
lenges posed by concurrent programs.

20

1.3. CONTRIBUTIONS

• Propose a cooperative verification framework: we build a framework that combines
dissimilar techniques (BMC and fuzzing) to obtain the strength of both techniques to
improve bug-finding capabilities.

• Design and implement OpenGBF: we provide a detailed explanation of OpenGBF.
We provide the implementation challenges of fuzzing concurrent programs and how
OpenGBF addresses them.

• Design and implement EBF tool: we provide a detailed explanation of EBF frame-
work. We explain the cooperation and the implementation of the communication inter-
face between BMC and OpenGBF.

• Address the combination challenges: we address the challenges of combining two
different techniques. We explore how we provide seeds to the fuzzer, divide the time
allocation for each technique, and how we incorporate the final result.

• Evaluate EBF efficiency: we evaluate EBF on different benchmark suites to show its
effectiveness in finding concurrency and memory-related bugs. We also compare EBF
with different state-of-the-art BMC tools to illustrate its bug-finding capabilities, scala-
bility, and correctness.

• Evaluate EBF on real-world programs: we apply EBF framework to real-world con-
current programs, highlighting its scalability of finding bugs in large programs. We will
also show EBF ability to reproduce known bugs in real-world concurrent programs.

• Future work: we conclude each chapter with ideas to improve concurrent program
verification, specifically focusing on improving EBF.

1.3 Contributions

The main contribution of this Ph.D. thesis is developing, implementing, and evaluating a
cooperative framework to detect concurrency and memory-related vulnerabilities in concur-
rent programs. In this respect, this thesis makes three major novel contributions.

First, we develop a new fully open-source state-of-the-art concurrency-aware gray-box
fuzzer called OpenGBF [50]. Our main approach is instrumenting the PUT with random
delays obtained from a random number generator whose seed value is controlled by the fuzzer.
This method allows us to find different thread interleavings and explore deep execution paths.
Additionally, our fuzzer can generate crash reports containing the entire program execution
path, including the thread interleavings that lead to the crash.

Second, we present EBF – Ensembles of Bounded Model Checking with Fuzzing. This
technique combines the strengths of BMC in resolving complex conditional guards with the

21

1.4. THESIS STRUCTURE

flexibility of our concurrency-aware gray-box fuzzer OpenGBF. EBF introduce initial seeds
by repeatedly introducing error statements for the BMC to extract such seeds from their coun-
terexample for the fuzzer. These extracted seeds help the fuzzer mutate and generate more
effective seeds to explore different paths. Furthermore, EBF incorporates a result decision
matrix for coping with the potential conflict verdicts produced by the tools in the coopera-
tive. In addition, EBF distributes the available computational resources between the tools to
improve its bug-finding capabilities efficiently.

Finally, we present our evaluation of EBF, focusing on its bug-finding capabilities, scal-
ability, and correctness. First, we demonstrate that combining BMC and fuzzing improves
verification results compared to either technique applied separately. More precisely, EBF en-
hances the bug-finding capabilities of all state-of-the-art concurrent BMC tools considered
in this thesis by up to 14.9%. Similarly, EBF can detect 24.2% of the vulnerabilities in our
evaluation benchmark suit. In contrast, the state-of-the-art gray-box fuzzer AFL++ can only
detect 0.55%. Second, we demonstrate the scalability of EBF in detecting vulnerabilities in
real-world programs by applying EBF to the wolfMQTT open-source library that implements
the MQTT messaging protocol, and we detect a data race bug. We reported the bug to the
developers of the wolfMQTT library; they fixed the bug after reporting it in June 2021. Also,
EBF successfully reproduced known bugs in several real-world concurrent programs (i.e.,
pfscan [51], bzip2smp [52] and swarm 1.1 [53]). Lastly, we reported that the bug-finding ca-
pabilities of EBF are stable across a wide range of parameter values. Specifically, we conduct
a comparison experiment along three different axis: the distribution time between the BMC
tool and OpenGBF, the maximum delay introduced by OpenGBF, and the maximum number
of threads allowed by OpenGBF. Our findings show a large sweet spot of parameter values
that allows EBF to find nearly 75-fold more bugs than the worst setting.

1.4 Thesis structure

The remainder of this thesis is arranged in the following structure (the thesis’s visual struc-
ture is also illustrated in Figure 1.1).

Chapter 2 presents the background of the common software vulnerabilities and static analysis
techniques, precisely Bounded Model Checking (BMC) and automated software testing tech-
niques, precisely Gray-box fuzzing. It also presents the related work of the BMC, Fuzzing,
and hybrid techniques, including their advantages and disadvantages.

Chapter 3 provides the details about the design of our concurrency-aware gray-box fuzzer
OpenGBF, which include the challenges of fuzzing concurrent programs and the design

22

1.4. THESIS STRUCTURE

choices made to address these challenges. Specifically, it describes each component inside
OpenGBF framework, which involves instrumenting the PUT by inserting functions that con-
trol and monitor the thread interleavings in concurrent programs. The content of this chapter
is derived from [1].

Chapter 4 describes EBF, which combines BMC and OpenGBF. It contains EBF framework
that includes four stages, which precisely describe the cooperation between the concurrency-
aware fuzzer and BMC tool. The stages include seed generation for helping the fuzzer, ag-
gregating the final results, and generating the bug report. It also describes the CPU time
allocation inside EBF. The content of this chapter is derived from [1] and [2].

Chapter 5 presents OpenGBF design choices. Also, it presents the implementation details
of EBF, including the programming language used, how to run the tool, and the flags that can
be used, and also describes the tool’s output. In addition, it describes the use of OpenGBF
alone without using EBF.

Chapter 6 analyses the results of both EBF in general and OpenGBF in specific. It describes
the benchmark suit used for the evaluation. Also, it evaluates three versions of EBF on Con-
currency Safety category from SV-COMP 2022. Furthermore, it evaluates EBF on the real-
world concurrent program and provides an evaluation of EBF optimization settings. The
content of this chapter is adapted from [1].

Chapter 7 summarizes the research contributions, highlighting the significance of the pro-
posed framework in software verification for concurrent programs, the evaluation, and the
future work in concurrent programs’ verification.

23

1.4. THESIS STRUCTURE

Chapter 1: Introduction

Chapter 2: Background and literature review

• Common software vulnerabilities
• Detecting software vulnerabilities:

– BMC
– Fuzzing

• Cooperative verification framework

Novel Contributions

Chapter 3: Concurrency-aware gray-box
fuzzer

Chapter 4: EBF: A black-box cooperative
verification for concurrent programs

Designing cooperative black-box verification
tool:

• Safety proving stage
• Seed generation stage
• Falsification stage
• Results aggregation stage

Designing concurrency aware-fuzzer OpenGBF:

• Custom instrumentation and runtime library:
– Delay function
– Thread monitoring function
– Information collecting function

Experimental Evaluation

Chapter 5: EBF implementation Chapter 6: EBF evaluation

• Evaluation Goals
• Evaluating EBF on SV-COMP benchmarks
• Evaluating EBF on real-world concurrent

programs
• Optimizing EBF’s settings

• OpenGBF design choices
• EBF implementation details
• Usage

Chapter 7: Conclusions

Publication [1] Publications [1] [2]

Publication [1]

Figure 1.1. Thesis structure.

24

Chapter 2

Background and literature review

2.1 Chapter introduction

This chapter introduces the core concepts behind the verification of concurrent programs,
especially the background information behind designing EBF framework. It includes the
common software vulnerabilities EBF supports, the cooperative framework architecture, LLVM
Pass instrumentation, Bounded model checking, and Gray-box fuzzing. Also, it presents the
related work in BMC, fuzzing, hybrid techniques, and other techniques for finding vulnera-
bilities in concurrent programs.

2.2 Common software vulnerabilities

Software vulnerabilities, also known as software flaws, security vulnerabilities, and bugs
(in this thesis, we will refer to them as either software vulnerabilities or bugs), have be-
come the root cause of threats in cybersecurity [49]. Software vulnerabilities are any flaws
or weaknesses in the system design or implementation that an attacker can exploit, result-
ing in a breach of the system’s security policy and causing severe damage. Software vul-
nerabilities can be classified into different types of bugs; we will focus on two types. The
first type, memory-related bugs, occur in concurrency programs because specific program
inputs with specific threads interleavings can trigger these bugs [54], [55]. The second type
is Concurrency-related bugs, which occur because of the non-determinism behaviour of the
thread interleavings [16]. However, predefined assertions also check if the specific condition
holds during the test execution. Both of these bugs (concurrency bugs and memory-related in
concurrency context) may lead the program to produce abnormal behaviours or unexpected
hangs.

25

2.2. COMMON SOFTWARE VULNERABILITIES

2.2.1 Memory-related vulnerabilities

Memory-related vulnerabilities refer to security flaws or weaknesses in programs caused by
improper handling or manipulation of a program’s memory. Which can be classified as the
following:

Invalid memory accesses comprise a large family of memory safety violations, which
include accessing memory outside the bounds of the intended buffer for either reading (po-
tentially exposing some sensitive data to the attacker) or writing (resulting in memory cor-
ruptions or injections of executable code), accessing previously freed memory (known as
“user-after-free”), or pointing to a memory location after deallocation (known as “Dangling
Pointer”) [56].

Uninitialized variables occur when a program attempts to access a declared variable but
is not initialized with a value (e.g., int x; int sum=x+5;), resulting in obtaining garbage
data or sensitive information in the memory left from other processes. Also, dereferencing
invalid pointers or NULL pointers can be considered a type from the uninitialized variable
vulnerabilities family, which can cause the program to crash or exit unexpectedly [57].

Memory leak occurs when a program incorrectly handles memory allocations so that
memory no longer needed is not released. Double free can be considered a type of memory
leak vulnerability when a program attempts to free a memory location already released. This
may lead to memory exhaustion, resulting in the system hanging or crashing [58].

2.2.2 Concurrency-related vulnerabilities

Concurrency-related vulnerabilities refer to security flaws or weaknesses in programs caused
by mis-synchronization of multiple threads execution [59]. Which can be classified as the
following:

Data race occurs when the program execution leads to an undesired behaviour because
of a specific sequence and/or timing of the instructions executed by each thread. For exam-
ple, when one thread modifies the shared memory without acquiring a lock first, it results in
memory corruption when another thread attempts to update the exact memory location (see
Figure 2.1a).

Deadlock occurs when the program is not in the final state and cannot progress to any other
state. For example, when a thread fails to release a lock after accessing the shared memory,
the program becomes stuck because the other thread is waiting to access the shared memory
(see Figure 2.1b).

26

2.2. COMMON SOFTWARE VULNERABILITIES

write to (A)T1

T2 write to (A)

time

(a) The program contains data race, which occurs when T1 and T2 are trying to write to
the memory region A simultaneously with no synchronization between the operations.

write to (B)T1 lock (A) unlock (A)... ...

T2 write to (A) lock (B) unlock (B)... ...

time

(b) The program ends in a deadlock since T1 acquires a lock for the memory region A and
then tries to write to the memory region B. At the same time, T2 performs the opposite,

acquiring a lock for B and attempting to write to A. This will result in both threads waiting
indefinitely for each other to release their corresponding locks before the program’s

execution can continue.

create (T3)create (T2) join (T2)...T1

T2

T3 time

... ...

... ...

(c) T3 is a source of thread leak since, unlike T2, it terminates but never joins T1. Hence,
over time, the number of idle threads rises, leading to the possibility of resource exhaustion.

Figure 2.1. Concurrency-related vulnerabilities.

Thread leak occurs when a thread finishes and never joins the calling thread, therefore
never releasing the occupied resources, a type of vulnerability specific to multi-threaded pro-
grams (see Figure 2.1c).

2.2.3 User-defined properties

User-defined properties refer to the conditions specified by the developer, defining the ex-
pected state the program should not reach during its execution (reachability statement). For
example, an assert statement (e.g., assert(0);) is inserted at a specific point in the program
to check whether this statement is reached during the program’s execution or not.

In this Ph.D. thesis, our cooperative framework, called EBF, can detect all the vulnerabil-
ities specified in this section.

27

2.3. DETECTING SOFTWARE VULNERABILITIES

2.3 Detecting software vulnerabilities

Detecting software vulnerabilities is crucial for ensuring the security and reliability of
software programs. Therefore, several techniques and approaches are commonly used to
find software vulnerabilities in concurrent programs, including Bounded Model Checking
(BMC), symbolic execution, fuzzing, data-flow analysis, and machine learning. In our EBF
framework, we employ two powerful software testing and verification techniques: BMC and
fuzzing.

2.3.1 Bounded model checking

Bounded model checking (BMC) is a formal verification technique successfully employed
in software and hardware verification over the past decades [29]. BMC operates with the
underlying program’s mathematical model, represented as a finite state transition system. It
analyzes the model’s behaviour up to a finite positive bound k. It determines whether the
specified safety property (e.g., absence of data races, deadlocks, buffer overflows, assertion
violations, etc.) holds.

In brief, BMC symbolically executes the program up to the specified bound k and en-
codes all the obtained traces C with the given safety property P as an SAT/SMT formula
[60] C ∧ ¬P . A decision procedure often called an automated theorem prover or solver
checks the generated formula and provides a verdict on its satisfiability. If the formula is sat-
isfiable, it indicates a violation of the safety property, along with the generation of a witness
(counterexample [61]). In contrast, if the formula is unsatisfiable, it proves the program is
safe within the provided bound k.

In state-of-the-art bounded model checker, the program under test is modeled as a state
transition system, which is constructed by extracting its behaviour from the control-flow graph
(CFG) [62]. This graph is then translated into a static single assignment (SSA) form. In the
case of multi-threaded programs, each thread is represented as a CFG in which nodes repre-
sent control points, and edges represent transitions (or program statements). Each transition
is enabled if the condition guards are true and the associated process is at the corresponding
control point. For example, Figure 2.2 presents the CFG of two threads (T(A) and T(B)).
Each thread includes two transitions (A0, A1 and B0, B1), the guards (x > 2 and x > 3), and
the control points that determine whether a transition is enabled or disabled (T(A)0, T(A)1
and T(B)0, T(B)1).

A transition system, denoted asM = (S,R, S0), represents an abstract machine consisting
of a set of states S (where S0 ⊆ S represents the set of initial states) and transitionsR between
states. For each γ ∈ R, γ ⊆ S×S. A state s ∈ S comprises the program counter value pc and

28

2.3. DETECTING SOFTWARE VULNERABILITIES

T(A)0

T(A)1

T(A)2

A0

A1

i=fctA()

x>2: a[i]=5

T(B)0

T(B)1

T(B)2

B0

B1

j=fctB()

x>3: a[j]=10

Figure 2.2. Control-flow graph of two threads (TA and TB). T represents the node (program location), and A
and B represent the edges (program instructions).

all the values assigned to the program variables. The initial state, represented as s0, assigns the
initial program location of the CFG to the pc. Each transition is represented by γ = (si, si+1)

between two states si and si+1 with a logical formula γ(si, si+1). This formula captures the
constraints on the values of pc and the program variables. Given a transition system M , a
property φ, and a bound k, BMC unrolls the transition system k times and translates it into a
verification condition ψ, where ψ is satisfiable if φ contains a counterexample with a depth
less than or equal to k. The BMC procedure can then be formulated as follows:

ψk = I(s0) ∧
k−1⋀︂
i=0

γ(si, si+1)⏞ ⏟⏟ ⏞
constraints

∧
property⏟ ⏞⏞ ⏟
P (sk) (2.1)

In Formula 2.1, I represents the function defining the set of initial states ofM , γ(sj, sj+1)

represents the transition relation ofM at time steps j and j+1, and P (sk) represents an LTL
property φ at step k. Thus, the formula

⋀︁k−1
i=0 γ(si, si+1) represents all executions of M with

lengths less than or equal to k. P (sk) is derived from the safety property being checked and
represents the condition that a bounded execution ofM with a length of k or less would violate
it. The SMT solver then evaluates ψk for satisfiability. If ψk is satisfiable, the SMT solver
provides an SSA that satisfies it. Consequently, a counterexample is created using the values
extracted from the program variables in this assignment. A counterexample for a property
φ consists of a sequence of states s0, s1, . . . , sk, where s0 ∈ S0 and si ∈ S for 0 ≤ i < k,
along with γ(si, si+ 1). Suppose ψk is unsatisfiable. In that case, it indicates that the state
is reachable within a length of k or less, suggesting that the property is not violated.

The constraints and properties are encoded as two quantifier-free formulas derived from
ψk. The first formula, denoted asC, represents the constraints (I(s0)∧

⋀︁
i = 0k−1γ(si, si+1)),

while the second formula, denoted as P , represents the properties (P (sk)) as shown in For-
mula 2.1. Then, the SMT solver evaluates the formula as C ∧ ¬P .

Considering a concurrency environment, the BMC procedure can be context-bounded [63].

29

2.3. DETECTING SOFTWARE VULNERABILITIES

Context-bounded means limiting the number of threads up to a certain threshold. In other
words, a schedule can yield a thread up to the threshold before it needs to be executed again.
This algorithm takes advantage of the fact that most concurrency bugs in real applications
are shallow, requiring only a few context switches to expose them [63].

BMC suffers from several drawbacks. One major challenge is the state-space explosion,
which occurs when the verification depth increases. This challenge becomes even more severe
for multi-threaded programs due to the need to explore the combined search space of thread
interleavings and program states. Furthermore, the verification of logical formulas consumes
more CPU time and computer memory as the size of the formula grows with increasing ver-
ification depth. Another concern arises from BMC’s reliance on the underlying program’s
symbolic abstraction (over-approximation), which may lead to incorrect results when the de-
vised model does not precisely represent the given program. For example, this situation can
be caused by external libraries whose implementation in the language supported by the given
BMC tool does not exist. Accordingly, their behaviour must be modeled (approximated) in-
side the BMC tool. As a result, existing BMC tools, such as ESBMC [64], CBMC [65], and
Cseq [66], primarily differ in their choices of program encoding and symbolic abstractions.

2.3.1.1 Bounded model checking tools

Over the past years, bounded model checking has been successfully applied to verify concur-
rent C programs [67]. There are several state-of-the-art bounded model checkers available
in the field, such as ESBMC [30] and CBMC [31] that can handle both sequential and multi-
threaded C programs and find concurrency vulnerabilities (e.g., data races, deadlocks, etc.)
and other vulnerabilities (e.g., buffer overflows, dangling pointers, etc.). For instance, ES-
BMC, is a state-of-the-art bounded model checker [68]. It verifies safety properties in both
sequential and multi-threaded C programs. ESBMC takes a C program as input and employs
a symbolic execution engine to unroll the program up to a bound k and generate a bounded
program trace. The program trace is limited by an interleaving threshold (i.e., context switch)
for concurrency. Then, the program trace is converted into an SMT formula using the same
approach described in the BMC background (Section 2.3.1). ESBMC can verify array bounds
violations, divisions by zero, pointer safety, overflows, memory leaks, deadlocks, data races,
and offers flexibility in selecting between fixed and floating-point arithmetic. It has also been
used to verify the safety/security of digital control systems [69], digital filters [70], unmanned
aerial vehicles [71], and telecommunication software [72]. In contrast, CBMC encodes each
concurrent execution unit separately and combines them with partial order formulae [73].
Similarly, TCBMC [74] is an extension of CBMC, which introduces constraints on the num-
ber of allowed context switches between threads.

Several other BMC tools have efficiently verified concurrent C programs at the annual

30

2.3. DETECTING SOFTWARE VULNERABILITIES

SV-COMP software verification competition [75]. Specifically, over the past decade, Lazy-
CSeq [34], [76] has consistently led the concurrency category at SV-COMP. Their approach
converts a multi-threaded C program into a non-deterministic sequential program that con-
siders all possible round-robin schedules up to a specified number of rounds. Subsequently,
they verify the obtained sequential program using a bounded model checker for sequential
programs (e.g., CBMC, ESBMC). Similarly, Deagle, the winner for two consecutive years in
the concurrency category in SV-COMP 2022 [77] and SV-COMP 2023 [78], respectively,
introduced a novel theory of ordering consistency for multi-threaded programs [33]. They
have also implemented a more efficient solver for this theory using CBMC as the front-end
and MathSAT [79] as the back-end.

2.3.2 Fuzzing

Fuzzing is an automated testing technique that identifies software vulnerabilities by repeat-
edly executing a program with randomly generated inputs and monitoring its behaviour [80].
Since most inputs generated in this way are invalid, state-of-the-art fuzzers allow users to
specify a small set of valid program inputs (known as seeds) and then use a mutation-based
strategy to generate new ones. It is important to note that these inputs should meet the re-
quirement of the program under test (PUT), such as the input format, to maximize the chance
of triggering a crash [49].

2.3.2.1 Fuzzing process

Figure 2.3 illustrates the general fuzzing process [81], comprising four main components:
the monitor, test generator, bug detector, and bug filter. The fuzzer takes the program under
test (PUT), which is the target program to be tested (either as a binary or the source code),
along with the initial seed files (test cases) as inputs. While executing the PUT, the fuzzer
monitors its execution state to detect crashes or abnormal behaviour. The monitor employs
various techniques, such as code instrumentation, to collect code coverage or other runtime
information from the PUT.

Typically, three types of fuzzers exist: black-box, white-box, and gray-box; the last two
use their own type of monitoring. However, this monitoring is not necessarily integrated
into a black-box fuzzer. During the Program Under Test (PUT) fuzzing process, the test case
generator mutates and generates additional seeds or test cases in various formats, such as
files or network packets. Fuzzers commonly employ two main techniques for generating test
cases: mutation-based and generation-based methods [81].

In the mutation-based method, test cases are generated by randomly mutating well-formed
seed files or applying predefined mutation strategies that can adapt based on runtime infor-

31

2.3. DETECTING SOFTWARE VULNERABILITIES

mation. On the other hand, the generation-based method does not rely on existing seed files;
instead, it generates test cases based on a specification of the PUT.

In general, fuzzing test cases or inputs are semi-valid inputs, designed to be valid enough
to pass the initial parsing stage of the PUT and invalid enough to trigger a crash in the deeper
paths of the PUT, as further detailed in Section 2.3.2.2.

When the PUT crashes or reports bugs, the bug detector collects and analyzes relevant
information, such as stack traces, to confirm the presence of a bug. The bug detector is
built inside a fuzzer to help users identify potential bugs within the PUT. Finally, filtering
exploitable vulnerabilities from all the bug reports is crucial. This task is often performed
manually, which can be time-consuming and challenging. Recent developments [82]–[84]
have aimed to mitigate this issue by sorting the fuzzer’s outputs (bug-inducing test cases) or
prioritizing interesting test cases. The output of the fuzzer is a Unix core dump [85], which
captures an image of the process memory at the time of the crash. While this dump can
help identify local information about the crash, such as variable values, it cannot be used to
determine the path conditions that must be satisfied during execution, such as variables that
have been overwritten.

2.3.2.2 Types of fuzzers

Fuzzing technique can be classified from two perspectives. First, they can be categorized
based on the method of input generation, namely mutation-based or generation-based. Sec-
ond, they can be classified based on their understanding of the PUT [39], which includes
white-box, black-box, or gray-box fuzzing.

Mutation-based and Generation-based

The generation of test cases in the fuzzer can be classified into generation-based and
mutation-based. A significant challenge lies in generating test cases that meet the require-
ments of complex data structures and can potentially trigger deep and hard-to-reach paths [49].

Mutation-based fuzzers: start with a required set of valid initial inputs or test cases and
then randomly mutate them to generate new test cases [86]. These mutations can involve
bit flipping, byte changes, data addition or removal, or modifications to specific parts (e.g.,
in network packets) [87]. Most state-of-the-art fuzzers, including OpenGBF, use a mutation-
based strategy because these fuzzers do not require knowledge of the PUT or the input format.

Generation-based fuzzers: start with the required knowledge of the inputs, typically
provided through a configuration file that defines the specific file format. Leveraging this file
format knowledge allows the fuzzer to generate test cases that can more efficiently pass the
program’s validation [49]. In particular, these generated test cases can navigate deeper paths

32

2.3. DETECTING SOFTWARE VULNERABILITIES

PUT

seed files
(Corpus)

Monitor

Testcase Generator

Crash
Information

Bug Detector

Bugs

Bug Filter

Real bugs
Vulnerabilities

Test Case
Runtime

Information

Fuzzer

Figure 2.3. The general fuzzing process contains four main components (Monitor, Testcase generator, Bug
detector, and Bug filter). It takes the PUT and seed files as input, executes the fuzzing process, and generates

a report when it crashes.

within the PUT. However, analyzing the file format can become challenging without available
documentation. As a result, mutation-based fuzzers are often considered more user-friendly,
easier to start, more broadly applicable, and thus widely preferred by state-of-the-art fuzzers.

Black-box, White-box, and Gray-box

The fuzzer’s dependence on the program source code and the depth of program analysis
classify it into three categories: black-box, white-box, and gray-box fuzzers. Table 2.1 lists
some common white-box, black-box, and gray-box fuzzers along with their test case genera-
tion strategies. The following subsection explains the differences between these fuzzers and
highlights the advantages of each approach.

Black-box fuzzer: is often referred to as “black-box random testing”. It operates by
fuzzing the PUT without any knowledge of its internal logic. Instead of requiring information
from the target program or input format, black-box random testing relies on predefined rules
to randomly mutate well-formed input files, generating malformed inputs [49].

The effectiveness of black-box random fuzzers depends on the quality of their initial inputs,

33

2.3. DETECTING SOFTWARE VULNERABILITIES

Black-box fuzzers White-box fuzzers Gray-box fuzzers

Generation
based

SPIKE [88], Sulley [89],
Peach [90]

Mutation
based Libfuzzer [91] Miller [92],SAGE [93] AFL [84], AFL++ [94],Driller [47],

VUzzer [95], MUZZ [41]

Table 2.1. Represents the common types of fuzzers (Black-box, Grey-box, and White-box Fuzzers) and the
tools that use these types.

which are well-formed seeds used to start the fuzzing process. Well-formed initial inputs
enhance the speed of the fuzzing process. In contrast, poorly formed inputs can result in
inefficient resource consumption [96].

White-box fuzzer: was first proposed by Godefroid et al. [97] as a solution to address
the limitations of black-box fuzzing [93]. A white-box fuzzer requires knowledge of the
internal logic of the PUT by having access to its source code. It uses dynamic symbolic
execution (called Concolic execution) and employs a coverage-maximizing guided search
algorithm [81]. These features enable the white-box fuzzer to thoroughly and rapidly explore
the PUT [81].

Gray-box fuzzer: denoted as GBF, stands between black-box and white-box fuzzers, ef-
fectively discovering software vulnerabilities with partial knowledge of the PUT. It can work
without access to the source code, such as when dealing with binary files. It collects inter-
nal information about the PUT through program analysis. A commonly used method for this
purpose is code instrumentation [98], [99]. Code instrumentation involves adding additional
code to the PUT that tracks the required metrics, like code coverage during runtime. This in-
formation is then used to adjust its mutation algorithm, often through techniques like genetic
algorithms [100], [101], to generate test cases that explore more execution paths or discover
vulnerabilities more efficiently.

OpenGBF can be considered a gray-box fuzzer because it builds on top of AFL++ (see
Table 2.1) and employs code instrumentation on the PUT to gather information about the
program’s behaviour.

Algorithm 1 [41], [102] demonstrates the standard workflow of a gray-box fuzzer. It takes
a target PUT and initial seeds M as inputs. It then instruments the PUT (line 1) by injecting
additional code that enables the fuzzer to collect code coverage statistics in the PUT.

In each iteration of the main fuzzing loop (line 4), the fuzzer selects a seed t (line 5) and
determines a random number N of mutations (line 6). Subsequently, the fuzzer repeatedly
executes the instrumented program Pf (line 9) with a different mutated seed t′ (line 8) as input
and captures the execution statistics. If t′ triggers a crash in the instrumented programPf (line
10), it is added to the set of vulnerable inputs (line 11). However, if t′ does not cause a crash

34

2.3. DETECTING SOFTWARE VULNERABILITIES

but covers a new branch in the PUT (line 12), it is added to the seed queueQS (line 13). This
approach helps the fuzzer discover more vulnerabilities in subsequent iterations. Finally, the
execution of the main fuzzing loop continues until the predefined timeout is reached.

Algorithm 1 Gray-Box Fuzzing
Input: PUT – program under test, M – corpus of initial seeds.
Output: QS – seed queue, SI – crash inputs found

1: Pf ← instrument(PUT) {instrument the PUT}
2: QS ←M {initialize the seed queue}
3: SI = ∅
4: while not timeout do
5: t← select_next_seed(QS) {pick seed from queue}
6: N ← get_mutation_chance(Pf , t)
7: for all i ∈ 1 . . . N do
8: t′ ← mutate_input(t) {mutate the seed}
9: rep← run(Pf , t

′,Mc) {execute the PUT}
10: if is_crash(rep) then
11: SI ← SI ∪ t′ {new vulnerable input found!}
12: else if covers_new_trace(t′, rep) then
13: QS ← QS ⊕ t′ {add promising seeds to queue}
14: end if
15: end for
16: end while

2.3.2.3 Code instrumentation

Code instrumentation inserts additional code into a software program to collect specific run-
time information or modify its behaviour. One example that provides code instrumentation
is LLVM Pass, an essential part of the LLVM compiler infrastructure. LLVM Pass analyzes
and transforms the PUT to monitor the behaviour of the PUT; it injects additional code into
the LLVM intermediate representation (IR) program [103].

LLVM IR is a low-level representation of a program’s source code, similar to assembly
language. Listing 2.1 and 2.2 present a simple C code along with its corresponding IR, re-
spectively. In Line 1, it defines the function foo(), which returns void (corresponding to
Line 2 in the original C code). In Line 3, it calls the printf() function and stores its value
in %call (corresponding to Line 3 in the original C code). Additionally, Line 8 calls the
function foo() (corresponding to Line 6 in the original C code). This representation enables
LLVM to perform several analyses and transformations on the source code, which can be
categorized as follows:

Analysis passes: analyze the program’s IR without actually changing the IR and collect
information about its structure, behaviour, and properties, which other passes can use [104].

Transformation passes: modify the program’s IR to perform optimization or transforma-
tion. It can use the Analysis pass to collect information about the program structure [104].

35

2.3. DETECTING SOFTWARE VULNERABILITIES

Utility Passes: provide various utilities that do not directly analyze or transform the source
code but support other passes. For instance, they can include extracting functions to bit-
code [104].

In this Ph.D. thesis, we will use the Analysis and Transformation passes in our
OpenGBF design because it is compatible with any clang wrapper, such as AFL++, mak-
ing it easy to integrate and analyze the original source code without modifying it.

Listing 2.1. A simple C code.

1 #include <stdio.h>

2 void foo() {

3 printf("Hello\n");

4 }

5 int main() {

6 foo();

7 return 0;

8 }

Listing 2.2. The corresponding IR to Listing 2.1

1 define dso_local void @foo() {

2 entry:

3 %call = call i32 (i8*, ...) @printf(←↩

i8* getelementptr inbounds ([7 x ←↩

i8], [7 x i8]* @.str, i64 0, i64 ←↩

0))

4 ret void

5 }

6 define dso_local i32 @main() {

7 entry:

8 %call = call void @foo()

9 ret i32 0

10 }

11 declare dso_local i32 @printf(i8*, ...)

12 @.str = private unnamed_addr constant ←↩

[7 x i8] c"Hello\0A\00", align 1

2.3.2.4 Sanitizers

Sanitizers play a crucial role in software security by providing valuable tools for detecting
various types of bugs and vulnerabilities. They add runtime checks (code instrumentation)
to the PUT, enabling the detection of bugs during program execution [105]. We can clas-
sify sanitizers into different types based on the software vulnerabilities they can detect, as
presented below:

Thread Sanitizer: it adds code instrumentation to the PUT during compilation, tracking
memory access, and synchronization operations. This sanitizer detects concurrency-related
bugs, such as data races, deadlocks, and thread leaks [106].

Address Sanitizer: it adds code instrumentation to the PUT during the compilation pro-
cess by allocating shadow memory, which maps to the original memory used by the program.
This shadow memory keeps track of each load or store in the PUT to detect invalid memory ac-
cess. This sanitizer detects memory-related bugs like out-of-bounds and use-after-free [107].

36

2.3. DETECTING SOFTWARE VULNERABILITIES

Memory Sanitizer: it adds code instrumentation to the PUT during the compilation pro-
cess by tracking the state of memory locations and checking for any reads are performed on
uninitialized memory. This sanitizer is used to detect uninitialized memory bugs [108].

Undefined Behaviour Sanitizer: it adds code instrumentation to the PUT during com-
pilation by inserting runtime checks to detect undefined behaviour. This sanitizer can detect
different types of undefined behaviour, such as out-of-bounds access, array access, and null
pointers [109].

Using sanitizers with fuzzing improves bug detection’s overall efficacy and efficiency,
making it a powerful approach for improving software security. Furthermore, various types
of sanitizers specialize in finding different vulnerabilities.

In this Ph.D. thesis, we use different sanitizers based on user preferences for bug detection
(specifically, the types of bugs they aim to find).

2.3.2.5 Concurrency-aware gray-box fuzzers

Traditional fuzzing techniques are primarily designed for sequential programs and do not
translate well to concurrent programs (e.g., AFL++ [94]) due to their limitation of allowing
the fuzzer to control only the program’s input rather than the scheduling of its threads [41].
Various efforts have been made to address this limitation in concurrency-aware fuzzing [41]
[12][110][111][112]. We classify these past efforts into five categories, as presented in the
taxonomy in Table 2.2. The first three categories concern the usability of each fuzzer: whether
they are used for verifying user programs or operating system code (Scope), the types of
bugs they can detect (Vulnerabilities), and whether their code is openly accessible (Open
Source). In this context, none of the existing state-of-the-art fuzzers meet our research re-
quirements. Specifically, there is no fully open-source fuzzer capable of finding both concur-
rency and memory-related vulnerabilities in PUT. To address this gap, we introduce our own
concurrency-aware fuzzer in Section 3.3.

The last two categories concern the fuzzing technique itself. In particular, the general
gray-box fuzzing algorithm presented in Algorithm 1 requires some adaptations to achieve
good results on concurrent programs. First and foremost, it is essential to have a mechanism
that forces the execution of many different threads interleaving (Interleaving Control). Exist-
ing fuzzers, such as MUZZ [41] and ConAFL [12], modify thread priorities at the assembly
level. Other tools like Krace [112] insert sleep instruction to force a context switch, while
AutoInter-fuzzing [110] and Conzzer [113] instrument the PUT with precise synchronization
barriers or thread locks. Alternatively, the exploration of different thread interleavings can
be left to the natural non-determinism of the operating system, as demonstrated in tools like
ConFuzz [111]. Lastly, some authors propose changing the feedback to the input mutation en-

37

2.3. DETECTING SOFTWARE VULNERABILITIES

Fuzzer Name Scope Vulnerabilities Open Src. Interleaving Control Mutation Feedback
OpenGBF User Space Multiple Yes Delay Injection Branch Coverage

MUZZ [41] User Space Multiple No Thread Priority Thread-Aware
ConAFL [12] User Space Invalid Mem. Acc. Partial Thread Priority Branch Coverage
ConFuzz [111] User Space Multiple No None Thread-Aware

AutoInter-fuzzing [110] User Space Multiple No Barrier/Lock Thread-Aware
Conzzer [113] Kernel Space Data Races No Barrier/Lock Thread-Aware
Krace [112] Kernel Space Data Races Yes Delay Injection Thread-Aware

SEGFUZZ [114] Kernel Space Multiple Yes Interleaving segmentation Thread-Aware

Table 2.2. Taxonomy of existing state-of-the-art concurrency-aware gray-box fuzzers, including the scope of
the tool, the vulnerabilities they can detect, the availability of the source code, and the strategies and

mutations they use.

gine to guide the fuzzer towards more interesting thread interleavings (Mutation Feedback).
We categorize such attempts as Thread-Aware instead of the default Branch Coverage metrics
used in sequential fuzzing.

First, since we built our concurrency-aware fuzzer on top of American Fuzzy Lop Plus Plus
(AFL++), we will explain how it operates. American Fuzzy Lop Plus Plus (AFL++), known
as AFL++[94], is an open-source tool that incorporates state-of-the-art fuzzing techniques.
AFL++ is a mutation-based gray-box fuzzer that mutates initial test cases to explore different
execution paths. It is an advanced version of the original AFL fuzzer[84], designed to enhance
performance and effectiveness in detecting software vulnerabilities in sequential programs.

AFL++ improves the original AFL by introducing several new features. Firstly, it includes
code instrumentation to analyze the program’s execution and coverage information. This in-
strumentation enables AFL++ to prioritize test cases that lead to previously unexplored paths
within the PUT, thereby increasing the probability of finding hidden software vulnerabilities.

Moreover, AFL++ introduces a wider range of mutation strategies and coverage-guided
optimizations. One of its key advantages over AFL is that its instrumentation is thread-safe,
as documented in [115]. This thread-safety feature makes AFL++ more compatible with
concurrent programs.

AFL++ also utilizes LLVM Pass as a code instrumentation technique to instrument the
PUT for performance improvement (i.e., execution speed [116]). One key pass it employs is
the Edge Coverage Pass, designed to monitor the coverage of control flow edges within the
PUT. This pass helps identify unexplored paths and guides the fuzzer towards these new paths
[94]. Additionally, AFL++ incorporates the Context Sensitive Coverage Pass, which
tracks the coverage of specific execution contexts within the tested program. Consequently,
when compiling AFL++, we can include these LLVM Passes as integrated components within
its clang wrapper during the compilation process.

Regarding concurrency-aware fuzzer, MUZZ [41] is an example of a gray-box fuzzer that
uses static analysis to identify code blocks that are more likely to trigger a concurrency vulner-

38

2.3. DETECTING SOFTWARE VULNERABILITIES

ability [117]. When the code is instrumented, such blocks receive heavier instrumentation,
helping the fuzzer dynamically track the execution of different schedules. To facilitate the
exploration of a large number of thread interleavings, MUZZ controls the execution order
by allocating random priorities to the threads at the assembly level. Despite the promising
experimental results, MUZZ is not publicly available.

Similarly, ConAFL [12] is a gray-box fuzzer specialized for user-space multi-threaded
programs. It uses static analysis to find sensitive concurrent operations that determine the
execution order, focusing only on three types of invalid memory access vulnerabilities: buffer-
overflow, double-free, and use-after-free. To control thread interleavings, ConAFL indirectly
changes the execution priority of each thread at the assembly level. Alternatively, the authors
mention the possibility of injecting a sleep instruction at the code level but do not test it.
However, ConAFL relies on the default mutation feedback of the sequential fuzzer AFL [118],
based on branch coverage. Due to its extensive thread-aware static and dynamic analysis,
ConAFL struggles to scale to large programs. Additionally, the authors’ static analysis tool
is not publicly available [119].

A more straightforward approach is implemented in a tool called ConFuzz [111]. It lets the
natural non-determinism of the operating system randomly guide the exploration of different
thread interleavings. To compensate for this, ConFuzz modifies the standard branch coverage
feedback of the mutation engine by calculating how far each code block is from a thread-
related instruction. Seeds that execute these code blocks closer to such instructions have a
higher probability of survival with each mutation. Unfortunately, the ConFuzz tool [111] is
not publicly available.

Recently, another concurrency-aware gray-box fuzzer was proposed in [110]. This tool,
called AutoInter-fuzzing, uses static analysis to identify instruction pairs that access the exact
memory location but are executed by different threads. The source code (PUT) is then instru-
mented with synchronization barriers that control the execution order of the instructions in
each pair. Every time one such pair is identified during fuzzing, the program is executed again,
forcing the opposite execution order of the pair. Unfortunately, this approach for exploring
thread interleavings causes AutoInter-fuzzing to suffer from low path coverage compared to
other fuzzers. Like most of the fuzzers listed in the present section, AutoInter-fuzzing is not
publicly available.

Conzzer [113] improves upon the ideas of AutoInter-fuzzing. Specifically, the instruction
pairs are acquired at runtime and contain information about the execution trace. The authors
claim that the fuzzer can be used to explore different thread interleavings for a critical region
by being context-aware, and they implemented their own mutation algorithm, allowing the
fuzzer to explore more thread interleavings than AutoInter-fuzzing.

On a different scope, Krace [112] is a fuzzer developed for kernel file systems specializ-

39

2.4. COOPERATIVE VERIFICATION APPROACH

ing in detecting data races. It is relevant to mention it here because it also uses the thread
interleaving control strategy of injecting delays in the source code. Additionally, it improves
the standard branch coverage metrics by explicitly monitoring the order of execution of any
pair of instructions that access the exact memory location. This feedback yields the mutation
engine to explore more thread interleavings. While the source code of [112] is available, it
cannot be used in our research as it targets data races in the kernel space.

Similarly, SEGFUZZ [114] is a new fuzzer implemented for the kernel space, which works
by exploring the search space of thread interleavings. It decomposes the entire thread inter-
leavings into segments, each representing the interleaving of a small number of instructions.
Subsequently, it mutates these interleaving segments to generate new ones that have not been
previously explored. Like Krace, it is publicly available; however, it is out of the scope of our
evaluation because it is specialized in kernel space.

OpenGBF, as will be discussed in Section 3.3, implements many of these ideas.This in-
cludes instrumenting the source code (PUT) with the sleep function, which forces the explo-
ration of random thread interleavings and allows the fuzzer to control the randomness through
its mutation engine. In the future, if the aforementioned concurrency-aware fuzzers become
open source [50], it will be possible to evaluate their efficacy when combined with BMC
tools, as we do here with our GBF tool.

2.4 Cooperative verification approach

Cooperative verification is an approach in which multiple verifiers collaborate to solve ver-
ification problems by sharing artifacts related to the verification process [45]. Specifically,
cooperative verifiers exchange information (verification artifacts) with each other or use infor-
mation from other verifiers, aiming to improve the overall efficiency and effectiveness of the
verification process. The cooperative approach can be structured based on the verifiers’ com-
munication interfaces. Verification artifacts play a central role in the cooperative approach,
as they facilitate the exchange of information, and can be classified as follows:

Verification Result: verifiers produce a result of the evaluation statement “program sat-
isfies specification”. The result will be one of the following: {Verification_failed,
Verification_successful, Unknown}.

Verification Witness: exchangeable witnesses work as envelopes for error paths, facilitat-
ing information exchange between several tools. The verification witnesses record the result
of a verification process; it comes in the form of a violation witness and a correctness witness.
A violation witness [120] defines the specification violation by representing a full program
path that violates the specification. A correctness witness [121] defines why the program sat-

40

2.4. COOPERATIVE VERIFICATION APPROACH

isfies the specification by describing valuable invariants in a proof of correctness [122], [123].
The verification witness is formatted in an XML-based format [124], which is supported by
the validators that validate these witnesses.

Test case: specifies a sequence of values for all external function calls in the program,
providing inputs to the PUT.

Condition: specifies the part of the program’s behaviour that requires no further explo-
ration. In the case of verification, it represents the parts already verified; in the case of testing,
it represents the parts already covered by an existing test suite.

In this Ph.D. thesis, we incorporate the use of Verification Result, Verification
Witness, and Test case in our cooperative framework.

2.4.1 Verification witness file format

A witness file plays an important role in software verification; it provides a bug trace or
counterexample to be used to analyze and validate the verification results. In the context
of Software Verification Competition (SV-COMP) [124], witness files are representations of
execution traces that show the correctness or incorrectness of a given verification property.
It is formally represented as witness automata. Since an automaton is a graph, they extend
an existing exchange format (GraphML) for graphs and apply it to witness automata. The
idea of the violation-witness automaton is that it guides the verifier through a finite number
of program steps along an error path to find safety property violations [124].

The annotations used in generating the GraphML graph are categorized into two sections:
Graph Data for Witness Automata (see Table 2.3) and Edge Data for Automata Transitions
(see Table 2.4). The former, Graph Data for Witness Automata, provides high-level informa-
tion about the witness automaton as a whole. It outlines the properties of the automaton. It
contains data such as the tool name, the programming language used, the creation time, and
so on. The latter, Edge Data for Automata Transitions, provides information about the indi-
vidual transitions within the witness automaton. It contains data specific to each transition,
such as line number function name, and so on [124].

Example 2.3 illustrates a simple C code where a thread invokes the foo() function. The
program crashes (reaches the error statement) if the thread is executed before the main thread
finishes. Figure 2.4 shows the corresponding witness file in GraphML format and the graphi-
cal representation of the witness. Figure 2.4a shows the included key data described in Tables
2.3 and 2.4, while Figure 2.4b shows visually the path that leads to an assertion failure in the
program. The execution sequence starts at state N0, where the main function starts at state
N1; then thread 1 is created at line 10, leading to state N2, where the assignment of foo_a

41

2.4. COOPERATIVE VERIFICATION APPROACH

(a) Witness file in GraphML format.

N0start

N1

N2

N3

N4

main

create thread 1

line=6, foo_a=42, threadId=1

line=1, threadId=1

(b) Graphical representation.

Figure 2.4. The witness file in GraphML format Vs. graphical representation for Listing 2.3.

occurs during thread 1. This transition results in state N3, which leads to the invocation of
reach_error(), resulting in the acceptance state N4.

Listing 2.3. A simple C code.

1 void reach_error() { assert(0); }

2

3 void foo(void * arg){

4 int foo_a = __VERIFIER_nondet_int();

5 if(foo_a == 42)

6 reach_error();}

7

8 int main() {

9 pthread_t main_t1;

10 pthread_create(&main_t1, 0, foo, 0);}

In this Ph.D. thesis, we use this format to generate the final witness file.

42

2.4. COOPERATIVE VERIFICATION APPROACH

key Meaning

producer. Specifies the name of the tool that generates the witness automaton. For example, EBF 4.0.

sourcecodelang. Specifies the programming language, for example, C.

architecture
Specifies the user-defined textual representation of the machine architecture
assumed for the verification task, such as ”32-bit” or ”64-bit” systems.

programfile.

Specifies the program file path provided as input to the verifier tool. (e.g., thesis_example.c).
Note that this key is only for documentation purposes, and it is not necessary for the validator
to have direct access to the specified file location because the source code
is explicitly provided as input to the validator.

programhash.
Stores the SHA-256 hash value of the verified program. For example,
”7e50ae1d6af13c623583d6a2f949e9597ecd4d402771d52399b9fc659c58a3d1”.

specification.

Provides a user-defined textual representation of the verification task’s specification.
For example, in SV-COMP, if the property specification is reachability, the text
CHECK(init(main()), LTL(G!call(reach_error()))) is used to denote the specification.

creationtime.

Specifies the creation date and time of the witness in ISO 8601 format.
The date must include the year, month, and day, split by dashes (’-’).
The date and time are separated by the capital letter ’T’.
The time must include the hours, minutes, and seconds, separated by colons (”:”).
If the timestamp is in UTC time, it concludes with a ’Z’. For example, ’2023-05-22T12:16:59Z’
represents the year 2023, May 22nd, at 12:16:59.

witness-type. Specifies the type of witness (i.e., correctness_witness or violation_witness).

Table 2.3. A key data and its meaning for Graph Data for Witness Automata.

key Meaning

enterFunction. Specifies the function calls in the source code.

createThread. Specifies the creation of a new thread within the witness.

assumption. Specifies the non-deterministic values that lead to the violation.

threadId.

Represents the currently active thread for that particular transition.
The value associated with this key must uniquely identify an active thread,
meaning a thread that has been created but has not yet terminated.

startline. Specifies the source code line number.

Table 2.4. A key data and its meaning for Edge Data for Automata Transitions.

2.4.2 Cooperative/Hybrid verification tools

Recently, several efforts have combined fuzzing with different forms of symbolic execution
and static analysis [49]. To our knowledge, none of these methods have been combined to
find vulnerabilities in concurrent programs. However, the rationale behind these efforts is that
fuzzing alone struggles to find deep bugs that lie in complex path conditions (e.g., the branch
if(x*x -2*x +1 == 0)) because the inputs introduced from the random mutations have a
low probability of hitting such a complex path in the program. In contrast, when the fuzzer is

43

2.4. COOPERATIVE VERIFICATION APPROACH

provided with a set of input seeds close to the correct target, the evolutionary algorithm has a
higher probability of exposing bugs and vulnerabilities. To bridge this gap, we combine our
concurrency-aware fuzzer OpenGBF with the state-of-the-art BMC tools in Chapter 4.

To achieve this, Ognawala et al. [42] proposed a tool called Munch that increases the
fuzzing coverage by augmenting the set of input seeds with an additional round of concolic
execution. This approach leads to a significant increase in code coverage. There are other
examples of tools using concolic execution, like Driller [47] and QSYM [48]. The former
is a hybrid tool that combines fuzzing with concolic execution to detect deep vulnerabilities.
It analyzes the program and generates interesting seed inputs using concolic execution that
guides the fuzzer toward unexplored paths in the program. The latter works by obtaining the
fuzzer’s output as an initial seed input and using concolic execution to these seeds, particularly
executing the program concretely (using actual values) and symbolically (using variables).
This approach enables QSYM to explore different execution paths and generate new inputs
that can potentially expose more vulnerabilities.

Similarly, VeriFuzz [44] is a hybrid tool that combines bounded model checking with
fuzzing, achieving first place in Test-Comp 2020 [125]. It addresses the issue of off-the-
shelf fuzzers being unable to find seed inputs that pass complex blocks of program logic.
Their solution is using a BMC to solve the corresponding reachability statement and generate
concrete input seeds that satisfy the complex conditions of the PUT. Then, the fuzzer is free
to explore the search space beyond that.

FuSeBMC [43], which achieved first place in Test-Comp 2022 and 2023 [126], [127],
respectively, is also a hybrid tool. It uses a selective fuzzer when the bounded model checker
of their FuSeBMC tool fails to detect all vulnerabilities. Such a fuzzer employs the statistics
the model checker collects to create a specific set of input seeds.

Map2check [128], [129] works by performing code instrumentation at the LLVM level.
This instrumentation includes adding a verification framework and explicit assertions. The
instrumented code is then subjected to symbolic execution (using KLEE [130]) or fuzzing
(using Libfuzzer [131]).

On a different note, SAGE (Scalable Automated Guided Execution) is a hybrid white-box
fuzzer developed at Microsoft Research by Godefroid et al. [93], [132]. It uses generational
search to increase the number of new input seeds produced from dynamic symbolic execu-
tion. Given a path constraint, a constraint solver systematically negates and solves all the
constraints.

LibKluzzer [133] is a tool that harnesses white-box and coverage-guided fuzzing strengths.
It achieves this by employing the coverage-guided fuzzer to discover new execution paths and
using white-box fuzzing to navigate complex branch conditions.

44

2.5. OTHER TECHNIQUES FOR FINDING SOFTWARE VULNERABILITIES IN CONCURRENT
PROGRAMS

EBF is similar to these hybrid tools in the sense that it exploits the combined advantages of
fuzzing and bounded model checking. Nevertheless, the aforementioned hybrid tools are built
around a close integration between the two techniques, often requiring specific assumptions
about the verification task at hand. In contrast, our cooperative framework is more flexible
and allows virtually any existing tool to be combined together. Finally, none of the existing
hybrid approaches can verify concurrent programs.

2.5 Other techniques for finding software vulnerabilities in concurrent

programs

Other techniques (neither fuzzing nor bounded model checking) for detecting software
vulnerabilities in concurrent programs have been proposed. Wen et al.[134] proposed a con-
trolled concurrency testing technique called Period, which employs a periodical execution to
model the execution of concurrent programs and systematically explores the space of pos-
sible thread interleavings. They provide the periodical executor with a key point slice of
the program code and apply an analyzer to collect feedback on runtime information. On
the contrary, Peahen [135] is a proposed approach called context reduction that combines
context-sensitive and context-insensitive static techniques. This context reduction filters the
vulnerabilities found by a context-insensitive technique with a path feasibility check. After
that, a context-sensitive approach is employed to validate the vulnerability. Peahen is de-
signed to detect only deadlock vulnerability in concurrent programs. Finally, Mukherjee et
al. [136] from Microsoft research proposed a tool called QL that uses reinforcement learning
to guide the exploration of thread interleavings. QL uses an explicit scheduler.

On a different note, some methods aim to improve classic verification techniques. For ex-
ample, in dynamic analysis, certain works focus on improving soundness and completeness
[137], [138]. Others create new value flow analyses for interprocedural data flow that detect
concurrency issues. For example, Canary [139] is a value-flow analysis framework that ana-
lyzes data and interference dependencies by creating a value-flow graph (VFG). It annotates
value flows with their constraints, checks for value flows connecting source to sink between
different threads, and uses the Z3 SMT solver to ensure feasible interleaving executions, en-
abling the detection of concurrency use-after-free vulnerabilities. Similarly, DCUAF [140]
aims to detect use-after-free errors in Linux device drivers by analyzing each driver’s lock
usage as local information. It combines local information on driver functions to perform a
global statistical analysis.

At the same time, some techniques use a different flavor of Model Checking known as
stateless model checking (SMC)[141]. The method emerged from the intuition that caching
states in Model Checking was not as effective as a stateless approach. For example, RCMC [142]

45

2.6. SUMMARY

and GenMC [143] rely on having a code interpreter capable of computing a reachability graph
over the program and using system calls during the analysis to provide more accurate re-
sults. On the other hand, LAPOR [144] uses a lock-aware Partial Order Reduction (POR)
algorithm to handle programs with locks. Additionally, ConVulPOE [145] employs partial-
order reduction techniques to generate execution traces that expose vulnerabilities in con-
current programs by recording thread operations and memory access events while extracting
vulnerability-potential event pairs, improving vulnerability detection.

2.6 Summary

In this chapter, we have explored common software vulnerabilities, including memory-
related vulnerabilities like invalid memory access and memory leaks and concurrency-related
vulnerabilities such as data races and deadlocks. Additionally, we discussed user-defined
properties, which enable users to specify conditions defining expected program states that
should not be reached during execution.

The chapter introduced various software verification and testing techniques for concur-
rent programs, including bounded model checking and fuzzing. We provided detailed ex-
planations of how these methods work. In the case of BMC, we also presented one of the
state-of-the-art BMC tools (ESBMC). Regarding fuzzing, we explained the fuzzing process
and the types of fuzzers that can be categorized based on the method of input generation,
namely mutation-based or generation-based. Additionally, we discussed their understanding
of the PUT, which includes white-box, black-box, or gray-box fuzzing. The chapter also in-
cludes an explanation of code instrumentation and the utilization of sanitizers integrated with
the fuzzing process. Lastly, we introduced the state-of-the-art fuzzing tool (AFL++) upon
which OpenGBF is built. Furthermore, we summarized the differences between BMC and
the fuzzing technique.

Moreover, we clarified the cooperative verification approach in which tools communicate
via verification artifacts. Furthermore, we explained these verification artifacts, including
verification results, witnesses, test cases, and conditions.

To provide a comprehensive overview, we covered state-of-the-art BMC tools such as
CBMC, ESBMC, Lazy-CSeq and Deagle, known for their efficiency in verifying concurrent
C programs. Additionally, we covered fuzzing techniques adapted for concurrent programs.
In particular, we discussed the limitations of traditional fuzzing techniques in the context
of concurrency and reviewed several concurrency-aware fuzzing tools like MUZZ, ConAFL,
ConFuzz, AutoInter-fuzzing, and Conzzer.

Additionally, we highlighted the potential of hybrid approaches that combine fuzzing with

46

2.6. SUMMARY

symbolic execution, static analysis, and bounded model checking to overcome the limitations
of each technique individually. Tools like VeriFuzz, FuSeBMC, and our tool EBF demonstrate
these hybrid approaches, achieving significant success in various verification competitions.

Lastly, we explored alternative techniques that go beyond bounded model checking and
fuzzing. These include controlled concurrency testing, context reduction, and reinforcement
learning-guided exploration, which offer unique perspectives on detecting vulnerabilities in
concurrent programs.

47

Chapter 3

Concurrency-aware gray-box fuzzer

3.1 Chapter introduction

In this Ph.D. thesis, our main challenge is the lack of mature open-source tools for fuzzing
concurrent programs. Consequently, our central contribution is to overcome this challenge
through the proposal, implementation, and evaluation of an open-source concurrency-aware
gray-box fuzzer. This fuzzer, referred to as OpenGBF here, will be comprehensively dis-
cussed in the coming sections. The content of this chapter is based on the research pre-
sented in [1], which presents detailed insights into our concurrency-aware gray-box fuzzer,
OpenGBF. Firstly, we will outline the challenges of implementing a concurrency-aware gray-
box fuzzer in Section 3.2. Secondly, the main framework of OpenGBF will be introduced in
Section 3.3. The core framework design mainly consists of instrumenting the Program Un-
der Test (PUT) by injecting function calls and implementing them using the runtime library,
as explained in Sections 3.3.2 and 3.3.3 respectively. Finally, we will present an illustrative
example to explain our instrumentation process in Section 3.3.4.

3.2 Challenges of fuzzing concurrent programs.

Fuzzing concurrent programs is challenging due to the complexity and non-deterministic
behaviour of concurrent execution. Some of the key challenges include:

1. Thread interleavings: the scheduling of threads in concurrent programs can result
in different thread interleavings, leading to multiple program behaviours. Therefore,
fuzzing is required to explore different thread schedules to identify potential concurrency-
related bugs. Furthermore, instrumenting the code can introduce new interleavings that
must be considered during the instrumentation process; we address this challenge in
Section 3.3.2.1.

2. Data races and atomicity violations: concurrent programs can be exposed to data races
and atomicity violations when multiple threads simultaneously access shared data, lead-

48

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

ing to synchronization issues. Therefore, fuzzing should aim to identify these concurrency-
related bugs by generating test inputs that can trigger such vulnerabilities, which we
address in Section 3.3.1.

3. Scalability: fuzzing concurrent programs can be computationally exhausting and time-
consuming. The vast number of thread interleavings and the complex nature of con-
current execution pose challenges in scaling fuzzing tools effectively; we address this
challenge in Chapter 4, Section 3.3.2.2.

4. Non-Deterministic behaviours: reproducing a specific bug in a concurrent program is
challenging due to the non-deterministic behaviour of concurrent programs. Thus, the
fuzzer needs to have an approach for reproducing the exact input and interleavings that
lead to the bug; we address this challenge in Section 3.3.2.3.

Addressing these challenges is essential for effectively identifying vulnerabilities in con-
current programs [146]. In the following sections, we will introduce our algorithm to tackle
these four challenges.

3.3 Designing a state-of-the-art concurrency-aware gray-box fuzzer

Recall that our OpenGBF is based on existing techniques that control the fuzzer by intro-
ducing delays to explore different thread interleavings and use branch coverage to guide the
fuzzer mutation engine. It is implemented and evaluated for two important reasons:

1. To the best of our knowledge, OpenGBF is the only fully open-source, user-space concurrency-
aware fuzzer available, as reported in [1], [2]. Therefore, it is a valuable reference for
users and researchers, enabling them to extend the algorithm and conduct further re-
search.

2. Since it is impossible to confirm the claims made in the existing literature due to the
absence of open-source codebases, our OpenGBF is a transparent effort to reproduce
and confirm these claims.

3.3.1 OpenGBF framework

We have built our OpenGBF framework on top of the state-of-the-art gray-box fuzzer AFL++ [115].
AFL++ is primarily designed to detect vulnerabilities in sequential programs and is not in-
herently equipped to handle concurrent programs.

To address this challenge, we developed the Open-source Gray-Box Fuzzer (OpenGBF), a
thread-aware concurrency fuzzer that extends AFL++. We achieved concurrency awareness

49

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

C program

LLVM Pass
.so executable

Runtime
Library

AFL++ clang
wrapperSanitizers Binary file

Corpus seed

Verdict

Counterexample

Compile

Compile

Compile

Compile

Fuzzing process

Figure 3.1. OpenGBF framework, which consists of eight components: C program, Sanitizer, LLVM Pass
executable, Runtime library, AFL++ clang wrapper, fuzzing process, verdict, and counterexample.

by instrumenting the program using LLVM Pass. We chose LLVM Pass for code instrumen-
tation due to its compatibility with AFL++, which also uses LLVM Pass to instrument the
Program Under Test (PUT) for improved execution speed [116].

Figure 3.1 illustrates the high-level structure of the OpenGBF framework, consisting of
eight components. The first four components (C program, sanitizer, LLVM Pass executable,
and runtime library) are compiled using the fifth component (AFL++ clang wrapper). Once
compiled, the resulting executable (binary file) can be fuzzed using the provided Corpus
seed. Finally, the last two components (verdict and counterexample) represent the output of
the fuzzing process. In the following section, we will explain each of these components.

1. C program: it refers to the program the user requires to test, written in C, C++, or a
preprocessed C code (*.i) file. Throughout this thesis, we will consistently refer to this
as the Program Under Test (PUT).

2. Sanitizers: AFL++ allows the use of sanitizer instrumentation during the compilation
process [147]. Depending on the specific sanitizer employed, we can identify the types
of bugs OpenGBF can detect. For example, when compiling the program using:

• Thread Sanitizer: OpenGBF can detect concurrency-related bugs, including data
races, deadlocks, and thread leaks, as outlined in [106].

• Address Sanitizer: OpenGBF can detect memory-related bugs, including out-of-
bounds and use-after-free [107].

50

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

• Memory Sanitizer: OpenGBF can detect uninitialized memory bugs [108].

• Undefined behaviour Sanitizer: OpenGBF can detect undefined behaviour bugs
such as Out-of-bounds Array Access and Null Pointers [109].

One of the challenges in designing a concurrency-aware fuzzer for concurrent programs
is that concurrent programs can have concurrency bugs that are difficult for a general
fuzzer to detect [148]. To address this issue, we employ Thread Sanitizer to detect
concurrency-related bugs. We can enable multiple sanitizers simultaneously during
compilation, which allows us to leverage their capabilities, find more bugs, and ensure
a more comprehensive analysis of the program’s behaviour [9], [147]. However, en-
abling multiple sanitizers will increase runtime overhead and slow down the fuzzer for
bug detection [149]. Therefore, selecting a specific sanitizer that best suits the particu-
lar needs is more convenient, facilitates debugging, and enables precise reporting of the
bugs detected by OpenGBF.

3. LLVM Pass: it contains our custom LLVM Pass instrumentation, which injects five
function calls. Detailed explanations can be found in Section 3.3.2.

4. Runtime Library: it is a dynamic library that implements the functions we instrument
in our LLVM Pass. Detailed explanations can be found in Section 3.3.3.

5. AFL++ clang wrapper: a clang replacement used to compile the program with AFL++
instrumentation [150]. This component compiles the program with the required sanitizer
flags, depending on the property we need to test, along with the original PUT, our custom
LLVM Pass, and our runtime library.

6. Fuzzing Process:

• Binary File: The executable is obtained once we compile the PUT with the nec-
essary sanitizer (if any), LLVM Pass instrumentation, and runtime library. This
executable is then used for fuzzing with AFL-fuzz, and we initiate the fuzzing pro-
cess by providing the required initial seeds.

• Corpus seed: The corpus directory contains the initial seeds provided to the fuzzer
to initiate the fuzzing process. These initial seeds operate as the basis for creating
new seeds through mutation, resulting in a more diverse generation of test cases.

7. Verdict: We examine the crashes detected by the fuzzer and incorporate them later into
the decision matrix to produce the final verdict. By default, we set the property as a
reachability check unless we use any of the sanitizers.

8. Counterexample: During the runtime of the fuzzing process, we generate a file con-
taining all the necessary information for tracking the bug [151]. This file helps as a
reference for generating the witness file at a later stage.

51

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Algorithm 2 LLVM pass Instrumentation
Input: PUT – program under test.
Output: M – instrumented program.
Shorthands:
λd − _delay_function();
λa − pthread_add();
λj − pthread_release();
λe − EBF_add_store_pointer();
λl − EBF_alloca();

1: M ← PUT
2: for all Function F ∈ PUT do
3: for Instruction I in F do
4: M ← instrument (λd, I,M) {insert a call to _delay_function() (Algorithm 3) after each instruction

to run a delay at runtime}
5: if I == pthread_create() then
6: M ← instrument (λa, I,M) {insert a call to pthread_add() (Algorithm 4) to increase the active

threads counter at runtime}
7: else if I == pthread_join() then
8: M ← instrument (λj , I,M) {insert a call to pthread_release() (Algorithm 5) to decrease the

active threads counter at runtime}
9: else if I is DECLARATION then

10: M ← instrument (λl, I,M) {insert a call to EBF_alloca() function (Algorithm 6) to record a pair
of the name and address of the variable declaration.}

11: else if I is STORE then
12: M ← instrument (λe, I,M) {insert a call to EBF_add_store_pointer() (Algorithm 7) function to

record the assignment information for witness generation}
13: end if
14: end for
15: end for
16: return M

3.3.2 Custom LLVM pass instrumentation

We built OpenGBF on top of AFL++ by combining the standard LLVM Pass used in the
AFL++ clang wrapper with our custom, independent LLVM Pass. Specifically, we instru-
ment the PUT using our custom LLVM Pass by injecting five function calls. These calls
include a delay function, two thread-monitoring functions, and two information-collecting
functions. Algorithm 2 illustrates these instrumented functions, where the delay function
(line 4) is injected to control thread interleavings. In contrast, the two thread-monitoring
functions (lines 6 and 8) are injected to monitor the number of active threads, where the
two information-collecting functions (lines 10 and 12) are injected to record the information
needed to generate a witness file containing the execution trace (bug trace).

3.3.2.1 Delay function instrumentation

Concurrent programs can have different thread interleavings, leading to different program
behaviours. To verify such programs, it is essential to ensure that the fuzzer explores these
different interleavings. Therefore, to control thread interleavings, we insert a call to the (_-

52

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

delay_function()) after each instruction in the Intermediate Representation (IR) of a function.
Specifically, we insert a call to this _delay_function() for each function in the PUT and each
instruction within that function (see lines 2 to 4). Then, we implement this function in a
runtime library by introducing delays, as explained in Section 3.3.3.1. However, The LLVM-
IR requires that the first instruction in basic blocks be a PHI instruction [152]. For this reason,
we ensure that no _delay_function() is injected before a PHI instruction.

3.3.2.2 Thread-monitoring functions instrumentation

Since concurrent programs can have many threads, it presents challenges in efficiently scal-
ing fuzzing for their verification. Consequently, monitoring the number of active threads
becomes crucial. To address this challenge, we introduce two thread-monitoring functions:
pthread_add() and pthread_release(). We instrument the PUT by injecting these functions.
Specifically, we insert the pthread_add() function after each pthread_create() call (lines 5
and 6), and we inject a function named pthread_release() after each pthread_join() call (lines
7 and 8). The implementation details of these functions are explained in Section 3.3.3.1.

3.3.2.3 Information-collecting functions instrumentation

The non-deterministic behaviour of concurrent programs makes reproducing a specific bug
trace challenging. Consequently, collecting the necessary information for generating this bug
trace is crucial. We achieve this by inserting function calls for EBF_alloca() and EBF_-
add_store_pointer() respectively (lines 10 and 12). After each declaration instruction in the
PUT (e.g., int a;), we inject a function call to EBF_alloca(). Similarly, after each load-store
instruction in the PUT (e.g., a = 42), we inject a function call to EBF_add_store_pointer().
The implementation details of these functions are explained in Section 3.3.3.3.

3.3.3 Runtime library for the LLVM pass instrumentation functions

We bundle the instrumented functions into a runtime library. We utilize the runtime library
to link the functions instrumented using LLVM Pass for several reasons. First, the runtime
library enables dynamic behaviour; the functions can be executed during runtime, which
is particularly helpful when monitoring the number of active threads. Second, the runtime
library provides flexibility; it can be easily updated, changed, or replaced without affecting
the LLVM Pass codebase. Lastly, integrating is straightforward, and users can modify the
implementation without changing the LLVM Pass. In the following sections, we will provide
a detailed explanation of implementing these five instrumented functions.

53

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

3.3.3.1 Controlling the thread interleaving

We explain the implementation of the delay function, which is instrumented using LLVM
Pass. The purpose of this function is to control thread interleavings. Our main algorithmic
idea is injecting random delays in the PUT to force different thread executions. Furthermore,
OpenGBF will also address several significant corner cases, which we will discuss in the
following sections.

Firstly, we limit the number of active threads during program execution to maximize the
chances of finding bugs. Determining the limit of active threads is an unfortunate but neces-
sary approximation of the PUT runtime behaviour. This is based on empirical experiments
where we found that bugs can often be discovered in shallow paths or with fewer thread in-
terleavings. Additionally, some PUTs may contain a very large or “infinite” number of active
threads, which can significantly slow down execution and consume excessive computing re-
sources during fuzzing. This may result in either undefined behaviour or an undecidable
problem. To address this, we monitor the number of active threads and start a new run with
different interleavings if it exceeds a predefined threshold.

Secondly, to prevent the PUT from getting stuck due to a deadlock during execution, we
introduce a mechanism to terminate the run and initiate a new one non-deterministically. This
mechanism introduces a probability factor p that determines the probability of exiting the run
at each instruction. Introducing this probability factor p reduces the risk of the PUT becoming
stuck during execution.

Thirdly, we have defined atomic functions, namely EBF_atomic_begin() and EBF_atomic_-
end(). These functions are necessary for several reasons. Firstly, since not all versions of the
standard C language define atomic instructions, we must implement these functions to en-
sure that all instructions are executed atomically within these function blocks. Secondly,
within our implementation, we must guarantee the atomicity of certain functions to prevent
data races. Lastly, these functions are required by the set of benchmarks on which we will
evaluate OpenGBF.

In our delay function, we enforce that all other threads wait for the atomic block to finish.
This is accomplished by initializing a global mutex (EBF_mutex) that an active thread can
lock. If the global mutex is locked and the current thread does not own the mutex, the active
thread will wait for the mutex to be released by its owner. Furthermore, we ensure no de-
lay function is injected inside these atomic blocks. Since verification time is asymptotically
dominated by the number of interleavings in the PUT, avoiding thread interleavings inside
the atomic blocks optimizes the overall verification time and memory usage.

Finally, we introduce different interleavings by providing different amounts of delay (in
milliseconds) after each instruction. These values are chosen uniformly from a preset range.

54

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Algorithm 3 Function _delay_function()
Global: TT – thread threshold, TN – number of threads running, p – probability of exiting, TC – current
thread, EBF_mutex – global mutex.

1: Function _delay_function()
2: if TN > TT or Bernoulli(p) == 1 then
3: exit {exit this analysis normally}
4: end if
5: if TC == EBF_mutex then
6: run_instruction {run the current instruction}
7: return
8: end if
9: φ← wait_for_timeout {wait until EBF_mutex is released}

10: if φ is timeout then
11: exit {exit this analysis normally}
12: end if
13: sleep(∗) {run a delay for * nanoseconds}
14: EndFunction

Precisely, we let AFL++ generate the seed values for the random number generator, which
provides the final delay values. We evaluate the effect of different delay values on the bug-
finding capability of OpenGBF in Section 6.5.

We take care of these corner cases in the implementation of the _delay_function(), as
defined in Algorithm 3. In lines 2-4, we handle the first two cases: limiting the number
of active threads and introducing the probability factor p. If the active thread TN exceeds
the predefined threshold TN , or if we extract a value of 1 from a Bernoulli distribution with
a success probability of p, the fuzzer exits the current run normally and starts a new run
with different delay values, resulting in different interleavings. The third corner case ensures
atomicity; in line 5, we check if the current thread owns the global mutex. If it does, we
allow the thread to finish its execution and release the mutex (lines 6 and 7). In lines 9-10,
if the global mutex exceeds the timeout without being released by the thread, the fuzzer is
permitted to exit the current run normally and start a new one. In this situation, if we encounter
an infinite loop inside the critical section or a deadlock due to the global mutex never being
released, we give the fuzzer the opportunity to exit normally without reporting a bug, allowing
it to start a new fuzzing run (line 11). Finally, in line 13, we execute the delay by running a
sleep function for the duration value provided by the fuzzing engine. These duration values
are generated using the UNIX rand function, with its initial seeds provided by the fuzzer’s
non-deterministic functions.

3.3.3.2 Limiting the number of active threads:

We monitor the count of active threads using two functions: pthread_add() and pthread_re-
lease() to limit the number of active threads inside the delay function. Their definitions are
provided in Algorithm 4 and Algorithm 5, respectively. In Algorithm 4, the active thread
counter, denoted as TN , is incremented by one (line 3). Before this increment, the counter is

55

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Algorithm 4 Function pthread_add()
Global: Mutex_lock, TN - active threads counter.

1: Function pthread_add()
2: lock thread←Mutex_lock
3: TN++
4: unlock thread←Mutex_lock
5: EndFunction

Algorithm 5 Function pthread_release()
Global: Mutex_lock, TN - active thread counter.

1: Function pthread_release()
2: lock thread←Mutex_lock
3: TN - -
4: unlock thread←Mutex_lock
5: EndFunction

locked for synchronization, and it is unlocked afterward (lines 2 and 4). Conversely, Algo-
rithm 5 handles the decrement of TN (line 3). In this case, TN is also locked to prevent data
races between different threads, and it is unlocked afterward (lines 2 and 4).

3.3.3.3 Counterexample

In concurrent programs, non-deterministic behaviour poses a significant challenge in detect-
ing bugs and creating a trace that leads to the identified bug. Since the fuzzer outputs a
core dump, it lacks the entire program trace, making it insufficient for generating the wit-
ness file [85]. To effectively address this challenge, we have defined two functions, namely
EBF_alloca() and EBF_add_store_pointer(). These functions are crucial in collecting the
necessary information to generate bug reports (counterexample). Such bug reports are valu-
able for users and tools, as they facilitate the tracing, reproduction, and confirmation of the
detected violations.

Algorithm 6 and Algorithm 7 illustrate the definitions of the functions EBF_alloca() and
EBF_add_store_pointer() respectively. The former function records the variable name, func-
tion name where the variable was declared, thread ID, and variable address (see line 3). The
latter function records the variable’s assigned value, the line of code where the assignment
occurs in the PUT, the function name, thread ID, and address (see line 3). For example:

int a; −→ EBF_Alloca("a", "function name", thread ID &a);
a = 42; −→ EBF_add_store_pointer(&a, line_dbg, "function name", thread

ID, 42);

To avoid data races while reading and writing information to the file, both functions record
the information atomically. This means that the thread is locked before writing, as shown in
line 2, and the thread is unlocked afterward, as shown in line 4.

56

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Figure 3.2. A snippet of the counterexample (witnessInfoAFL_pid) generated by our OpenGBF resulted
from our example presented in 3.1.

Algorithm 6 Function EBF_alloca()
Inputs: a – variable name, f – function name, tid – thread id,&a – variable address.
Global: Mutex_lock, witnessInfoAFLpid – witness file for the process with ID =
pid.

1: Function EBF_alloca(a, f, tid,&a)
2: lock thread←Mutex_lock
3: witnessInfoAFLpid ← write(a, f, tid,&a)
4: unlock thread←Mutex_lock
5: EndFunction

Therefore, since we can have different threads from different processes accessing the same
file simultaneously for writing, which can lead to a deadlock between different threads, we
require a separate file for each process to write to. So, when the fuzzing process starts, we ex-
ecute a constructor function that runs before the main function is called in the PUT. This func-
tion initializes the mutex EB_mutex, obtains the process ID (pid), and creates a file uniquely
identified by the process ID (i.e., witnessInfoAFL_pid). This file will contain the information
recorded by EBF_alloca() and EBF_add_store_pointer().

On the one hand, when the fuzzing process completes (either due to reaching a timeout
or normal termination with exit code 0), we delete all the created files using a destructor
function [153]. On the other hand, if the fuzzer detects a crash in one of the PUT executions,
we retrieve the ID of the crashed process, save the file associated with this process ID, and
remove the others. This file should contain the information that caused the crash, such as the
sequence of operations (i.e., memory accesses) that led to the crash of the PUT. Lastly, we
convert the content of this file into a specific format (GraphML format) that is accepted by the
witness validators. Figure 3.2 displays the content of the witnessInfoAFL_pid file generated
by OpenGBF during the fuzzing process. This file contains all the information recorded by
EBF_alloca() and EBF_add_store_pointer().

57

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Algorithm 7 Function EBF_add_store_pointer()
Inputs: &a - variable address, l - line number in the code, f - function name, tid – thread id, v - variable
value.
Global: Mutex_lock, witnessInfoAFLpid – witness file for the process with ID =
pid.

1: Function EBF_add_store_pointer(&a, l, f, tid, v)
2: lock thread←Mutex_lock
3: witnessInfoAFLpid ← write(&a, l, f, tid, v)
4: unlock thread←Mutex_lock
5: EndFunction

3.3.3.4 Harnessing functions

This section aims to enhance the capabilities of our OpenGBF by incorporating essential
functions specifically tailored to meet the requirements of our evaluation benchmarks (i.e.,
SV-COMP benchmarks[154]). We have implemented these functions within our runtime
library, which can be invoked while executing the PUT. These functions are designed to ensure
the successful compilation of the PUT in our OpenGBF.

Atomic functions. To guarantee the absence of interleavings within an atomic block of in-
structions, denoted by an initial call to _VERIFIER_atomic_begin() and ending with
_VERIFIER_atomic_end(), OpenGBF employs a locking mechanism held by the cur-
rent thread. This mechanism prevents other execution paths from resuming until the
atomic block is finished. The lock is implemented through a global mutex, checked
inside the delay function. Also, this delay function executes after each instruction, ef-
fectively halting the progress of other threads until the atomic block releases the lock.
The delay function is not injected within the atomic block to avoid introducing unnec-
essary interleavings.

Non-deterministic functions. These are abstract functions that provide answers to specific
problems within the PUT. In this case, they model non-deterministic values that can gen-
erate the values resulting in finding the property violation when the program is executed
using the produced values. These functions are defined with the prefix VERIFIER_-
nondet<X>(), where X can be any C type (e.g., integer, double, char, and so on). In
OpenGBF, this is achieved by reading the fuzzer inputs (through stdin). These inputs
can be read either in byte representation or string representation. For byte representation,
we rely on the fread() function, and for string representation, we rely on fscanf().

3.3.4 Full illustrative example

By connecting all the design choices, we illustrate using an example referred to as thesis_-
example.c throughout this thesis. Suppose a multithreaded program contains a reachability

58

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

bug (user-defined assertions), as shown in Listing 3.1. The program consists of two threads, t1
and t2 (see lines 17 and 18), both of which are mis-synchronized and call the same function
foo. The function foo (see line 6) contains a while loop with 5 iterations, incrementing a
variable a by 1 during each iteration (see line 10). Since both threads call this function,
the value of the variable a at the end of the function execution should be 10. In line 21, a
conditional statement checks whether this condition holds. If the value of a is not as expected
(i.e., not equal to 10), we report a crash (property violation). However, this error statement
can only be reached if the two threads are mis-synchronized when reading and writing to a.

Listing 3.1. Original multi-threaded C code (thesis_example.c).

1 #include<pthread.h>

2 #include<stdlib.h>

3 #include<assert.h>

4 void reach_error(){ assert(0);}

5 int a=0; //shared variable

6 void* foo(void* arg) {

7 int tmp, i=1;

8 while (i<=5) {

9 tmp = a;

10 a = tmp + 1;

11 i++;

12 }

13 return 0;

14 }

15 int main () {

16 pthread_t t1, t2;

17 pthread_create(&t1, 0, foo, 0);

18 pthread_create(&t2, 0, foo, 0);

19 pthread_join(t1, 0);

20 pthread_join(t2, 0);

21 if ((a) != 10) reach_error();

22 }

Figure 3.3 presents a visualization of the memory access of variable a in Listing 3.1. T1
refers to thread 1, and T2 refers to thread 2, with each thread capable of reading and writing to
variable a. Figure 3.3a illustrates one of the scenarios that can lead to interleavings reaching
the violation statement when the two threads are mis-synchronized. Thread 1 (T1) starts
execution first and reads the initialized value of a = 0 in Line 5. Then thread 2 (T2) starts
execution and also reads the value of a = 0 before T1 writes to a = 1 (see line 10). Since T1
reads the value as a = 0, it updates the value to a = 1, and T2 also reads a = 0 and updates
the value to a = 1. This pattern repeats until a = 5 is reached rather than the expected value
of a = 10.

The ideal scenario is when both threads read and write the value of a without interfering
with each other (e.g., locking the current thread while reading and writing to a global vari-

59

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

R(a)
a=0

W(a)
a=1

R(a)
a=1

W(a)
a=2

R(a)
a=2

W(a)
a=3

R(a)
a=3

W(a)
a=4

R(a)
a=4

W(a)
a=5T1

T2 R(a)
a=0

W(a)
a=1

R(a)
a=1

W(a)
a=2

R(a)
a=2

W(a)
a=3

R(a)
a=3

W(a)
a=4

R(a)
a=4

W(a)
a=5

time

(a) Mis-synchronized memory accesses.

R(a)
n=0

W(a)
a=1

R(a)
a=2

W(a)
a=3

R(a)
a=4

W(a)
a=5

R(a)
a=6

W(a)
a=7

R(a)
a=8

W(a)
a=9T1

T2 R(a)
a=1

W(a)
a=2

R(a)
a=3

W(a)
a=4

R(a)
a=5

W(a)
a=6

R(a)
a=7

W(a)
a=8

R(a)
a=9

W(a)
a=10

time

(b) Synchronized memory accesses.

Figure 3.3. Visualization of the memory accesses to variable a in Listing 3.1
for two different thread interleavings. In Figure 3.3a, the accesses are mis-synchronized: both T1 and T2 read
a before simultaneously updating the value to a = 1. This pattern continues until the end of the execution,
where the final value will be a = 5. Conversely, Figure 3.3b shows synchronized accesses: T1 reads a and

updates the value to a = 1, then T2 reads a and updates the value to a = 2. In the end, the final value will be
a = 10, as expected.

able). Figure 3.3b presents this scenario when synchronizing the two threads. T1 reads the
initialization value a = 0 and updates the value to a = 1, then T2 reads the value a = 1 and
updates it to a = 2. This pattern ensures the property will hold, resulting in the final value of
a = 10.

When verifying the code in Listing 3.1 using EBF (as explained in Chapter 4), we iden-
tified two different bugs. Our OpenGBF detected a data race caused by mis-synchronized
threads between T1 and T2, while all the BMC tools identified a reachability bug at Line 21.

Furthermore, let us provide an example of our instrumentation at the LLVM-IR level. We
will use the function foo from our code example in Listing 3.1.

Firstly, Listing 3.2 shows the original LLVM-IR for the foo function before any instru-
mentation is applied. Please note that each code statement corresponds to multiple LLVM
instructions.

Secondly, Listing 3.3 shows the corresponding LLVM-IR for the foo function after our
instrumentation. Specifically, Line 7 and Line 20 include calls to the EBF_add_store_pointer
function. These calls are injected after each load instruction to record variable values, which
are then saved in a file used for generating the witness file.

Additionally, Line 10, 13, and 16 demonstrate calls to the EBF_alloca function. These
calls are injected after each allocation to record metadata about any variables declared in the
PUT. This information is saved in a file to generate the witness file.

Finally, Line 11, Line 14, Line 17, and Line 22 introduce the _delay_function, which is
injected after each instruction.

60

3.3. DESIGNING A STATE-OF-THE-ART CONCURRENCY-AWARE GRAY-BOX FUZZER

Listing 3.2. Snippet of the corresponding IR

before instrumentation.

1 define dso_local i8* @foo(i8* %0) #0 {

2 %2 = alloca i8*, align 8

3 %3 = alloca i32, align 4

4 %4 = alloca i32, align 4

5 store i8* %0, i8** %2, align 8

6 store i32 1, i32* %4, align 4

7 br label %5

8 %6 = load i32, i32* %4, align 4

9 %7 = icmp sle i32 %6, 5

10 br i1 %7, label %8, label %14

11 %9 = load i32, i32* @a, align 4

12 store i32 %9, i32* %3, align 4

13 %10 = load i32, i32* %3, align 4

14 %11 = add nsw i32 %10, 1

15 store i32 %11, i32* @a, align 4

16 %12 = load i32, i32* %4, align 4

17 %13 = add nsw i32 %12, 1

18 store i32 %13, i32* %4, align 4

19 br label %5

20 ret i8* null

21 }

Listing 3.3. snippet of the corresponding IR

after instrumentation.

1 define dso_local i8* @foo(i8* %0) #0 {

2 %2 = alloca i8*, align 8

3 %3 = alloca i32, align 4

4 %4 = alloca i32, align 4

5 %5 = bitcast i8* %0 to i1*

6 %6 = bitcast i8** %2 to i8*

7 call void @EBF_add_store_pointer(i8* ←↩

%6, i64 0, i8* getelementptr ←↩

inbounds ([4 x i8], [4 x i8]* @0,←↩

i32 0, i32 0), i1* %5)

8 store i8* %0, i8** %2, align 8

9 %7 = bitcast i8** %2 to i8*

10 call void @EBF_alloca(i8* ←↩

getelementptr inbounds ([4 x i8],←↩

[4 x i8]* @1, i32 0, i32 0), i8*←↩

getelementptr inbounds ([4 x i8←↩

], [4 x i8]* @2, i32 0, i32 0), ←↩

i8* %7),

11 call void @_delay_function()

12 %8 = bitcast i32* %3 to i8*

13 call void @EBF_alloca(i8* ←↩

getelementptr inbounds ([4 x i8],←↩

[4 x i8]* @3, i32 0, i32 0), i8*←↩

getelementptr inbounds ([4 x i8←↩

], [4 x i8]* @4, i32 0, i32 0), ←↩

i8* %8),

14 call void @_delay_function()

15 %9 = bitcast i32* %4 to i8*

16 call void @EBF_alloca(i8* ←↩

getelementptr inbounds ([2 x i8],←↩

[2 x i8]* @5, i32 0, i32 0), i8*←↩

getelementptr inbounds ([4 x i8←↩

], [4 x i8]* @6, i32 0, i32 0), ←↩

i8* %9),

17 call void @_delay_function()

18 %10 = sext i32 1 to i64

19 %11 = bitcast i32* %4 to i8*

20 call void @EBF_add_store_pointer(i8* ←↩

%11, i64 6, i8* getelementptr ←↩

inbounds ([4 x i8], [4 x i8]* @7,←↩

i32 0, i32 0), i64 %10),

21 store i32 1, i32* %4, align 4,

22 call void @_delay_function(),

61

3.4. SUMMARY

3.4 Summary

In this chapter, we discussed the primary challenge addressed in this thesis: the absence
of open-source tools for fuzzing concurrent programs. We tackled this challenge by de-
veloping our open-source fuzzer, OpenGBF. Implementing a concurrency-aware fuzzer in-
volves addressing four sub-challenges, including thread interleaving behaviours, detecting
concurrency-related bugs, scaling the fuzzer, and dealing with the non-deterministic be-
haviour of concurrent programs.

The chapter introduces the design of the OpenGBF framework. Firstly, we present the
high-level structure of OpenGBF, which comprises eight components (C program, sanitizer,
LLVM Pass executable, runtime library, fuzzing process, verdict, and counterexample). Then,
we present the detailed framework, where we instrument the PUT using the LLVM Pass and
inject five functions to control thread interleavings (_delay_function()), two thread-monitoring
functions (pthread_add() and pthread_release()), and record relevant information (EBF_al-
loca() and EBF_add_store_pointer()). We bundle these five instrumentation functions into a
runtime library.

Specifically, we address the first sub-challenge, in which the scheduling of threads in con-
current programs can result in different thread interleaving behaviours. To explore these dif-
ferent thread interleavings and mitigate the introduction of unnecessary interleavings during
code instrumentation, we inject the _delay_function() after each instruction. This introduces
random delays imposed by the fuzzer to force various thread interleavings.

To address the second sub-challenge related to concurrency bugs that occur due to different
thread interleavings in concurrent programs, we used the Thread Sanitizer with the fuzzer.
This approach allowed us to add the necessary runtime checks to detect such vulnerabilities.

The third sub-challenge is that fuzzing concurrent programs can be computationally ex-
hausting and time-consuming, especially with a huge number of active threads. We address
this sub-challenge by injecting pthread_add() and pthread_release() functions. These func-
tions work as counters, keeping track of the number of active threads. We control the number
of active threads by setting a threshold inside the _delay_function().

The last sub-challenge we address is the non-deterministic behaviour of concurrent pro-
grams, which makes it challenging to reproduce the exact input and interleavings that lead to
the bug. To tackle this, we inject EBF_alloca() and EBF_add_store_pointer(). These func-
tions record essential information needed to trace the bug, and later, we use this information
to generate a witness file that can be confirmed using validators.

The chapter concluded with an illustrative example demonstrating how all the design
choices and concepts connect together. The example analyzed a multithreaded program with

62

3.5. FUTURE WORK

a reachability bug, illustrating how our framework can detect data races and reachability bugs.
We also showed the role of instrumentation at the LLVM-IR level.

3.5 Future work

In future work, several interesting ideas for enhancing the bug detection capabilities of
our OpenGBF framework. Firstly, we could explore strategies to make the delay function
more efficient by reducing the number of delays injected after each instruction. This op-
timization could dynamically adjust the delay intervals based on the specific program be-
haviour, potentially leading to more effective interleaving exploration. Secondly, we could
incorporate advanced mutation algorithms based on machine learning techniques to intro-
duce better-adapted inputs to find concurrency-related vulnerabilities. By extracting relevant
features from program executions, machine learning models could generate inputs optimized
for revealing complex concurrency bugs. These future endeavors can enhance OpenGBF’s
bug detection capabilities for both sequential and concurrent programs.

63

Chapter 4

EBF: A black-box cooperative

verification for concurrent programs

4.1 Chapter introduction

Finding software vulnerabilities in concurrent programs is difficult due to the complex
nature of concurrent programs. These vulnerabilities can have serious consequences, such as
financial losses and threats to people’s well-being. Therefore, various techniques are available
to verify and test concurrent programs, including BMC and fuzzing, each with its strengths
and weaknesses. Therefore, combining the strengths of BMC in resolving complex condi-
tional guards with the flexibility of OpenGBF allows us, at least in theory, to improve per-
formance by solving more problems (discovering more bugs). However, despite these tech-
niques’ availability, no approach is currently effectively combining BMC and fuzzing for the
verification of concurrent programs [155].

In this context, there are several ways to combine different verification techniques, and the
choice depends on the specific goals and challenges of the verification process. For example,
cooperative verification [45] simplifies the communication interface between these tools by
exchanging certain information (verification artifacts) to enhance the overall effectiveness of
the verification process. Cooperative verification can be classified into black-box or white-
box combinations based on analyzing the exchanged information [45], [156]. In the black-
box combination, the combined tools are not modified. In contrast, the combined tools are
modified based on the exchanged information required in the white-box combination.

Another example is the portfolio approach [156], where tools are independent of each
other and can be distributed using various combinations, including sequential portfolios, par-
allel portfolios, and algorithm selections. Sequential portfolios execute multiple verification
tools sequentially. In contrast, parallel portfolios execute all verification tools in parallel,
sharing system resources like CPU time and memory. Algorithm selection chooses the most
appropriate verification tool for a specific verification task.

64

4.2. CHALLENGES IN DESIGNING BLACK-BOX COOPERATIVE VERIFICATION TOOL

Accordingly, our primary research question is whether combining BMC and fuzzing can
improve bug detection performance in concurrent programs compared to using each technique
individually. This question has a twofold answer. First, considering the existing state-of-the-
art BMC tools for verifying concurrent programs, we recognized the need for an open-source,
concurrency-aware fuzzer as the fuzzing engine. Therefore, we developed our OpenGBF in
Chapter 3. Second, to effectively address our research question, we needed to develop and
evaluate a cooperative framework. Hence, in this Ph.D. thesis, we adopt the philosophy of a
black-box cooperative design, allowing us to share the verification results by instrumenting
the PUT without modifying the tools employed in the framework. This flexibility in our
framework allows virtually any existing BMC or GBF tools to be combined.

This chapter, based on materials from our recent publications [1] and [2], aims to pro-
vide a comprehensive explanation of our black-box cooperative framework called Ensemble
Bounded Model Checking Fuzzing framework EBF, where OpenGBF plays a crucial role.
Unlike the portfolio approach in previous work [156], [157], the execution of these tools in
EBF is not entirely independent. Specifically, we use the verification witness file generated
by BMC to seed OpenGBF as information exchange between the cooperative tools.

In the following sections, we will explain in more detail how we integrated our OpenGBF
with the BMC engine within the EBF framework to enhance vulnerability detection in con-
current programs, where this integration leverages the combined capabilities of OpenGBF
and the BMC engine. First, we will outline the challenges posed by combining both tech-
niques in Section 4.2. Then, we will explain the main framework, which comprises four
main stages elaborated in Sections 4.3.1.1, 4.3.1.2, 4.3.1.3, and 4.3.1.4. Section 4.3.1.5 pro-
vides details about the witness file generated by EBF, while Section 4.3.2 discusses the CPU
time allocation choice within the EBF framework.

4.2 Challenges in designing black-box cooperative verification tool

BMC and fuzzing are fundamentally different approaches; therefore, their collaboration
within the framework requires careful coordination. This includes addressing the following
challenges:

1. Input seed generation: complex path conditions, such as (if(x*x -2*x +1 == 0))
are challenging for the fuzzer to explore, so providing effective initial seeds to cover most
of the program’s search space is essential to improve the fuzzer bug-finding capabilities
(we address this challenge in Section 4.3.1.2).

2. Result aggregation: when implementing a cooperative framework of different tools,
they are likely to return conflicting results. The main reason is that BMC relies on ab-

65

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

stractions of program execution states and symbolic execution, while the fuzzer tests
concrete inputs and execution schedules. Therefore, when these two techniques dis-
agree, we can make an informed decision regarding the final verification result and
generate a witness file for both results. These witness files represent error paths that
lead to the violation and can be used to confirm and reproduce the violation [158]. Our
proposed approach to address this challenge is using a decision matrix (we address this
challenge in Section 4.3.1.4).

3. Resource allocation trade-off: the main drawback of using a cooperative framework
that combines different tools sequentially is that they all share the same computational
resources. It is necessary to make resource allocation decisions for each tool, especially
in programs with limited time, memory, computational power, or combined sequen-
tially. Generally, these decisions depend on the problem at hand and the partial results
obtained from the tools within the cooperative framework (we address this challenge in
Section 4.3.2).

4.3 Designing cooperative black-box verification tool

Thanks to our OpenGBF, we now have both engines for effectively combining state-of-
the-art BMC and GBF tools. We combine them sequentially, simplifying the communication
interface between these tools. In this cooperative framework, we execute the BMC engine
as a black box, obtaining the counterexample, extracting the seed values, and then executing
OpenGBF as a black-box with these seed values. This black-box design offers several ad-
vantages. Firstly, it is universal; we can employ any BMC or GBF tool that accepts the C
program as input. Secondly, the types of software vulnerabilities that can be detected using
this design solely depend on the capabilities of each tool. For instance, most BMC tools can
detect different memory-related vulnerability types, such as buffer overflows, invalid pointer
dereferences, double frees, and use-after-free issues [159]. Certain BMC tools can also detect
concurrency-related vulnerabilities like deadlocks and data races [17], [160]–[162].

As for OpenGBF, its primary role involves exploring different executions of the PUT by
sampling various thread interleavings and program inputs. To evaluate whether such execu-
tions lead to a bug, we depend on the type of property we need to verify in a program, such
as concurrency-related, memory-related, or reachability bugs (user-defines assertions). For
detecting concurrency and memory-related bugs, OpenGBF relies on the capabilities of san-
itizers [147]. These sanitizers introduce additional instrumentation to the PUT at runtime for
bug detection [108]. Specifically, ThreadSanitizer[106] detects concurrency-related bugs,
while AddressSanitizer [107] detects memory-related bugs.

66

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

4.3.1 EBF framework

Figure 4.1 provides an overview of the EBF framework, which consists of four main stages:
safety proving, seed generation, falsification, and results aggregation. The first three stages
take the concurrent C program and safety property as input.

In the safety proving stage, the primary focus is verifying program safety using the BMC
engine. If BMC confirms the program is safe, the verdict is recorded in the decision matrix
during the results aggregation stage. However, if BMC identifies the program as unsafe, this
verdict is also recorded, and seed values are extracted from its counterexample (witness file)
and stored in a seed corpus directory.

Following this initial round, the seed generation stage starts. Here, multiple error state-
ments are injected after each branch in the program. Subsequently, one error statement is
randomly chosen, and BMC is executed on that specific file. This process continues until the
allocated time is reached or BMC has been run on all files containing error statements. For
each successful run where BMC identifies a bug, seed values are extracted and stored in the
seed corpus.

Next is the falsification stage, where OpenGBF is executed with the seed values stored in
the seed corpus. During the allocated time for the fuzzing process, if OpenGBF detects a
bug, it records the verdict in the decision matrix. Finally, in the results aggregation stage, the
results are aggregated to generate the final verdict and its associated witness file.

In the following sections, we provide a detailed explanation of the EBF framework and its
stages:

4.3.1.1 Safety proving stage

This stage is essential because the fuzzer cannot guarantee the exploration of all thread inter-
leavings; it can only maximize code coverage since we do not track them as coverage metrics.
Therefore, in this stage, we rely on the BMC to prove that a program is safe for a given bound
and limited context switch (default is two context switches). Algorithm 8 demonstrates how
this is achieved. First, we execute the BMC tool on the PUT and the safety property (see
line 2). The BMC tool’s output can be one of three verdicts: Verification successful if it con-
firms the PUT’s safety concerning the given property, Verification Failed if it finds a violation,
or Unknown, which can occur for various reasons, including reaching timeouts, running out
of memory, or unexpected crashes (see lines 3 and 5).

On the one hand, if the BMC tool detects a vulnerability and generates a counterexample,
a sequence of program inputs and thread interleavings leading to the vulnerability, we store

67

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

C program
+

Safety
property

BMC

Results Aggregation Stage
OpenGBF

Bug Unknown
Safe Conflict Safe
Bug Unsafe UnsafeBM

C

Unknown Unsafe Unknown

Counter-
example

Seeds

Controlled
Errors Injection

BMC

LLVM
Instrumentations

Sanitizers

Fuzzer
Fuzz Inputs

Fuzz Delays

Verdict Bug

Bug

Verdict

Verdict +
witness File

Safety Proving Stage Seed Generation Stage Falsification Stage

Figure 4.1. EBF framework.

these input values as initial seeds to be used in the Falsification Stage, where we employ
OpenGBF (see lines 6 and 7). Extracting the seeds is only possible when the BMC tool
reports a failed verification result. Notably, these seeds are concrete values that cause an
assertion to fail. However, despite BMC tools providing thread scheduling information in
their bug reports, it is not always straightforward to determine the necessary delay values for
replicating these bug-inducing schedules.

On the other hand, if BMC proves the program is safe, we record this verdict in the results
aggregation stage, where we use a decision matrix to determine the final verdict (see line 4).

4.3.1.2 Seed generation stage

This stage was introduced in EBF version 4.2 [2] to address the challenge in designing our
cooperative framework, where the Gray-Box Fuzzer (GBF) requires initial seed values to ini-
tiate the fuzzing process, especially for exploring complex path conditions, such as if(x*x
- 3*x + 2 == 0). When the BMC could not generate a counterexample for reasons like
exceeding the time limit or producing an Unknown result, we still need to seed the fuzzer.
To overcome this challenge, we analyze the PUT and adopt an approach similar to that pro-
posed by FuseBMC and LibKluzzer [43], [133] by repeatedly inserting the error statement
assert(0) into each conditional branch of the PUT

Specifically, after an if statement, a while loop, or a do-while loop (see Algorithm 8,
line 10), we insert a numerical label in the form of LABEL_i (e.g., LABEL_1, LABEL_-
2, and so on), as demonstrated in Listing 4.1. In this particular case, there are six labels.

68

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

Algorithm 8 EBF Overall Framework
Input: PUT – program under test, P safety property .
Output: V – verdict, W – witness file.
Shorthands:
λass− assert(0);
S - Seed values
B - The output from Algorithm 2

1: M ← PUT
2: V ← Run_BMC (PUT, P) {Run BMC tool for safety proving}
3: if V == V erification_successful then
4: V ← Aggregation_table {Save the verdict in the aggregation table}
5: else if V == V erification_Failed then
6: S ← Extract_seed_V alues {Extract the non-deterministic values from the BMC counterexample}
7: Save(S)← seed_directory
8: end if
9: for all Conditional_Branches_in_M do

10: Ei ← inject(λass(0)) {inject error label in every branch in the program}
11: end for
12: i← number_of_error_label {save how many error label we inject}
13: for all i and time ! = 0 do
14: Run_BMC(Ei){For each error label i, and it is not a timeout, we run BMC tool}
15: if V == V erification_Failed then
16: Save(S)← seed_directory {if BMC reaches this label, then we extract the values and save them in

a seed directory}
17: end if
18: end for
19: V ← Run_Fuzzer (M,S, P,B) {we run OpenGBF with the original PUT and the seed, property(Sani-

tizer) and LLVM pass}
20: if V == unknwon then
21: V ← Aggregationtable {if the fuzzer could not decide, we save the verdict in the aggregation table as

unknown}
22: else
23: V ← Aggregationtable {if the fuzzer found the bug, we save the verdict in the aggregation table as

Verification_failed}
24: Generate_witness_file {the file witnessInfoAFLpid will be generated}
25: end if
26: V ← Aggregation_table {generate the final verdict and the witness file (.graphml) corresponding to the

tool we aggregate the verdict from}
27: return V and Witnessfile

LABEL_1 is added before closing the function, LABEL_2 and LABEL_5 are added after
the while and if statements’ branch conditions, respectively, LABEL_3 and LABEL_6 are
added after exiting the branch conditions, and finally, LABEL_4 is added before the return
statement [43].

The difference between EBF, FuseBMC and LibKluzzer [43], [133] in this regard lies in
their label selection methods. In FuseBMC, they use a tracer to select seed values with the
highest impact considering different metrics (e.g., input size) [43], while LibKluzzer, runs
multiple instances of coverage-guided and whitebox fuzzing simultaneously, sharing a corpus
of seed values and tracking their progress. In contrast, EBF uses a more straightforward
strategy. After obtaining the code containing all the labels, EBF randomly selects a label
and replaces it with an error statement. For example, if LABEL_1 is chosen, EBF randomly

69

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

replaces LABEL_1 with the error statement. This process is repeated for each insertion,
resulting in an instrumented program with a specific error statement. However, it is important
to note that the effectiveness of the seed generation stage can be affected by the strategy used
to prioritize label replacement.

Once EBF replaces the labels, the BMC tool is used to verify each instrumented pro-
gram individually. If the BMC tool reaches the intended error statement within the speci-
fied timeout, EBF generates a witness file for each label. Each witness file is given a name
such as thesis_example_1_reach.c.graphml, corresponding to the label it represents. The
non-deterministic values in the generated graphml file are then extracted and converted into
seed values for the fuzzer. This extraction of seed values from witness files continues until
the BMC tool reaches all the injected error statements or the predefined timeout is reached.
Then, these seed values are stored in a dedicated directory for seeds. It is important to note
that EBF only preserves unique and non-duplicated seed values. Extracting and storing the
seed values to provide them to the GBF can help in reaching deeper paths, thus enhancing
the bug-finding capability of the fuzzer during the Falsification stage (see Section 4.3.1.3).

However, in the case where the BMC tool cannot reach any of the error statements, either
due to a timeout or producing an Unknown result, we still require to provide the fuzzer with
initial seeds to start the fuzzing process. Therefore, EBF generates random strings and saves
them in the seed corpus directory. Note that these values serve as an initial seed for the fuzzer
and are unrelated to the delay values within the delay function. The delay values, conversely,
are generated by a separate random number generator that derives its seed from one of the
harnessing functions presented in Section 3.3.3.4.

Listing 4.1. An instrumented code with adding labels correspond to the code in Listing 3.1.

1 #include<pthread.h>

2 #include<stdlib.h>

3 #include<assert.h>

4 void reach_error (){ assert(0);

5 LABEL_1:; //label 1

6 }

7 int a=0;

8 void* foo(void* arg) {

9 int tmp , i=1;

10 while (i <=5) {

11 LABEL_2:; //label 2

12 tmp = a;

13 a = tmp + 1;

14 i++;

15 }

16 LABEL_3:; //label 3

17 LABEL_4:; //label 4

18 return 0;

70

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

19 }

20 int main () {

21 pthread_t t1 , t2;

22 pthread_create (&t1 , 0, foo , 0);

23 pthread_create (&t2 , 0, foo , 0);

24 pthread_join(t1 , 0);

25 pthread_join(t2 , 0);

26 if ((a) != 10)

27 {

28 LABEL_5:; //label 5

29 reach_error ();

30 }

31 LABEL_6:; //label 6

32 }

4.3.1.3 Falsification stage

This stage is built on top of OpenGBF, which was introduced previously in Chapter 3. In
this stage, we compile the original PUT without error statements using the LLVM Pass and
the runtime library (we use sanitizer flags depending on which property we intend to verify).
Then, we fuzz the binary with the initial seeds generated in the seed generation stage. Based
on the verdict (either Verification Failed or Unknown), we save the output for the results
aggregation stage.

Recall that GBF does not guarantee that we have exhaustively explored the entire search
space because it only tracks code coverage, not thread interleavings, making it difficult to
confirm the program’s safety. Therefore, to prove that a program is safe up to a context
switch, we rely on BMC alone (see Table 4.1). Additionally, achieving a specific thread order
by injecting delays without a scheduling algorithm is nearly impossible because the impact
of these introduced delays depends on the multi-threaded program’s implementation within
the corresponding operating system (e.g., sometimes, the same delay values may lead to the
execution of different thread schedules). Hence, OpenGBF uses only the bug-inducing inputs
and not the thread schedule (thread interleavings) information as seed values. This means it
may be challenging for OpenGBF to replicate every bug detected by the BMC tool since it
might not be able to sample the sequence of delay values that reproduce the bug-inducing
thread interleavings. However, this approach allows OpenGBF to explore different randomly
generated interleavings that may lead to the discovery of other bugs.

4.3.1.4 Results aggregation stage

One of the challenges of developing a cooperative framework is the conflict outcome, when
BMC and GBF may disagree on proving the program’s safety. Therefore, after running all

71

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

the cooperative tools, EBF needs to aggregate their outcomes and generate a witness file. The
decision matrix in Table 4.1 outlines our aggregation rules.

The first rule is straightforward: If one of the tools cannot conclude the outcome (e.g.,
unknown), we trust the other tool. Specifically, when GBF could not find the bug and reports
unknown, our decision matrix aligns with the result from the BMC tool. Vice versa, when
the BMC tool cannot find the bug or prove the program’s safety, we rely on the bug found by
the GBF tool.

The second rule applies when there is a disagreement between the cooperative tools. For
example, when the BMC tool proves the program’s safety and produces Verification Success-
ful, while GBF may find a bug and produce Verification Failed, in this interesting scenario,
EBF reports Conflict and generate witness file for both bugs to provide further confirmation.
This can happen because of the over-approximation in the computational models of the BMC
tool or because our OpenGBF introduces a bug in our instrumented code. We can resolve
such Conflict by analyzing the witness file generated by EBF.

To provide a more detailed explanation of such a case, let us consider the example in
Listing 4.2. This example demonstrates a simple code in which the created threads call the
functions t1() and t2() respectively (see lines 6 and 10). These two functions implement
the Fibonacci Sequence [163], where the variable i adds the value of variable j, and vice
versa until the loop condition is reached. Then, we retrieve the value of correct in line 25,
which is the value returned by the function foo() (see line 14). The function foo() also
follows the Fibonacci Sequence rule. In line 26, a condition checks if both i and j are greater
than correct, leading to an error. Verifying this example using EBF produces a Conflict
verdict. OpenGBF detects the bugs, while ESBMC produces a Verification Successful result.
This discrepancy occurs because ESBMC uses two context switches by default, as it is fast at
verifying programs. Additionally, many concurrency bugs in real applications are shallow,
requiring only a few context switches to expose them [63]. However, ESBMC can detect the
bug and produce a Verification Failed verdict if we increase context switches by more than
two.

Listing 4.2. A simple code where ESBMC report Verification_true and OpenGBF report Verification_failed.

1 #include <stdio.h>

2 #include <pthread.h>

3 #include <assert.h>

4 void reach_error() {assert(0);}

5 int i=1, j=1;

6 void *t1(void *arg) {

7 for (int p = 0; p < 5; p++) {

8 i = i + j;}

9 return (0);}

10 void *t2(void *arg) {

72

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

EBF GBF
Bug Unknown

Safe Conflict Verification Successful
Bug Verification Failed Verification Failed

B
M

C

Unknown Verification Failed Unknown

Table 4.1. EBF reports a program Safe (Verification Successful), Unknown, Unsafe (Verification Failed) or
reports a Conflict by aggregating the outputs of BMC and GBF.

11 for (int q = 0; q < 5; q++) {

12 j = j + i;}

13 return (0);}

14 int foo() {

15 int cur = 1, prev = 0, next = 0;

16 for (int x = 0; x < 10; x++) {

17 next = prev + cur;

18 prev = cur;

19 cur = next;}

20 return prev;}

21 int main() {

22 pthread_t id1, id2;

23 pthread_create(&id1, 0, t1,0);

24 pthread_create(&id2, 0, t2,0);

25 int correct = foo();

26 if(i > correct && j > correct) reach_error();

27 return 0;}

Note that the rules established in the decision matrix, as proposed in Table 4.1, were mo-
tivated by the rules of the Software Verification competition (i.e., SV-COMP [164]), where
interactive verification is not available [77]. At the same time, wrong verdicts are penalized
through deductions of competition points (for more details, refer to Section 6.3). Neverthe-
less, verifying complex software systems can benefit from a more descriptive decision ma-
trix. For instance, it can differentiate between various causes leading to Verification Failed
outcomes in Table 4.1, such as identifying specific bugs like reachability or data races (see
Section 2.2). Ultimately, based on the decision matrix, the final verdict will be presented as
the final outcome. If the final decision (i.e., verdict) is Verification Failed, EBF proceeds to
generate a final witness.

4.3.1.5 Final witness generation

In EBF, a final witness file is generated only when the outcome is determined to be Veri-
fication Failed. This decision is based on the fact that no witness validator is available to
validate a correct witness for concurrent programs when writing this Ph.D. thesis [165]. Val-
idating a witness is as challenging as the verification problem itself. Therefore, the witness

73

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

Figure 4.2. A snippet of the witness file generated from ESBMC corresponds to our example presented in 3.1.

validator would need to rely on verification techniques that work for concurrency problems
(e.g., sequentialization and bounded context-switch). As explained in Section 3.3.3.3, all the
necessary information required for generating the witness is recorded during fuzzing. How-
ever, since the final outcome is affected by the decision matrix discussed in Section 4.3.1.4,
the content of the witness file also relies on the specific tool from which the final verdict is
obtained.

When BMC produces the verdict: we extract the variable names, the non-deterministic val-
ues, and the thread ID from their witness file. Note that all the BMC tools participating
in SV-COMP generate such a witness [77]. Various tools produce witness files with
different levels of verbosity. Therefore, we apply a filter to retain only non-deterministic
assignments by referring to the original source code using the line numbers provided by
the witness. Figure 4.2 shows a snippet of such a witness generated by ESBMC, corre-
sponding to the example in Listing 3.1. It includes all the key nodes explained in the
background (see Section 2.4.1).

When OpenGBF produces the verdict: we obtain the variable names, variable values, and
thread ID from the witnessInfoAFL_pid file generated by OpenGBF during runtime
(see Section 3.3.3.3) using regular expressions (RegEx). These RegEx patterns, em-

74

4.3. DESIGNING COOPERATIVE BLACK-BOX VERIFICATION TOOL

Figure 4.3. A snippet of the Final witness file (EBF_thesis_example.c.graphml) generated from our EBF after
aggregating the result.

ployed to match specific text patterns, simplify extracting relevant information from
extensive text sources. Listing 4.3 illustrates the syntax of such expressions, repre-
sented by (.*), which captures any sequence of characters (excluding newline charac-
ters). The content captured by these patterns typically corresponds to the variable name,
line number, variable value, thread ID, function name, and memory, all the information
required to generate the final witness as shown in Figure 4.3. Subsequently, we format
the extracted information in a GraphML-based format and name it as EBF_Program-
Name.programExtension.graphml (e.g., EBF_thesis_example.c.graphml).

Listing 4.3. The RegEx used to extract the information from witnessInfoAFL_pid.

1 Setting variable: (.*) in Line number (.*) with value: (.*) running from thread: ←↩

(.*) in function: (.*) with address:(.*)

Figure 4.3 presents the final witness generated by EBF in the GraphML-based format.
Both examples correspond to the one in Listing 3.1. It is worth noting that the assumption
values in the final witness file are presented in string format to enhance readability for the
user.

75

4.4. SUMMARY

In the last phase of the verification process, this witness file will be validated to confirm
the bug using a witness validator. This validation is essential according to SV-COMP rules,
and we will include it as part of our evaluation (see Section 6.3.2).

4.3.2 CPU time allocation

Designing a cooperative framework with engines executing sequentially poses a challenge
due to resource sharing between them. The time limit is necessary for EBF because BMC is
required to execute before OpenGBF to generate the seeds needed to start the fuzzing pro-
cess. Therefore, efficiently distributing computational resources between verification tools
is important for improving EBF’s bug detection capabilities. This ensures that each engine
has an appropriate amount of time to discover bugs, especially for time-limited and memory-
limited programs. Choosing the right balance for these resources can significantly impact
the success of cooperative verification, ensuring that each tool contributes optimally to the
verification process. Achieving this trade-off requires careful consideration and fine-tuning
to harness the strengths of both engines, ultimately leading to more robust and reliable ver-
ification outcomes for concurrent programs. We will demonstrate the effects of distributing
the available CPU time between BMC and GBF tools to maximize the search space coverage
for both tools and improve the overall performance of EBF.

4.4 Summary

This chapter explores the challenges of combining cooperative verification tools for con-
current programs. These challenges include effective input seed generation, result aggrega-
tion, and resource allocation trade-offs.

Firstly, we introduce the design of EBF, a cooperative black-box verification framework
that combines BMC and fuzzing techniques. It consists of four main stages. Beginning with
the safety proving stage, where we execute the BMC engine to prove program safety up to a
context switch (since the fuzzer can not comprehensively explore all the execution of thread
interleavings), our reliance is solely on BMC.

Secondly, we introduce the seed generation stage, which addresses the challenge of the
fuzzer encountering difficulties when exploring complex path conditions. Therefore, provid-
ing good initial seeds that cover most of the program’s search space is essential to enhance
the fuzzer’s bug-finding capabilities. We achieve this by executing the BMC engine with an
error statement in a specific branch and extracting the values generated by BMC.

Thirdly, we introduce the falsification stage, where we employ our fuzzer OpenGBF. The
outcomes from this stage will be saved for the aggregation stage, where we emphasize the im-

76

4.5. FUTURE WORK

portance of a well-structured decision matrix in cooperative verification frameworks, ensur-
ing that conflicting outcomes between verification tools are appropriately handled. However,
addressing disagreements between the engines is one of the challenges we tackled by setting
a conflict when the two engines disagree.

After generating the final outcome, EBF generates the final witness file based on the en-
gine from which we aggregate the result. If it is BMC, we convert their witness file; if it is
OpenGBF, we use regular expressions to extract the required information, such as variable
names, values, thread IDs, function names, and memory addresses.

The chapter concluded by introducing the resource allocation trade-off challenge in the
cooperative verification framework, which affects the overall performance of such a system.
It is crucial to make the design choice to allocate the appropriate CPU time to improve EBF’s
bug detection capabilities. So, we split the available CPU time between the two tools, BMC
and GBF, to maximize the search space coverage for both tools as much as possible.

4.5 Future work

While this thesis has made significant progress in addressing the challenges of cooperative
verification for concurrent programs, there are several ideas for future research and develop-
ment to enhance further the effectiveness and efficiency of the EBF framework.

Firstly, the seed generation stage of EBF heavily relies on selecting suitable labels to guide
the BMC engine in efficiently finding error statements. Investigating and developing strate-
gies for determining which labels to prioritize can have a deep impact on the quality and effi-
ciency of the seed generation stage. Future research should explore advanced label selection
algorithms that can dynamically adapt to the program’s complexity and structure, ultimately
enhancing the quality of initial seeds.

Secondly, allocating computational resources between verification tools, such as BMC and
fuzzing, plays a vital role in maximizing bug detection capabilities while minimizing resource
wastage. Developing heuristic methods for dynamically dividing the available CPU time be-
tween these tools can further improve the cooperative verification process. These heuristics
should consider factors such as program complexity and verification tool performance. Im-
plementing such heuristics can lead to more effective resource allocation and improved overall
EBF performance.

Thirdly, while EBF’s decision matrix provides a foundation for aggregating results from
different verification tools, future work can focus on refining and expanding this matrix. A
more detailed decision matrix can distinguish between various types of vulnerabilities, such
as reachability or data races, providing in-depth insights into the detected bugs. This im-

77

4.5. FUTURE WORK

provement can facilitate a more fine-grained analysis of verification results, helping users
better understand the nature of the identified bugs.

Another promising area for future work is developing an adaptive delay function within
the EBF framework. Unlike the fixed delay approach used in this thesis, an adaptive delay
function can dynamically adjust delay values based on the program’s behaviour and execution
patterns. This adaptive mechanism can lead to more efficient bug detection, especially for
programs with varying execution speeds or delay sensitivity.

Furthermore, while EBF primarily targets concurrent programs, expanding its applicabil-
ity to sequential programs is worth exploring. Disabling the delay function for sequential
programs could be a practical direction, allowing the framework to accommodate a wider
range of software testing scenarios and potentially improving its efficiency in detecting bugs
in sequential programs.

Lastly, addressing challenges related to the sequencing of seeds is crucial, mainly when
using BMC to seed the fuzzer. Mismatches between the order of input extracted from BMC
and the input order used by the program can impact the overall effectiveness of fuzzing. Ad-
ditionally, input values produced by BMC may become “Lost” in the mixture of the inputs
and delay values generated using the nondeterministic functions during the fuzzing process.
Investigating strategies to mitigate these challenges and enhance the synchronization of seed
sequences can further improve EBF’s bug detection capabilities.

78

Chapter 5

Implementation of EBF

5.1 Chapter introduction

This chapter aims to extend Chapters 3 and 4 to describe implementation details. It pro-
vides a guide through the compilation and execution processes of EBF and OpenGBF, along
with a running example that illustrates the output of each stage of EBF in practice.

5.2 OpenGBF design choices

In this section, we will elaborate on the design choices we made to align with the method-
ology outlined in Chapters 3 and 4. Specifically, we will discuss the following aspects:

5.2.1 The fuzzer choice

We have developed our OpenGBF by leveraging the capabilities of the state-of-the-art gray-
box fuzzer called AFL++[115]. Our choice was motivated by the widespread usage, easy
integration, and proven effectiveness of AFL++. Additionally, AFL++ strongly emphasizes
requiring high-quality initial seeds to initiate the fuzzing process. This characteristic aligns
well with our methodology and makes it suitable for our framework.

5.2.2 LLVM pass choice

Two key factors motivated the selection of the LLVM pass. Firstly, it was chosen because
AFL++ utilizes LLVM pass for program instrumentation, ensuring compatibility with OpenGBF.
Secondly, LLVM pass compatibility extends to any fuzzer that relies on the Clang compiler,
providing flexibility and compatibility with various fuzzing tools.

79

5.3. EBF IMPLEMENTATION DETAILS

5.2.3 The benchmarks choice

For our evaluation, we employed SV-COMP benchmarks (as described in Section 6.3) for
several reasons. Firstly, this benchmark collection provides a wide range of concurrent pro-
grams, facilitating thorough testing and analysis of our framework. Secondly, including con-
current programs in the benchmark set allows us to evaluate EBF’s performance in effectively
handling concurrent code. Lastly, the automation capabilities offered by benchexec [166]
simplify the execution of all benchmarks, providing a convenient and efficient means of eval-
uation (see Section 6.3.1 for more details about benchexec).

5.3 EBF implementation details

We used three different programming languages for the development of EBF, each chosen
for its suitability to specific components:

• The C++ programming language was used for implementing the LLVM Pass, leveraging
its robust capabilities and efficiency in handling low-level operations [167].

• The run-time library, a critical component of EBF, is written in C to align with EBF’s
primary focus on verifying C programs, ensuring smooth integration with the language.

• The EBF wrapper, responsible for controlling all the components and processes, was
developed using the Python programming language. This choice derived from Python’s
flexibility in supporting a wide range of libraries and its reputation for facilitating rapid
development [168].

5.3.1 EBF usage

EBF versions 4.0 and 4.2 are released under the MIT License and can be accessed on GitHub
[169], [170]. To install EBF, a shell script (i.e., bootstrap.sh) is provided to install all the
required dependencies and compile the LLVM Pass and runtime library. Users are required
to specify the Clang version during installation. Once the compilation is complete, users can
run the tool. Users are expected to specify certain flags, as listed in Table 5.1, to customize
their preferences and requirements when using EBF.

These flags include setting the paths for the benchmark (PUT) and the property file (−p).
Additionally, optional flags can be adjusted, such as modifying the default time (−t) and
memory (−vm) limits, changing the architecture (−a), or selecting the BMC engine (−bm).
Moreover, an option enables parallel fuzzing (−m), activating the concurrency flag to detect

80

5.3. EBF IMPLEMENTATION DETAILS

concurrency bugs or including specific paths necessary for benchmark compilation using
Clang (−i).

Flag Description Required Default option
−v check the version No No

benchmark path to the benchmark Yes No
−i To include the required paths for compiling the benchmark No No
−p path to the property file Yes No
−a set the system architecture Yes Yes (32 bit)
−t set the time limit for BMC and OpenGBF respectively No Yes (6 and 5 min)
−vm set Maximum memory for BMC and OpenGBF respectively No Yes (10 and 5 G)
−c set concurrency flag (to set thread sanitizer) No No
−m set OpenGBF to run parallel instances No No
−bmc choose the BMC engine (ESBMC, CBMC, Deagle, Cseq) Yes Yes (ESBMC)

Table 5.1. The flag set supported in EBF.

It is worth mentioning that some of the required flag options are necessary because of the
SV-COMP rules. For instance, the −p flag specifies a specific file required to check for the
property. Additionally, the−a flag, specifying the architecture, is required by the SV-COMP
rules. We will explain these benchmark requirements in more detail in Chapter 6. To run
EBF, the user can execute the following command from the EBF root directory:

./scripts/RunEBF.py [-h] [-a {32,64}] [-p PROPERTY_FILE]
[benchmark]

5.3.1.1 LLVM Pass and runtime library individual usage

To compile the LLVM pass and runtime library independently, without including EBF. First,
the user executes the provided shell script (i.e., bootstrap.sh). After the shell script compiles
the required files, it will generate a directory named lib. This directory contains the dynami-
cally loadable plugin (*.so) and the compiled runtime libraries (*.a). To use the LLVM pass,
users should load the pass while compiling the PUT using Clang (see Listing 5.6). This ap-
proach allows users to incorporate delay injection with their chosen fuzzer, offering flexibility
in adjusting and configuring settings independently of the EBF script.

5.3.2 Running example

Let us examine how EBF verifies the example presented in Listing 5.1. In this example, two
threads, t1 and t2, access the same function, foo(). Within foo(), we have two variables, foo_a
and foo_b, which receive non-deterministic integer values (see lines 6 and 7). A condition
in line 8 checks whether the sum of these two variables equals 42. When running EBF with
ESBMC as the default BMC engine and reachability as the property, it generates the output
shown in Figure 5.1, which illustrates the EBF process.

81

5.3. EBF IMPLEMENTATION DETAILS

Listing 5.1. C program with non-deterministic

function.

1 #include <assert.h>

2 #include <pthread.h>

3 void reach_error() { assert(0); }

4 extern int __VERIFIER_nondet_int();

5 void foo(void * arg){

6 int foo_a = __VERIFIER_nondet_int();

7 int foo_b = __VERIFIER_nondet_int();

8 if((foo_a + foo_b) == 42) reach_error()←↩

;}

9 int main() {

10 pthread_t t1, t2;

11 pthread_create(&t1, 0, foo, 0);

12 pthread_create(&t2, 0, foo, 0);

13 pthread_join(t1, 0);

14 pthread_join(t2, 0);

15 }

Listing 5.2. Correspond program with an

injected labels.

1 #include <assert.h>

2 #include <pthread.h>

3 void reach_error() { assert(0);

4 LABEL_1:;}

5 extern int __VERIFIER_nondet_int();

6 void foo(void * arg){

7 int foo_a = __VERIFIER_nondet_int();

8 int foo_b = __VERIFIER_nondet_int();

9 if((foo_a + foo_b) == 42){

10 LABEL_3:;

11 reach_error();}

12 LABEL_2:;}

13 int main() {

14 pthread_t t1, t2;

15 pthread_create(&t1, 0, foo, 0);

16 pthread_create(&t2, 0, foo, 0);

17 pthread_join(t1, 0);

18 pthread_join(t2, 0);

19 LABEL_4:;}

Safety proving stage. First, EBF checks program safety using the ESBMC engine. Therefore,
we will run the PUT with the BMC engine. If the BMC engine produces a result (either
Verification successful or Verification failed), we store the result in a log file. If BMC could
not produce any result, we store Unknown in the log file. This log file will be used in the
aggregation result stage to determine the final verdict.

Seed generation stage. Then, the seed generation stage starts, where we instrument the code
to inject labels. In this example, EBF injects 4 labels, as shown in Listing 5.2. Each label
is replaced with an error statement, resulting in one error statement per PUT file. So, in
this example, we will store four files that contain an error statement, excluding the original
program error statement. Then, ESBMC is executed on each file for 30 seconds per file, with
a total time limit of 150 seconds for all files, or until it runs all the files. We analyze every
witness file generated by ESBMC and extract seed values, ensuring no duplicate values are
extracted. In this case, for instance, BMC generates identical assumption values for separate
witness files with different error statement locations.

Listing 5.3 presents a snippet from one of the witness files generated by ESBMC. In this
witness file, the assumption values for foo_a and foo_b that violate the assertion are 42 and 0,
respectively. We extract these values in EBF by analyzing the ESBMC witness file. Specifi-
cally, we check the <edge> tag, check the “assumption” key, retrieve the assumption value for

82

5.3. EBF IMPLEMENTATION DETAILS

Figure 5.1. The EBF output for example 5.1 shows that both engines successfully reach the assert statement.

each key node, store these values in a file, and save the file in a directory named CORPUS.
The content of this directory will operate as initial seed values for the fuzzer.

Listing 5.3. A snipt of witness file generated from ESBMC based on the results of Listing 5.1.

1 <node id="N3"/>

2 <edge id="E2" source="N2" target="N3">

3 <data key="startline">6</data>

4 <data key="assumption">foo_a = 42;</data>

5 <data key="threadId">1</data>

6 </edge>

7 <node id="N4"/>

8 <edge id="E3" source="N3" target="N4">

9 <data key="startline">7</data>

10 <data key="assumption">foo_b = 0;</data>

11 <data key="threadId">1</data>

12 </edge>

83

5.3. EBF IMPLEMENTATION DETAILS

Falsification stage. Next, we invoke OpenGBF to start the fuzzing process. The process begins
with the compilation of the original PUT, the LLVM Pass, and the runtime library using an afl-
clang wrapper. After the LLVM Pass instrumentation, the PUT includes additional functions
injected as described in Chapter 3, such as the delay function, information collection, and
monitoring functions. Listing 5.4 shows a snippet of the instrumented IR of the PUT, which
includes these functions.

Then, we initiate the fuzzing process on the generated binary. This process utilizes the
CORPUS directory, which contains the seed values, and creates an output directory, AFL_re-
sults, where the fuzzer stores its results, including both the seeds that cause the PUT to crash
and the mutated seeds. However, as briefly mentioned in Section 3.3.3.4, we can represent
non-deterministic values either as bytes or in string format. After empirical evaluation, we
found that the results are comparable, and neither method is superior as long as we ensure
consistency in the initial seed format for the fuzzer. We used string representation to generate
non-deterministic values in implementing OpenGBF. Consequently, in ESBMC, the coun-
terexample (witness file) produced by BMC represents non-deterministic values as strings.
Therefore, we do not need to convert these string values to byte representation format.

Listing 5.4. A snipt of LLVM-IR corresponds to function foo() in Listing 5.1.

1 define dso_local void @foo(i8* %0){

2 call void @_delay_function()}

3 %2 = alloca i8*, align 8

4 call void @_delay_function()

5 %3 = alloca i32, align 4

6 call void @_delay_function()

7 %4 = alloca i32, align 4

8 call void @_delay_function()

9 %typecast_store_double = bitcast i8* %0 to i1*

10 call void @_delay_function()

11 %bitcast_EBF_ptr = bitcast i8** %2 to i8*

12 call void @_delay_function()

13 call void @EBF_add_store_pointer(i8*

14 call void @_delay_function()

15 store i8* %0, i8** %2, align 8

16 call void @_delay_function()

17 %5 = call i32 (...) @__VERIFIER_nondet_int()

18 call void @_delay_function()

Throughout the fuzzing process, we continuously record information about the variable
name, value, thread ID, address, and line number in the file named witnessInfoAFL_pid.
This recording continues until the fuzzing process either identifies a crash or reaches the
specified time limit. Listing 5.5 illustrates a counterexample generated by OpenGBF when
the fuzzer finds the crash. Hence, we check the seed values that trigger the crash when the
fuzzer detects a crash or reaches the time limit. Then, we store the result in log file.

84

5.3. EBF IMPLEMENTATION DETAILS

Listing 5.5. The content of witnessInfoAFLpid is generated by OpenGBF based on the code in Listing 5.1.

1 Setting variable: foo_a in Line number 6 with value: 42 running from thread: 0 in ←↩

function: foo with address: 0x7fc9c3a90e94

2 Setting variable: foo_a in Line number 6 with value: 0 running from thread: 1 in function←↩

: foo with address: 0x7fc9c328fe94

3 Setting variable: foo_b in Line number 7 with value: 0 running from thread: 0 in function←↩

: foo with address: 0x7fc9c3a90e90

4 Setting variable: foo_b in Line number 7 with value: 0 running from thread: 1 in function←↩

: foo with address: 0x7fc9c328fe90

5 REACH_ERROR END

Results aggregation stage. Next, EBF analyzes the log files to determine the final verdict and
generate the final witness file, as shown in Listing 5.2a by applying the rules in the decision
matrix outlined in Section 4.3.1.4 to determine the outcome. While 5.2b shows the graphical
representation of the witness. In this example, both engines produced Verification Failed
verdict, leading to the final result of Verification Failed.

Lastly, during the EBF program verification process, it creates a directory called EBF_re-
sults. A subfolder is generated inside this directory with a unique ID appended to the bench-
mark name. This ID helps differentiate benchmarks with the same name but from different
runs. For example, in the provided Listing 5.1, the directory name would be EBF_results_-
thesis_example.c_216, where 216 represents the unique ID. Within this folder, users will find
five sub-directories:

• AFL_results: this directory contains the output from our OpenGBF. This output is the
result of the OpenGBF and can be used for debugging and checking the queue seeds.

• Executable-Dir: this directory contains a copy of the original PUT and the instrumented
versions, including all the additional error statements. It allows for easy examination of
the number of goals and provides information about the locations where these goals are
inserted within the instrumented program.

• Log-Files: in EBF, we store the output generated by BMC and OpenGBF tools, in log
files. These log files serve as a source for reading the verdicts, enabling EBF to gather
the necessary information for the decision matrix.

• Witness-Files: this directory contains the witnessInfoAFLpid file, which contains
the witness information generated by OpenGBF. The directory includes witness files
(graphml files) from BMC and witnesses files for all labels instrumented programs.
However, the final witness file produced by EBF will be saved in the root directory
of EBF itself, making it available for validation using the witness validator.

85

5.4. SUMMARY

(a) Witness file in GraphML format.

N0start

N1

N2

N3

N4

N5

main

create thread 1

line=6, foo_a=42, threadId=1

line=7, foo_b=0, threadId=1

line=3, threadId=1

(b) Graphical representation.

Figure 5.2. The witness file in GraphML format Vs. graphical representation of the witness for Listing 5.1.

• CORPUS: this directory contains all the seeds generated by EBF in Section 4.3.1.2,
which will subsequently be used by the OpenGBF.

Listing 5.6. Compiling AFL++ clang wrapper with the Sanitizer, our LLVM Pass instrumentation and

Runtime library.

1 ./afl-clang-fast -fsanitize=the required sanitizer -Xclang -load -Xclang LLVMPASS←↩

.so test.c -L lmyRunTimeLibrarys -o BinaryFile

5.4 Summary

This chapter is a comprehensive guide to implementing EBF. It delves into the rationale
behind selecting key components, explaining the reasoning behind the choice of the fuzzer,
the LLVM Pass, and the specific benchmark suite employed for the evaluation process. These
insights provide a deeper understanding of the decision-making process behind the tool’s
design and usage.

Furthermore, the chapter provides information about the programming languages used for

86

5.4. SUMMARY

developing both EBF and OpenGBF, which shows the diversity in the languages used for the
implementation. Additionally, it presents a detailed explanation regarding how to compile
and use the tool.

Lastly, a practical running example has been included in this chapter. This example demon-
strates the output of each stage of EBF, allowing us to gain a clear and practical understanding
of its functionality.

87

Chapter 6

EBF evaluation

6.1 Chapter introduction

In this chapter, we aim to demonstrate the effectiveness of EBF across a diverse set of
scenarios. We will present our experimental goals before detailing the deployed benchmarks
and our findings (see Section 6.2).

Our evaluation of EBF spans a significant time frame during which we continuously re-
fined and enhanced its design. We present our results separately for three versions of EBF.
Specifically, we discuss the participation of EBF 2.3 in the Concurrency Safety category of
SV-COMP 2022 (see Section 6.3.2). This version used CBMC v5.43 as the BMC engine
and represented the initial implementation of our concurrency-aware fuzzer. Furthermore,
we evaluate EBF versions 4.0 (see Section 6.3.3). EBF 4.0 includes the full implementation
of OpenGBF, as explained in Section 3.3, and incorporates a variety of BMC engines (i.e.,
ESBMC, CBMC, Cseq and Deagle). Also, we discuss the participation of EBF 4.2 in the
Concurrency Safety-main category of SV-COMP 2023. EBF 4.2 integrates all the features of
OpenGBF along with the seed generation method detailed in Section 4.3.1.2. Additionally,
we demonstrate our fuzzer’s capability to detect data races in the open-source wolffMQTT
cryptographic library (see Section 6.4). We initially discovered this bug using an earlier ver-
sion of our fuzzer and replicated the experiment using the version of OpenGBF included in
EBF 4.0. Furthermore, we evaluate EBF version 4.0 on several real-world concurrent pro-
grams in Section 6.4.2 to highlight the capabilities of our OpenGBF. Lastly, we conduct a
comprehensive performance comparison of EBF 4.0 under various parameter configurations
(see Section 6.5).

6.2 Evaluation goals

Our experimental evaluation has been designed with the following goals:

EG1 - Detection of violations in concurrent programs

88

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

Illustrate the capabilities of EBF in finding more violations in concurrent programs than
state-of-the-art BMC tools alone.

EG2 - Real-world performance of OpenGBF
Illustrate the effectiveness of the OpenGBF we implement in EBF in finding violations
in real-world concurrent programs.

EG3 - Scalability and robustness of OpenGBF
Illustrates the scalability and robustness of EBF performance in finding similar or dif-
ferent bugs in real-world programs using both verification engines.

EG4 - The effectiveness of good initial seed values
Illustrate how the seed can impact the outcome of the GBF.

EG5 - Parameter trade-offs in our concurrency-aware fuzzer
Illustrate the consistent performance of EBF across a wide range of parameter settings.

Note that the two objectives, EG2 and EG5, aim to demonstrate that OpenGBF represents
state-of-the-art gray-box fuzzing techniques.

6.3 Evaluating EBF on SV-COMP benchmarks

SV-COMP stands for Software Verification Competition, an annual competition that eval-
uates the effectiveness and performance of software verification tools in detecting software
vulnerabilities. SV-COMP provides an extensive collection of benchmark suites covering
various software verification aspects, including concurrency, memory safety, and reachability
categories. These benchmarks consist of software programs designed to evaluate the perfor-
mance and efficiency of software verification tools selected to represent real-world scenarios
and challenges faced in the field. Participants in SV-COMP submit their verification tools,
which are then evaluated against the provided benchmarks based on criteria such as correct-
ness, efficiency, and scalability. The primary goal of SV-COMP is to facilitate the advance-
ment of software verification techniques and encourage the development of more robust and
reliable verification tools [77].

The competition aims to evaluate the participating tools based on the following outcomes:

• Correct True. The tool accurately verifies the program as safe and correctly confirms
the generated witness file using the competition’s witness validator tools.

• Correct False. The tool correctly identifies the presence of a bug and correctly confirms
the generated witness file using the competition’s witness validator tools.

89

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

Verification Score per
outcome benchmark

Correct True 2
Correct False 1

Correct False Unconfirmed 0
Incorrect True -32
Incorrect False -16

Unknown 0

Table 6.1. SV-COMP scoring system.

• Correct False Unconfirmed. The tool correctly identifies the presence of a bug, but the
associated witness file cannot be confirmed using the competition’s witness validator
tools.

• Incorrect True. The tool incorrectly confirmed the program was safe despite the pres-
ence of a bug.

• Incorrect False. The tool incorrectly confirms the program contains a bug when it is
actually safe.

• Unknown. The tool cannot determine the result within CPU time and memory con-
straints.

Table 6.1 presents the scores assigned to each verification outcome. A significant penalty
is imposed on incorrect results, and the overall score for each tool comprises the sum of scores
obtained across all benchmarks.

We evaluated EBF 2.3 and 4.0 in the Concurrency Safety category for SV-COMP 2022

[171], and EBF 4.2 in the Concurrency Safety category for SV-COMP 2023 (based on the
year of participation). However, the Concurrency Safety category for SV-COMP 2022 com-
prises a collection of 763 concurrent C programs, with 398 of them considered Safe. The
remaining 365 programs are designed with bugs defined in terms of reachability conditions.
If a predetermined error function is reachable within the given program, it is labeled as Un-
safe; otherwise, it is labeled as Safe [164].

It is important to note that the benchmarks used in SV-COMP can contain Undefined be-
haviour, where reachability errors may not pose a problem for static analysis tools like BMCs.
However, since the fuzzer relies on compilation (dynamic analysis), it may find other bugs
with respect to the given property; this scenario makes it difficult to control the fuzzer. There-
fore, according to the competition rules, we would miss the point if we produce Unknown.
Producing incorrect results regarding the specified property would result in a penalty score.
However, SV-COMP organizers continuously address and update these benchmarks to en-
sure accuracy. Therefore, in the Concurrency Safety-main category for SV-COMP, 2023, the
number of concurrent C programs with reachability conditions decreased to 665 benchmarks.

90

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

6.3.1 Running SV-COMP benchmark using BenchExec

Before presenting the evaluation of EBF on SV-COMP 2022 benchmarks, we will introduce
the tool used to run around 700 benchmarks automatically. BenchExec is an automated open-
source tool designed for reliable benchmarking and resource measurement [166]. It provides
an automated environment for executing and evaluating software verification tools, simpli-
fying the benchmarking process by providing features such as result comparison, resource
measurement, and statistical analysis. In order to run BenchExec, two main files are re-
quired: ebf.py and ebf.xml. The ebf.py file is a program used to configure the main
file BenchExec needs to execute, along with the necessary flags. The ebf.xml file is used
to specify all the categories that need to be executed, along with the required CPU time and
memory.

6.3.2 EBF 2.3 participation in SV-COMP 2022

In SV-COMP 2022 [77], we participated with EBF version 2.3. This version was built on top
of CBMC v5.43 as the BMC engine and included the initial implementation of OpenGBF. We
chose CBMC because it is one of the state-of-the-art BMC tools that consistently achieved
high rankings in the concurrency category of SV-COMP over the past decade. Additionally, in
EBF 2.3, the implementation of OpenGBF was the initial version, featuring no limitations on
the number of threads, no early termination probability, and no mechanism to avoid injecting
delays inside atomic blocks.

During the competition, the SV-COMP servers were equipped with 8 CPUs (Intel Xeon
E3-1230 v5 @ 3.40 GHz) and a total of 33 GB of RAM. Each benchmark had a maximum
CPU usage limit of 15 minutes and a maximum RAM usage limit of 15 GB.

Figure 6.1 illustrates that EBF achieved the 7th place out of 20 participants in SV-COMP
2022, scoring a total of 496 points. Notably, EBF 2.3 outperformed CBMC 5.43, which
achieved the 10th place with a score of 460 points. Table 6.2 reports these two tools’ official
SV-COMP 2022. It is worth noting that CBMC obtained a higher score than EBF in pre-
dicting program safety, with scores of 148 and 139, respectively. This outcome was expected
since EBF allocated only 6 out of 15 minutes to BMC, with the remaining time dedicated to
OpenGBF, which cannot prove program safety. However, EBF outperformed CBMC in de-
tecting bugs that could be confirmed by the witness validator, scoring 234 points compared
to CBMC’s 212 points, thus scoring additional points.

Furthermore, EBF reported only one verdict, which was Incorrect False, while CBMC
reported three incorrect verdicts, resulting in 48 penalty points. Interestingly, EBF managed
to avoid reproducing the latter three incorrect verdicts by returning Unknown instead. This

91

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

Verification Tool Score per
outcome EBF 2.3 CBMC benchmark

Correct True 139 148 × 2
Correct False 234 212 × 1

Correct False Unconfirmed 55 90 × 0
Incorrect True 0 0 × -32
Incorrect False 1 3 × -16

Unknown 334 310 × 0
Overall SV-COMP 2022 score 496 460

Table 6.2. The results presented by EBF 2.3 and CBMC 5.43 in the Concurrency Safety category of
SV-COMP 2022.

happened because CBMC did not have enough time to wrongly detect these bugs while run-
ning as part of the cooperative framework, hence reporting Unknown as a result. Similarly,
OpenGBF also could not find any bugs in these benchmarks within the remaining time, re-
sulting in another set of Unknown verdicts. In contrast, the only incorrect verdict obtained
by EBF, which differed from the three false positives produced by CBMC, was caused by
a bug within OpenGBF. This bug led to the generation of a spurious counterexample. It is
worth noting that this issue has been resolved in the latest version of EBF by introducing the
probability p for exiting the current run at each instruction (see Section 3.3.3.1).

Overall, EBF 2.3 improved results by approximately ∼ 7.8% compared to CBMC 5.43.
Additionally, EBF successfully fined and confirmed a property violation in a specific bench-
mark that no other dynamic tool in the competition detected. These outcomes fulfill the first
experimental goal EG1, and we will present further supporting experimental evidence in
Section 6.3.3.

6.3.3 EBF 4.0 with different state-of-the-art BMC tools

Following EBF participation in SV-COMP 2022, we improved OpenGBF using the algorith-
mic concepts discussed in Section 3.3. In this context, we present the outcomes of additional
experiments aimed at evaluating the improvement of any BMC tool through the integration
of our latest version of OpenGBF (evaluation goal EG1). For more clarification, we refer to
this version of our cooperative framework as EBF 4.0, presented in Chapters 3 and Chapter
4. Except for Section 4.3.1.2, we refer to EBF with this optimization feature as EBF 4.2.

As mentioned in Section 6.3, we evaluated EBF 4.0 using the same benchmarks as those
from the SV-COMP 2022 Concurrency Safety category. However, we omit the SV-COMP
aggregate scoring system (refer to Table 6.1), as its different weights could obscure the advan-
tages of each verification technique. Instead, our focus is on analyzing the trade-off between
the capability to prove safety (solely relying on BMC, which involves BMC’s capability to
verify all reachable states but cannot detect an execution path that violates the safety property.)
and bug-finding abilities (using both BMC and GBF) from the raw results.

92

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

1

10

100

1000

M
in

.t
im

e
in

s

CBMC
CVT-AlgoSel
CVT-ParPort

CPAchecker-2-1
CPALockator

CSeq
Dartagnan

Deagle
DIVINE

EBF
ESBMC-incr
ESBMC-kind

Goblint
Infer

Lazy-CSeq
Symbiotic

Theta
UAutomizer
UGemCutter

UTaipan

-400 -200 0 200 400 600 800
Cumulative score

Figure 6.1. Quantile plot for ConcurrencySafety category in SV-COMP 2022.

Additionally, we consider three more BMC tools in our experiments, as listed in Table 6.3,
instead of only CBMC [65]. These tools comprise ESBMC [64], a robust BMC tool with a
consistent track record of high performance in SV-COMP over the past decade, along with
Deagle [172] and Cseq [66]. Deagle achieved the 1st place, and Cseq the 2nd place in the
Concurrency Safety category at SV-COMP 2022.

Our experiments were conducted on a virtual machine running Ubuntu 20.04 LTS, equipped
with an Intel Core Processor (Broadwell, IBRS) operating at a frequency of 2.1 GHz. The
virtual machine has 160 GB of RAM and 25 CPU cores. For EBF 4.0, we employed the
following parameters: a maximum thread threshold of 5 and a delay range from 0 [µs] to
105 [µs]. In terms of runtime allocation, we allocated the available time as follows: 6 minutes
for the BMC engine, 5 minutes for OpenGBF, and 4 minutes for the remaining stages, includ-
ing extracting initial seeds from BMC (or seeding the fuzzer with random values if no seeds
are extracted from BMC), aggregating results, and generating the final witness file. These
parameter settings are optimal for the SV-COMP 2022 benchmarks used in our evaluation
(for a more detailed explanation, refer to Section 6.5). Furthermore, users have the flexibility
to specify the time distribution among the tools in EBF using command-line arguments, as
shown in Table 5.1.

Table 6.3 presents a comparative analysis between four individual BMC tools and the same
BMC tools as part of the EBF 4.0 BMC engine. The results highlight that EBF outperforms
all four BMC engines in terms of bug detection while reducing the number of instances cate-

93

6.3. EVALUATING EBF ON SV-COMP BENCHMARKS

Verification Tool
outcome EBF Deagle EBF Cseq EBF ESBMC EBF CBMC

Correct True 240 240 172 177 65 70 139 146
Correct False 336 319 333 313 308 268 320 303
Incorrect True 0 0 0 0 0 0 0 0
Incorrect False 0 0 0 0 0 1 0 3

Unknown 187 204 258 273 390 424 304 311

Table 6.3. Comparative analysis of the verification outcomes for EBF 4.0 with different BMC tools “plugged
in” against their individual performance on the benchmarks from the Concurrency Safety category of

SV-COMP 2022.

gorized as Unknown. In more detail, EBF achieves the best improvement when compared to
ESBMC, detecting ∼ 14.9% more bugs and correcting one incorrect outcome while only de-
creasing ∼ 7.6% in the number of safety proofs. Similarly, the ability to double-check BMC
counterexamples enables EBF to correct all three incorrect outcomes from CBMC, with a
marginal difference between the improvement in bug detection (∼ 5.6%) and the decrease in
safety proofs (∼ 5%). In contrast, when compared to Deagle, EBF shows the same number of
safety proofs, indicating that Deagle is quick in proving safety (within 6 minutes). However,
EBF detects more bugs than Deagle by∼ 5.3%. Regarding Cseq, the number of safety proofs
produced by EBF decreased by only ∼ 2.9%, while the number of Correct False outcomes
increased by ∼ 6.3%.

In general, EBF provides a better trade-off between bug detection and safety proving com-
pared to individual BMC engines. On average, EBF detects more than 8% concurrency bugs
while only reducing the number of programs declared safe by 3.8%.

Therefore, this evaluation successfully achieves our first evaluation goal (EG1).

6.3.4 EBF 4.2 participation in SV-COMP 2023

In SV-COMP 2023 [78], we participated in the Concurrency Safety-main category with EBF
version 4.2, built on top of ESBMC v6.8. This version introduces an additional feature not
found in EBF 4.0, as explained in Section 4.3.1.2. This feature generates initial seeds to
enhance the fuzzer’s ability to explore deep paths, thereby improving its effectiveness. To
achieve this, we instrument the PUT, inject an error statement, and execute ESBMC to gener-
ate witness files, each containing an error statement (counterexample). These seeds are then
extracted and used to initiate the fuzzing process in OpenGBF (referred to as OpenGBF 4.2

for future reference).

We evaluated EBF 4.2 on the competition servers, using the same machines discussed in
Section 6.3.2 for SV-COMP 2022. However, this year, the total number of verification tasks in

94

6.4. EVALUATING EBF ON REAL-WORLD CONCURRENT PROGRAMS

the Concurrency Safety category was reduced to 665 due to continuous benchmark updates by
the organizers, as mentioned in Section 6.3. In this context, EBF 4.2 achieved a total score of
369, while ESBMC scored 346, representing an increase of ∼ 6.65%. It is worth noting that
this version of the evaluation primarily aims to evaluate the impact of generated good seed
values on bug detection within OpenGBF. We will further evaluate OpenGBF 4.2 against the
previous version in Section 6.5.4.

6.4 Evaluating EBF on real-world concurrent programs

Evaluating EBF on real-world concurrent programs provides valuable insights into its
practical applicability, scalability, and effectiveness. It allows us to measure its ability to
handle the complexities of concurrent programs, detect concurrency bugs, ensure safety, and
provide reliable results in various contexts.

6.4.1 Detecting a data race in wolfMQTT

The wolfMQTT library is an open-source implementation of the MQTT (Message Queuing
Telemetry Transport) protocol. It is a lightweight messaging protocol designed for resource-
constrained environments like the Internet of Things (IoT). It operates on a publish-subscribe
messaging pattern, where clients publish messages to particular topics (e.g., temperature),
and other clients subscribe to those topics in order to receive the messages. The wolfMQTT
library provides a client implementation of the MQTT protocol written in C programming
language for the constraint devices [173]. We used the library’s API to verify the concurrent
aspect of the protocol’s implementation.

In standard network communication, the client directly communicates with the server. The
clients initiate a request to the server to use resources or data, then the server handles the re-
quest and sends a response back to the clients. However, MQTT uses a publish/subscribe
pattern to separate the message sender (publisher) from the message receiver (subscriber)
by an intermediary component known as a message broker. The broker is responsible for
handling the communication between publishers and subscribers. Its primary role is filter-
ing incoming messages from publishers and ensuring their proper distribution to subscribers
[174].

An overview of how MQTT operates is as follows: First, clients establish a connection
with the broker. Then, clients have the option to publish messages, subscribe to specific mes-
sages, or do both. Lastly, when the broker receives a message, it transmits it to the intended
subscriber. The packet types in wolfMQTT include Connect, Publish, Subscribe, and Un-
subscribe. The Connect packet is used when a client requests to establish a connection with

95

6.4. EVALUATING EBF ON REAL-WORLD CONCURRENT PROGRAMS

Figure 6.2. Client/broker message passing, clients subscribe to topics, and brokers publish messages to those
topics (derived from [175]).

the broker. The Publish packet allows clients to send messages to the broker. The Subscribe
packet enables clients to subscribe to particular topics, and the Unsubscribe packet allows
clients to unsubscribe from specific topics. Figure 6.2 provides an overview of the publish
and subscribe structure, illustrating two clients subscribing to a topic (e.g., temperature) while
the broker publishes the results (19◦C).

We evaluated our EBF 4.0 on the wolfMQTT client library [174]. Specifically, our OpenGBF
detected a data race 1 in wolfMQTT after running for 15 minutes and using 24 MB of RAM.
Figure 6.3a illustrates the issue: when more than two clients send a subscribe packet to the
broker, the broker sends an Acknowledgment (ACK) to the Subscribe function. This ACK
was received by an unprotected pointer for the status code (the return code associated with
the ACK message), resulting in the data race, as they share the same buffer between clients.
The data race was found in the function MqttClient_WaitType, which could potentially lead
to information leakage or data corruption. We reported the issue to the wolfMQTT develop-
ers, and it was successfully replicated and subsequently fixed2. Figure 6.3b presents the fixed
version of the bug, where they copied the status code into different buffers. In Appendix A,
Figure A.2 shows the release note expressing gratitude for the bug discovery, and Figure A.1
shows the complimentary gift sent to my address as a token of appreciation for finding the
bug.

1https://github.com/wolfSSL/wolfMQTT/issues/198
2https://github.com/wolfSSL/wolfMQTT/pull/209

96

https://github.com/wolfSSL/wolfMQTT/issues/198
https://github.com/wolfSSL/wolfMQTT/pull/209

6.4. EVALUATING EBF ON REAL-WORLD CONCURRENT PROGRAMS

Our experimental setup is as follows: we executed EBF 4.0 on a machine with an Intel
Core i7 2.7 GHz processor and 8 GB of RAM, running Ubuntu 18.04.5 LTS as the operating
system. We used a Mosquitto server for communicating with the wolfMQTT client [176]. To
identify concurrency bugs that are not explicitly defined in terms of reaching a predetermined
error function (such as in the SV-COMP 2022 concurrency benchmarks or violating a safety
assertion), we enabled ThreadSanitizer in OpenGBF. Finally, we configured OpenGBF with
a thread threshold of Th = 5, a delay range from 0 [µs] to 105 [µs] and a probability of
p = 0.01%.

We evaluated all the tools mentioned in Section 6.3.3 on the wolfMQTT source code
to evaluate their effectiveness in analyzing and detecting potential vulnerabilities. How-
ever, none of the tools successfully detected the same vulnerability. Specifically, neither the
bounded model checker CBMC v5.43 nor ESBMC v6.8 could identify the data race within
the given time limit of 15 minutes. Additionally, due to its use of an outdated version of the
C parser, the BMC tool Deagle v1.3 encountered difficulties parsing the program correctly.
Similarly, Cseq v3.0 does not support programs consisting of multiple source files. Finally,
both the AFL fuzzer and AFL++ failed to identify this bug in the wolfMQTT source code.

As a result of this experiment, we can conclude that our second evaluation goal
(EG2) has been achieved

(a) Example of the bug found by OpenGBF (b) The fixed version of the bug

Figure 6.3. Overview on the bug found by OpenGBF and how wolfMQTT developer fixed it.

6.4.2 Detecting memory-related vulnerabilities in real-world concurrent programs

Detecting memory violations in real-world concurrent programs is important to ensure soft-
ware reliability and security. Memory violations, such as memory leaks or buffer overflows,
can lead to system crashes and expose security vulnerabilities. However, detecting such vi-
olations in concurrent programs is challenging because of the complexities of concurrent
execution. Therefore, to show the scalability and robustness of EBF, we evaluated the per-

97

6.4. EVALUATING EBF ON REAL-WORLD CONCURRENT PROGRAMS

Real-world programs LOC NN NT Median Time ESBMC OpenGBF
wolfMQTT 9.3k 1 Data Race 361.7s ✓

pfscan 1.1k 1 Invalid pointer dereference 3.98s ✓ ✓

bzip2smp 5.3k 2 Invalid pointer dereference
Memory leak 10.6s ✓

✓
swarm 1.1 2.8k 1 Invalid pointer dereference 339.6s ✓

Table 6.4. Evaluation of EBF on real-world concurrent programs: For each program, we provide information
about its size in terms of the number of lines of code (LOC), the number of vulnerabilities detected by EBF
(NN), the types of corresponding vulnerabilities (NT), the median time (in seconds) from 20 EBF re-runs,

and the EBF engine (i.e., ESBMC or OpenGBF) that detected the corresponding vulnerability.

formance of EBF 4.0 on three multi-threaded real-world programs using the same machine
described in Section 6.3.3 (a virtual machine running Ubuntu 20.04 LTS with 160 GB of
RAM and 25 CPU cores). In this evaluation, we used ESBMC as the BMC engine due to our
close collaboration with its developers, which facilitated addressing any issues encountered
during the evaluation of real-world concurrent programs.

Table 6.4 presents the number of lines of code (LOC) for each real-world program, along
with the number of bugs detected (NN) and types of vulnerabilities detected (NT) by EBF, as
well as the median time it takes EBF to find these bugs. Further, more detailed information
can be found in Sections 6.4.2.1, 6.4.2.2, and 6.4.2.3.

6.4.2.1 pfscan

pfscan [51] is a multi-threaded file scanner designed for protein or DNA sequences written
in the C programming language. In our evaluation of EBF 4.0, we used optimal settings,
including a thread threshold of Th = 5, a delay range from 0 [µs] to 105 [µs], and a probability
of p = 0.01% (for more details, see Section 6.5). In this experiment, we added extra initial
seed values in the corpus directory with random DNA formats (e.g., ATGCGTACAGTCGA).
This was accomplished to help the fuzzer in finding the required input format, as the program
expects input in this specific format.

Both engines within EBF successfully identify a NULL pointer dereference in pfscan (see
Table 6.4). This bug is caused by initializing a pointer by allocating a dynamic memory
address for that pointer using the malloc instruction. The malloc allocation needs to be
checked for success (i.e., the return address is not null). The program did not check for this
pointer, resulting in a crash due to writing to a NULL pointer.

Evaluating the three tools CBMC v5.43, Deagle v1.3 and Cseq v3.0 on pfscan failed to
identify any bug within the program. More specifically, CBMC reported Verification Suc-
cessful, Deagle reported unsupported library function, while Cseq reported Unknown.

98

6.5. OPTIMIZING EBF’S SETTINGS

6.4.2.2 bzip2smp

bzip2smp [52] is a parallel implementation of the bzip2 compressor, written in C program-
ming language and using the Pthread library, and it accepts files as input. In our evaluation of
EBF, we employed optimal settings for our fuzzer, which were similar to the settings used in
Section 6.4.2.1. For this experiment, we used seed values generated from ESBMC counter-
examples as initial seeds, which were saved in files and provided to the fuzzer.

As presented in Table 6.4, EBF detected two bugs, one from the ESBMC engine and
the other from OpenGBF. ESBMC detects a vulnerability in the BZ2_bzclose() function
because they dereference a pointer that might be NULL. Meanwhile, OpenGBF detected a
memory leak in the writerThread() function where they allocated memory for the buf and
never freed this allocated memory.

Unfortunately, we were unable to evaluate the other tools mentioned in Section 6.4.2.1
because CBMC v5.43 and Deagle v1.3 has a parsing error and Cseq v3.0 crashes with a
python error.

6.4.2.3 swarm1.1

swarm1.1 [53], a library that provides a framework for concurrent programming on multi-
core systems. We evaluated EBF using the optimal settings for our fuzzer (same settings
used in Section 6.4.2.1 and 6.4.2.2).

Regarding swarm 1.1, EBF 4.0 detected an invalid pointer dereference resulting from in-
correct thread initialization (i.e., calling the pthread_create function with a NULL pointer
as an argument). Specifically, this bug was detected by OpenGBF as stated in Table 6.4.

We also evaluated swarm 1.1 with CBMC v5.43, and it could not detect any bugs; it re-
turned Unknown within the specified time limit of 15 minutes. Similarly, Cseq v3.0 faced the
same issue of verifying multiple files. A parsing error was encountered in the case of Deagle
v1.3.

Based on the results of this experiment, we have achieved our third evaluation goal
(EG3).

6.5 Optimizing EBF’s settings

In the forthcoming experiments, we aim to explore and analyze the effects of varying set-
tings on the performance and overall results of EBF 4.0 and OpenGBF on Concurrency Safety

99

6.5. OPTIMIZING EBF’S SETTINGS

category of SV-COMP 2022. This exploration of settings will provide valuable information
for optimizing the usage and effectiveness of EBF. For the first four experiments in Sections
6.5.1,6.5.2, 6.5.3, and 6.5.4, we executed EBF with the BMC engine switched off, allowing
the fuzzer to run for 11 minutes. For the fifth experiment presented in Section 6.5.5, we ex-
ecuted EBF with both engines enabled but with a different amount of time allocated (out of
a total of 11 minutes) to each of them. Finally, we evaluate the noise effects on OpenGBF in
Section 6.6.

6.5.1 Maximum number of threads in OpenGBF

In this experiment, we will evaluate the impact of limiting the number of active threads. Fig-
ure 6.4 shows the results of setting different values for the thread threshold (Th) on the number
of bugs (i.e., the number of Correct False verdicts) found by OpenGBF. We conducted this
experiment by disabling the BMC engine, setting the delay range from 0 [µs] to 105 [µs], and
the probability of exiting p = 0.01%. For the thread threshold (Th), we considered different
values for comparison: Th = 0, meaning there are no limits on the number of active threads;
Th = 5, Th = 10, Th = 50, Th = 100, Th = 500, and Th = 1000, where we limit the
maximum number of concurrently active threads to 5, 10, 50, 100, 500, and 1000 threads,
respectively.

It can be seen that the most optimal value lies in the region around Th = 5, and increasing
the threshold value leads to fewer bugs being detected because of the increase in the number
of computer resources required to maintain a more significant number of active threads. We
can claim that many bugs can be identified without considering a large number of threads, as
demonstrated by the wolfMQTT data race that was detected with Th = 5. However, drawing
a more robust conclusion applicable to any concurrent program requires a more extensive
evaluation of our GBF on a larger set of benchmarks.

6.5.2 Maximum amount of delay in OpenGBF

In this experiment, we will evaluate the impact of the amount of delay we inject to force
scheduling in OpenGBF as described in Section 3.3.3.1. We used a logarithmic scale, as
illustrated in Figure 6.5, to compare different delay ranges in OpenGBF. Similar to the eval-
uation of different thread thresholds, we use the number of Correct False to evaluate the
effectiveness of a given delay bound. For this experiment, we set the thread threshold to 5

active threads and the probability of exiting p = 0.01%. For the range of delay values, we
changed the upper bound of the delay’s range from 0 [µs] (i.e., no delay) to 107 [µs] (i.e., 10
seconds).

100

6.5. OPTIMIZING EBF’S SETTINGS

101 102 103

70

75

80

85

90

95

100

100

Maximum number of threads

N
um

be
r

of
be

nc
hm

ar
ks

Correct False

Figure 6.4. The number of bugs (i.e., Correct False verdicts) discovered by OpenGBF in EBF 4.0 for different
values of the threshold on the maximum number of active threads.

20

40

60

80

100

0

N
um

be
r

of
be

nc
hm

ar
ks

100 101 102 103 104 105 106 107

Delay range (µs)

Correct False

Figure 6.5. Number of bugs (i.e., Correct False verdicts) detected by OpenGBF in EBF 4.0 for different upper
bounds of the random delay distributions.

The results show that raising the upper bound of the delay range from 0 to 105, [µs] grad-
ually enhances OpenGBF’s bug-finding capabilities from 68 to 88 benchmarks. Therefore,
by setting a larger upper bound on the delay value, we increase the time range for a thread
to stay inactive before it is rescheduled again, which increases the number of thread inter-
leavings that our fuzzer explores. However, choosing a larger upper bound (e.g., 106 or 107)
leads to fewer bugs found by the fuzzer due to a higher number of timeouts. This outcome is
expected since, with larger delays, the fuzzer spends the majority of the time waiting rather
than executing the code. In general, we believe that finding the correct trade-off in the delay
range is benchmark-dependent.

101

6.5. OPTIMIZING EBF’S SETTINGS

6.5.3 Early thread termination in OpenGBF

In OpenGBF, we terminate the execution of each thread with a probability of p. This specific
implementation detail is crucial for avoiding potential deadlocks in the PUT. Additionally, it
is useful in helping the fuzzer terminate execution when it hangs, for example, when stuck in
an infinite loop.

In this experiment, we aim to demonstrate the impact of different values of p on the bug-
finding performance of our OpenGBF using the Concurrency Safety category of the SV-
COMP 2022 benchmark suite. For comparison, we implement an alternative mechanism
where each thread’s execution is deterministically terminated after a fixed number of instruc-
tions (e.g., 10, 100, 1000, 10000 instructions). It is important to note that both termination
mechanisms are local to each thread and do not introduce any synchronization overhead. Ad-
ditionally, we align the plots based on each thread’s average number of instructions, which
corresponds to the mean 1/p of an exponential distribution.

The results in Figure 6.6 demonstrate the consistent performance of our OpenGBF across
a wide range of p values. Interestingly, removing the termination mechanism altogether only
results in minimal degradation in the fuzzer’s performance. Furthermore, as the average num-
ber of instructions per thread increases, the performance difference between the probabilistic
and deterministic termination methods is not significant. However, the probabilistic mecha-
nism shows slower degradation in performance when the average number of instructions de-
creases. We hypothesize that the probabilistic termination mechanism allows our OpenGBF
to explore numerous shallow paths along with a few deeper ones, thereby slightly increasing
the chance of detecting bugs when the average number of instructions is low. Finally, based
on these findings, we used the best parameter setting, p = 0.01%, for all our experiments.

6.5.4 Impact of GBF design choices

To further validate the bug-detection capabilities of OpenGBF, we compare our GBF im-
plementation and a “non-instrumented” version of the fuzzer (only AFL++). This non-
instrumented version does not include the PUT instrumentation described in Algorithm 2.
We perform this comparison using the optimal parameter settings mentioned earlier: Th = 5,
p = 0.01%, and a random delay upper bound of 105, [µs].

Figure 6.7 illustrates the results of the number of detected bugs in the Concurrency Safety
category of SV-COMP 2022 using our OpenGBF, OpenGBF 4.2 (explained in Section 6.3.4)
and the non-instrumented version of the GBF. The comparison shows a nearly 75-fold increase
in the number of detected bugs between OpenGBF 4.2 and the “non-instrumented” GBF. To
be more precise, OpenGBF detects 88 out of 365 vulnerabilities, which is equivalent to 24.2%

102

6.5. OPTIMIZING EBF’S SETTINGS

101 102 103 104 105 106

20

40

60

80

100

10% 1% 0.1% 0.01% 0.001%0.0001%

Max (average) instructions per thread

N
um

be
r

of
be

nc
hm

ar
ks

Correct False (hard threshold)
Correct False (exit probability)

∞
0%

Figure 6.6. Number of bugs (i.e., Correct False outcomes) discovered by OpenGBF in EBF 4.0 for different
early thread termination strategies.

0

100

200

300

88

153

2

N
um

be
r

of
be

nc
hm

ar
ks

OpenGBF OpenGBF 4.2 non-instrumented OpenGBF

Figure 6.7. The difference between OpenGBF, OpenGBF 4.2, and the non-instrumented GBF in bug
detection capabilities for concurrent programs.

of the total, while OpenGBF 4.2 detects 153 out of 365 vulnerabilities, which is equivalent
to 41.9% of the total, while the “non-instrumented” GBF detects only 2 out of 365, which is
equivalent to 0.55% of the total. This substantial difference in bug detection rates between
OpenGBF and OpenGBF 4.2 and the “non-instrumented” GBF highlights the need to use a
concurrency-aware fuzzer in our EBF.

Comparing OpenGBF to OpenGBF 4.2, the latter achieved nearly double the results. This
allows us to demonstrate the significant impact of good initial seeds on enhancing the bug-
finding capabilities of the GBF.

This evaluation demonstrates that we have successfully achieved our fourth evalua-
tion goal (EG4).

103

6.6. ANALYZING THE NON-DETERMINISM OF OPENGBF

0 3 5.5 8 11

100

200

300

400

BMC (vs GBF) time allocation (minutes)

N
um

be
r

of
be

nc
hm

ar
ks

(11) (8) (5.5) (3) (0)

Correct False
Reachable Bugs

Figure 6.8. Number of bugs (i.e., Correct False outcomes) discovered by EBF 4.0 for different time
allocations between the fuzzer and the BMC.

6.5.5 CPU time allocation inside EBF

In this experiment, we explore different ways of distributing the total verification time, which
is 15 minutes in total, including 11 minutes allocated between the fuzzer and the BMC (i.e.,
ESBMC v6.8) verification engines inside EBF. Figure 6.8 demonstrates the results of a rel-
atively wide range of values varying between 3 and 8 minutes per engine, where EBF 4.0

produces similar results finding 320 bugs out of 365. At the same time, when the entire 11

minutes are allocated to the BMC engine, the number of detected bugs decrease by approx-
imately ∼ 5% to 303 out of 365. Conversely, allocating the entire time to OpenGBF leads
to a substantial decrease in the overall bug-finding performance of EBF 4.0 by over 72.5%.
In summary, these results confirm that BMC tools perform better than our OpenGBF tool
when used in isolation to verify concurrent programs. However, combining both OpenGBF
and BMC engines in a cooperative framework will achieve better results across very different
time allocation choices.

Based on the results of this Section 6.5, we have achieved our fifth evaluation goal
(EG5).

6.6 Analyzing the non-determinism of OpenGBF

Fuzzers, including OpenGBF, are fundamentally non-deterministic programs, resulting in
performance variations across different runs. To evaluate the effect of non-determinism, we
re-run our GBF 20 times on the benchmarks of the present experimental section.

104

6.6. ANALYZING THE NON-DETERMINISM OF OPENGBF

82 83 84 85 86 87 88 89

0

1

2

3

4

5

Bugs found by OpenGBF

B
en

ch
m

ar
k

ru
ns

Figure 6.9. The results re-run OpenGBF 20 times on SV-COMP 2022.

6.6.1 Non-determinism on SV-COMP 2022 benchmark suite

We executed OpenGBF 20 times on SV-COMP 2022 using the same optimal settings as pre-
sented in Section 6.5. Figure 6.9 shows the results of the number of bugs OpenGBF found in
each run, in which the results of 82 bugs occurred twice, 83 occurred five times, 85 occurred
three times, 86 and 87 occurred four times, and both 88 and 89 occurred once.

In the worst-case scenario, our fuzzer detected only 82 bugs, while in the best-case sce-
nario, it found 89. Considering that the SV-COMP 2022 suite contains 365 bugs, we expect
the distribution to be approximately Gaussian. The empirical mean is 85.2, the variance is
4.3, and the standard deviation is 2.0. Given the small variance relative to the total number
of bugs, we can trust the results from Figures 6.4, 6.5, 6.8, and 6.6 to provide robust values
for the optimal EBF settings.

Additionally, we evaluate the impact of fuzzer non-determinism on each individual file in
the SV-COMP 2022 benchmark suite. Specifically, after filtering the files, we found 74 files
across the 20 independent runs in which OpenGBF always finds a bug. Among those, we
select the file with the smallest and largest variance. In addition, we select six samples in
between the smallest and the largest variance (i.e., between each 12.5 % we select a sample).
Figure 6.10 shows the performance plot of OpenGBF in these 9 representative cases. The
violin plot shows the extremes of the distributions, together with their median and kernel
density estimation. We omit the mean because these distributions are highly non-Gaussian.
For example, in the SV-COMP maximum sample, we can notice that the time distribution is
highly concentrated around the median.

105

6.7. LIMITATIONS

SV-C
om

p (
min)

SV-C
om

p (
12

.5%
)

SV-C
om

p (
25

%)

SV-C
om

p (
37

.5%
)

SV-C
om

p (
med

.)

SV-C
om

p (
62

.5%
)

SV-C
om

p (
75

%)

SV-C
om

p (
87

.5%
)

SV-C
om

p (
max

)

0

100

200

300

400

500

600

700

Ti
m

e
(s

)

Median
Max/Min
Density

Figure 6.10. Non-determinism of OpenGBF across 20 re-runs of the SV-COMP’22 benchmark suite.

6.6.2 Non-determinism on wolfMQTT and real-world programs

We executed OpenGBF 20 times on both the wolfMQTT library and the three real-world
programs presented in Table 6.4. Figure 6.11 shows the results as a violin plot. In the case
of pfscan and bzip2smp, OpenGBF is capable of finding the bugs almost immediately (see
also Table 6.4). In contrast, we can observe more variance for wolfMQTT and swarm 1.1. In
the former case, the distribution is fairly compact in the range between [10.6s, 66.8s]. In the
latter case, the distribution has a long tail. More precisely, the median time is 9.5s, and 75%
(15 out of the 20) of the runs find a bug in less than 45s, but there are also occasional outliers
where the first bug is reported between 200s and 320s.

6.7 Limitations

We have identified several potential limitations in our current work, which are presented
as follows:

6.7.1 Incompleteness of fuzzing for proving safety.

Fuzzing operates by executing a program through various concrete paths, aiming to identify
the one that leads to the vulnerability. Accordingly, it cannot provide a formal guarantee
of fully exploring the entire state space of the program. Therefore, EBF is designed with a

106

6.7. LIMITATIONS

wolf
MQTT

pfs
can

bz
ip2

sm
p

sw
arm

 1.
1

0

50

100

150

200

250

300

350

Ti
m

e
(s

)

Median
Max/Min
Density

Figure 6.11. Non-determinism in wolfMQTT and the real-world programs from Table 6.4 across 20 re-runs.

primary focus on bug-finding rather than proving a program’s safety. For safety proofs, we
rely solely on the BMC engine up to a given bound k and context switch.

6.7.2 Correct seed sequence for the fuzzer.

It is crucial to establish a mechanism that ensures the seeds generated by BMC for the fuzzer
match the input order of the program. This task becomes particularly challenging in concur-
rent programs, as the program input order also depends on thread interleavings. Additionally,
input values generated by BMC can become “lost” within the mix of inputs and delay values
generated using nondeterministic functions during the fuzzing process.

6.7.3 Sources of incorrect verdicts in EBF

While EBF does not encounter conflicting verdicts using the aggregation matrix presented in
Table 4.1, the soundness of EBF’s verification outcomes depends significantly on the tools
used within the cooperative framework.

For instance, if the BMC engine were to report an incorrect Verification Successful ver-
dict while the GBF fails to detect any violations within the given time limit (resulting in an
Unknown verdict), the final verification result would be marked as Verification Successful.

107

6.8. SUMMARY

Similarly, EBF can potentially produce an incorrect false verdict if BMC reports Unknown,
and the GBF crashes due to an internal bug within the GBF’s implementation or unintended
Undefined behaviour in the benchmarks, rather than detecting an actual vulnerability inside
the PUT (with respect to the property violation).

Fortunately, this issue is not critical because EBF generates a witness file that leads to the
bug. This file can be further evaluated using witness validators (for more details, see Section
4.3.1.5). However, EBF can produce incorrect true when the BMC engine reports wrong
Verification Successful, and our GBF cannot confirm otherwise.

6.7.4 Choice of parameter settings in EBF

While we conducted our evaluations on a set of over 700 multi-threaded C programs (as
described in Section 6.3), it is important to note that these benchmarks may not fully represent
the real-world picture of concurrent software. As a result, the optimal parameter settings for
our OpenGBF could differ when applied to a different set of multi-threaded benchmarks.
Nevertheless, we anticipate that the parameter tuning process for an alternative benchmark
set will follow similar patterns to those shown in Figures 6.4, 6.5, and 6.6.

6.8 Summary

In this chapter, we conducted a comprehensive evaluation of EBF, with a primary goal
of its ability to detect vulnerabilities in concurrent programs. Our evaluations encompassed
different aspects, including effectiveness, scalability, robustness, and parameter tuning.

First, to evaluate EBF’s ability to detect vulnerabilities in concurrent programs, we con-
ducted evaluations within the Concurrency Safety category of SV-COMP 2022. In the initial
version, EBF 2.3, we participated in SV-COMP 2022 and demonstrated a significant im-
provement of approximately∼ 7.8% over CBMC 5.43, the BMC engine used in that version.
Subsequently, we enhanced EBF by incorporating algorithmic concepts detailed in Chapter
3, resulting in EBF version 4.0. This new version was evaluated on the same benchmark
suite, with the distinction that it was tested against various BMC engines, including CBMC,
ESBMC, Cseq, and Deagle. The results showed that EBF 4.0 consistently outperformed all
BMC engines. To continue enhancing OpenGBF, we introduced a mechanism to generate
good initial seeds by extracting them from BMC using error statements. In this latest ver-
sion, we participated in SV-COMP 2023, building our BMC engine on top of ESBMC. De-
spite this addition, EBF maintained its competitive advantage, outperforming ESBMC by
approximately ∼ 6.65%.

108

6.9. FUTURE WORK

Furthermore, we evaluated EBF 4.0 on real-world concurrent programs: wolfMQTT, pfs-
can, bzip2smp, and swarm1.1. EBF demonstrated its effectiveness by successfully identifying
multiple vulnerabilities in these real-world programs, including newly discovered data races,
null pointer dereferences, and memory leaks. The vulnerabilities were detected using the ES-
BMC and OpenGBF engines. While some BMC tools like CBMC and Deagle encountered
issues when analyzing such programs, EBF proved robust and scalable in detecting vulnera-
bilities in real-world programs where other tools failed.

Additionally, we investigated the impact of varying parameters of OpenGBF, such as
thread threshold, delay range, and the probability of exiting, on EBF’s bug-finding capa-
bilities. These experiments helped identify optimal settings, providing valuable insights into
parameter tuning.

We also emphasize the importance of using a concurrency-aware fuzzer by comparing
OpenGBF and OpenGBF 4.2, which incorporates initial seed values generated from BMC us-
ing the injecting of error statements, against the “non-instrumented” GBF. The results demon-
strated that OpenGBF 4.2 outperformed the “non-instrumented” GBF, achieving a nearly 75-
fold increase in the number of detected bugs.

Lastly, using the optimal settings, we executed OpenGBF 20 times on the SV-COMP 2022

benchmark suite and the real-world concurrent programs. We calculated the mean, variance,
and standard deviation. The small variance observed in comparison to the total number of
bugs detected demonstrates the reliability of EBF.

6.9 Future work

In future work, we can evaluate EBF on sequential programs by disabling the delay and
comparing the results with individual BMC engines in the context of memory-related bugs.
Additionally, the new feature of introducing input values from BMC could be valuable in
generating effective test cases for sequential programs, which could consider our tool’s par-
ticipation in testing competitions.

109

Chapter 7

Conclusions

Finding vulnerabilities in concurrent programs remains a challenging problem due to the
extreme explosion of the search space in the number of possible interleavings. This Ph.D.
thesis focuses on two existing techniques to address this problem: Bounded Model Checking
(BMC) and Gray-Box Fuzzing (GBF). However, each technique has its strength in software
verification and testing. Consequently, when used independently, each technique can only
find a subset of vulnerabilities within concurrent benchmarks. Given the current knowledge in
software verification, no techniques effectively leverage both BMC and fuzzing for concurrent
program verification. Therefore, the fundamental research question we addressed is whether
combining BMC and fuzzing enhances bug finding in concurrent programs.

The challenge in answering this fundamental question is threefold. First, while many open-
source BMC tools are available in the literature, all the existing concurrency-aware fuzzers
are closed-source (at least partially). Consequently, using any of these concurrency-aware
fuzzers requires a major reproducibility effort. Second, the challenge of combining BMC
and fuzzing techniques for concurrency programs appears from the lack of existing base-
lines. Third, BMC and fuzzing are dissimilar techniques; their cooperation within the coop-
erative framework must be carefully coordinated. This specifically involves coordinating the
exchange of verification artifacts (i.e., seed values), confirming the final verdict, generating
the witness file, and allocating the appropriate time between engines.

In this Ph.D. thesis, we tackled these challenges and made original contributions. Firstly,
we developed a novel, fully open-source, concurrency-aware gray-box fuzzer named OpenGBF.
Secondly, we established a cooperative framework comprising BMC and our concurrency-
aware fuzzer, referred to as EBF. Lastly, we evaluated EBF, focusing on its bug-finding ca-
pabilities, scalability, and correctness.

When developing a concurrency-aware fuzzer, specific challenges must be addressed.
Since concurrent programs can have different thread interleavings that result in different
behaviours, our concurrency-aware fuzzer must explore various thread interleavings and be
thread-aware. Also, it is essential to detect not only memory-related errors like memory leaks
or buffer overflows but also concurrency-related bugs like data races and deadlocks. Addi-

110

tionally, the fuzzer can become computationally exhausted due to the large number of thread
interleavings, so limiting the number of active threads is necessary. Finally, since concurrent
programs have non-deterministic behaviour, reproducing the exact input and interleavings
that led to a bug is crucial once it has been found. Therefore, we need a mechanism to repro-
duce the counterexample, specifying the exact input and thread interleavings that resulted in
this bug.

In Chapter 3, we provided a detailed explanation of OpenGBF and how it addresses these
specific challenges. OpenGBF is built on top of the state-of-the-art AFL++, primarily de-
signed for finding software vulnerabilities in sequential programs [94]. We extended AFL++
by instrumenting the Program Under Test (PUT) using an LLVM Pass to make it thread-
aware. This extension involved injecting five function calls and using a runtime library for
their implementation.

The first function is a delay function, which is inserted after each instruction. This func-
tion controls thread interleavings by introducing random delays. After each thread creation
and joining function, the second and third functions were injected to monitor the number of
thread interleavings by counting the number of active threads. Within the delay function,
we determine the limit of active threads and start a new run with different interleavings if
it exceeds a predefined threshold. The last two functions were injected after each load and
store instruction and after each allocation to collect information about variable names, val-
ues, function names, and thread IDs. This information is used to generate a witness file that
contains the trace leading to the discovered bug.

In Chapter 4, we introduced our cooperative framework, EBF, which combines a BMC en-
gine with our concurrency-aware fuzzer, OpenGBF. This combination presents several chal-
lenges, particularly when the fuzzer suffers from reaching complex path conditions. Address-
ing this requires good initial seed values to explore deep branches effectively. Furthermore,
since our cooperative framework works sequentially, requiring the BMC to run first to gen-
erate initial seeds, we face the challenge of coordinating computational resources effectively.
Finally, when multiple tools run within a cooperative framework, the possibility of conflict-
ing results arises. Specifically, in the case of BMC and fuzzing, BMC relies on abstractions
of program execution states and symbolic execution, whereas the fuzzer tests concrete inputs
and execution schedules. Therefore, we must aggregate these results and generate a witness
file illustrating the path to the identified bugs.

EBF mainly consists of four stages. First the safety proving stage, in which we check
the PUT for safety using the BMC engine. Second is the seed generation stage, where we
instrument the PUT by injecting some error statements after each conditional branch in the
program. We then randomly verify PUT containing one error statement using BMC and
extract any seed values from the BMC witness file. Third, the falsification stage, where we

111

7.1. FUTURE WORK

employ OpenGBF and provide it with the extracted seed values. Lastly, the result aggregation
stage, where we store the results of both engines and determine the final verdict. We also
provide the witness file generated by the engine from which we obtained the final results.

In Chapter 5, we provide additional implementation details, including the programming
languages used, the availability of EBF, instructions on compiling and running the tool, along
with an example that demonstrates the output of each stage of EBF, and the available flags
for its usage. Finally, it provides an overview of the tool’s output.

In Chapter 6, we conduct experiments to show EBF performance in bug detection. First,
we evaluate EBF against SV-COMP benchmark suits, where EBF participated in 2022 and
2023. We also evaluate EBF against state-of-the-art BMC tools, showing an improvement up
to∼ 14.9% in detecting more bugs than individual BMC tools. Second, we evaluate EBF on
different real-world programs, including wolfMQTT library, where we detected a data race
bug and reported it to the developer. After they confirmed it, the bug was successfully fixed.
Furthermore, EBF successfully reproduces known bugs in several other real-world programs
such as pfscan [51], bzip2smp [52] and swarm 1.1 [53].

Lastly, we explore and analyze the effects of various settings on the performance of OpenGBF.
We evaluated the impact of limiting the maximum number of active threads, different de-
lay ranges, and the probability of early termination. Furthermore, we compared the non-
instrumented Gray Box Fuzzer (GBF) with two versions of OpenGBF, demonstrating signif-
icant improvements of up to 75-fold compared to the non-instrumented GBF. This illustrates
the effect of injecting delays and generating good seed values from BMC, which enhances
the bug-finding capabilities of OpenGBF. Additionally, we explore resource allocation within
EBF. Finally, we analyze the non-deterministic aspects of OpenGBF.

7.1 Future work

This Ph.D. thesis opens up multiple research directions because combining two techniques
allows us to delve deeper into each individually and collaboratively to make improvements.
First, we can generalize our cooperative framework to detect software vulnerabilities in both
sequential and concurrent programs. Second, we can expand our cooperative framework
by incorporating different techniques and switching between them based on the program’s
characteristics.

As for the concurrency-aware fuzzer, several improvement directions exist. Firstly, we can
enhance the seed generation for GBF by implementing a custom mutator to ensure that the val-
ues generated by the fuzzer differ from those seeded by the BMC engine. Another promising
approach is applying machine learning techniques for generating initial seeds. Additionally,

112

7.1. FUTURE WORK

it is worth investigating the potential impact of reducing delay injection in the PUT, such as
injecting delays only after each function call. Furthermore, we can consider re-implementing
various concepts from the literature on concurrency-aware fuzzers and evaluating their effec-
tiveness in bug detection.

Lastly, in a different direction for future work, it can be considered to develop a validator
that can confirm correctness witnesses for concurrent programs in order to prove program
safety. While correctness witnesses for sequential programs are typically the program in-
variants, ensuring correctness in concurrent programs is more challenging due to the need
to consider all possible interleavings, which can lead to a space explosion problem. There-
fore, the research question arises: Can the development of a correctness witness validator
accurately confirm correctness witnesses and ensure program safety?

Answering this question can be achieved by developing an algorithm that extends existing
techniques, used for validating violation witnesses in concurrent programs [177]. This exten-
sion can involve instrumenting the invariant interleavings to demonstrate that these invariants
hold true in respect to the program and its properties.

113

References

[1] F. Aljaafari, R. Menezes, E. Manino, F. Shmarov, M. A. Mustafa, and L. Cordeiro,

“Combining bmc and fuzzing techniques for finding software vulnerabilities in con-

current programs,” IEEE Access, vol. 10, pp. 121 365–121 384, 2022. doi: 10.1109/

ACCESS.2022.3223359 (cited on pp. 9, 16, 19, 23, 24, 48, 49, 65).

[2] F. Aljaafari, F. Shmarov, E. Manino, R. Menezes, and L. Cordeiro, “EBF 4.2: Black-

Box cooperative verification for concurrent programs (competition contribution),” in

Proc. TACAS (2), ser. LNCS, Springer, 2023 (cited on pp. 9, 23, 24, 49, 65, 68).

[3] K. Alshmrany, M. Aldughaim, A. Bhayat, F. Shmarov, F. Aljaafari, and L. Cordeiro,

“FuSeBMC v4: Improving code coverage with smart seeds via fuzzing and static anal-

ysis,” The Formal Aspects of Computing Journal (FAC), (cited on p. 9).

[4] A. C. Sodan, J. Machina, A. Deshmeh, K. Macnaughton, and B. Esbaugh, “Parallelism

via multithreaded and multicore cpus,” Computer, vol. 43, no. 3, pp. 24–32, 2010

(cited on p. 16).

[5] P. A. Pereira, H. F. Albuquerque, I. da Silva, et al., Concurr. Comput. Pract. Exp.,

vol. 29, no. 22, 2017. doi: 10.1002/cpe.3934 (cited on pp. 16, 17).

[6] vinod, Multithreading realtime examples, https://androidmaniacom.wordpress.

com/2016/12/16/multithreading-realtime-examples/, 2022 (cited on p. 16).

[7] B. Allington, “Concurrency issues in online banking,” IEEE Concurrency, May 2015

(cited on p. 16).

[8] H. Hanif, M. H. N. M. Nasir, M. F. Ab Razak, A. Firdaus, and N. B. Anuar, “The

rise of software vulnerability: Taxonomy of software vulnerabilities detection and ma-

chine learning approaches,” Journal of Network and Computer Applications, vol. 179,

p. 103 009, 2021 (cited on p. 16).

[9] K. M. Alshmrany, A. Bhayat, F. Brauße, et al., “Position paper: Towards a hybrid

approach to protect against memory safety vulnerabilities,” in IEEE Secure Devel-

opment Conference, SecDev 2022, Atlanta, GA, USA, October 18-20, 2022, IEEE,

114

https://doi.org/10.1109/ACCESS.2022.3223359
https://doi.org/10.1109/ACCESS.2022.3223359
https://doi.org/10.1002/cpe.3934
https://androidmaniacom.wordpress.com/2016/12/16/multithreading-realtime-examples/
https://androidmaniacom.wordpress.com/2016/12/16/multithreading-realtime-examples/

REFERENCES

2022, pp. 52–58. doi: 10.1109/SecDev53368.2022.00020. [Online]. Available:

https://doi.org/10.1109/SecDev53368.2022.00020 (cited on pp. 16, 51).

[10] P. A. Pereira, H. F. Albuquerque, H. Marques, et al., “Verifying CUDA programs

using smt-based context-bounded model checking,” in Proceedings of the 31st Annual

ACM Symposium on Applied Computing, S. Ossowski, Ed., 2016, pp. 1648–1653. doi:

10.1145/2851613.2851830 (cited on p. 16).

[11] M. Ben-Ari, Principles of Concurrent and Distributed Programming. Pearson Edu-

cation, 2006 (cited on p. 16).

[12] C. Liu, D. Zou, P. Luo, B. B. Zhu, and H. Jin, “A heuristic framework to detect con-

currency vulnerabilities,” in Proceedings of the 34th Annual Computer Security Ap-

plications Conference, 2018, pp. 529–541 (cited on pp. 16, 37–39).

[13] M. Y. R. Gadelha, E. Steffinlongo, L. C. Cordeiro, B. Fischer, and D. A. Nicole, “Smt-

based refutation of spurious bug reports in the clang static analyzer,” in Proceedings of

the 41st International Conference on Software Engineering: Companion Proceedings,

ICSE 2019, Montreal, QC, Canada, May 25-31, 2019, J. M. Atlee, T. Bultan, and J.

Whittle, Eds., IEEE / ACM, 2019, pp. 11–14. doi: 10.1109/ICSE-Companion.

2019.00026. [Online]. Available: https://doi.org/10.1109/ICSE-Companion.

2019.00026 (cited on p. 16).

[14] J. Pan, “Software testing,” Dependable Embedded Systems, vol. 5, no. 2006, p. 1, 1999

(cited on p. 17).

[15] M. R. Gadelha, R. S. Menezes, and L. C. Cordeiro, “ESBMC 6.1: Automated test

case generation using bounded model checking,” Int. J. Softw. Tools Technol. Transf.,

vol. 23, no. 6, pp. 857–861, 2021. doi: 10.1007/s10009-020-00571-2. [Online].

Available: https://doi.org/10.1007/s10009-020-00571-2 (cited on p. 17).

[16] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistakes: A comprehensive study

on real world concurrency bug characteristics,” in Proceedings of the 13th interna-

tional conference on Architectural support for programming languages and operating

systems, 2008, pp. 329–339 (cited on pp. 17, 25).

[17] L. C. Cordeiro and B. Fischer, “Verifying multi-threaded software using smt-based

context-bounded model checking,” in Proceedings of the 33rd International Confer-

ence on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28,

2011, R. N. Taylor, H. C. Gall, and N. Medvidovic, Eds., ACM, 2011, pp. 331–340.

115

https://doi.org/10.1109/SecDev53368.2022.00020
https://doi.org/10.1109/SecDev53368.2022.00020
https://doi.org/10.1145/2851613.2851830
https://doi.org/10.1109/ICSE-Companion.2019.00026
https://doi.org/10.1109/ICSE-Companion.2019.00026
https://doi.org/10.1109/ICSE-Companion.2019.00026
https://doi.org/10.1109/ICSE-Companion.2019.00026
https://doi.org/10.1007/s10009-020-00571-2
https://doi.org/10.1007/s10009-020-00571-2

REFERENCES

doi: 10.1145/1985793.1985839. [Online]. Available: https://doi.org/10.

1145/1985793.1985839 (cited on pp. 17, 66).

[18] K. R. Apt, E.-R. Olderog, and K. Apt, Verification of sequential and concurrent pro-

grams. Springer, 2009, vol. 2 (cited on p. 17).

[19] Q. Stievenart, J. Nicolay, W. De Meuter, and C. De Roover, “Detecting concurrency

bugs in higher-order programs through abstract interpretation,” in Proceedings of the

17th International Symposium on Principles and Practice of Declarative Program-

ming, 2015, pp. 232–243 (cited on p. 17).

[20] K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro, “Fusebmc v4:

Smart seed generation for hybrid fuzzing - (competition contribution),” in Funda-

mental Approaches to Software Engineering - 25th International Conference, FASE

2022, Held as Part of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, E. B. Johnsen

and M. Wimmer, Eds., ser. Lecture Notes in Computer Science, vol. 13241, Springer,

2022, pp. 336–340. doi: 10.1007/978-3-030-99429-7_19. [Online]. Available:

https://doi.org/10.1007/978-3-030-99429-7%5C_19 (cited on p. 17).

[21] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades later,”

Communications of the ACM, vol. 56, no. 2, pp. 82–90, 2013 (cited on p. 17).

[22] Y. Li, S. Ji, C. Lyu, et al., “V-fuzz: Vulnerability prediction-assisted evolutionary

fuzzing for binary programs,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3745–

3756, 2022. doi: 10.1109/TCYB.2020.3013675 (cited on pp. 17, 18).

[23] G. A. Kildall, “A unified approach to global program optimization,” in Proceedings

of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming

languages, 1973, pp. 194–206 (cited on p. 17).

[24] M. B. Dwyer and L. A. Clarke, “Data flow analysis for verifying properties of concur-

rent programs,” ACM SIGSOFT Software Engineering Notes, vol. 19, no. 5, pp. 62–

75, 1994 (cited on p. 17).

[25] A. Gosain and G. Sharma, “Static analysis: A survey of techniques and tools,” in

Intelligent Computing and Applications: Proceedings of the International Conference

on ICA, 22-24 December 2014, Springer, 2015, pp. 581–591 (cited on p. 17).

[26] J. B. Kam and J. D. Ullman, “Global data flow analysis and iterative algorithms,”

Journal of the ACM (JACM), vol. 23, no. 1, pp. 158–171, 1976 (cited on p. 17).

116

https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1145/1985793.1985839
https://doi.org/10.1007/978-3-030-99429-7_19
https://doi.org/10.1007/978-3-030-99429-7%5C_19
https://doi.org/10.1109/TCYB.2020.3013675

REFERENCES

[27] A. Alfred V, L. Monica S, S. Ravi, U. Jeffrey D, et al., Compilers-principles, tech-

niques, and tools. pearson Education, 2007 (cited on p. 17).

[28] M. Aizatulin, A. D. Gordon, and J. Jürjens, “Extracting and verifying cryptographic

models from c protocol code by symbolic execution,” in Proceedings of the 18th ACM

conference on Computer and communications security, 2011, pp. 331–340 (cited on

p. 17).

[29] A. Biere, “Bounded model checking,” in Handbook of Satisfiability, IOS Press, 2009,

pp. 457–481 (cited on pp. 17, 28).

[30] M. R. Gadelha, R. Menezes, F. R. Monteiro, L. C. Cordeiro, and D. Nicole, “Esbmc:

Scalable and precise test generation based on the floating-point theory: (competition

contribution),” in International Conference on Fundamental Approaches to Software

Engineering, Springer International Publishing Cham, 2020, pp. 525–529 (cited on

pp. 17, 30).

[31] D. Kroening and M. Tautschnig, “CBMC–c bounded model checker,” in TACAS,

Springer, 2014, pp. 389–391 (cited on pp. 17, 30).

[32] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable software veri-

fication,” in Computer Aided Verification: 23rd International Conference, CAV 2011,

Snowbird, UT, USA, July 14-20, 2011. Proceedings 23, Springer, 2011, pp. 184–190

(cited on p. 17).

[33] F. He, Z. Sun, and H. Fan, “Satisfiability modulo ordering consistency theory for

multi-threaded program verification,” in Proceedings of the 42nd ACM SIGPLAN

International Conference on Programming Language Design and Implementation,

2021, pp. 1264–1279 (cited on pp. 17, 31).

[34] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, “Lazy-cseq: A lazy se-

quentialization tool for c: (competition contribution),” in Tools and Algorithms for the

Construction and Analysis of Systems: 20th International Conference, TACAS 2014,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings 20, Springer, 2014,

pp. 398–401 (cited on pp. 17, 31).

[35] M. Vanhoef and F. Piessens, “Symbolic execution of security protocol implementa-

tions: Handling cryptographic primitives,” in 12th USENIX Workshop on Offensive

Technologies (WOOT 18), 2018 (cited on p. 17).

117

REFERENCES

[36] D. Trabish, A. Mattavelli, N. Rinetzky, and C. Cadar, “Chopped symbolic execution,”

in Proceedings of the 40th International Conference on Software Engineering, 2018,

pp. 350–360 (cited on p. 17).

[37] B. P. Miller, L. Fredriksen, and B. So, “An empirical study of the reliability of unix

utilities,” Communications of the ACM, vol. 33, no. 12, pp. 32–44, 1990 (cited on

p. 17).

[38] P. Tsankov, M. T. Dashti, and D. Basin, “Secfuzz: Fuzz-testing security protocols,” in

2012 7th International Workshop on Automation of Software Test (AST), IEEE, 2012,

pp. 1–7 (cited on p. 18).

[39] V. J. Manès, H. Han, C. Han, et al., “The art, science, and engineering of fuzzing: A

survey,” IEEE Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,

2019 (cited on pp. 18, 32).

[40] B. S. Pak, “Hybrid fuzz testing: Discovering software bugs via fuzzing and symbolic

execution,” School of Computer Science Carnegie Mellon University, 2012 (cited on

p. 18).

[41] H. Chen, S. Guo, Y. Xue, et al., “{Muzz}: Thread-aware grey-box fuzzing for effec-

tive bug hunting in multithreaded programs,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 2325–2342 (cited on pp. 18, 34, 37, 38).

[42] S. Ognawala, T. Hutzelmann, E. Psallida, and A. Pretschner, “Improving function

coverage with munch: A hybrid fuzzing and directed symbolic execution approach,”

in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018,

pp. 1475–1482 (cited on pp. 18, 44).

[43] K. M. Alshmrany, R. S. Menezes, M. R. Gadelha, and L. C. Cordeiro, “Fusebmc: A

white-box fuzzer for finding security vulnerabilities in c programs (competition con-

tribution),” in Fundamental Approaches to Software Engineering: 24th International

Conference, FASE 2021, Held as Part of the European Joint Conferences on The-

ory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March

27–April 1, 2021, Proceedings 24, Springer International Publishing, 2021, pp. 363–

367 (cited on pp. 18, 44, 68, 69).

[44] A. Basak Chowdhury and R. K. Medicherla, “Verifuzz: Program aware fuzzing: (com-

petition contribution),” in Tools and Algorithms for the Construction and Analysis of

Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague,

118

REFERENCES

Czech Republic, April 6–11, 2019, Proceedings, Part III 25, Springer, 2019, pp. 244–

249 (cited on pp. 18, 44).

[45] D. Beyer and H. Wehrheim, “Verification artifacts in cooperative verification: Survey

and unifying component framework,” in Leveraging Applications of Formal Methods,

Verification and Validation: Verification Principles, T. Margaria and B. Steffen, Eds.,

Cham: Springer International Publishing, 2020, pp. 143–167 (cited on pp. 18, 40, 64).

[46] D. Beyer, M. Spiessl, and S. Umbricht, “Cooperation between automatic and interac-

tive software verifiers,” in Software Engineering and Formal Methods, B.-H. Schlin-

gloff and M. Chai, Eds., Cham: Springer International Publishing, 2022, pp. 111–128,

isbn: 978-3-031-17108-6 (cited on p. 18).

[47] N. Stephens, J. Grosen, C. Salls, et al., “Driller: Augmenting fuzzing through selective

symbolic execution.,” in NDSS, vol. 16, 2016, pp. 1–16 (cited on pp. 18, 34, 44).

[48] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “{Qsym}: A practical concolic execution

engine tailored for hybrid fuzzing,” in 27th USENIX Security Symposium (USENIX

Security 18), 2018, pp. 745–761 (cited on pp. 18, 44).

[49] J. Li, B. Zhao, and C. Zhang, “Fuzzing: A survey,” Cybersecurity, vol. 1, no. 1, pp. 1–

13, 2018 (cited on pp. 18, 25, 31–33, 43).

[50] https://github.com/fatimahkj/EBF, 2022 (cited on pp. 21, 40).

[51] https://manpages.ubuntu.com/manpages/focal/man1/pfscan.1.html,

2022 (cited on pp. 22, 98, 112).

[52] http://bzip2smp.sourceforge.net/, 2022 (cited on pp. 22, 99, 112).

[53] D. Bader, V. Kanade, and K. Madduri, “Swarm: A parallel programming framework

fro multicore processors,” in Proc. 21st Intl. Parallel and Distr. Processing Symp

(IPDPS 2007), Long Beach, CA (March 2007), 2007 (cited on pp. 22, 99, 112).

[54] F. R. Monteiro, E. H. d. S. Alves, I. S. Silva, H. I. Ismail, L. C. Cordeiro, and E. B.

de Lima Filho, “Esbmc-gpu a context-bounded model checking tool to verify cuda

programs,” Science of Computer Programming, vol. 152, pp. 63–69, 2018 (cited on

p. 25).

[55] F. R. Monteiro, M. Garcia, L. C. Cordeiro, and E. B. de Lima Filho, “Bounded model

checking of C++ programs based on the qt cross-platform framework,” Softw. Test.

Verification Reliab., vol. 27, no. 3, 2017. doi: 10.1002/stvr.1632. [Online]. Avail-

able: https://doi.org/10.1002/stvr.1632 (cited on p. 25).

119

https://github.com/fatimahkj/EBF
https://manpages.ubuntu.com/manpages/focal/man1/pfscan.1.html
http://bzip2smp.sourceforge.net/
https://doi.org/10.1002/stvr.1632
https://doi.org/10.1002/stvr.1632

REFERENCES

[56] https://www.intel.com/content/www/us/en/docs/inspector/user-

guide-linux/2022/invalid-memory-access.html, 2023 (cited on p. 26).

[57] T. V. N. Nguyen, F. Irigoin, C. Ancourt, and F. Coelho, “Automatic detection of

uninitialized variables,” in Compiler Construction: 12th International Conference,

CC 2003 Held as Part of the Joint European Conferences on Theory and Practice of

Software, ETAPS 2003 Warsaw, Poland, April 7–11, 2003 Proceedings 12, Springer,

2003, pp. 217–231 (cited on p. 26).

[58] Y. Xie and A. Aiken, “Context-and path-sensitive memory leak detection,” in Pro-

ceedings of the 10th European software engineering conference held jointly with 13th

ACM SIGSOFT international symposium on Foundations of software engineering,

2005, pp. 115–125 (cited on p. 26).

[59] Y. Cai, B. Zhu, R. Meng, et al., “Detecting concurrency memory corruption vulnera-

bilities,” in Proceedings of the 2019 27th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineer-

ing, 2019, pp. 706–717 (cited on p. 26).

[60] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving sat and sat modulo theories:

From an abstract davis–putnam–logemann–loveland procedure to dpll (t),” Journal

of the ACM (JACM), vol. 53, no. 6, pp. 937–977, 2006 (cited on p. 28).

[61] L. C. Chaves, I. Bessa, L. C. Cordeiro, and D. Kroening, “Dsvalidator: An automated

counterexample reproducibility tool for digital systems,” in Proceedings of the 21st

International Conference on Hybrid Systems: Computation and Control (part of CPS

Week), HSCC 2018, Porto, Portugal, April 11-13, 2018, M. Prandini and J. V. Desh-

mukh, Eds., ACM, 2018, pp. 253–258. doi: 10.1145/3178126.3178151. [Online].

Available: https://doi.org/10.1145/3178126.3178151 (cited on p. 28).

[62] L. Cordeiro, “Smt-based bounded model checking for multi-threaded software in em-

bedded systems,” in Proceedings of the 32nd ACM/IEEE International Conference on

Software Engineering-Volume 2, 2010, pp. 373–376 (cited on p. 28).

[63] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent software,”

in International conference on tools and algorithms for the construction and analysis

of systems, Springer, 2005, pp. 93–107 (cited on pp. 29, 30, 72).

[64] https://github.com/esbmc/esbmc, 2021 (cited on pp. 30, 93).

[65] Cbmc, https://github.com/diffblue/cbmc, 2022 (cited on pp. 30, 93).

120

https://www.intel.com/content/www/us/en/docs/inspector/user-guide-linux/2022/invalid-memory-access.html
https://www.intel.com/content/www/us/en/docs/inspector/user-guide-linux/2022/invalid-memory-access.html
https://doi.org/10.1145/3178126.3178151
https://doi.org/10.1145/3178126.3178151
https://github.com/esbmc/esbmc
https://github.com/diffblue/cbmc

REFERENCES

[66] Cseq, https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html, 2022

(cited on pp. 30, 93).

[67] I. Rabinovitz and O. Grumberg, “Bounded model checking of concurrent programs,”

in Computer Aided Verification: 17th International Conference, CAV 2005, Edin-

burgh, Scotland, UK, July 6-10, 2005. Proceedings 17, K. Etessami and S. K. Ra-

jamani, Eds., Springer, 2005, pp. 82–97, isbn: 978-3-540-31686-2 (cited on p. 30).

[68] M. R. Gadelha, R. S. Menezes, and L. C. Cordeiro, “Esbmc 6.1: Automated test case

generation using bounded model checking,” International Journal on Software Tools

for Technology Transfer, vol. 23, pp. 857–861, 2021 (cited on p. 30).

[69] I. Bessa, H. Ismail, R. M. Palhares, L. C. Cordeiro, and J. E. C. Filho, “Formal non-

fragile stability verification of digital control systems with uncertainty,” IEEE Trans.

Computers, vol. 66, no. 3, pp. 545–552, 2017. doi: 10.1109/TC.2016.2601328.

[Online]. Available: https://doi.org/10.1109/TC.2016.2601328 (cited on

p. 30).

[70] R. B. Abreu, M. Y. R. Gadelha, L. C. Cordeiro, E. B. de Lima Filho, and W. S. da

Silva Jr., “Bounded model checking for fixed-point digital filters,” J. Braz. Comput.

Soc., vol. 22, no. 1, 1:1–1:20, 2016. doi: 10.1186/s13173-016-0041-8. [Online].

Available: https://doi.org/10.1186/s13173-016-0041-8 (cited on p. 30).

[71] L. C. Chaves, I. Bessa, H. Ismail, A. B. dos Santos Frutuoso, L. C. Cordeiro, and E. B.

de Lima Filho, “Dsverifier-aided verification applied to attitude control software in

unmanned aerial vehicles,” IEEE Trans. Reliab., vol. 67, no. 4, pp. 1420–1441, 2018.

doi: 10.1109/TR.2018.2873260. [Online]. Available: https://doi.org/10.

1109/TR.2018.2873260 (cited on p. 30).

[72] F. R. Monteiro, M. R. Gadelha, and L. C. Cordeiro, “Model checking C++ programs,”

Softw. Test. Verification Reliab., vol. 32, no. 1, 2022. doi: 10.1002/stvr.1793.

[Online]. Available: https://doi.org/10.1002/stvr.1793 (cited on p. 30).

[73] J. Alglave, D. Kroening, and M. Tautschnig, “Partial orders for efficient bounded

model checking of concurrent software,” in Computer Aided Verification: 25th In-

ternational Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Pro-

ceedings 25, Springer, 2013, pp. 141–157 (cited on p. 30).

[74] I. Rabinovitz and O. Grumberg, “Bounded model checking of concurrent programs,”

in Computer Aided Verification: 17th International Conference, CAV 2005, Edin-

121

https://www.southampton.ac.uk/~gp1y10/cseq/cseq.html
https://doi.org/10.1109/TC.2016.2601328
https://doi.org/10.1109/TC.2016.2601328
https://doi.org/10.1186/s13173-016-0041-8
https://doi.org/10.1186/s13173-016-0041-8
https://doi.org/10.1109/TR.2018.2873260
https://doi.org/10.1109/TR.2018.2873260
https://doi.org/10.1109/TR.2018.2873260
https://doi.org/10.1002/stvr.1793
https://doi.org/10.1002/stvr.1793

REFERENCES

burgh, Scotland, UK, July 6-10, 2005. Proceedings 17, Springer, 2005, pp. 82–97

(cited on p. 30).

[75] D. Beyer, “Software verification: 10th comparative evaluation (sv-comp 2021),” in

Tools and Algorithms for the Construction and Analysis of Systems: 27th Interna-

tional Conference, TACAS 2021, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,

March 27–April 1, 2021, Proceedings, Part II 27, Springer, 2021, pp. 401–422. doi:

10.1007/978-3-030-72013-1_24 (cited on p. 31).

[76] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, “Bounded model

checking of multi-threaded c programs via lazy sequentialization,” in Computer Aided

Verification: 26th International Conference, CAV 2014, Held as Part of the Vienna

Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26, A.

Biere and R. Bloem, Eds., Springer, 2014, pp. 585–602, isbn: 978-3-319-08867-9

(cited on p. 31).

[77] D. Beyer, “Progress on software verification: Sv-comp 2022,” in International Confer-

ence on Tools and Algorithms for the Construction and Analysis of Systems, Springer,

2022, pp. 375–402 (cited on pp. 31, 73, 74, 89, 91).

[78] D. Beyer, “Competition on software verification and witness validation: Sv-comp 2023,”

in Tools and Algorithms for the Construction and Analysis of Systems, S. Sankara-

narayanan and N. Sharygina, Eds., Cham: Springer Nature Switzerland, 2023, pp. 495–

522, isbn: 978-3-031-30820-8 (cited on pp. 31, 94).

[79] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani, “The mathsat 4

smt solver,” in Computer Aided Verification, 2008, pp. 299–303, isbn: 9783540705437.

doi: 10.1007/978-3-540-70545-1_28 (cited on p. 31).

[80] K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro, “Fusebmc: An

energy-efficient test generator for finding security vulnerabilities in C programs,” in

International Conference On Tests And Proofs, F. Loulergue and F. Wotawa, Eds.,

vol. 12740, Sprnger, 2021, pp. 85–105. doi: 10.1007/978-3-030-79379-1_6

(cited on p. 31).

[81] H. Liang, X. Pei, X. Jia, W. Shen, and J. Zhang, “Fuzzing: State of the art,” IEEE

Transactions on Reliability, vol. 67, no. 3, pp. 1199–1218, 2018 (cited on pp. 31, 34).

122

https://doi.org/10.1007/978-3-030-72013-1_24
https://doi.org/10.1007/978-3-540-70545-1_28
https://doi.org/10.1007/978-3-030-79379-1_6

REFERENCES

[82] Y. Chen, A. Groce, C. Zhang, et al., “Taming compiler fuzzers,” in Proceedings of the

34th ACM SIGPLAN conference on Programming language design and implementa-

tion, 2013, pp. 197–208 (cited on p. 32).

[83] P. Francis, D. Leon, M. Minch, and A. Podgurski, “Tree-based methods for classifying

software failures,” in 15th International Symposium on Software Reliability Engineer-

ing, IEEE, 2004, pp. 451–462 (cited on p. 32).

[84] M. Zalewski, “American fuzzy lop,” 2015. [Online]. Available: https://lcamtuf.

coredump.cx/afl/ (cited on pp. 32, 34, 38).

[85] https://linux.die.net/man/5/core, 2023 (cited on pp. 32, 56).

[86] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability discovery.

Pearson Education, 2007 (cited on p. 32).

[87] C. Miller, Z. Peterson, et al., “Analysis of mutation and generation-based fuzzing.

independent security evaluators,” Tech. Rep, Tech. Rep., 2007 (cited on p. 32).

[88] A. Biyani, G. Sharma, J. Aghav, P. Waradpande, P. Savaji, and M. Gautam, “Extension

of SPIKE for encrypted protocol fuzzing,” in MINES 2011, 2011, pp. 343–347 (cited

on p. 34).

[89] “Sulley fuzzing framework,” 2017. [Online]. Available: https://github.com/

OpenRCE/sulley (cited on p. 34).

[90] “Peach fuzzing framework,” 2017. [Online]. Available: https://www.peach.tech/

(cited on p. 34).

[91] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,” in 2016

IEEE Cybersecurity Development (SecDev), IEEE, 2016, pp. 157–157 (cited on p. 34).

[92] A. Takanen, J. D. Demott, C. Miller, and A. Kettunen, Fuzzing for software security

testing and quality assurance. Artech House, 2018 (cited on p. 34).

[93] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing for security test-

ing,” Communications of the ACM, vol. 55, no. 3, pp. 40–44, 2012 (cited on pp. 34,

44).

[94] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “Afl++ combining incremental steps

of fuzzing research,” in Proceedings of the 14th USENIX Conference on Offensive

Technologies, 2020, pp. 10–10 (cited on pp. 34, 37, 38, 111).

[95] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuffrida, and H. Bos, “Vuzzer: Application-

aware evolutionary fuzzing.,” in NDSS, vol. 17, 2017, pp. 1–14 (cited on p. 34).

123

https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://linux.die.net/man/5/core
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://www.peach.tech/

REFERENCES

[96] P. Godefroid, “Fuzzing: Hack, art, and science,” Communications of the ACM, vol. 63,

no. 2, pp. 70–76, 2020 (cited on p. 34).

[97] P. Godefroid, “Random testing for security: Blackbox vs. whitebox fuzzing,” in Pro-

ceedings of the 2nd international workshop on Random testing: co-located with the

22nd IEEE/ACM International Conference on Automated Software Engineering (ASE

2007), 2007, pp. 1–1 (cited on p. 34).

[98] N. Nethercote and J. Seward, “Valgrind: A framework for heavyweight dynamic bi-

nary instrumentation,” ACM Sigplan notices, vol. 42, no. 6, pp. 89–100, 2007 (cited

on p. 34).

[99] C.-K. Luk, R. Cohn, R. Muth, et al., “Pin: Building customized program analysis

tools with dynamic instrumentation,” Acm sigplan notices, vol. 40, no. 6, pp. 190–

200, 2005 (cited on p. 34).

[100] E. Jääskelä, “Genetic algorithm in code coverage guided fuzz testing,” M.S. thesis, E.

Jääskelä, 2016 (cited on p. 34).

[101] R. L. Seagle Jr, “A framework for file format fuzzing with genetic algorithms,” 2012

(cited on p. 34).

[102] C. Lemieux and K. Sen, “Fairfuzz: A targeted mutation strategy for increasing greybox

fuzz testing coverage,” in Proceedings of the 33rd ACM/IEEE international confer-

ence on automated software engineering, 2018, pp. 475–485 (cited on p. 34).

[103] T. Kempf, K. Karuri, and L. Gao, “Software instrumentation,” in Wiley Online Li-

brary, Sep. 2008, pp. 1–11, isbn: 9780470050118. doi: 10.1002/9780470050118.

ecse386 (cited on p. 35).

[104] https://llvm.org/docs/Passes.html, 2023 (cited on pp. 35, 36).

[105] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes, “Fast and precise

sanitizer analysis with {bek},” in 20th USENIX Security Symposium (USENIX Secu-

rity 11), 2011 (cited on p. 36).

[106] K. Serebryany and T. Iskhodzhanov, “Threadsanitizer: Data race detection in prac-

tice,” in Proceedings of the workshop on binary instrumentation and applications,

2009, pp. 62–71, isbn: 9781605587936. doi: 10.1145/1791194.1791203 (cited on

pp. 36, 50, 66).

124

https://doi.org/10.1002/9780470050118.ecse386
https://doi.org/10.1002/9780470050118.ecse386
https://llvm.org/docs/Passes.html
https://doi.org/10.1145/1791194.1791203

REFERENCES

[107] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Addresssanitizer: A fast

address sanity checker,” in 2012 USENIX annual technical conference (USENIX ATC

12), USA, 2012, p. 28 (cited on pp. 36, 50, 66).

[108] E. Stepanov and K. Serebryany, “Memorysanitizer: Fast detector of uninitialized mem-

ory use in c++,” in 2015 IEEE/ACM International Symposium on Code Generation

and Optimization (CGO), IEEE, 2015, pp. 46–55 (cited on pp. 37, 51, 66).

[109] https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html, 2023

(cited on pp. 37, 51).

[110] Y. Ko, B. Zhu, and J. Kim, “Fuzzing with automatically controlled interleavings to

detect concurrency bugs,” Journal of Systems and Software, p. 111 379, 2022 (cited

on pp. 37–39).

[111] N. Vinesh and M. Sethumadhavan, “Confuzz—a concurrency fuzzer,” in ICTSCI e,

A. K. Luhach, J. A. Kosa, R. C. Poonia, X.-Z. Gao, and D. Singh, Eds., Springer,

2020, pp. 667–691, isbn: 978-981-15-0029-9 (cited on pp. 37–39).

[112] M. Xu, S. Kashyap, H. Zhao, and T. Kim, “Krace: Data race fuzzing for kernel file sys-

tems,” in 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020, pp. 1643–

1660 (cited on pp. 37–40).

[113] Z.-M. Jiang, J.-J. Bai, K. Lu, and S.-M. Hu, “Context-sensitive and directional con-

currency fuzzing for data-race detection,” 2022 (cited on pp. 37–39).

[114] D. R. Jeong, B. Lee, I. Shin, and Y. Kwon, “Segfuzz: Segmentizing thread interleaving

to discover kernel concurrency bugs through fuzzing,” in 2023 IEEE Symposium on

Security and Privacy (SP), IEEE, 2023, pp. 2104–2121 (cited on pp. 38, 40).

[115] https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/

README.llvm.md/, 2022 (cited on pp. 38, 49, 79).

[116] https://aflplus.plus/docs/best_practices/, 2023 (cited on pp. 38, 50).

[117] O. M. Alhawi, M. A. Mustafa, and L. C. Cordeiro, “Finding security vulnerabilities

in unmanned aerial vehicles using software verification,” in 2019 International Work-

shop on Secure Internet of Things, SIoT 2019, Luxembourg, Luxembourg, September

26, 2019, IEEE, 2019, pp. 1–9. doi: 10.1109/SIOT48044.2019.9637109. [On-

line]. Available: https://doi.org/10.1109/SIOT48044.2019.9637109 (cited

on p. 39).

[118] https://github.com/google/AFL, 2021 (cited on p. 39).

125

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.llvm.md/
https://github.com/AFLplusplus/AFLplusplus/blob/stable/instrumentation/README.llvm.md/
https://aflplus.plus/docs/best_practices/
https://doi.org/10.1109/SIOT48044.2019.9637109
https://doi.org/10.1109/SIOT48044.2019.9637109
https://github.com/google/AFL

REFERENCES

[119] C. Lie, Personal communications, email, 2022 (cited on p. 39).

[120] D. Beyer, “Software verification and verifiable witnesses: (report on sv-comp 2015),”

in Tools and Algorithms for the Construction and Analysis of Systems: 21st Inter-

national Conference, TACAS 2015, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015,

Proceedings 21, Springer, 2015, pp. 401–416 (cited on p. 40).

[121] D. Beyer, M. Dangl, D. Dietsch, and M. Heizmann, “Correctness witnesses: Ex-

changing verification results between verifiers,” in Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software Engineering, 2016,

pp. 326–337 (cited on p. 40).

[122] M. Y. R. Gadelha, F. R. Monteiro, L. C. Cordeiro, and D. A. Nicole, “Towards counterexample-

guided k-induction for fast bug detection,” in Proceedings of the 2018 ACM Joint

Meeting on European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL,

USA, November 04-09, 2018, G. T. Leavens, A. Garcia, and C. S. Pasareanu, Eds.,

ACM, 2018, pp. 765–769. doi: 10.1145/3236024.3264840. [Online]. Available:

https://doi.org/10.1145/3236024.3264840 (cited on p. 41).

[123] O. M. Alhawi, H. Rocha, M. R. Gadelha, L. C. Cordeiro, and E. B. de Lima Filho,

“Verification and refutation of C programs based on k-induction and invariant infer-

ence,” Int. J. Softw. Tools Technol. Transf., vol. 23, no. 2, pp. 115–135, 2021. doi:

10.1007/s10009-020-00564-1. [Online]. Available: https://doi.org/10.

1007/s10009-020-00564-1 (cited on p. 41).

[124] Graphml-based exchange format for violation witnesses and correctness witnesses,

https : / / github . com / sosy - lab / sv - witnesses / blob / main / README -

GraphML.md, 2023 (cited on p. 41).

[125] D. Beyer, “Second competition on software testing: Test-comp 2020.,” in FASE, 2020,

pp. 505–519 (cited on p. 44).

[126] D. Beyer, “Advances in automatic software testing: Test-comp 2022.,” in FASE, 2022,

pp. 321–335 (cited on p. 44).

[127] D. Beyer, “Software testing: 5th comparative evaluation: Test-comp 2023,” Funda-

mental Approaches to Software Engineering LNCS 13991, p. 309, 2023 (cited on

p. 44).

126

https://doi.org/10.1145/3236024.3264840
https://doi.org/10.1145/3236024.3264840
https://doi.org/10.1007/s10009-020-00564-1
https://doi.org/10.1007/s10009-020-00564-1
https://doi.org/10.1007/s10009-020-00564-1
https://github.com/sosy-lab/sv-witnesses/blob/main/README-GraphML.md
https://github.com/sosy-lab/sv-witnesses/blob/main/README-GraphML.md

REFERENCES

[128] H. Rocha, R. Menezes, L. C. Cordeiro, and R. Barreto, “Map2check: Using symbolic

execution and fuzzing: (competition contribution),” in Tools and Algorithms for the

Construction and Analysis of Systems: 26th International Conference, TACAS 2020,

Held as Part of the European Joint Conferences on Theory and Practice of Software,

ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part II 26, Springer,

2020, pp. 403–407 (cited on p. 44).

[129] R. Menezes, H. Rocha, L. Cordeiro, and R. Barreto, “Map2check using llvm and klee:

(competition contribution),” in Tools and Algorithms for the Construction and Anal-

ysis of Systems: 24th International Conference, TACAS 2018, Held as Part of the Eu-

ropean Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessa-

loniki, Greece, April 14-20, 2018, Proceedings, Part II 24, Springer, 2018, pp. 437–

441 (cited on p. 44).

[130] C. Cadar, D. Dunbar, D. R. Engler, et al., “KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs.,” in OSDI, vol. 8, 2008,

pp. 209–224 (cited on p. 44).

[131] https://llvm.org/docs/LibFuzzer.html, 2021 (cited on p. 44).

[132] P. Godefroid, M. Y. Levin, and D. Molnar, “Sage: Whitebox fuzzing for security test-

ing: Sage has had a remarkable impact at microsoft.,” Queue, vol. 10, no. 1, pp. 20–

27, 2012 (cited on p. 44).

[133] H. M. Le, “Llvm-based hybrid fuzzing with libkluzzer (competition contribution).,”

in FASE, 2020, pp. 535–539 (cited on pp. 44, 68, 69).

[134] C. Wen, M. He, B. Wu, Z. Xu, and S. Qin, “Controlled concurrency testing via peri-

odical scheduling,” in Proceedings of the 44th International Conference on Software

Engineering, 2022, pp. 474–486 (cited on p. 45).

[135] Y. Cai, C. Ye, Q. Shi, and C. Zhang, “Peahen: Fast and precise static deadlock detec-

tion via context reduction,” 2022 (cited on p. 45).

[136] S. Mukherjee, P. Deligiannis, A. Biswas, and A. Lal, “Learning-based controlled con-

currency testing,” Proceedings of the ACM on Programming Languages, vol. 4, 2020.

doi: 10 . 1145 / 3428298. [Online]. Available: https : / / doi . org / 10 . 1145 /

3428298 (cited on p. 45).

127

https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1145/3428298
https://doi.org/10.1145/3428298
https://doi.org/10.1145/3428298

REFERENCES

[137] Y. Cai, H. Yun, J. Wang, L. Qiao, and J. Palsberg, “Sound and efficient concurrency

bug prediction,” in Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineer-

ing, 2021, pp. 255–267, isbn: 9781450385626. doi: 10.1145/3468264.3468549.

[Online]. Available: https://doi.org/10.1145/3468264.3468549 (cited on

p. 45).

[138] U. Mathur, A. Pavlogiannis, and M. Viswanathan, “Optimal prediction of synchronization-

preserving races,” Proceedings of the ACM on Programming Languages, vol. 5, Jan.

2021. doi: 10.1145/3434317. [Online]. Available: https://doi.org/10.1145/

3434317 (cited on p. 45).

[139] Y. Cai, P. Yao, and C. Zhang, “Canary: Practical static detection of inter-thread value-

flow bugs,” in Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation, 2021, pp. 1126–1140, isbn:

9781450383912. doi: 10.1145/3453483.3454099. [Online]. Available: https:

//doi.org/10.1145/3453483.3454099 (cited on p. 45).

[140] J.-J. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective static analysis of concur-

rency {use-after-free} bugs in linux device drivers,” in 2019 USENIX Annual Tech-

nical Conference (USENIX ATC 19), 2019, pp. 255–268 (cited on p. 45).

[141] P. Godefroid, “Model checking for programming languages using verisoft,” in Pro-

ceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of program-

ming languages, 1997, pp. 174–186 (cited on p. 45).

[142] M. Kokologiannakis, O. Lahav, K. Sagonas, and V. Vafeiadis, “Effective stateless

model checking for c/c++ concurrency,” Proceedings of the ACM on Programming

Languages, vol. 2, no. POPL, pp. 1–32, 2017 (cited on p. 45).

[143] M. Kokologiannakis and V. Vafeiadis, “Genmc: A model checker for weak mem-

ory models,” in International Conference on Computer Aided Verification, Springer,

2021, pp. 427–440 (cited on p. 46).

[144] M. Kokologiannakis, A. Raad, and V. Vafeiadis, “Effective lock handling in state-

less model checking,” Proceedings of the ACM on Programming Languages, vol. 3,

no. OOPSLA, pp. 1–26, 2019 (cited on p. 46).

[145] K. Yu, C. Wang, Y. Cai, X. Luo, and Z. Yang, “Detecting concurrency vulnerabilities

based on partial orders of memory and thread events,” in Proceedings of the 29th ACM

128

https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3468264.3468549
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3434317
https://doi.org/10.1145/3453483.3454099
https://doi.org/10.1145/3453483.3454099
https://doi.org/10.1145/3453483.3454099

REFERENCES

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2021, pp. 280–291 (cited on p. 46).

[146] L. C. Cordeiro and E. B. de Lima Filho, “Smt-based context-bounded model checking

for embedded systems: Challenges and future trends,” ACM SIGSOFT Softw. Eng.

Notes, vol. 41, no. 3, pp. 1–6, 2016. doi: 10.1145/2934240.2934247. [Online].

Available: https://doi.org/10.1145/2934240.2934247 (cited on p. 49).

[147] https://aflplus.plus/docs/notes_for_asan/, 2023 (cited on pp. 50, 51, 66).

[148] H. O. Rocha, R. S. Barreto, and L. C. Cordeiro, “Hunting memory bugs in C pro-

grams with map2check - (competition contribution),” in Tools and Algorithms for

the Construction and Analysis of Systems - 22nd International Conference, TACAS

2016, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings,

M. Chechik and J. Raskin, Eds., ser. Lecture Notes in Computer Science, vol. 9636,

Springer, 2016, pp. 934–937. doi: 10.1007/978-3-662-49674-9_64. [Online].

Available: https://doi.org/10.1007/978-3-662-49674-9%5C_64 (cited on

p. 51).

[149] Y. Jeon, W. Han, N. Burow, and M. Payer, “{Fuzzan}: Efficient sanitizer metadata

design for fuzzing,” in 2020 USENIX Annual Technical Conference (USENIX ATC

20), 2020, pp. 249–263 (cited on p. 51).

[150] https://manpages.ubuntu.com/manpages/focal/en/man1/afl-clang-

fast.1.html, 2023 (cited on p. 51).

[151] H. Rocha, R. S. Barreto, L. C. Cordeiro, and A. D. Neto, “Understanding program-

ming bugs in ANSI-C software using bounded model checking counter-examples,”

in Integrated Formal Methods - 9th International Conference, IFM 2012, Pisa, Italy,

June 18-21, 2012. Proceedings, J. Derrick, S. Gnesi, D. Latella, and H. Treharne,

Eds., ser. Lecture Notes in Computer Science, vol. 7321, Springer, 2012, pp. 128–

142. doi: 10 . 1007 / 978 - 3 - 642 - 30729 - 4 \ _10. [Online]. Available: https :

//doi.org/10.1007/978-3-642-30729-4%5C_10 (cited on p. 51).

[152] https://llvm.org/docs/LangRef.html#phi-instruction, 2020 (cited on

p. 53).

[153] Declaring attributes of functions, https://gcc.gnu.org/onlinedocs/gcc-

4.7.0/gcc/Function-Attributes.html, 2022 (cited on p. 57).

129

https://doi.org/10.1145/2934240.2934247
https://doi.org/10.1145/2934240.2934247
https://aflplus.plus/docs/notes_for_asan/
https://doi.org/10.1007/978-3-662-49674-9_64
https://doi.org/10.1007/978-3-662-49674-9%5C_64
https://manpages.ubuntu.com/manpages/focal/en/man1/afl-clang-fast.1.html
https://manpages.ubuntu.com/manpages/focal/en/man1/afl-clang-fast.1.html
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4%5C_10
https://doi.org/10.1007/978-3-642-30729-4%5C_10
https://llvm.org/docs/LangRef.html#phi-instruction
https://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Function-Attributes.html
https://gcc.gnu.org/onlinedocs/gcc-4.7.0/gcc/Function-Attributes.html

REFERENCES

[154] D. Beyer, M. Huisman, V. Klebanov, and R. Monaham, “Evaluating software verifica-

tion systems: Benchmarks and competitions,” Dagstuhl Reports, vol. 4, no. 4, pp. 1–

19, 2014 (cited on p. 58).

[155] O. Llorente-Vazquez, I. Santos-Grueiro, and P. G. Bringas, “When memory corrup-

tion met concurrency: Vulnerabilities in concurrent programs,” IEEE Access, 2023

(cited on p. 64).

[156] D. Beyer, S. Kanav, and C. Richter, “Construction of verifier combinations based on

off-the-shelf verifiers,” in Fundamental Approaches to Software Engineering, E. B.

Johnsen and M. Wimmer, Eds., Cham: Springer International Publishing, 2022, pp. 49–

70, isbn: 978-3-030-99429-7 (cited on pp. 64, 65).

[157] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla-07: The design and

analysis of an algorithm portfolio for sat,” in Principles and Practice of Constraint

Programming – CP 2007, C. Bessière, Ed., Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2007, pp. 712–727, isbn: 978-3-540-74970-7 (cited on p. 65).

[158] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer, “Witness validation

and stepwise testification across software verifiers,” in Proceedings of the 2015 10th

Joint Meeting on Foundations of Software Engineering, 2015, pp. 721–733 (cited on

p. 66).

[159] O. Inverso, E. Tomasco, B. Fischer, S. La Torre, and G. Parlato, “Bounded verifi-

cation of multi-threaded programs via lazy sequentialization,” ACM Transactions on

Programming Languages and Systems (TOPLAS), vol. 44, no. 1, pp. 1–50, 2021 (cited

on p. 66).

[160] Z. Sun, H. Fan, and F. He, “Consistency-preserving propagation for smt solving of

concurrent program verification,” Proceedings of the ACM on Programming Lan-

guages, vol. 6, no. OOPSLA2, pp. 929–956, 2022 (cited on p. 66).

[161] A. Coto, O. Inverso, E. Sales, and E. Tuosto, “A prototype for data race detection

in cseq 3: (competition contribution),” in International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, Springer, 2022, pp. 413–417

(cited on p. 66).

[162] H. Feng, L. Yin, W. Lin, X. Zhao, and W. Dong, “Rchecker: A cbmc-based data

race detector for interrupt-driven programs,” in 2020 IEEE 20th International Confer-

130

REFERENCES

ence on Software Quality, Reliability and Security Companion (QRS-C), IEEE, 2020,

pp. 465–471 (cited on p. 66).

[163] A. Horadam, “A generalized fibonacci sequence,” The American Mathematical Monthly,

vol. 68, no. 5, pp. 455–459, 1961 (cited on p. 72).

[164] G. D. Maayan. “Sv-comp rules.” (2021), [Online]. Available: https://sv-comp.

sosy-lab.org/2022/rules.php (visited on 2021) (cited on pp. 73, 90).

[165] D. Beyer and J. Strejček, “Case study on verification-witness validators: Where we

are and where we go,” in International Static Analysis Symposium, Springer, 2022,

pp. 160–174 (cited on p. 73).

[166] D. Beyer, S. Löwe, and P. Wendler, “Reliable benchmarking: Requirements and so-

lutions,” International Journal on Software Tools for Technology Transfer, vol. 21,

pp. 1–29, 2019 (cited on pp. 80, 91).

[167] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analy-

sis & transformation,” in Proceedings of the international symposium on Code gener-

ation and optimization: feedback-directed and runtime optimization, IEEE Computer

Society, 2004, p. 75 (cited on p. 80).

[168] G. Van Rossum and F. L. Drake Jr, Python reference manual. Centrum voor Wiskunde

en Informatica Amsterdam, 1995 (cited on p. 80).

[169] https://github.com/fatimahkj/EBF/releases/tag/EBF4.1, 2022 (cited on

p. 80).

[170] https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/

2023/ebf.zip, 2023 (cited on p. 80).

[171] https://sv-comp.sosy-lab.org/2022/benchmarks.php, 2022 (cited on p. 90).

[172] Deagle, https://https://github.com/thufv/Deagle, 2022 (cited on p. 93).

[173] D. Spanti, “Http and mqtt: A comparison in the context of industry 4.0,” Ph.D. dis-

sertation, Politecnico di Torino, 2020 (cited on p. 95).

[174] https://github.com/wolfSSL/wolfMQTT, 2021 (cited on pp. 95, 96).

[175] https://www.allaboutcircuits.com/news/wolfmqtt-client-library-

end-to-end-encryption-m2m-IoT-MQTT/, 2023 (cited on p. 96).

[176] Mosquitto, https://mosquitto.org/, 2021 (cited on p. 97).

131

https://sv-comp.sosy-lab.org/2022/rules.php
https://sv-comp.sosy-lab.org/2022/rules.php
https://github.com/fatimahkj/EBF/releases/tag/EBF4.1
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/ebf.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/ebf.zip
https://sv-comp.sosy-lab.org/2022/benchmarks.php
https://https://github.com/thufv/Deagle
https://github.com/wolfSSL/wolfMQTT
https://www.allaboutcircuits.com/news/wolfmqtt-client-library-end-to-end-encryption-m2m-IoT-MQTT/
https://www.allaboutcircuits.com/news/wolfmqtt-client-library-end-to-end-encryption-m2m-IoT-MQTT/
https://mosquitto.org/

REFERENCES

[177] D. Beyer and K. Friedberger, “Violation witnesses and result validation for multi-

threaded programs,” in International Symposium on Leveraging Applications of For-

mal Methods, Springer, 2020, pp. 449–470 (cited on p. 113).

[178] https://www.arm.com/architecture/cpu/morello, 2023 (cited on p. 136).

132

https://www.arm.com/architecture/cpu/morello

Appendices

133

Appendix A

Detecting a data race in wolfMQTT

After reporting to the wolfMQTT team about the bug, they expressed appreciation by send-
ing me a complimentary gift. This gesture recognized my contribution to discovering the data
race bug within their implementation and providing insights into the underlying issue. Fur-
thermore, they addressed the bug immediately, and my name was acknowledged in the release
notes, as shown in the pictures A.1 and A.2.

Figure A.1. A complimentary gift from wolfSSL team for finding the data race bug.

134

Figure A.2. Wolfmqtt Github fixed issue.

135

Appendix B

Volunteering for the community

During my Ph.D., I participated in the implementation of an interactive game designed to
illustrate the concept and potential risks of buffer overflow in C programs as a type of vul-
nerability. Our objective was to demonstrate how this vulnerability can be automatically de-
tected using ESBMC. Furthermore, we investigated how such vulnerabilities can be exploited
through specialized hardware capable of detecting specific vulnerabilities at the hardware
level [178]. We presented this game to diverse groups of school students at multiple open
exhibitions, including events such as ScienceX and British Science Week.

136

	COVID-19 impact statement
	Front matter
	Title page
	Contents
	List of figures
	List of tables
	List of publications
	Terms and abbreviations
	Abstract
	Declaration of originality
	Copyright statement
	Acknowledgements

	1 Introduction
	1.1 Research motivation and challenges
	1.2 Scope of the thesis
	1.3 Contributions
	1.4 Thesis structure

	2 Background and literature review
	2.1 Chapter introduction
	2.2 Common software vulnerabilities
	2.2.1 Memory-related vulnerabilities
	2.2.2 Concurrency-related vulnerabilities
	2.2.3 User-defined properties

	2.3 Detecting software vulnerabilities
	2.3.1 Bounded model checking
	2.3.2 Fuzzing

	2.4 Cooperative verification approach
	2.4.1 Verification witness file format
	2.4.2 Cooperative/Hybrid verification tools

	2.5 Other techniques for finding software vulnerabilities in concurrent programs
	2.6 Summary

	3 Concurrency-aware gray-box fuzzer
	3.1 Chapter introduction
	3.2 Challenges of fuzzing concurrent programs.
	3.3 Designing a state-of-the-art concurrency-aware gray-box fuzzer
	3.3.1 OpenGBF framework
	3.3.2 Custom LLVM pass instrumentation
	3.3.3 Runtime library for the LLVM pass instrumentation functions
	3.3.4 Full illustrative example

	3.4 Summary
	3.5 Future work

	4 EBF: A black-box cooperative verification for concurrent programs
	4.1 Chapter introduction
	4.2 Challenges in designing black-box cooperative verification tool
	4.3 Designing cooperative black-box verification tool
	4.3.1 EBF framework
	4.3.2 CPU time allocation

	4.4 Summary
	4.5 Future work

	5 Implementation of EBF
	5.1 Chapter introduction
	5.2 OpenGBF design choices
	5.2.1 The fuzzer choice
	5.2.2 LLVM pass choice
	5.2.3 The benchmarks choice

	5.3 EBF implementation details
	5.3.1 EBF usage
	5.3.2 Running example

	5.4 Summary

	6 EBF evaluation
	6.1 Chapter introduction
	6.2 Evaluation goals
	6.3 Evaluating EBF on SV-COMP benchmarks
	6.3.1 Running SV-COMP benchmark using BenchExec
	6.3.2 EBF 2.3 participation in SV-COMP 2022
	6.3.3 EBF 4.0 with different state-of-the-art BMC tools
	6.3.4 EBF 4.2 participation in SV-COMP 2023

	6.4 Evaluating EBF on real-world concurrent programs
	6.4.1 Detecting a data race in wolfMQTT
	6.4.2 Detecting memory-related vulnerabilities in real-world concurrent programs

	6.5 Optimizing EBF's settings
	6.5.1 Maximum number of threads in OpenGBF
	6.5.2 Maximum amount of delay in OpenGBF
	6.5.3 Early thread termination in OpenGBF
	6.5.4 Impact of GBF design choices
	6.5.5 CPU time allocation inside EBF

	6.6 Analyzing the non-determinism of OpenGBF
	6.6.1 Non-determinism on SV-COMP 2022 benchmark suite
	6.6.2 Non-determinism on wolfMQTT and real-world programs

	6.7 Limitations
	6.7.1 Incompleteness of fuzzing for proving safety.
	6.7.2 Correct seed sequence for the fuzzer.
	6.7.3 Sources of incorrect verdicts in EBF
	6.7.4 Choice of parameter settings in EBF

	6.8 Summary
	6.9 Future work

	7 Conclusions
	7.1 Future work

	References
	Appendices
	A Detecting a data race in wolfMQTT
	B Volunteering for the community

