THE ESBMC-BASED APPROACH OF
SECURITY VERIFICATION IN
LINUX KERNEL PROGRAMS

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE
IN THE FACULTY OF SCIENCE AND ENGINEERING

2023

Student id: 11050942

Department of Computer Science

Contents

Abstract

Declaration

Copyright

Acknowledgements

1

Introduction

1.1
1.2
1.3
1.4

Problem Description,

Objectives o e e

Contributions e

Dissertation Structure

Background and Theory

2.1

2.2

Linux Kermel

2.1.1

Kernel Memory Management

Formal Verification Techniques

2.2.1
222
223
224
225

Static Analysis
SMT Solvers

Methodology and Implementation

3.1

3.2

Approach for Modeling

3.1.1
3.1.2

Gap e

Solutions

Modeling and Verification

10
11
12
13
14

16
16
18
21
21
23
24
25
26

3.2.1 Modeling Dynamic Memory Allocation/destruction 34

3.2.2 Modeling Data Transmission Between Kernel and User Space ~ 42

3.2.3 Modeling Memory Leak using ESBMC 44

3.24 Modeling Concurrency 46

4 Evaluation 50
4.1 Description of Benchmark 50
42 Setup 50
4.3 ODbJectiVves v e e e e e e e 51
44 Results. 51
441 Efficiency e 53

442 Resolved Vulnerabilities 54

443 Threatsto Validity 54

5 Conclusion and Future Work 55
5.1 Conclusion 55
5.1.1 Limitations and Future Work 56
Bibliography 57

Word Count: 13083

List of Tables

4.1 Test Set for Evaluation Part 1
4.2 Test Set for Evaluation Part 2

List of Figures

2.1
22
2.3
24

3.1

3.2

33
34

The relationships between applications, kernel and hardware
The modules of the kernel: each module handles several tasks

The distributions of memory zones in physical memory.
The architecture of ESBMC software.

The recursive dependencies of slab. h, where the Kmalloc function is
defined
The mocking of the dependency simplifies the required header files to
parse, and cut off unnecessary dependency
The source codes about kmalloc in linux kernel 5.15[1]

Another section of the source codes about kmalloc in linux kernel
SAS[1] . . e

Abstract

THE ESBMC-BASED APPROACH OF SECURITY VERIFICATION IN
LINUX KERNEL PROGRAMS
Zhicheng Zhou
A dissertation submitted to The University of Manchester
for the degree of Master of Science, 2023

The security verification of the Linux kernel has always been a widely concerned
issue. One reason for this is that the Linux kernel exists in many important systems,
and its security vulnerabilities can cause many immeasurable security problems. An-
other reason is that the security of the Linux kernel has never been easy compared
to the detection of user-mode programs. The Linux kernel is very low-level and in-
volves many complex dependencies and hardware. How to efficiently and effectively
conduct security verification for Linux kernel programs is a challenging topic. This
project models the operations of the core by simulating the functions of the kernel, to
check whether the program meets the conditions it should meet. Instead of dynamic
verification, this project uses bounded model checking for verification. As mentioned
earlier, the Linux kernel program’s dependencies are very complex, and this project
establishes simplified dependencies in the ESBMC code base by simulating the kernel
source code, to more smoothly abstract and model the core operations of kernel func-
tions. This project successfully tested the memory management of the linux kernel

through simulation and also realized the prevention of race condtion in kernel mode.

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other

institute of learning.

Copyright

1. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-

ing for administrative purposes.

i1. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to

time. This page must form part of any such copies made.

ii1. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of

the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/Doculnfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on

presentation of Theses

Acknowledgements

I would like to thank my supervisor Professor Lucas Cordeiro. He provided me with
very patient and detailed guidance throughout the research of the project. He helped
me with the issues I met during my research, and asked other PhD students to give me

some suggestions.

Chapter 1
Introduction

The complexity of software development is constantly increasing, especially in the
area of system-level programming. Systems with a few thousand lines of code in
the past have developed into massive architectures with millions of lines today. As
the scale of the program is growing up, the difficulty of maintaining the codes and
guaranteeing the security of the program arises. The operating system is the core
component of these systems since it makes sure everything functions properly, and
schedules the collaborations between hardware and user programs. The Linux kernel
stands out among the top operating systems due to its open-source status and wide use.
But because of its extensive code base and importance in reconciling hardware and
software elements, it is a key area of reliability and security concern. The robustness
and security of the kernel have to be guaranteed so that the system would not crash due
to any potential vulnerability.

The importance of kernel verification for the industry is highlighted by the grow-
ing integration of Linux-based systems in crucial applications, from mobile systems,
automobile control units to even medical equipment. Any security or dependability
flaw in the kernel could lead to different degrees of consequences. Industrial experts
have committed significant resources to kernel verification as a result of realising this,
encouraging partnerships with the academic community and supporting improvements
in verification methods. The techniques under the field of formal methods, static anal-
ysis and bounded model checking, are developed and utilized to solve the concern of
the potential vulnerabilities in Linux kernel programs.

Even if they are useful, conventional methods of software development typically
miss tiny Linux kernel bugs. Although extensive testing and code reviews are im-

portant, they are not always successful in revealing hidden flaws and minor errors

10

1.1. PROBLEM DESCRIPTION 11

that could cause system instability or security breaches. Formal verification methods
provide an alternative by providing mathematical evidence of program correctness.
EMBMC has distinguished itself as a useful tool for comprehensive analysis of big

software systems among these methods.

When applied to systems as complex as the Linux kernel, even formal verifica-
tion methods like ESBMC have difficulties. Because of the kernel’s size and the vast
range of hardware configurations it supports, verification tools face scalability and
complexity challenges. Furthermore, replicating real-world scenarios in a verification

environment might be difficult, limiting the extent of faults that can be found.

1.1 Problem Description

The Linux kernel serves as the operating system kernel for a significant majority of
servers, smartphones, and embedded systems. Given its integral role and widespread
adoption, the Linux kernel has a vast codebase, teeming with complex functionalities
and interactions. The dependencies between each component, or code file are also
nested deeply. This complexity, while allowing for rich features and adaptability, also
causes potential vulnerabilities, especially when the user programs involve some par-
ticular functions with kernel codes. These functions are designed to perform specific
tasks. However, their behaviour can vary based on the calling program’s state and in-
put parameters. A misalignment or a mistaken assumption about a kernel function can
inadvertently introduce vulnerabilities. Such vulnerabilities can lead to system mal-

functions, memory corruption, and, more worryingly, exploitable security breaches.

The paper from[2],’Linux kernel vulnerabilities: State-of-the-art defences and open
problems’ also provides an overview of this topic. This study classifies 141 Linux ker-
nel vulnerabilities published in the CVE list between January 2010 and March 2011
and classifies the types of attacks that can exploit these vulnerabilities. It states that
most vulnerabilities fall into 10 categories, e.g. Missing permission checks, Buffer
Overflow, and Memory Mismanagement, based on the type of programming error de-
velopers make. This study also shows the distribution of vulnerabilities in the Linux
kernel source tree. Some state-of-the-art prevention is introduced, but not deeply in-

vestigated.

12 CHAPTER 1. INTRODUCTION

This research is based on the Bounded Model Checking(BMC), and more pe-
culiarly, the Bounded Model Checker ESBMC (the Efficient SMT-based Context-
Bounded Model Checker). By achieving first place in the ReachSafety-XCSP sub-
category and second place in the SoftwareSystems-AWS-C-Common-ReachSafety,
ReachSafetyECA, and ReachSafety-Arrays subcategories, ESBMC has demonstrated
excellent efficiency and outstanding error detection ability as a state-of-the-art BMC
tool[3]. The mechanism of how the kernel handles memory management, e.g., dynam-
ically allocating the memory, and process multi-threads programs are fully explored in
the following sections.

The project aims to answer the research question in the following aspects:

1. Abstract kernel functions and mock dependencies: Design a methodology to
abstract the core operations of kernel functions and mock the inherent dependen-
cies. This aim is to create a representative model of the Linux kernel’s behaviour,
which, while simplified, retains the essential characteristics for accurate verifi-

cation.

2. Develop robust and reasonable verification mechanisms for verifying kernel
codes based on ESBMC :Focus on the implementation that utilizes ESBMC’s
capability with newly-developed modules to detect the vulnerabilities in Linux

kernel codes.

3. Optimize the verification by generating comprehensive regression tests: Im-
prove the efficiency and accuracy of the verification process by testing with well-
designed and comprehensive tests. When the user improperly writes a kernel

program, the potential risk should be detected.

1.2 Objectives

The objective of the project is to implement the additional functionality of ESBMC
to detect the vulnerabilities in Linux Kernel codes, e.g. kernel function calls. The
objective of the project is focused on the verification of memory management and

concurrency in kernel calls.

1. Integrate ESBMC with Kernel Code Analysis: Incorporate ESBMC’s bounded
model checking capabilities into the verification tool, ensuring it can navigate

and analyze the intricate landscape of Linux kernel codes effectively.

1.3. CONTRIBUTIONS 13

2. Implement Dependency Mocking and Operation Abstraction:Implement the
related dependency, e.g. header files of the verified kernel functions in the ES-

BMC library, and model the kernel functions by mocking the core operations.

3. Evaluate the implementation and refine:Once the verification approach is de-
veloped, conduct rigorous testing on a variety of kernel interfacing programs.
Identify the expected outcomes and gather the results to iteratively improve the

design of modelling

1.3 Contributions

As mentioned in the earlier sections, the problem this project aims to resolve is the
verification of potential defects in Linux Kernel programs. The project delivered a
solution based on modelling the verification by mocking the core operations of the

kernel functions. The contributions of this project are listed:

1. The project provided a distinct approach to verify the Linux Kernel programs.
It mocked the complex and deeply-nested dependency of Linux Kernel source
codes and simplified the dependency. In order to include the native Linux Ker-
nel header files while using ESBMC to parse the program, this project made
the mocked dependency as the kernel libraries in ESBMC source codes. The
libraryc2gogo/headers/ubuntu20.04/kernel 5.15.0-76 was created for this pur-
pose. This project bundled this library into ESBMC for kernel related operations.
The mocked header files in this library contains the corresponding liscence from

the specific version Linux Kernel source codes.

2. The project delivered a robust solution targeting on the memory management in
Linux Kernel. It applied the modelling on dynamic memory allocation in Linux
Kernel. The mocked functions ,kmalloc, kfree, kmalloc_array, and other related
ones, achieved reasonable and effective verification on the arguments used for
allocating the memory in kernel. For example, the potential vulnerability that
negative allocating size(passing negative value into an unsigned int argument
leads to very huge positive number) was perfectly detected and verified by this
project. The inspection on the flags for allocating memory was also delivered.

The project also handled the issue of memory leak in Kernel properly.

3. This project also implemented verification on data transmission between kernel

14 CHAPTER 1. INTRODUCTION

space and user space. It modelled the operations related to kernel behaviors that

copying from kernel space to user space, and vice versa.

4. Besides memory management, the project delivered a adequate solution for de-
tecting the race condition in concurrency. It modelled the spin_lock related op-
erations to simulate the kernel-level functions in user space. Besides the imple-
mentation, the contributions of this project also contains a number of regression

tests to successfully evaluate if the approach works in an expected way.

1.4 Dissertation Structure

The structure of the dissertation is divided into 5 chapters. The first chapter is a brief
introduction to the project and the research field the project lays on. In this chapter, the
topic of this project is introduced, including the problem description, objectives and
the contributions of this project.

Chapter 2 mainly focuses on the background of this project. It contains the back-
ground knowledge related to this project and the related works. It is divided into 2
sections:Linux Kernel and Verification Techniques. The Linux kernel, which serves
as a cornerstone of our research, is discussed in detail in the first section. Given the
kernel’s widespread importance in the world of operating systems and its complex op-
erations, a detailed understanding of it is essential. This section is also crucial to this
project since the modelling of the kernel behaviours relies heavily on the background
knowledge of the kernel. The subsequent section pivots to the domain of model check-
ing, This is fundamental to our scientific approach and is essential for confirming sys-
tem accuracy. The subtopics involved in this section are Static Analysis, Bounded
Model Checking(BMC), satisfiability modulo theories(SMT) solvers and the software
that supports this research approach, ESBMC. The related works are introduced in this
section to provide a more comprehensive overview of the research question.

Chapter 3 focuses on the methodology of the project. It first identifies the gap, or
challenge to implementing the verification techniques for the Linux kernel, and then
deeply analyzes and demonstrates the approach or solution to the challenge. This chap-
ter explains all modellings of different kernel behaviour in detail, including the design,
process, and pre and post-conditions that needed to be verified. Several diagrams are
listed in this chapter to support the illustration.

Chapter 4 is the section for evaluation. The regression tests and benchmarks for

testing are fully discussed. The benchmark suite is explained and demonstrate with

1.4. DISSERTATION STRUCTURE 15

tables. The results of the evauatation are also discussed in this chapter.
Chapter 5 summarizes the deliverables and significant achievements of this project,

and indicates the limitation and the potential future work that could be applied.

Chapter 2
Background and Theory

This chapter is dedicated to providing a comprehensive background that sets the stage
for our research’s depth and breadth. This chapter not only dives into the technical
details of our key areas, e.g. how Linux Kernel handles memory management, in
great detail, but it also examines and discusses earlier studies in the relevant subjects,
ensuring that our investigation is built on the shoulders of giants and is grounded in
a thorough understanding. It is divided into two primary sections: Linux Kernel and
Model Checking.

2.1 Linux Kernel

One of the most significant and well-known open-source projects in computer history,
the Linux kernel was created by Linus Torvalds in the early 1990s and functions as
the brains behind the Linux operating system. The fact that Linux is a free operating
system is one of its more alluring features. The GNU General Public Licence (GPL)
makes its source code open and available for anyone to study. If you download the
code (the official site is http://www.kernel.org) or look up the sources on a Linux CD,
you will be able to examine one of the most popular modern operating systems from
top to bottom[4].

The kernel, instead of the whole operating system, is responsible for the core com-
ponents that enable the system to behave properly. The kernel is the innermost part of
the operating system, whereas the user interface is its outermost component. It is the
system’s fundamental components; the software that manages the hardware and allows

resources across the system’s various components[5]. A Unix-like operating system

16

2.1. LINUX KERNEL 17

. . . o

System Call Interface

~ Kernel-Space

Kernel Subsystems Device Drivers

Figure 2.1: The relationships between applications, kernel and hardware

conceals all low-level information about the physical setup of the computer from user-
run applications. A programme must submit a request to the operating system to utilise
a hardware resource. The kernel assesses the request and, if it decides to approve it,
engages the relevant hardware on behalf of the user programme[4]. Thus, the operating
system is divided into user and kernel modes. This project aims to explore and prevent
vulnerabilities in kernel mode. The kernel is further divided into different modules:
System Call Interface(SCI), Process Management(PM), Memory Management(MM),
Virtual File System(VFES), Network Stack and Device Drivers(DD). Each module han-

dles the corresponding kernel function calls.

Figure 2.1 illustrates how the kernel, user program and hardware are involved in
cooperation. The user program must involve kernel function calls to schedule any
particular hardware. Figure 2.2 lists the core modules in the kernel. Each module
takes charge of different aspects of tasks, that are significant to the proper functioning
of the system. .Since the project is focusing on verifying the security issues related to

kernel memory management and kernel concurrency, only Process Management(PM)

18 CHAPTER 2. BACKGROUND AND THEORY

System Call Interface(SCI)

Process Management(PM) Yirtual File System(VES)

Memory Management(NVM) Network Stack

Device Drivers

Figure 2.2: The modules of the kernel: each module handles several tasks

and Memory Management(MM) are further covered.

Process Management: This module is responsible for task scheduling, process
lifecycle management, context switching between processes, and managing process
states (like running, waiting, or stopping). The kernel is a process manager, not a
process itself. The process/kernel model presupposes that processes will use system
calls, which are specialised programming constructs when they need a kernel service.
To convert from User Mode to Kernel Mode, each system call first sets up the group of
parameters that uniquely identifies the process request and then executes the hardware-
dependent CPU instruction[4].

Memory Management:It manages the system’s virtual and physical memory. Mem-
ory allocation, paging, swapping, and memory mapping are important duties that apply

to both kernel and user space.

2.1.1 Kernel Memory Management

The memory management subsystem is a crucial part. Modern computers have enor-
mous quantities of memory, and an OS may run numerous processes at once, thus
effective memory management becomes crucial to ensuring the best system respon-

siveness and performance. It is more difficult to allocate memory inside the kernel than

2.1. LINUX KERNEL 19

outside of it. Simply, the kernel does not have the sophistication that userspace does.
The kernel is not usually allowed to allocate memory quickly, unlike user-space[5]. In
addition, because the activities are independent of the architecture yet are both specific
to it, the overall design and implementation must be fair and flexible[6]. The main
responsibilities of memory management are: allocating and freeing memory pages,
managing virtual and physical memory spaces, swapping, and facilitating memory
mapping. These functions ensure that each process views memory as a large, con-
tinuous space, abstracting away the underlying complexities of the physical memory
layout. Before exploring the verification approach on kernel programs, several con-

cepts related to memory management have to be addressed.

Page

The fundamental unit of memory management in the kernel is a physical page. The
smallest addressable unit for a CPU is a byte or a word, but the memory manage-
ment unit (MMU), which is the hardware that controls memory and translates virtual
addresses into physical addresses, usually works in pages. As a result, the MMU main-
tains the system’s page tables with a granularity of one page (thus their name). The
smallest unit that counts in virtual memory is a page[5]. A page is a unit of contiguous
memory with a fixed size. This size is commonly set to 4KB in the Linux kernel on
many architectures, while this is not a requirement. In Linux Kernel source codes, a
struct is used to describe the data structure of a page.
The simplified codes of struct page are shown below:
struct page {

unsigned long flags;

atomic_t _count;

atomic_t _-mapcount;

unsigned long private;

struct address_space *mapping;

pgoff-t index;

struct list_head lru;

void *virtual;
}’.

The unsigned long bit field flags that describe the physical page’s current state. In

the kernel header file including/Linux/page-flags.h, an enum serves as the definition for

flag constants[6]. Each flag constant indicates different states of the page. For example,

20 CHAPTER 2. BACKGROUND AND THEORY

Physical Memory

o
s

0 x FFFFFFFF

ZONE_HIGHMEM

896M

Y

ZONE_NORMAL
16M

ZONE_DMA 0 x 00000004

-

Figure 2.3: The distributions of memory zones in physical memory.

PG _locked indicates if the page is locked. When I/O operations are started on a page,
this bit is set, and it is cleared when they are finished. PG _active indicates if the page
is in the active list, and PG_slab shows that the slab allocator, which is introduced in
a later section, is in charge of managing the page[4]. The number of references to this
page is kept in the _count field. When this number falls below one, no one is utilising
the page, and it is free to be used in a new allocation. The virtual field is the page’s
virtual address. Another important field is mapping, which represents a pointer of type
address_space. Struct address_space is an abstraction that represents a set of pages
engaged for a file cache[6]. Thus, the mapping field in struct page serves as a bridge

between a memory page and the file it might be associated with.

Zone

Zones are used to address the varied needs of various memory areas, particularly in
architectures with particular memory access restrictions. To achieve effective alloca-
tion based on various access needs, kernel segments physical memory. As an illus-
tration, whereas some memory addresses are better suited for Direct Memory Access
(DMA) activities, others are more appropriate for system-wide operations. During
system boot, the kernel locates and divides memory into zones, optimising allocation

choicesd[4]. The "normal” page frames that the kernel can directly access through

2.2. FORMAL VERIFICATION TECHNIQUES 21

the linear mapping in the fourth gigabyte of the linear address space are included in
the ZONE_DMA and ZONE_NORMAL zones. In contrast, the ZONE_HIGHMEM
contains memory page frames that cannot be directly accessed by the kernel through
the linear mapping in the fourth gigabyte of linear address space[4]. This memory
zone was introduced to efficiently manage and use memory that exceeds this limited

direct-mapped region.

Slab Allocator

The page allocator effectively handles requests for memory allocation that are mul-
tiples of page size while working with the buddy system. However, the majority of
allocation requests made by the kernel code are for smaller blocks (often less than a
page); utilising the page allocator for these allocations causes internal fragmentation,
which wastes memory.[4]. The slab allocator is implemented to resolve this. It utilizes
the object cache concept, where free page frames are reserved, segmented into slab
caches, and organized into lists of free pages. Each list has a unique unit size, and its
pool consists of memory blocks of that size. When the memory of a specific size is
requested, the allocator identifies the best-fitting slab cache and provides a free block’s
address. Despite its apparent simplicity, managing slab caches is intricate, necessitat-
ing careful object tracking, dynamic expansion, and safe reclaim through interfaces
like the shrinker. This balance between performance and memory footprint is complex
and critical[4]. The further detailed mechanism of slab allocator is not discussed in
this paper since it is not directly related to our research question. But it is necessary to
address that the slab allocator efficiently manages memory by grouping blocks of fixed

sizes in caches and reducing memory fragmentation.

2.2 Formal Verification Techniques

2.2.1 Static Analysis

Static analysis refers to the set of methods used to evaluate a codebase for potential
errors, vulnerabilities, or deviations. Static analysis tools can identify many common
coding problems automatically before a program is released. They examine the text
of a program statically, without attempting to execute it. They can examine either a
program’s source code or a compiled form of the program to equal benefit, although
the problem of decoding the latter can be difficult[7].

22 CHAPTER 2. BACKGROUND AND THEORY

Static analysis was originally concentrated on Fortran and was confined to a sin-
gle procedure (intraprocedural analysis). However, even this simple form of static
analysis is not recursives[8] .This means that if a function or procedure called itself
either directly or indirectly, this early form of static analysis would not be able to fully
capture or understand the implications of such recursive calls. Due to its focus on a
predetermined set of patterns or rules in the code, static analysis is unable to address
every security issue. It is unable to offer design advice but can identify bugs in the
finest of details. Although static analysis techniques can identify problems in small
details, knowledgeable individuals still need to design a program correctly to avoid
any flaws[7]. As programs grew in complexity, encompassing multi-procedure struc-
tures and recursive patterns, the limitations of the initial static analysis methodologies

became evident.

The paper A Comparative Study of Industrial Static Analysis Tools surveys three
state-of-art static analysis tools, PolySpace Verifier, Coverity Prevent, and Klocwork
K7. The survey draws from research articles and manuals, examining defect types
like memory management and security vulnerabilities, along with soundness, value

analyses, incrementality, and IDE integration[9]

Another open-source static analysis tool for Java, FindBugs, is described in detail
in the paper Using Static Analysis to Find Bugs . This tool is capable of recogniz-
ing more than 300 programming mistakes and questionable coding practices using
straightforward analysis techniques. It identifies defects like potential null pointer
dereferences, checks where code could be inconsistent in handling null values, con-
ducts intraprocedural type analysis and detects instances where objects of guaranteed
unrelated types are compared for equality[10]. Thus, static analysis stands as a power-
ful technique in the software development landscape, providing an automated method
without the necessity for actual code execution to find potential bugs, weaknesses,
and coding standards violations. However, it is inherently limited in capturing runtime
behaviours and can sometimes produce false positives. The development of static anal-
ysis tools lasts a number of years and effectively improves the verification of software.
Different tools may focus on different aspects of defects, but also provide beneficial
foundation for newly-developed tools. The concurrency issues are also concerns that
some static analyzers target.This article covers a C code static analyzer for detect-
ing spinlock usage in the Linux kernel. Misuse of spinlocks is difficult to detect and
rather widespread, resulting in runtime deadlocks in the Linux operating system kernel

on multiprocessor architectures[11].Spinlocks are the kernel’s preferred discretionary

2.2. FORMAL VERIFICATION TECHNIQUES 23

mutual exclusion technique, keeping other kernel threads out of a spinlocked area of

code while that code is being performed.

2.2.2 SMT Solvers

Solvers aim to determine if given formulas are satisfiable. These formulas are broadly
categorized into Boolean satisfiability (SAT) and satisfiability modulo theories (SMT).
In the context of SAT, the main query is if a particular Boolean formula can be val-
idated, and tools designed for this purpose are known as SAT solvers. Two pri-
mary decision-making mechanisms leveraged by these solvers are the Davis-Putnam-
Logemann-Loveland (DPLL) method and the Conflict Driven Clause Learning (CDCL)
approach. However, the latter, CDCL, is more favoured because of its more efficient
time complexity.

One limitation of SAT is that the process of translating higher-level system designs
to Boolean logic can be resource-intensive. This challenge led to the development
of SMT solvers, which offer verification mechanisms capable of understanding more
abstract levels while still harnessing the efficiency and automation typical of Boolean
engines. In the realm of mathematics, a theory is perceived as a cohesive collection
of first-order formulas, spanning domains like Equality, Bit-vector, Linear-arithmetic,
and Arrays. Such theories prescribe specific rules to infer and simplify intricate for-
mula sets. There are several contemporary SMT solvers available, showcasing the
evolution of this field. The verification software applied in this project, ESBMC, uses

various modern SMT solvers.

1. Yices, crafted by SRI International, is a proficient SMT solver that accommo-
dates a diverse mix of first-order theories, beneficial for both software and hard-
ware representation[12]. It can adeptly manage extensive and propositionally
intricate formulas across a diverse array of theories. Yice accommodates all the
theories outlined in SMT-LIB, encompassing uninterpreted functions, difference
logic, linear arithmetic for real and integer values, extensional arrays, and bit

vectors.

2. 73, developed by Microsoft Research, is an innovative SMT solver optimized
for addressing challenges in software verification and analysis tasks[13].Z3 is
applied in tools such as Spec#/Boogie, Pex, HAVOC, Vigilante, VCC (a verify-
ing C compiler), and Yogi.

24 CHAPTER 2. BACKGROUND AND THEORY

3. MathSAT[14] is a versatile SMT (Satisfiability Modulo Theories) solver devel-
oped through a collaboration between FBK-IRST and the University of Trento.
It’s equipped to handle a wide range of SMT theories, with notable support for
floating points. It is also equipped to generate Craig-interpolants and carry out
partial assignment enumeration. For academic purposes, it’s offered as a com-

plimentary, non-commercial license.

4. Boolector is a proficient SMT solver that specializes in the quantifier-free theory
of bit-vectors and arrays. It employs techniques like term rewriting, bit-blasting,

and on-demand lemmas for array processing.[15].

5. CVC(4 is the newest iteration of the Cooperating Validity Checker, a collabora-
tion between NYU and the University of lowa. It aims to incorporate the best
features of CVC3 and SMT-LIBv2 while benefiting from recent advancements
in system architecture and decision procedures[16]. Despite being a complete
rewrite of CVC3 with various redesigned subsystems, CVC4 is more streamlined

and outperforms its predecessor, with further enhancements in the pipeline.

2.2.3 Bounded Model Checking(BMC)

In the field of formal methods, model checking is a key tool for confirming the cor-
rectness of finite-state systems. This approach focuses on algorithmically comparing
system models to desired specifications. Model checking’s main appeal is its ability
to give a systematic evaluation of the full state space of the system being examined,
ensuring thoroughness in validation.
Model checking can be made up of several tasks. Initially, there’s the “modelling”
phase where the design is translated into a formal structure, making it compatible
with the specificities of model checking tools[17]. Following this is the “’specifica-
tion” stage, where the use of logical formalisms helps in defining the properties the
design ought to fulfil. The final step is ’verification”, wherein the design is rigorously
evaluated against the previously outlined specifications to ascertain its compliance. To-
gether, these stages offer a comprehensive review of the design, ensuring its alignment
with stipulated criteria[17].

The research Experimental Analysis of Different Techniques for Bounded Model
Checking compares the performance of SAT-based, BDD-based, and explicit state-
based BMC on commercial design benchmarks. The experimental framework provides

a consistent and comprehensive foundation for assessing each technique. The results

2.2. FORMAL VERIFICATION TECHNIQUES 25

indicate that BDD-based BMC is substantially faster for designs with deep counterex-
amples. SAT-based BMC outperforms BDD-based BMC for designs with shallow
counterexamples, although explicit state-based BMC is comparable[18].

The paper Bounded Model Checking Using Satisfiability Solving integrates model
checking with satisfiability solving, known as bounded model checking. This tech-
nique promises a more efficient exploration of the state space[19]. Thus, Bounded
model checking (BMC), on the other hand, is a specialized variant of model checking.
BMC verifies the system’s attributes only up to a specific predefined depth or bound,
unlike classical model checking, which thoroughly investigates all states. Moreover,
it is a method for the detection of logical errors in finite-state transition systems, posi-
tioning BMC as an alternative approach to symbolic BDD-based model checking[20].
BMC operates by formulating a propositional formula that becomes satisfiable when
a specific path is identified. Different designs of bounded model checking techniques
may vary in their approach, effectiveness, and computational efficiency. The study
Experimental Analysis of Different Techniques for Bounded Model Checking evalu-
ates the efficiency of SAT-based, BDD-based, and explicit state-based bounded model
checking (BMC) using benchmarks from commercial projects. Through a consistent
experimental framework, each method is systematically assessed. Findings indicate
that for designs with intricate counterexamples, BDD-based BMC excels in speed.
However, in designs with straightforward counterexamples, while SAT-based BMC
outperforms BDD-based BMC, explicit state-based BMC shows similar effectiveness.

The study, Context-Bounded Model Checking of Concurrent Software proposes
a novel interprocedural static analysis based on model checking for detecting minor
safety problems in unbounded parallelism concurrent programmes. The study is lim-
ited to runs with an arbitrary constant limiting the number of context transitions. Lim-
iting the analysis to executions with a restricted number of context flips is unsound,
but the analysis can still detect intricate defects and is sound up to the bound because
a thread is fully probed for unbounded stack depth within each context. [21]. dfsd[18]

2.24 ESBMC

After exploring the detailed workings of static analysis, the capabilities of SMT solvers,
and the effectiveness of bounded model checking, it’s crucial to see how these elements
function together in practical scenarios. A prominent example that embodies the inte-
gration of these principles is the Efficient SMT-based Bounded Model Checker, better

known as ESBMC. This software is also the core of the project because the verification

26 CHAPTER 2. BACKGROUND AND THEORY

function towards Linux Kernel is based on this software.

ESBMC is a context-bounded model checker, leveraging satisfiability modulo theo-
ries, designed for the verification of both single-threaded and multi-threaded C/C++
applications[22]. It can automatically validate both user-defined programme asser-
tions and standard safety features (such as bounds check, pointer safety, and overflow).
To access internal data structures and enable examination and extension at any point
throughout the verification process, ESBMC provides C++ and Python APIs[23]. In
addition, to more accurately support variables with finite bit width, bit-vector opera-
tions, arrays, structures, unions, and pointers, the team of ESBMC modified and ex-
panded the encodings from earlier SMT-based bounded model checkers. The CVC3,
Boolector, and Z3 solvers have been integrated with the CBMC front-end[24]. There
are several important points about esbmc principles. ESBMC uses a k-induction algo-
rithm to validate safety properties in C programs. A newly developed interval-invariant
generator preprocesses the program, determining invariants from intervals and adding
them as assumptions[25].

The k-induction method is a prominent technique in model checking. It is also the
key that how ESBMC handles unbounded loops. This method uses temporal induction
on finite-state machine time steps. Through an iterative process, it analyzes three dis-
tinct scenarios for every iteration defined by ’k’[26]. Firstly, the base case looks for
potential counterexamples within k-loop unwindings. Secondly, the forward condition
ensures that property P is upheld throughout k unwindings. Lastly, the inductive step
ascertains the consistency of P’s validity for subsequent unwinds. The safety property’s
compliance or violation is determined based on the verification conditions formulated
for each unwinding.

ESBMC comprises several components that collaborate to ensure its robust opera-
tion. Figure 2.4 shows the architecture of the ESBMC tool and the detailed mechanism
of how ESBMC verifies source files is fully discussed in Chapter 3.

2.2.5 Related works of Verification on Linux Kernel

In recent years, a variety of studies have been proposed for verification of the Linux
kernel. Some of these researches take a distinct- give approach to solving vulnera-
bilities in different aspects. It is worth mentioning that the paper from[2],’Linux ker-
nel vulnerabilities: State-of-the-art defences and open problems’ also provides an

overview of this topic. This study classifies 141 Linux kernel vulnerabilities published

2.2. FORMAL VERIFICATION TECHNIQUES 27

Source File
Backend
Frontend Scan
Convert Verfication
Constraints Successful
Parse Tree

i SMT
Context Solver
Type
Find

c2goto
¥ Checker
Convert
Properties Counterexample
Symbol Tabld
Middleware
GOTO . .
L Converter Symbolic Engine
GOTO
Programs
(CFG)
Y
GOTO-Binary

Figure 2.4: The architecture of ESBMC software.

28 CHAPTER 2. BACKGROUND AND THEORY

in the CVE list between January 2010 and March 2011 and classifies the types of at-
tacks that can exploit these vulnerabilities. It states that most vulnerabilities fall into
10 categories, e.g. Missing permission checks, Buffer Overflow, and Memory Mis-
management, based on the type of programming error developers make. This study
also shows the distribution of vulnerabilities in the Linux kernel source tree. Some

state-of-the-art prevention is introduced, but not deeply investigated.

The paper Automatic Permission Check Analysis for Linux Kernel[27] presents a
static analysis framework for detecting permission check-related vulnerabilities in the
Linux Kernel. This paper identifies the difficulty of finding omitted permission checks
in the Linux kernel, which might result in security flaws. This paper introduces PeX,
a static Permission check error detector for Linux, which is capable of scalably detect-
ing any missing, inconsistent permission checks in the kernel codes. The technique
involved is KIRIN, which is Kernel Interface Based In-direct Call Analysis. PeX au-
tomatically recognises all permission checks and infers the mappings between permis-
sion checks and privileged functions via the inter-procedural control flow graph created
by KIRIN. Therefore, PEX checks all possible paths to compile to see the correspond-

ing permission check before calling a privileged function.

9

In "Model Checking Concurrent Linux Device Drivers’,)” [28]. use predicate ab-
straction to propose DDVerify, a tool that automatically validates Linux device drivers.
The authors take one step further on predicate abstraction, targeting and resolving the
issues related to concurrency. This program reports benchmark tests based on Linux
device drivers and also provides an accurate representation of the relevant kernel com-
ponents. As concurrency plays a vital role in the execution of programs running in the
kernel, this paper contributes the method to validate shared memory concurrent appli-
cations.DDVerify provides a concurrent model of the related parts of Kernel API. As a
static verification tool, it produces an appropriate driver harness and inspects whether

the driver violates the pre or postconditions of their kernel model.

The paper 'DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers’[29] in-
troduces DR. CHECKER, a comprehensive Linux kernel driver inspection tool, based
on static analysis. The vast quantity of pointer code in these drivers poses some of the
most challenging problems for static analysis. However, unlike the techniques used
in ESBMC, which is model-bound checking, this tool uses flow-sensitive, context-
sensitive, and field-sensitive analyses to track the flow of data through kernel drivers

and identify potential security risks. These techniques allow the tool to accurately

2.2. FORMAL VERIFICATION TECHNIQUES 29

identify critical bugs in kernel drivers with high precision. In this project, the verifi-
cation of Linux Kernel programs is achieved by modelling and abstraction on kernel
operations based on ESBMC.

The paper Analyzing and improving Linux kernel memory protection: a model
checking approach delivered a decent research on the security of Linux Kernel meo-
mory. This study focuses on Linux kernel memory protection and methodically inves-
tigates for probable violations in Linux kernel architecture and implementation. The
authors created a Murphi-based abstract model to discover numerous severe flaws in
the present Linux kernel[30].The research confirmed the existence of these issues and
created five Linux kernel patches, which are currently being merged into the mainline
Linux kernel. According to the study, these patches entail relatively minor modifi-
cations to the existing code base and have low performance overhead. The authors
validated the existence of these issues with the Linux kernel community and created
kernel patches to address them. These fixes are backwards compatible with the exist-
ing Linux kernel code base and make only minor changes to the interfaces that manage

kernel memory.

Chapter 3
Methodology and Implementation

This chapter aims to clearly state the challenge of the research question, and the ap-
proach taken to build the sound and reasonable deliverables. In section 3.1, the method,
or approach this project used for modelling is addressed in detail. The section contains
two subsections. The first subsection points out the gap, or challenge to verify Linux
Kernel programs. The second subsection records how this difficulty is solved, and the
intuitions and considerations behind the current approach. Section 3.2 focuses on the
detailed implementation of the verification. This section records all modelling opera-
tions that are implemented and tested for verifying the vulnerabilities of kernels, and
how these modelings are designed and built. This section also contains explorations of
Linux Kernel source codes. Linux Kernel is an extremely complex and huge codebase,
which consists of millions of lines of code. However, it is necessary to study the source
codes in depth to understand how each module works and what the calling stack for a
particular kernel function looks like. The modelling, the setting for pre-and-post con-
ditions, and the verification progress are fully discussed in this section. Furthermore,

some core codes of the implementation are shown with explanations.

3.1 Approach for Modeling

This section first addresses the challenge that exists while using ESBMC to verify the

kernel programs and then elaborates on the approach taken by this project.

30

3.1. APPROACH FOR MODELING 31

3.1.1 Gap

The Linux kernel, often cited as the heart of the Linux operating system, has millions of
lines of code and contributions from thousands of developers worldwide. This means
that maintaining the source codes and detecting possible defects becomes a demanding
and challenging task. At the initial stage of the development of this project, parsing
the kernel program is quite difficult. ESBMC, or other model checkers, do not need
to compile and execute the program to detect the bugs. It is also necessary to know
that ESBMC uses clang as the front end to parse the source codes. However, the Linux
Kernel module requires compilation which relies on the Kbuild system. And Linux
Kernel programs are usually compiled with GCC, instead of Clang. Even this project
uses the Clang command clang -Xclang -E -fsyntax-only, which refers to parsing the
codes to Abstract Syntax Tree(AST) only without compilation, the approach does not
yield the expected results. Parsing kernel programs to AST still requires GCC-specific
flags, that Clang can not deal with. The second challenge to successfully parse the
kernel source file to the expected AST is related to the extremely deep and complex
dependency of the Linux Kernel. After the exploration of source codes, it is found that

the dependency in kernel source codes is complex.

As figure 3.1 shows, the source file that contains kmalloc function, slab. h is de-
pendent on 5 header files: linux/types.h, linux/overflow.h, linux/percpu_refcount.h and
linux/GFP.h. Furthermore, each header file also relies on several header files, result-
ing in deeper dependency. The deeper dependency is not shown in the figure since
the recursive path of dependency is quite long. When the dependency goes deeper,
some of the kernel source codes are dependent on more low-level assembly headers.
When the Clang front parses the source file into an AST, it parses all the dependencies
recursively to make sure the AST is complete and proper. This kind of nested depen-
dency results in issues while parsing the source file. For example, the assembly-related
header files could not be correctly handled. Even if the source file can be successfully
parsed by Clang, processing it with ESBMC would still be immensely challenging due
to its substantial size and complexity. Since converting the Linux Kernel program into
the AST that ESBMC expects is infeasible at this stage, some necessary steps have to

be taken to resolve this challenge. The next section explains what are these steps.

32 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

linux/topology.h

linux/gfp types.h .
More Nested Dependency

linux/mmzone.h

y

linux/compiler.h

—D| linux/gfp.h |
—>| linux/overflow.h }—
Kmalloc

linux/slab.h }_'.I linux/types.h | linux/threads.h

—D| linux/workqueue.h }— linux/timer.h }—D

_-l linux/percpu-refcount.h> | linux/linkage.h

|

linux/limits.h>

linux/const.h }—P

v

|

v

linux/atomic.h

linux/lockdep.h

linux/cpumask.h

linux/bitops.h>

i

linux/recupdate.h

linux/atomic.h

linux/percpu.h

linux/gfp.h

linux/types.h

"

linux/reupdate.h

Figure 3.1: The recursive dependencies of slab. h, where the Kmalloc function is
defined

3.1. APPROACH FOR MODELING 33

3.1.2 Solutions

The previous sections list all gaps that exist in the verification of kernel programs. In
this section, the approach taken by this project is discussed clearly. The first gap refers
to the difference between Linux kernel programs and normal user-space C programs.
Compiling Linux Kernel programs requires the participation of the Kbuild System,
which relies on GCC. Although parsing the source file does not require the actual
compilation, some required flags are GCC-specific, which can not be supported by
Clang. One approach taken in this stage is to utilise the open-source tool to check
what flags are involved while compiling and building the kernel. The open-source tool
used here is Bear. Bear is a tool that creates a compilation database for clang tooling.
The Clang project uses the JSON compilation database to offer details on how a single
compilation unit is handled. With this, it is simple to start the compilation again with
different programmes[31]. After this step, examining the output and information about
the flags in the JSON file may help. The solution here is to remove those GCC flags
and make sure the necessary clang flags are used in the command. In addition, the
directory for parsing should be the correct one locally. However, the parsing encounters
another issue though it is not complaining about the invalid flags anymore. While
parsing the kernel source file, since the frontend recursively explores nested header
files, several asm header files are parsed, which causes the problem. The Linux kernel
makes extensive use of the inline assembly. While Clang supports inline assembly for
many architectures, the specific dialect or the way inline assembly is used in the kernel
might not always be compatible with Clang’s expectations. In addition, Clang might
not support or recognize all assembler directives used in kernel ASM headers, leading
to parsing errors. As mentioned, the kernel uses a variety of GCC-specific macros
and attributes that Clang doesn’t recognize. It could result in errors especially if these
macros are used in conjunction with assembly code. Thus, it is essential to come up
with a solution that skips that deeply nested dependency to construct a simplified and
clean AST for ESBMC to process.

The solution here is to mock the dependency for modelling the kernel functions.
In this project, the solution to the gap addressed in the previous section is mocking the
dependency, or more specifically, header files, of Linux Kernel to simplify the Abstract
Syntax Tree(AST). Figure 3.1 shows the complex and deep dependency that is not ex-
pected for ESBMC to handle. This project uses the mocking method to cut down the
deeply nested dependency, and only keep the necessary dependency for verification.

The simplified header files are dependent on the kernel functions that the project aims

34 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

to verify. As Figure 3.2 shows, the solution here cuts off all unnecessary header files by
mocking the dependency. Mocking the dependency here refers to creating new kernel-
specific libraries in 22goto/headers directory in the ESBMC codebase. A directory
named ubuntu20.04/kernel _5.15.0-76 is created under c2goto/headers to mock the de-
pendency of the kernel. By this approach, the parsing of kernel programs is executed
based on the kernel library in ESBMC, instead of the actual kernel directory of the
system. The Clang frontend first explores ESBMC libraries to inspect if the definition
and the related header files of the kernel functions used in the source file can be found
here. If the definitions are successfully located, then Clang is not going to explore the

Linux Kernel source codes.

3.2 Modeling and Verification

After mocking the dependency to simplify the dependency, the project is dedicated to
modelling some core kernel functions. Their core kernel functions play a vital role in
memory management and concurrency. Any vulnerabilities may lead to unpredictable
consequences. The method applied here was modelling the verified kernel operation
by Abstraction. This method simplified and abstracted the core logic of kernel source

codes. All modelling operations implemented will be fully discussed.

3.2.1 Modeling Dynamic Memory Allocation/destruction

This subsection focuses on the implementations of mocking dynamic memory alloca-
tion and destruction in kernel space. In user-space, malloc() is frequently used to apply
for a dynamic memory space for storing data. In kernel-space, kmalloc() is in charge of
the dynamic memory allocation. The function malloc()allocates memory on the heap,
while kmalloc allocates memory from the kernel’s primary memory area. This project
models the core operations involved in kmalloc() and mocks its behaviour in user space

to inspect the potential defects. The kmalloc function families are listed below[6].

Modeling Kmalloc(size _t size, gfp_t flags)

The project achieved modelling by abstracting the core behaviours from the complex

source codes from kernel version 5.15.0-76.The source codes of kmallocin the Linux

3.2. MODELING AND VERIFICATION

Kmalloc

T]
»{ linux/topology.h

’
N linux/gfp_types.h

\J

y linux/compilerh

.
linux/gfp.h |

A}

[y
linux/overflow.h }——F| \\ linux/const.h

4
Y

linux/slab.h

}_

AY
linux/types.h |

Figure 3.2: The mocking of the dependency simplifies the required header files to

]inu‘)g/(hrtads.h ~

A
linux/workqueue.h }—4.| linuxft\l(ncr.h
A

s .

vy ¥ vy v ¥

. ’
linux/linkage.h ;

linux/percpu-refcount.h> |

r
¥
linux/atomic.ht » "

linux/lockdep.h

linuvkp).{mask.h Y

**

\
\
liny4/bitops.h>
r ‘\
!
linux/rcupdate.h 0
1Y
7
)
4 1
’ 1
’ LY
’ - \
linux/percpu.h
’ Y
i \
7 linux/gfp.h '
’ S
’
linux/types.h \\
L4 Ay
’

4

A}
linux/reupdate.h ‘

AY

parse, and cut off unnecessary dependency

35

’
. “More Nested Dependency
: ,

36

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

void *kmalloc(size_-t size, gfp_-t flags)
/
* kzalloc — allocate memory. The memory is set to zero.
* @size: bytes of memory required.
* @flags: the type of memory to allocate.
*/
inline void xkzalloc(size_t size, gfp_t flags)
/% %
* kmalloc_array - allocate memory for an array.
* @n: number of elements.
* @size: element size.
*x @flags: the type of memory to allocate (see kmalloc).
*/
inline void *kmalloc_array(size_t n, size_t size, gfp_t flags)
VEE:
* kcalloc — allocate memory for an array.
* The memory is set to zero.
* @n: number of elements.
x @size: element size.
* @flags: the type of memory to allocate (see kmalloc).
*/
inline void xkcalloc(size_.t n, size_t size, gfp_-t flags)
/% %
¥ krealloc — reallocate memory.
* The contents will remain unchanged.
* @p: object to reallocate memory for.

* @new_size: bytes of memory are required.

Figure 3.3: The source codes about kmalloc in linux kernel 5.15[1]

3.2. MODELING AND VERIFICATION 37

static __always_inline void xkmalloc(size_t size, gfp_t flags)

{

if (__builtin_constant_p(size)) {
#ifndef CONFIG_SLOB
unsigned int index;
#endif
if (size > KMALLOC MAX CACHE SIZE)
return kmalloc_large (size , flags);
#ifndef CONFIG_SLOB

index = kmalloc_index (size);

if (!index)
return ZERO_SIZE PTR;

return kmem_cache_alloc_trace(
kmalloc_caches|
kmalloc_type(flags)][index],
flags , size);
#endif
}

return __kmalloc (size , flags);

Figure 3.4: Another section of the source codes about kmalloc in linux kernel 5.15[1]

kernel are shown below. The codes are a bit complex. The function contains prepro-
cessor directives like #ifndef CONFIG_SLOB. This means that the behaviour of this
function can vary based on compile-time decisions, which can be influenced by config-
uration options. Such conditional compilation increases the complexity as you need to
understand under which conditions specific code blocks get executed. However, based
on the approach of this project, codes should only be parsed, instead of compiled and
executed. It is infeasible to determine any expected behaviour in compile-time. Thus,
this project first analysed the core behaviour of the function, which can be modelled
through abstraction, and then decided the pre-and-post conditions that should be held
for verification.

The first check is to see if the requested size is constant. If the size is constant and

exceeds the maximum cache size, allocation is delegated to the kmalloc_large function.

38 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Otherwise, for lesser sizes, it identifies the right memory cache index, validates it, and
then allocates memory from the related cache, tracing the allocation process. To model
this function, the objective of verification must also be confirmed. The objective de-
cides what kind of attributes and operations are required when abstracting the original
function. In this project, one assumption of vulnerability is that the improper values
passed in as the parameters of kmalloc lead to unpredictable results. The assumption
of vulnerability was tested. For example, the following codes passed negative size into

the function.

char =buffer;

int size = -20; // Incorrect: Negative size value
printk (KERN_INFO ”Loading._example._module...\n”);

buffer = kmalloc(size , GFP_.KERNEL);

if (!buffer)
printk (KERN ERR ”Failed._to_allocate _memory!\n”);

else

{
printk (KERN_INFO ”Successfully._allocated .memory!\n”);
kfree (buffer);

}

Description of Vulnerability:

1.A negative value for allocation size In kernel, size_t is defined as unsigned int,
which means it is expecting a non-negative value. However, when the user writes a
kernel program, it is still possible that they use a negative value, e.g. -20 in the previous
example, by mistake or by purpose. After testing, this situation leads to unpredictable
behaviour, e.g. data corruption. This vulnerability exists since the negative parameter
value passed into the function becomes an extremely huge value. For instance, if you
try to assign a value of -1 to size_t, it will be stored as 4294967295 in decimal. Allo-
cating such a huge size is definitely what the kernel is expecting.

2.Invalid GFP flags

The gfp_t flags in the Linux kernel refer to the set of flags used to modify the behaviour

of memory allocation. The acronym gfp stands for ”get free pages”.The gfp_t refers to

3.2. MODELING AND VERIFICATION 39

unsigned int. The risk here is that when the kernel program calls kmalloc with a gfp
value that is negative, or not predefined in gfp.h. To solve this, the project implemented
a function to check if the flag is valid .

kmalloc

The method of modeling kmalloc contains following steps:

1. The kmalloc function is a component inside Linux Kernel Memory Management.
The source codes are located in mm/slab.h. As figure 3.1 shows, the header file
slab.h is dependent on linux/types.h, linux/overflow.h, linux/percpu_refcount.h
and linux/gfp.h. After deep analysis of what attributes were needed for verifying
the potential vulnerabilities mentioned earlier, e.g. improper allocation size and
invalid flags, it is confirmed that no further dependency on these 5 header files is

necessary to the objective of the verification.

2. The linux directory is created under the kernel headers directory, which is created
under c2goto/headers. These five header files, and the header file, slab.h where
the verified function kmalloc is located, are created. In the header file gfp.h, dif-
ferent types of gfp flags are mocked from the Linux Kernel source codes. Those
gfp flags are valid flags that can be used with memory allocation. The imple-

mentation of gfp.h is demonstrated below.

#define __GFP_DMA 0x01u
#define __GFP_HIGHMEM 0x02u
#define __GFP_DMA32 0x04u
#define __GFP_ZERO 0x40u
#define _GFP.NOWARN 0x80u
#define __GFP_REPEAT 0x400u

#define __GFP_RECLAIM 0x0Olu

#define __GFP_IO 0x02u

#define __GFP_FS 0x04u

#define GFP_ATOMIC (__GFP_HIGH | __GFP_ATOMIC | __GFP_KSWAPD RI
#define GFP_KERNEL (._.GFP_RECLAIM | __GFP_.IO | __GFP_FS)

#define GFP_KERNEL ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
#define GFP_NOWAIT (--GFP_KSWAPD_RECLAIM)

40

CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

#define GFP_NOIO (_._.GFP_RECLAIM)

/% Convert GFP flags to their corresponding migrate type =/
#define GFP.MOVABLE MASK (__GFP_RECLAIMABLE |_GFP_MOVABLE)
#define GFP_MOVABLE SHIFT 3

. To verify the second vulnerability, a function inspecting the flags passed in is

required. In this step, the project delivered a function to check if the gfp flag the
user passed in refers to a valid flag defined in gfp.h. The implementation of this

function is shown below.

static void check_gfp_flags(gfp_t flags)
{
// Define all valid flags
gfp_t valid_flags =
_GFP.DMA | _GFPHIGHMEM | __GFP.DMA32 | __GFP_ZERO |
_GFP.NOWARN | __GFP_REPEAT | __GFP_NOFAIL |
| GFP_KERNEL_ACCOUNT | GFP_NOIO | GFP_.NOFS |
GFP_USER | GFPDMA | GFP.DMA32 | GFP_HIGHUSER;

// Check if any flag is set that is not in the list of valid flags
assert ((flags & “valid_flags) == 0);

. In this function, the flag value is passed in to check if it matches any value in the

predefined flag value. The assertion is applied here to see if the property holds.
The function is defined in kernel.c, a file that created to mock the kernel func-
tions. The assertion implemented in this function checks if the post-condition
holds after the verification. The postcondition here refers to the property that the
flag used belongs to the set of predefined gfp flags in the kernel.

. The next step is to created slab.h, and declare kmalloc functions in this fille. The

definition of kmalloc is implemented in kernel.cin c2goto/library directory. The

kmalloc function in ESBMC was mocked by the original kmalloc function from

3.2. MODELING AND VERIFICATION 41

kernel source codes, with additional assertion to test the property. The first asser-
tion in this function checks if the allocation size is greater than 0 and less than the
max_allocation_size. This is the core operation to avoid illegal arguments. When
a user writes a kernel program that involves kernel allocation with negative val-
ues, this assertion evaluates to false and fails the verification of kmalloc function,
which achieves the objective of the modelling of kmalloc. Then if the verifica-
tion of allocation size succeeds, the assertion on the value of the flag is executed.
This assertion guarantees that any negative values of flags lead to failure of veri-
fication. This verification, together with the check_valid flags function, prevents

the unpredictable consequence caused by invalid flags.

7. The mocked kmalloc function involves __kmalloc_large when the size is greater
than KMALLOC_MAX_CACHE_SIZE, and calls __kmalloc when the size does

not exceeds the limit.

One important point to illustrate the mechanism of mocking is that this approach does
not invoke the real kernel-space function. The user-space behaviours are designed and
combined to simulate the kernel-space behaviour. In __kmalloc function, by simply
calling malloc, which refers to memory allocation in user-space, the project simulates
the behaviour of allocating memory in user-space.

kmalloc_array

The verification of kmalloc_array is similar to kmalloc. The signature of this function
1s kmalloc_array(size_t n, size_t size, gfp-t flags). It has one additional parameter, size_t
n, which refers to the number of allocated elements. This function involves three steps
of verification. First, the assertion assert(n ; 0) verifies if the property of allocating a
positive number of elements holds. After this assertion, the rest of the verifications are
similar to the ones implemented in kmalloc. The assertions on allocating size and flags
make sure that this function does not lead to any memory corruption.

kfree

The modelling of kfree is much more simple compared to that of kmalloc. There is no
assertion here to verify if the pointer is null. This is because freeing a null pointer in
C language is a safe operation. This means that if you pass a null pointer to free(), the

function simply returns without doing anything.

42 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.2.2 Modeling Data Transmission Between Kernel and User Space

This subsection explains the method to model the data transmission operation between
kernel and user space. It also demonstrates the implementation of the mocked kernel
functions: copy_to_user and copy_from_user.

The Linux kernel operates in a privileged mode (kernel space), whereas user applica-
tions operate in a less-privileged mode (user space). For security and stability reasons,
direct access between these two spaces is restricted. This is where copy_from_user()
and copy_to_user() come into play. copy_from_user function transfers data from user
space (where user applications operate) to kernel space (where the kernel runs). In
contrast, copy_to_user function transfers data from kernel to user space.

Description of Vulnerability:

Null Pointer Dereferencing

Null pointer dereferencing happens when the program tries to access or modify a mem-
ory location corresponding to a null pointer, leading to undefined behaviour and typi-
cally resulting in a segmentation fault and program crash.

Memory Overflow with Large Data Transfers Memory overflow happens when data
is written beyond the confines of allotted memory, frequently leading to buffer over-
flow attacks. This can cause data corruption, crashes, or unauthorised code execu-
tion by overwriting nearby memory areas. Memory Boundaries Validation Memory
boundary violations occur when data is read from or written to memory regions that
are outside the expected constraints. This can result in data corruption, unauthorised
data access, or control flow hijacking.

copy_from_user

The method of modeling copy_from_user contains following steps:

1. copy-_from_user() and its associated functions can be found in the architecture-
specific portions of the kernel source, because the actual method of copying data
may vary between different CPU architectures.For example, in the x86 archi-
tecture, the codes are located in arch/x86/include/asm/uaccess.h. To model this
function, the project first created a asm directory under the headers directory in

c2goto folder.

2. In the uaccess.h header files, several macros were defined. The declarations in
this mocked file can be seen below. The PAGE_SIZE simulates the size of a page
in Linux Kernel. USER_SPACE_SPACE is defined to simulate the user memory

3.2. MODELING AND VERIFICATION 43

// page size

#define PAGE_SIZE 4096

//only for simulate the user memory

#define USER MEMORY_SPACE 10000

// only for simulate the kernel memory

#define KERNEL MEMORY_SPACE 10000

//mock user memory

extern char user_memory [USER MEMORY SPACE];

//mock user memory

extern char kernel_memory [KERNEL MEMORY SPACE];

// simulate copy_to_user function in kernel space

unsigned long copy_to_user(void+ to, voidx from,
unsigned long size);

unsigned long copy_from_user(void* to, voidx from,
unsigned long size);

3. The actual memory for user space and kernel space is architecture-specific and
are only determined in runtime. Since the approach this project takes is detecting
the errors without compiling and executing, a simulation that avoids acquiring
the actual memory address is needed. This is why this project declares two arrays
in uaccess.h to simulate the boundary of user space and kernel space. The arrays
are only for the use of mocking the data transmission between different spaces.
They were declared as global variables with extern keyword for external linkage.
The simulated memory spaces were also applied for testing the behaviours of this

kernel function in regression tests.

4. This project designs specific values for the size of simulated memory space.The
USER_MEMORY _SPACE and KERNEL_MEMORY _SPACE are both defined with
10000. The simulated size is only for mocking the operations of data transmis-
sion kernel functions. It does not represent the actual memory spaces with any

specific architecture.

5. The implementation copy_from_user is located in c2goto/library/kernel.c. In this
implementation, there are several assertions to check the vulnerabilities. The

following codes are parts of the implementation.

assert(to != NULL);

44 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

assert (from != NULL);

The first two assertions were applied to check the pointers. The first assertion is
implemented to inspect if the destination pointer, which should be a kernel-space
pointer, is null. It is illegal and unreasonable to copy the data from user space
to a null pointer. This project has to guarantee that the data transmission takes
place between valid pointers. The second assertion does the same inspection,

but for the source pointer, which is in user space.

6. To prevent the defects, the inspections on the memory address were imple-

mented.

assert ((char =)to >= user_memory);
assert ((char =)from >= kernel _memory);

memcpy (to , from, size);

This project applied assertions on the memory address of the source and desti-
nation pointers. It validates the user space pointer and ensures that the full range
of memory being accessed is within the user space. If the user space pointer is
faulty or the range extends beyond user space, the function does not perform the
copy and normally returns the number of bytes that were not copied. This func-
tion transfers data from user space (where user applications operate) to kernel
space (where the kernel runs). To simulate the copying operations, this mocked

function calls C standard function memcpy.

copy_to_user

The method of modelling the copy_to_user is similar to the way of modelling copy_from_user.
The only difference is that the source pointer in the function copy_to_user represents

the memory address in user space, ad the destination pointer represents the memory
address in kernel space. The implementation of this mocked function inspects the

vulnerabilities while copying data from kernel space to user space.

3.2.3 Modeling Memory Leak using ESBMC

One of the ESBMC’s verification scopes is memory leaks. When programming with
low-level language, like C/C++, memory leaks are the problems that programmers
have to be concerned about. Unlike high-level programming languages, e.g. Java,

C/C++ does not support an automatic garbage collection mechanism. It means that

3.2. MODELING AND VERIFICATION 45

manual memory management, e.g. freeing the memory blocks allocated after use,
has to be done by programmers. Otherwise, memory leaks arise and lead to further
risks for the programs. Since this project aims to achieve the verification in memory
management in Kernel, .e.g kmalloc and kfree, the mechanism of how ESBMC handles
the verification of memory leak is explained in this section. To understand ESBMC’s
method of dealing with malloc memory leaks, we must first grasp its goto-program
and symbolic execution algorithms.

Goto-Program : Intermediate Representation

ESBMC and other CPROVER-based tools employ the goto-program as an inter-
mediate representation (IR). At its core, the goto-program is a simple and language-
independent representation of a program’s logic that serves as an abstraction for analy-
sis and manipulation. A programme is represented by the goto-program as a set of goto
functions. Each of these functions contains a series of instructions that are linearized
representations of the logic of the original programme. Assignments, assumptions, as-
sertions, gotos, function calls, and other basic operations can be represented by the in-
structions. The goto-program has a big advantage in that it normalises the input source
code. This means that in the goto-program, sophisticated programming constructions
or syntactic sugar are reduced into simpler, standardised forms. This simplification

makes analysis and transformations more consistent and simple.

The goto-programs directory’s patterns goto_convertt::do_mem, goto_convertt::do_malloc,
and goto_convertt::do_alloca explain how memory allocation actions in source code
are transformed to an goto-program. The do_mem function is at the core of this trans-
formation. The memory allocation function name is set (via the func variable) based
on whether the operation is a malloc or an alloca. After retrieving the allocation type
and size, the method prepares a sideeffect expression (new_expr). This sideeffect is
critical since it effectively represents dynamic memory allocation. This expression is
then added as an instruction to the goto-program, representing a memory allocation
operation.

Symbolic Execution

Symbolic execution is an analysis technique that systematically investigates multiple
execution routes of a program by substituting symbolic values for concrete input val-
ues. ESBMC uses symbolic execution to reason about all conceivable programme
behaviours without having to run the programme on every possible input. Rather than
using actual values, symbolic execution works on symbolic values, treating them as

unknown variables. In symbolic execution, for example, instead of a variable x having

46 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

a value of 5, x would be treated as an unknown value[32]. As the symbolic executor
moves along a path, it acquires a set of constraints based on the criteria encountered.
When these restrictions are satisfied, they offer input values that direct the programme

down that particular execution path.

In ESBMC, the symbolic execution is presented through the goto_symext class
functions like goto_symext::symex_mallocand goto_symext::symex_mem. This execu-
tion plays a pivotal role in abstractly simulating the program behaviour using symbolic
values rather than concrete ones.
symex_malloc starts the memory allocation process by passing a flag indicating that
it is a malloc operation to the symex _mem function. If the left-hand side (lhs) of a
symex_mem operation is empty, the process is aborted. Otherwise, the code creates a
symbolic representation of the memory that has been allocated. The dynamic object
generation, denoted by the “dynamic_” prefix in the symbol name, is an important com-
ponent of this symbolic execution method. These dynamic objects reflect the memory
allocated by the malloc function symbolically. To accommodate for malloc’s nondeter-
ministic nature (it may fail and return a NULL pointer), the code includes an if state-
ment (if{/options.get_bool_option(” force-malloc-success”) & & is_malloc)) to mimic a
nondeterministic choice between successful allocation and returning a NULL pointer.
Memory Leak Check
When the free function is invoked, ESBMC will perform a symbolic check to ensure
that the pointer being freed points to a valid, previously allocated block of memory. If
this is not the case, a dereference failure may occur. In addition, ESBMC will have
a comprehensive trace of all memory allocations and deallocations at the end of the
symbolic execution. By comparing them, ESBMC can determine whether any alloca-
tions had no matching deallocations. If such allocations exist, it indicates a memory
leak, which ESBMC might disclose to the user.

3.2.4 Modeling Concurrency

Kernel-space operations frequently require the management of resources that can be
used by numerous entities at the same time. A robust mechanism to prevent race

conditions is necessary.

3.2. MODELING AND VERIFICATION 47

Spin Lock

Spin locks are synchronisation mechanisms used in kernel space to ensure that only
one entity at a time has access to a shared resource. Mocking spin lock operations
is typically advantageous for formally verifying kernel space code with ESBMC. By
abstracting away the delicate complexities of concurrency, the verification process is
simplified. Since some aspects of kernel-level concurrency might not be easily sup-
ported by ESBMC, this mock method helps ESBMC to detect potential vulnerabilities
in a multi-thread environment. The declaration of this method locates in the same

header directory as previous approaches. The header file is shown below.

/% SPDX-License—Identifier: GPL-2.0 =x/
#include <stdatomic.h>
#include <stdbool.h>
/%« Declarations of mock spin lock behaviour %/
/%% mock spinlock struct =/
#define SPIN_LIMIT 80
typedef struct {
bool locked;
} spinlock_t;

void spin_lock_init(spinlock_t =lock);
bool spin_lock(spinlock_t =lock);

void spin_unlock (spinlock_t =lock);

In this header file, the project first defines a struct to model the spin lock used in the
kernel. The struct spinlock_t contains a boolean value locked to indicate if the spin
lock is acquired by any thread. If this value is set to false, then it means the lock is not
acquired by any thread yet. If a thread acquires this lock, the boolean value should be
modified to true. Three operations, initialization, lock, and unlock are declared. These
operations are mocked from Linux Kernel, and use the argument with type spinlock_t

to access the shared resource properly.

48 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Description of Vulnerability:
Race Condition in Multi-threads Environment

When the kernel programs apply multi-threads for some particular operations that are
related to shared resources, the modification and acquisition of the shared resource
may lead to incorrect results. This pattern is caused by race conditions since some
operations are not atomic. The context may switch to another thread in the middle of
an operation. For example, when one thread reads the value of the shared resource,
and then it plans to increment the shared resource with a specific value. However,
the context switches right after it successfully read the value of the resource. Another
thread may modify the shared resource. When the first thread finally get to increment
the shared resource, it is modifying based on the previous value, which is inconsistent

with the current value.

spin_lock _init

The modelling of this function is straightforward. This function aims to mock the ini-
tialization process of spin lock in the kernel space. The spin lock has state to indicate if
the lock is acquired by any thread yet. The initialization in this implementation simply
set the locked state to false. This boolean value indicates if the lock is acquired by any
thread. It is set to false since the lock is not acquired by any threads in the initialization.
The argument in this function is a pointer to the shared spin lock. However, it must
be guaranteed that the lock should not be null. Thus this function first uses assertion
to check if the lock is null. Otherwise, it initializes the spin lock by setting the value

locked to false, indicating that no thread is holding this lock.

spin_lock

This implementation represents the core of the modelling of spin lock in concurrency.
It is significant to make sure that the threads acquiring the lock behave in proper order.
Any improper order of execution may lead to unexpected results. The implementation
in this project first applies __ESBMC_assert(lock != NULL, "The lock is null, verifica-
tion failed”), to provide a more readable output for the users. Then this project designs
a variable called retries to record the spin numbers of current threads. Unlike the mutex
lock, the spin lock keeps spinning until it acquires the lock. The macro spin_limit is set

to avoid the situation that the spin locks spins infinitely. Since ESBMC is based on the

3.2. MODELING AND VERIFICATION 49

state exploring, the limitation on spin counts also prone the state space to a manageable

size.

__ESBMC _atomic_begin ();

if (lock—>locked == false)

{
lock—>locked = true;
__ESBMC_atomic_end ();
return true;

}

__ESBMC_atomic_end ();

retries ++;

In the spin lock, the most important point is that the operation has to be atomic to
avoid thread switching. In ESBMC, __ESBMC_atomic_begin and __ESBMC _atomic_end
guarantee that the operations between are considered atomic. In this function, the
thread first checks if the lock is not acquired by any thread. If another thread is hold-
ing this lock, then it keeps spinning. Otherwise, it acquires the lock and set the lock
value to true. The if statement and the modification on the boolean value are together
considered as one atomic operation in this implementation. The function returns true if
the thread successfully gets the spin lock. When the variable retries exceeds the limit
of SPIN_LIMIT, it returns false. The operation spin_unlock simply checks if the current

lock is null. If it is not, it changes the value of the locked inside of the struct spinlock_t.

Chapter 4

Evaluation

4.1 Description of Benchmark

The implementations of the verification methods in this project must be evaluated.
The verification on Linux Kernel is challenging compared to that on normal C/C++
programs. Since ESBMC is a model checker that relies on bounded model checking,
CBMC could be a possible benchmark suite to test and compare the performance with.
However, CBMC is more well-known for user-space programs. This project designed
its benchmark suite to evaluate the performance and correctness of the implementa-
tions. The benchmark suite designed was based on the generated tests. It aims to
validate and ensure the correct functionality of core kernel operations, focusing on

memory management, user-space interactions, and synchronization mechanisms.

4.2 Setup

The evaluations are set in a particular environment. The information on the experiment
environment can be listed as follows:

CPU: Intel i7 9750H

Memory: 16 GB Operating System: Ubuntu 20.04

Clang version: Clang 11 ESBMC version: ESBMC version 7.3.0 64-bit x86_64 Linux

50

4.3. OBJECTIVES 51

4.3 Objectives

The objective of the evaluations is to assess the capability of the implementations in
this project to detect the known vulnerabilities in the kernel programs. The regression

tests are designed to inspect if the results of the verification are as expected.

4.4 Results

This project creates 23 tests for the evaluation objective. The 23 tests cover the ver-
ification scope of memory management, data transmission and concurrency. In this
section, the test results are evaluated. The expected outcomes and the efficiencies of
the verification are also demonstrated in this section. The table below shows the results

of the evaluation:

52

CHAPTER 4. EVALUATION

Test| Description ESBMC Expected Actual
ID flags
1 | Copy kernel data from Kernel space | —unwind Failed Failed
200
2 | Copy from user space —unwind Failed Failed
200
3 | copy the data from null pointer —unwind Failed Failed
200
4 | Copy data from user-space —unwind Successful | Successful
200
5 Spin Lock to prevent race condition | —-unwind | Failed Failed
400 -
context-
bound 2
6 | Spin Lock to prevent race condition | —unwind Successful | Successful
400 -
context-
bound 2
7 | Spin Lock to prevent race condition | —unwind Successful | Successful
400 -
context-
bound 2
8 | Copy data from Kernel space —unwind Failed Failed
200
9 | Copy to user-space —unwind Failed Failed
200
10 | Copy to user-space with null | —unwind Failed Failed
pointer 200
11 | Copy kernel data to user-space | —unwind Successful | Successful
space 200
12 | invalid kmalloc allocation Failed Failed
13 | kmalloc with invalid flags Failed Failed
14 | invalid kmalloc flags Failed Failed
15 | valid kmalloc allocation Successful | Successful
16 | valid kmalloc allocation Successful | Successful

Table 4.1: Test Set for Evaluation Part 1

4.4. RESULTS 53

17 | valid kmalloc flags Successful | Successful
18 | Copy from user-space to address in | —unwind Failed Failed
user-space 200
19 | copy from the data in user-space to | —unwind Failed Failed
user-space 200
Copy kernel data from Kernel space | —unwind Failed Failed
200
20 | valid kmalloc allocation Successful | Successful
21 | invalid kmalloc allocation Failed Failed
22 | valid kmalloc allocation with valid Successful | Successful
flags
23 | invalid kmalloc flags Failed Failed

Table 4.2: Test Set for Evaluation Part 2

The results of the evaluation are shown. Each test case is labelled with the test
ID, the description of the test, the expected verification result and the actual verifi-
cation result. Each implementation of kernel verification in this project is tested in
this evaluation, with multiple scenarios. Each test case has corresponding ESBMC
flags to support the expected testing objective. These tests are created in the directory

regression/linux. All 23 tests passed with the expected results.

4.4.1 Efficiency

The efficiency of these tests is also recorded. The test cases related to kernel allocation
are test cases 12, 13, 14, 15, 16, 17, 20, 21, 22, 23. These test cases take about 0.29,
0.296, 0.307, 0.291, 0.290, 0.312, 0.296, 0.315, 0.30, and 0.293 seconds respectively.
They only take a short time to test the functionality. The test cases related to data
transmission are test cases 1, 2, 3, 4, 8, 9, 10, 11, 18, and 19. In contrast, these test
cases take more time to evaluate. The time these test cases take is 6.81, 2.1, 1.5, 10.89,
6.71, 2.18, 1.3, 9.93, 6.94, and 6.71 seconds. The verification of these test cases takes
more time due to the non-determining mechanism. There are three test cases generated
for verifying spin lock. These test cases check if the shared resources are modified as
expected in a multi-thread environment. It involves spinning and thread interleaving,
which leads to a much longer verification time. The test cases 5, 6, and 7 take about
5.42, 70.288, and 8.1 seconds. The total time of these 23 test cases is 142.08 seconds.

54 CHAPTER 4. EVALUATION

4.4.2 Resolved Vulnerabilities

Based on the table, the verification of kmalloc and kfree succeeds in different con-
texts. The generated tests use several illegal and legal arguments for the size and flags.
All tests come up with expected verification results. The verification of data trans-
mission from kernel space to user space, or vice versa, achieves the expected results.
The test cases that callcopy_from_user, but use the kernel, or user address for both
source and destination, fail in the process. This also represents the expected outcome
since copy_from_user and copy_to_user are functions that support the data transmission
between kernel and user space, instead of identical space. Lastly, the results of con-
currency tests show the successful implementation to prevent the race condition at the

kernel level.

4.4.3 Threats to Validity

The objective of the evaluation is achieved through the set of tests designed for this
project. In addition, the robustness and effectiveness of the implementation can be
inferred from the experimental results. Nonetheless, there are possible threats to the
validity of the testing results. The first possible threat is that some vulnerabilities in
test codes may not be detected through the approach of mocking the operations. For
example, when verifying the data transmission in kernel and user space, the simulated
memory spaces(for both kernel space and user space) may not represent the real-world
memory space. The second threat is that the implementation of verifying concurrency
problems in this project may take a very long time. As it can be seen from the efficiency
information in the table, the verification on spin_lock involves exploring huge state
spaces. Increasing the number of threads for testing may lead to a huge rise in the time

spent on verification. This threat may affect the efficiency of the method in this project.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this project, we set out to improve the verification process for the Linux kernel
by combining the ESBMC tool with the mocking technique. The major goal was
to secure the dependability and correctness of essential kernel functions by imitating
their behaviour through modelling, allowing us to submit them to rigorous testing and
verification.

The project began by investigating the difficulties in verifying sophisticated soft-
ware systems such as the Linux kernel. The inherent complexity of the kernel, com-
bined with the possibility of security flaws and system crashes, highlights the necessity
for rigorous verification procedures. Because of its formal verification features, ES-
BMC emerged as a strong candidate, allowing us to reason about the correctness of
kernel functions under many scenarios. The implementation of this project completed
the functionality of ESBMC, allowing this software to inspect Linux Kernel programs
and find possible vulnerabilities properly.

The project designed a mechanism to integrate mocking into the verification work-
flow after a careful approach. It recreated these behaviours in controlled situations
by building simulated implementations of critical kernel functions such as kmalloc,
kfree, and copy_from_user. This allowed us to put these functions through a set of test
cases and circumstances that would be impossible to reproduce in a real-world kernel
context. The method achieves the verification of kernel codes in user space, which
makes more easier to handle complex situations. The ability to isolate these routines
and replicate their behaviour was critical in discovering corner cases, boundary issues,

and potential memory leaks that would have gone undiscovered otherwise.

55

56 CHAPTER 5. CONCLUSION AND FUTURE WORK

Although concurrency is a complex mechanism to handle especially in kernel space,
this project implemented the method to model the concurrency in kernel space and
mock the spin_lock related functions. It modelled the behaviors of spinning and cor-
rectly acquiring the lock and ultimately prevented the race condition. Several test cases
were created to evaluate the functionality and efficiency of the implementations in this
project. The experimental results indicated that the method designed achieved the ob-

jectives of this project.

5.1.1 Limitations and Future Work

While this project represents a solid step forward in improving the Linux kernel veri-
fication process, there are various options for future investigation and improvement:

Enhanced Mocking Techniques: Mocking’s usefulness is dependent on the ac-
curacy of the mock implementations. More advanced strategies for developing mimic
behaviours that correctly mirror real-world events could produce even more accurate
outcomes.

Integration with Real-World Kernels: While mocking provides a controlled en-
vironment for testing, it is critical to validate the technique’s effectiveness on real-
world kernels. It will be beneficial to integrate the mocking approach with actual
kernel builds and evaluate its impact on verification accuracy.

More comprehensive benchmark suite: Another limitation of this project is that
the benchmark suite could be more comprehensive and cover more aspects of testing.
It could happen that the benchmark suite used in this project can not fully evaluate the
implementation in every aspect.

Integration with Other Verification Tools: ESBMC is simply one of many acces-
sible verification tools. Investigating the possibility of combining the mocking tech-
nique with additional formal verification tools could result in a more thorough verifi-
cation strategy.

In summary, this project successfully delivered a feasible solution to detect the
vulnerabilities in Linux Kernel programs. It proposes an alternative approach to en-
hancing the Linux kernel verification process through the use of ESBMC and mocking
techniques. We exposed essential kernel functions to intensive testing and analysis by
establishing simulated environments for them, revealing vulnerabilities and concerns
that might threaten system stability and security. Mocking’s successful integration
into the verification workflow demonstrates its potential to improve the reliability of

complex software systems.

Bibliography

(1]

(2]

(3]

(4]

(5]

[6]

[7]

(8]

[9]

Linux Kernel Development Team. Specific component of linux kernel source
code, 2021. Accessed: 2023-07-01.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and
M. Kaashoek. Linux kernel vulnerabilities: State-of-the-art defenses and open
problems. Proceedings of the 2nd Asia-Pacific Workshop on Systems, APSys’11,
07 2011.

Mikhail R. Gadelha, Rafael Menezes, Felipe R. Monteiro, Lucas C. Cordeiro,
and Denis Nicole. Esbmc: Scalable and precise test generation based on the
floating-point theory. In Heike Wehrheim and Jordi Cabot, editors, Fundamen-
tal Approaches to Software Engineering, pages 525-529, Cham, 2020. Springer

International Publishing.

Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly amp;
Associates Inc, 2005.

Robert Love. Linux Kernel Development. Addison-Wesley Professional, 3rd
edition, 2010.

C.R. Maruthi and R. Bharadwaj. Mastering Linux Kernel Development: A Kernel
Developer’s Reference Manual. Packt Publishing, 2017.

B. Chess and G. McGraw. Static analysis for security. IEEE Security Privacy,
2(6):76-79, 2004.

William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323-337, 1992.

Péar Emanuelsson and Ulf Nilsson. A comparative study of industrial static anal-

ysis tools. Electronic notes in theoretical computer science, 217:5-21, 2008.

57

58

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

BIBLIOGRAPHY

Nathaniel Ayewah, William Pugh, David Hovemeyer, J David Morgenthaler, and
John Penix. Using static analysis to find bugs. IEEE software, 25(5):22-29, 2008.

Peter T Breuer and Marisol Garcia Valls. Static deadlock detection in the linux

kernel. In International Conference on Reliable Software Technologies, pages
52-64. Springer, 2004.

Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at
http://yices. csl. sri. com/tool-paper. pdf, 2(2):1-2, 2006.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In Inter-
national conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 337-340. Springer, 2008.

Marco Bozzano, Alessandro Cimatti, Gabriele Colombini, Veselin Kirov,
Roberto Sebastiani, et al. The mathsat solver—a progress report. Proc. Workhop
on Pragmatics of Decision Procedures in Automated Reasoning 2004 (PDPAR
2004), 2004.

Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In Tools and Algorithms for the Construction and Analysis of
Systems: 15th International Conference, TACAS 2009, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2009, York,
UK, March 22-29, 2009. Proceedings 15, pages 174—177. Springer, 2009.

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanovi¢, Tim King, Andrew Reynolds, and Cesare Tinelli. Cvc4. In Computer
Aided Verification: 23rd International Conference, CAV 2011, Snowbird, UT,
USA, July 14-20, 2011. Proceedings 23, pages 171-177. Springer, 2011.

Edmund M Clarke. Model checking. In Foundations of Software Technology and

Theoretical Computer Science: 17th Conference Kharagpur, India, December
18-20, 1997 Proceedings 17, pages 54-56. Springer, 1997.

Nina Amla, Robert Kurshan, Kenneth L. McMillan, and Ricardo Medel. Experi-
mental analysis of different techniques for bounded model checking. In Tools and
Algorithms for the Construction and Analysis of Systems: 9th International Con-
ference, TACAS 2003 Held as Part of the Joint European Conferences on Theory
and Practice of Software, ETAPS 2003 Warsaw, Poland, April 7-11, 2003 Pro-
ceedings 9, pages 34—48. Springer, 2003.

BIBLIOGRAPHY 59

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal methods in system design, 19:7-34,
2001.

Edmund Clarke, Daniel Kroening, Jo€l Ouaknine, and Ofer Strichman. Com-
pleteness and complexity of bounded model checking. In International Work-
shop on Verification, Model Checking, and Abstract Interpretation, pages 85-96.
Springer, 2004.

Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent
software. In International conference on tools and algorithms for the construc-

tion and analysis of systems, pages 93—107. Springer, 2005.
Esbmc. https://www.esbmc.org.

Mikhail R Gadelha, Felipe R Monteiro, Jeremy Morse, Lucas C Cordeiro, Bernd
Fischer, and Denis A Nicole. Esbmc 5.0: an industrial-strength ¢ model checker.
In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering, pages 888-891, 2018.

Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Smt-based bounded
model checking for embedded ansi-c software. IEEE Transactions on Software
Engineering, 38(4):957-974, 2011.

Mikhail R Gadelha, Felipe Monteiro, Lucas Cordeiro, and Denis Nicole. Esbmc
v6. 0: Verifying ¢ programs using k-induction and invariant inference: (compe-
tition contribution). In Tools and Algorithms for the Construction and Analysis
of Systems: 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019,
Prague, Czech Republic, April 6-11, 2019, Proceedings, Part III 25, pages 209—
213. Springer, 2019.

Jeremy Morse, Lucas Cordeiro, Denis Nicole, and Bernd Fischer. Handling un-
bounded loops with esbmc 1.20. In Nir Piterman and Scott A. Smolka, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 619—
622, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Jinmeng Zhou, Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung,
Ahmed Azab, Ruowen Wang, Peng Ning, and Kui Ren. Automatic permission
check analysis for linux kernel. IEEE Transactions on Dependable and Secure

Computing, 2022.

60

[28]

[29]

[30]

[31]

[32]

BIBLIOGRAPHY

Thomas Witkowski, Nicolas Blanc, Daniel Kroening, and Georg Weissenbacher.
Model checking concurrent linux device drivers. In Proceedings of the 22nd
IEEE/ACM International Conference on Automated Software Engineering, pages
501-504, 2007.

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. {DR}.{CHECKER}: A soundy analysis for linux
kernel drivers. In 26th USENIX Security Symposium (USENIX Security 17),
pages 1007-1024, 2017.

Siarhei Liakh, Michael Grace, and Xuxian Jiang. Analyzing and improving linux
kernel memory protection: a model checking approach. In Proceedings of the
26th Annual Computer Security Applications Conference, pages 271-280, 2010.

Bear. https://github.com/rizsotto/Bear.

Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR), 51(3):1-39, 2018.

