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Abstract

SAFETY VERIFICATION OF CUDA AND DEEP NEURAL NETWORKS

Xianzhiyu Li
A dissertation submitted to The University of Manchester

for the degree of Master of Science, 2023

CUDA [1], powered by NVIDIA’s GPU, has gained traction in deep learning due
to its computational efficiency. However, like other software, CUDA programs are
prone to various errors, such as data race and array bounds violations, with their par-
allel nature complicating debugging. This complexity necessitates deeper knowledge
of the CUDA architecture, highlighting the importance of safety verification tools.
ESBMC-GPU [3], an initial solution using an abstract representation of CUDA APIs,
But it is no longer available due to lost maintenance. ESBMC v7.3 is a powerful
SMT-based bounded model checker to verify C and C++ programs. This project aims
to port the ESBMC-GPU verification of CUDA programs to the latest ESBMC. We
have improved ESBMC’s Clang-based frontend, fixed outdated code, and optimised
the verification time. We also make operational models for the convolution operations
and activation functions in CuDNN. Finally, we use the benchmark to evaluate our
work. The results show that this project successfully implements the CUDA program
verification based on the latest ESBMC, and we get much better verification efficiency
than ESBMC-GPU, and get a pass rate of 79.2%.

7



Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

8



Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

9

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/


Acknowledgements

I would like to thank my supervisor Dr. Lucas Cordeiro for his guidance during the
project. This project cannot be left without his encouragement and professional advice.
At the same time, I am also very thankful to the PhD student Kunjian Song in Dr. Lucas
Cordeiro’s laboratory for his code support and insights.

10



Chapter 1

Introduction

1.1 Motivation

Compute Unified Device Architecture (CUDA) [1] is a platform and programming
model for parallel computing, based on the parallel computing power of NVIDIA
Graphics Processing Unit (GPU), and is widely used in scientific computing such as
deep learning because it enables faster and more efficient computing and data process-
ing. Like other computer programs written by programmers, CUDA programs can
encounter various types of errors, including data contention, array out-of-bounds, and
division by zero violations, etc.

CUDA program executes part of the code in GPU to accelerate. Hence, it involves
data transfer and synchronisation between GPU and CPU, which also makes it more
complex to debug errors. For example, the problem of memory leaks may occur due to
asynchronous execution between GPU and Central Processing Unit (CPU). In order to
reduce the probability of program errors, developers need to have a deep understanding
of the CUDA programming model and GPU architecture, which undoubtedly increases
the learning cost. Due to this feature, a software capable of performing safety verifi-
cation of CUDA programs becomes essential. In previous research, ESBMC-GPU [3]
was proposed for verifying CUDA programs based on Efficient SMT-Based Context-
Bounded Model Checker (ESBMC) v2.0 [4, 5, 6], an open-source model checker for
C++/ANSI-C that relies on SMT solvers. It works by using an abstract representation
of the native CUDA APIs that conservatively approximates their semantics, It’s called
CUDA operational model (COM). However, due to some system standard library and
C++ syntax changes, the software has become inoperative.

CUDA deep neural network (CuDNN) [7] is an important extension of CUDA.

11



12 CHAPTER 1. INTRODUCTION

It provides various basic operations of deep neural network (DNN), such as convo-
lution, pooling, activation function, etc. It also adjusts the algorithm to improve the
computational speed of DNN and take full advantage of the performance of GPU.
Nevertheless, DNN is high parallel and Its parameters are difficult to interpret, which
makes troubleshooting difficult. In particular, some critical application areas can lead
to serious consequences if errors occur, such as autonomous driving. With its increas-
ing use in safety-critical applications, the security of its systems has become the focus
of attention. An important aspect of securing DNN is to verify the correctness of the
underlying software libraries - CuDNN.

1.2 Aims and Objectives

The primary aim of this project is to implement the safety verification of CUDA pro-
grams in the latest ESBMC v7.31, and on this basis, propose a method for verifying
CuDNN, then successfully verify real applications that rely on CuDNN library. The
objectives of the project are as follows:

• Fully understand the ESBMC workflow and source code to add CUDA features
on top of the current front-end code.

• Investigate the principle of COM proposed in ESBMC-GPU, fix and improve
the model to make it suitable for the latest ESBMC.

• Investigate the principle of CuDNN, try to model it, and ensure that the opera-
tional model returns the same results as the original APIs.

• Use ESBMC v7.3, which was improved in this project, to verify the existing
benchmarks and compare it with the state-of-the-art CUDA validation frame-
work.

1.3 Contribution

Over the past year, ESBMC team has integrated the latest Clang-based C++ frontend
into ESBMC. ESBMC started with the C++ frontend of CPROVER [8]. However,
C++ and its variant CUDA are constantly being updated [9], which brings a lot of

1http://www.esbmc.org/

http://www.esbmc.org/
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maintenance costs and challenges. In this project, we ported the abstract representation
of the CUDA library to our latest ESBMC, and fixed and improved the current Clang-
based C++ frontend based on CUDA features. In view of the existing methods of
CUDA verification, we propose a simplified process, which greatly reduces the time
required to verify CUDA programs. We additionally implemented operational models
from the CuDNN library on convolution operations and activation functions.

According to the evaluation results, ESBMC v7.3 has higher accuracy than other
CUDA verification frameworks. Compared with ESBMC - GPU, increased about 4
times the verify efficiency at the same time, also keep up with the same level of per-
formance.

1.4 Report Structure

The structure of this report has four layers. The first layer is the introduction section,
which introduces the importance of verifying the correctness of CUDA and CuDNN
and expounds the purpose of the current research, as well as our research objectives
and expected results. The second level is a literature review, which introduces the
current research, background and theory. The third layer is the methodology, which
shows the improvement of the existing open source software ESBMC, and the porting
of the CUDA operational model and the modelling of CuDNN. The fourth layer is
for experiments and evaluation. We use benchmarks to compare with ESBMC-GPU
and some other GPU verification software. The last layer is the conclusion and future
work, which summarises the results achieved in this project and analyses the direction
that can be improved in future research.



Chapter 2

Background

This chapter will lay the theoretical foundation for the following methodology and
implementation. This chapter will start from the introduction of CUDA programs,
to the verification theory based operational model proposed by ESBMC-GPU, and
show some main function algorithms and verification strategies. Next, it introduces
the implementation of parts in CuDNN using some working principles and formulas.
Finally, we systematically introduces the architecture of latest ESBMC, as well as its
internal verification framework and theoretical knowledge. Furthermore, we introduce
the state-of-the-art CUDA verification frameworks.

2.1 CUDA Program

CUDA is a GPU programming model developed by NVIDIA Corporation [1]. Devel-
opers can use the simple interface of GPU programming to build applications based
on GPU computing. Its underlying language provides support for other programming
languages, such as C/C++, Python, Fortran and other languages. This project mainly
focuses on CUDA C/C++ as the research direction.

In CUDA, the execution of programs is based on threads. It is designed so that
thousands of threads can be executed concurrently, and it uses a hierarchical thread
structure to manage a large number of threads efficiently [10]. Within the CUDA ar-
chitecture, the thread stands as the foundational execution unit, bearing characteristics
akin to those of CPU threads. The block serves as a conglomerate of multiple threads,
collaboratively undertaking a unified task, while the grid functions as an assembly of
such blocks. Intra-block threads benefit from shared memory, facilitating communi-
cation. However, inter-block thread interactions necessitate the use of global memory.

14



2.1. CUDA PROGRAM 15

The thread hierarchy is shown in Figure 2.1.

Figure 2.1: Thread Hierarchy [1]

CUDA programming model is heterogeneous, which means the cooperation of
GPU and CPU. There are two important concepts in CUDA programming: host and
device, the host represents the CPU and its memory, and the device represents the
GPU and its memory. Their programs are both contained in the CUDA code and run in
the CPU and GPU respectively. Therefore, the developer needs to distinguish the code
on the host and device, In the CUDA program, the function type qualifier is added to
distinguish the function on the host and device, such as the example CUDA code 2.1.
The following are the three primary function type qualifiers:

(i) __global__: Executed on device, called from host, must return void, also known
as the kernel function.

(ii) __device__ : Only be called from the device and executed on the device.

(iii) __host__ : Executed on the host and can only be called from the host. In
general, it can be omitted.

Data copy can be carried out between the host and the device through communication.
The execution process of a simple CUDA program can be summarised as follows:

1. Allocate GPU memory and copy data: Before executing the CUDA program,
memory needs to be allocated on the GPU. This is done through the API func-
tions provided by CUDA, such as cudaMalloc. Once the allocation is done,
transfer the data from CPU memory to GPU memory using the cudaMemcpy

API function.
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2. Execute parallel computation on GPU: Use kernel functions to perform parallel
computation on GPU. When a kernel is executed, specify the number of execu-
tion threads and the number of thread blocks, such as kernel<<<grid, block>>>.
Thread blocks are collections of threads that can be assigned to different com-
pute units on the GPU for execution. In summary, the computing unit can com-
pute simultaneously while executing the same kernel function, thus achieving
the acceleration effect of parallel computing.

3. Calculation done: Release the device memory after transferring the result of the
calculation from the device memory back to the host memory.

Listing 2.1: An example CUDA code
1 #include <stdio.h>
2
3 __global__ void helloCUDA() {
4 printf("Hello CUDA!\n");
5 }
6
7 int main() {
8 helloCUDA <<<1,1>>>();
9 cudaDeviceSynchronize();

10 return 0;
11 }

2.2 CUDA Operational Model

This project will be developed based on the operational model proposed in ESBMC-
GPU [3]. The operational model is designed to reliably simulate the behaviour of
the CUDA library. A set of abstract representations of methods and data structures
that roughly approximate the semantics of the CUDA library, each method simulates
the library’s actual behaviour. The correctness is ensured by setting assertions at the
beginning and end of the method (e.g., pre-conditions and post-conditions), and to
simplify the operational model, remove methods that have no properties to check and
keep the relevant methods [3]. As a result, model verification is made significantly
simplified and takes less time. At the same time, the operational model also supports
the functionality available in ESBMC, such as data race checking. The main principles
and methods of this operational model are briefly reviewed in this chapter.
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2.2.1 Principle

One of the models of the underlying functionality of CUDA is cudaMalloc [3], which
aims to simulate the behaviour of CUDA programs to allocate memory in GPU device.
To ensure the security of this method, assertions are added to the input and output
parts of the model, and the function is realised by using the Malloc method of ANSI-
C. Finally, the result of memory allocation is judged by checking whether the pointer
is NULL, and the status of the method is recorded in real time. When the memory
allocation error occurs, the assertion failure is triggered to find a counterexample.

Algorithm 1 cudaMalloc operational model
Function: cudaMalloc(vvvoooiiiddd ∗∗devPtr,sssiiizzzeee ttt size)

1: Pre-condition Assertion: size must be greater than zero
2: Allocate block memory for pointer devPtr by using Malloc in ANSI-C, magnitude

is size
3: If the pointer devPtr in step 3 is not NULL, go to step 5; otherwise, go to step 6.
4: CUDA SUCCESS is assigned to the global variable LastError
5: CUDA ERROR OUT OF MEMORY is assigned to the global variable LastError

6: Post-condition Assertion: check the status is CUDA SUCCESS
Output: LastError

The second CUDA underlying functional model is cudaFree [3], algorithm 2
shows the operational model where a pointer to a variable is passed as an input pa-
rameter in order to free the allocated memory. As in the previous model, Malloc
is referenced to simulate functionality, so the cudaFree function also references the
ANSI-C free function, although the allocation and release of memory in CUDA pro-
grams are in the memory of the GPU. The reason why the simulation operation can
be carried out in this way is that in the theory involved in ESBMC solving, tuples are
used to represent the memory allocation and release model, and the memory hierarchy
is not taken into account when performing the analysis. At the beginning of the func-
tion, the devPtr pointer to the memory block allocated by Malloc is checked whether
it is NULL to avoid freeing a nonexistent pointer or double freeing. If the operation is
successful, then the method return CUDA SUCCESS [3].

The final model of the underlying functions of CUDA is cudaMemcpy, When a user
creates an array of data on the host and wants to compute it on the GPU, this method
can transfer the array to GPU memory, and this method can also transfer the computed
data back to the host memory. Algorithm 3 shows the model, a local variable is created,
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Algorithm 2 cudaFree operational model
Function: cudaFree(vvvoooiiiddd ∗∗devPtr)

1: Pre-condition Assertion: devPtr must not be NULL
2: Deallocate memory from pointer devPtr using the free method in ANSI-C
3: CUDA SUCCESS is assigned to the global variable LastError

Output: LastError

initialised, and copied. The Algorithm starts by checking that the initialised array is a
safe size, and ends by checking that the copy operation was successful [3].

Algorithm 3 cudaMemcpy operational model
Function: cudaMemcpy(vvvoooiiiddd∗dst,cccooonnnsssttt vvvoooiiiddd∗src,sssiiizzzeee ttt size,cccuuudddaaaMMMeeemmmcccpppyyyKKKiiinnnddd)

1: Pre-condition Assertion: size must be greater than zero
2: Initialise local variable with dst and src content, named cdst and csrc
3: Initialise the number of bytes numbytes to copy based on the size
4: Copy numbytes positions from csrc to cdst
5: CUDA SUCCESS is assigned to the global variable LastError
6: Post-condition Assertion cdst and csrc must be same data

Output: LastError

In summary, the functions of CUDA are represented by native functions in C/C++
programming language in the operational model for verification in ESBMC. These
CUDA-native functions all behave in accordance with ANSI-C semantics. At the same
time, the functions and memory hierarchy about hardware are omitted in COM, and
only the critical operations are retained.

2.2.2 Call kernel

ESBMC can verify multi-threaded programs in C/C++ programming languages us-
ing POSIX library [4]. In COM, thread instructions of CPU will be used to simulate
threads in GPU, in order to be able to use this method for CUDA kernel verification,
intrinsic functions of ESBMC are used to transcode kernel calls [3].

Listing 2.2: Parameters struct
1 struct arg_struct
2 {
3 int *a;
4 int *b;
5 int *c;
6 void *(*func)(int *, int *, int *);
7 };
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In CUDA programs, multiple arguments may be required to call a parallel function.
In the C thread library it is usually allowed to pass a void∗ argument to a thread func-
tion. To enable thread equations to use multiple parameters, a struct is created, and
packing multiple arguments into it. finally pass the address of the struct to the thread
function, as shown in Listing 2.2.

pthread create(&tid,NULL, thread f unc,NULL); (2.1)

Function 2.1 a method of the POSIX threads library, it is used to create new threads,
where threads are the smallest independent unit of execution allowing concurrency.
When new threads are created, each thread can run concurrently and perform a differ-
ent task. Each thread operates with its own dedicated stack space, ensuring that threads
function independently and without interference from one another. In COM, parallel
operations on the GPU are emulated by this function to enable ESBMC to detect errors
in multi-threaded processes.

pthread join(&tid,NULL); (2.2)

Function 2.2 is a method in the POSIX thread library for waiting for a specified
thread to terminate and reclaiming the resources of the terminated thread. Within
COM, its primary role is synchronisation. Specifically, when multiple threads com-
pute and rely on global variables to store their outcomes, the main thread can pause,
ensuring all threads finalise their computations before proceeding.

The ESBMC-GPU needs to modify the functions of the CUDA calling kernel for
verification, such as replacing kernel<<<grid, block>>> with the inner function
ESBMC_verify_kernel(kernel, grid, block). The algorithm is tailored to verify
CUDA programs with up to three arguments. In CUDA programming, gridDim and
blockDim are two fundamental built-in variables. Specifically, gridDim denotes the
number of blocks in a grid, while blockDim signifies the number of threads within a
block. In COM, both are represented as three-dimensional struct types. This algorithm
uses constructor functions to assign values to these struct. The essence of the model
is encapsulated in the implementation of this function. It should be underscored that
utilising ESBMC-GPU to verify CUDA code obviates the need for the CUDA toolkit
installation.
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Algorithm 4 kernel operational model
Function: ESBMC veri f y kernel(RRREEETTT ∗ kernel,BBBLLLOOOCCCKKK blocks,

TTT HHHRRREEEAAADDDthreads,TTT III arg1,TTT 222 arg2,TTT 333 arg3)
1: gridDim is assigned a value from the blocks parameter
2: blockDim is assigned a value from the threads parameter
3: Encapsulate the arguments within a struct and invoke pthread create to spawn

child threads, passing the struct’s pointer as an argument.
4: Synchronise and terminate each child thread by calling pthread join

2.2.3 Two-thread Analysis

To mitigate the state explosion issue and curtail the verification duration, ESBMC-
GPU adopts a Two-thread analysis approach. Given that CUDA programs typically
leverage array computations and deploy multiple threads to expedite the process, the
Two-threaded analysis aptly emulates this behaviour. This approach retains potential
errors, such as data races, thereby providing ESBMC with the necessary Features to
identify errors.

Figure 2.2: Two-thread verification method

2.3 CuDNN Library

CuDNN is a library developed by NVIDIA for deep neural network acceleration [7].
It is based on CUDA and can be used to speed up the training of neural networks.
For example, Convolutional Neural Network (CNN) is one of the most widely used
neural networks in deep learning. In the fields of speech recognition, natural language
processing, computer vision, and others, it has produced excellent results. The basic
structure of CNN includes convolutional layer, pooling layer, activation function, fully
connected layer, etc.
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2.3.1 Convolutional Method

CNN model operation, usually takes the longest time to calculate the convolutional
layer, which is mainly used to extract the features of the image and requires a lot
of computing resources [11]. Therefore, it needs to use high-performance computing
devices such as GPU for calculation acceleration. Especially in deep CNN, the compu-
tation of convolutional layers can increase exponentially with the depth of the network,
leading to a significant increase in training time [12]. The convolutional layer can be
seen as sliding the filter over the image, extracting the local information in the image
through the multiplication and addition operation, and generating a new feature map.
An example of the calculation process is shown in Figure 2.3.

( f ∗g)(t) =
∫

∞

−∞

f (τ)g(t − τ)dτ (2.3)

1 0 1 0

0 1 0 1

1 0 0 0

0 1 1 0

Input

×
1 0

0 1

Convolution kernel

+ 1

Bias

=

3 1 3

1 2 1

3 2 1

Output

Figure 2.3: Convolution example

Specifically, when performing the convolution operation, the image and the convo-
lution kernel are multiplied element-wise and added together to obtain the convolution
result. This method will cause a large amount of computation. GPU are better at ma-
trix operations than convolutions, so in CuDNN, converting convolutions into matrix
operations makes the computation more efficient. For example, it expands the input
image and convolution kernel into a matrix, and then performs matrix multiplication
to calculate the convolution result. This approach take full advantage of the parallel
computing of GPU [13].

2.3.2 Activation Function

One of the most important components of a neural network is the activation function,
also referred to it as the hidden unit or nonlinear mapping function. Adding activation
function to neural network introduces nonlinear property and enhances the learning
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ability of neural network. So the main characteristic of activation function is non-
linearity. There are various activation functions corresponding to different features
[14]. In the actual modelling process, different activation functions need to be selected
according to the requirements. CuDNN library provides a variety of activation function
implementations.

The Rectified Linear Unit (ReLU) function 2.4 boasts rapid computational capabil-
ities, delivering an output of 0 for inputs less than 0 and mirroring the input for values
greater than 0. Its gradient is elegantly straightforward, yielding results of either 0
or 1, thereby mitigating the risk of gradient vanishing. Owing to its computational
expediency and superior performance, ReLU is ubiquitously adopted in deep learning
realms, notably within convolutional neural networks and deep residual networks.

ReLU(x) =

0, x ≤ 0.

x, x > 0.
(2.4)

ReLU ′(x) =

0, x ≤ 0.

1, x > 0.
(2.5)

The Sigmoid function 2.6 is smooth and continuous, with an output range confined
between 0 and 1. This characteristic renders it particularly effective in scenarios where
the output is to be interpreted as a probability. Furthermore, its curvaceous nature en-
ables it to capture nonlinearities when employed as an activation function in neural
networks. While the sigmoid function is notably straightforward and conducive to im-
plementation, its training efficacy can diminish due to the vanishing gradient problem,
especially when the function’s input is excessively large or small. This phenomenon
leads the gradient towards zero, impeding model optimisation. As a result, ReLU and
other alternative activation functions have become more prevalent in contemporary
deep learning applications.

Sigmoid(x) =
1

1+ e−x (2.6)

Sigmoid′(x) =
e−x

(1+ e−x)2 (2.7)

In deep learning, the Exponential Function often appears in the activation function,
loss function, which usually has a large amount of calculation. CuDNN uses Fast Ex-
ponential Function Approximation method to approximate the value of the exponential
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function. It works by approximating the curve of an exponential function using simple
arithmetic operations, which greatly reduces the time taken to compute, but at the cost
of some accuracy.

2.4 Bounded Model Checking (BMC)

The safety and reliability of software cannot be separated from safety verification.
Model checking is an automated verification method in which systems are modelled as
finite state Machine or finite transition system. It checks whether the system conforms
to a given property by traversing all the states in the system [15]. In some cases, the
system state space may be very large, so some restrictions can be added to improve
the efficiency of model checking, such as bounded model checking. BMC limits the
length of execution paths, allowing it to be used to verify systems with infinite state
spaces [15].

State transition systems can be described by Kripke structures, it has set of states
S. s0,s ⊆ S and s0 represents the set of initial states, and s represents the current value
of all key variables and the value of the program counter during the execution of the
program [3]. Based on the Kripke structure, a verification condition formula in BMC
is as follows [16]:

ψ
π

k = I(s0)∧
k∨

i=0

i−1∧
j=0

R(s j,s j+1)∧¬φ(si) (2.8)

Where k represents the number of unwinding loops and i is the set of initial states,
the range of 0 ≤ i < k. R(s j,s j+1) is the transition relation between state s j and s j+1,
and I(s0)∧

∧i−1
j=0 R(s j,s j+1) represent executions of length i. In simple terms, if Eq

(2.8) is not satisfied, then it indicates that the safety property is satisfied in all the state
sequences, otherwise, it violates the safety property [16].

2.5 ESBMC

Satisfiability Modulo Theories (SMT)-Based Context-Bounded Model Checker (ES-
BMC) is an open-source and mature software verification tool. It is based on the
principles of BMC and verifies the correctness of the program using an SMT solver.
SMT is a research field that deals with the satisfiability of first-order formulas with re-
spect to a background theory [17]. ESBMC supports not only C/C++, but also Kotlin,
and Solidity programs. It can detect errors in programs, such as data races, deadlocks,
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memory leaks, etc, and generate reports during the verification process to help devel-
opers find and fix existing errors when verifying programs, and improve the reliability
and security of programs. This project is based on the verification extension of C++
program in ESBMC, the structure of the tool is shown in Figure 2.4.

Figure 2.4: ESBMC architectural for C/C++ program [2]

The main difference from ESBMC-GPU [3] is that ESBMC is actively maintained
and updated for several versions, ESBMC uses clang as its front-end, which has good
compatibility, it can run on different platforms, and has excellent error analysis to
provide more detailed error information [18]. The Clang-based front-end parses the
program to produce a Abstract Syntax Tree (AST), which is converted to Intermediate
Representation (IR), and then type-checked to avoid type errors, such as assignment
checks, function call checks, etc.

To make the original programme simpler, the output IR generates the GOTO pro-
gramme using the GOTO converter. The GOTO programme is run through symbolic
execution, replaces all loops with GOTO language, and then converts it into Static
Single Assignment (SSA) [19]. Finally, the logic formula C∧¬P (C represents con-
straints and P represents the properties) can be obtained based on SSA expressions,
and the satisfiability of the formula can be verified by SMT solver. If the given prop-
erty is violated, a counterexample will be generated, and if the property holds, the
verification succeeds. ESBMC currently supports a variety of SMT solvers: Z3 [20],
Bitwuzla [21], Boolector [22], MathSAT [23], CVC4 [24], Yices [25].
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2.6 Clang-Based Frontend in ESBMC

The Low-Level Virtual Machine (LLVM) [26] is an open-source compiler project orig-
inating from Apple Inc., initially intended to supersede GCC for mac-OS with a fo-
cus on prioritising Objective-C. Utilising Static Single-Assignment for compilation,
LLVM boasts a modular architecture, enabling proficient support for various program-
ming languages. Presently, it serves as a foundational component for numerous com-
mercial and research-based projects [27].

Clang serves as the front-end compiler for LLVM, natively supporting C/C++ lan-
guages and being implemented in C++. Notably, on mac-OS platforms, Clang’s pro-
cessing capability surpasses that of GCC by a factor of 1.6. When juxtaposed with the
conventional GCC, Clang demonstrates superior attributes: it boasts a rapid compila-
tion process, with its preprocessing being approximately 1.4 times more efficient, and
exhibits optimised memory utilisation. Furthermore, Clang’s static analysis, which in-
cludes building an abstract syntax tree, works about four times faster than GCC and
uses less memory [26].

In essence, while traditional compilers focus on transforming high-level source
code into executable binary or intermediate code for computational execution, the com-
piler within ESBMC primarily centres on source code analysis to detect potential in-
consistencies or errors. Contrary to the output-driven nature of conventional compilers,
ESBMC provides a correctness report on the source code, pinpointing vulnerabilities,
violated assertions, or unsatisfied conditions.

2.6.1 Abstract Syntax Tree (AST)

The Abstract Syntax Tree (AST) illustrates the hierarchical structure of source code in
a programming language. It captures both syntax and semantic information in a tree
format, which means the tree’s layout might not strictly follow the order of the original
source code. In the AST, each node symbolises a fundamental semantic component
from the code. Being ”abstract”, the AST omits some specific details from the actual
code semantics.

Listing 2.3: Example addition code
1 void function(int a, int b, int &c) {
2 c = a + b;
3 }
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For example, the function above calculates the sum of two integers and updates
the result directly into the original variable. The AST generated by Clang is shown in
Figure 2.5 using flag: –parse-tree-only from ESBMC.

Figure 2.5: AST for C/C++ function

FunctionDecl: Function

Parameters

ParmVarDecl: a ParmVarDecl: b ParmVarDecl: c

Body: CompoundStmt

BinaryOperator: =

LHS: DeclRefExpr: c RHS: BinaryOperator: +

DeclRefExpr: a DeclRefExpr: b

Figure 2.6: AST representation

In the AST, each node represents a specific construct or operation found in the
source code. Termed as ”Node Types,” these nodes facilitate a refined and precise
mechanism for the analysis, optimisation, and subsequent transformation of the under-
lying code. The following are some commonly used types in AST :

• FunctionDecl: The FunctionDecl node in Clang’s Abstract Syntax Tree (AST)
symbolises either a function declaration or a definition. Embedded within this
node is crucial data such as the function’s name, its return type, and an indi-
cator of whether the function is defined. As soon as a function is defined, its
FunctionDecl node will have child nodes that describe its parameters (through
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ParmVarDecl nodes) and the body of the function, which is typically represented
by a CompoundStmt node.

• ParmVarDecl: It is a dedicated node type in the AST signifying the declaration
of parameter variables. Within a function or method declaration or definition,
each parameter is represented using this node. Notably, ParmVarDecl encom-
passes detailed attributes of the parameter, including its type, name, and posi-
tional information within the function’s signature.

• CompoundStmt: It pertains to a composite statement in the AST, embodying a
block of code that envelops multiple other statements. In C and C++ languages,
every code scope demarcated with curly braces ({}) gives rise to a Compound-

Stmt node in the AST. Its pivotal role lies in organising and containing other
statement nodes.

• VarDecl: Representing a variable declaration, the VarDecl node can depict vari-
ous forms of variables, be it global, local within a function, or even a class/struc-
ture member. This node encapsulates details such as the variable’s name, its
type, and potential initialises if they exist.

The Abstract Syntax Tree (AST), serving as an intermediate representation, intu-
itively captures the syntactic structure of a program. It not only offers efficient analysis
capabilities but also encapsulates the entirety of the program’s static structural infor-
mation. Significantly, the AST is independent of the source language’s syntax, making
it an essential component in the latest versions of ESBMC.

2.6.2 Intermediate Representation (irept) in ESBMC

In model checking, AST and irept data structures are two distinct but related concepts,
respectively. AST is a data structure widely used by compilers and static analysis tools
to capture the core syntax of source code in a tree structure, eliminating unnecessary
details such as parentheses. In contrast, irept was introduced in specific tools such as
ESBMC and aims to provide a wider range of code description capabilities. They can
not only describe traditional syntax elements, but also express complex code structures
precisely because of their recursive and general nature. In these model checkers, irept

is used as a highly flexible internal code representation that supports deep program
analysis and verification. In short, while irept is similar to AST in some ways, it has
features that make it more suitable for code analysis.
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In the past, ESBMC used its own front-end to produce the irept structure [28]. This
choice meant more work for the development team, as they had to handle its upkeep
themselves. On the other hand, Clang provides a straightforward and effective way
to create irept by using the AST it generates. This method is not only simpler but
also more efficient, highlighting the benefits of using mature parsing tools in model
checking. At present, ESBMC has gradually improved the C++ verification using
Clang front-end [29].

2.7 Related Work

At present, many other tools have been proposed to verify CUDA programs. These
tools use different methods, have their own characteristics, and aim at different prop-
erty violations:

• GPUVeri f y [30]: It is a focused static analysis tool designed to check the cor-
rectness of GPU kernels, which are multi-threaded programs important for par-
allel computing. Using the ”dual scheduling” method, it looks into all thread
interactions, searching for situations that might cause concurrency issues. Im-
portantly, it supports both OpenCL and CUDA.

• GKLEE [31]: GKLEE builds upon KLEE, a tool designed for symbolic exe-
cution of LLVM intermediate code. It employs symbolic execution methods,
enabling it to traverse every potential execution route in a program to uncover
concealed mistakes. It has the ability to accurately simulate the concurrent exe-
cution of CUDA programs and thus find concurrency errors.

• Prover o f User GPU Programs [32]: PUG is a tool that checks GPU kernels
using automatic tools called SMT solvers. It can find issues like data race, prob-
lems with barrier synchronisation, and conflicts when using shared memory.

• CIV L [33]: CIVL stands for ”The Concurrency Intermediate Verification Lan-
guage”. It is a model checking and verification tool specially designed for con-
current software. The main purpose is to model check and verify concurrent
software to ensure the correctness of software in multi-threaded or parallel envi-
ronment. Its technical principle is relatively close to that of ESBMC-GPU.



Chapter 3

Methodology & Implementation

This chapter aims to detail the method introduced in the project, which allowed the
latest ESBMC to recognise extension name of CUDA programs and adaptation COM.
The chapter further delves into the limitations of ESBMC in verifying C++ programs,
explaining how these limitations impact CUDA verification. The steps taken to address
these issues are also discussed. Finally, we examined issues in COM, rectified any
incorrect code, and employed a hash table for operational model simplification. In the
remaining part, this project analysed the principle of the convolution and activation
function in CuDNN, and established the corresponding operational model.

3.1 Filename Extension

ESBMC provides support for a variety of programming languages. A Clang-based
Frontend1 will read the suffix of the filename to identify the programming language
and use a frontend specific to that language to operate on it [34]. For example, when a
C++ file main.cpp is given as input, the frontend recognises the suffix .cpp and uses
Clang C++ frontend to parse and convert it. Similarly, it will output an error message
if it recognises a file type that is not supported.

As mentioned before in this paper, CUDA program is an extension of C/C++. In
order to distinguish CUDA source code from ordinary C++ code, CUDA programs use
.cu as the file extension name. To verify CUDA programs in ESBMC, the solution is to
deal with it as an extension of C++ programs, i.e., use C++ frontend to process CUDA
programs. Compared to C++, CUDA code has some unique symbols for acceleration
and memory management, hence these symbols cannot be used in C++. This project

1https://github.com/esbmc/esbmc/wiki/Clang-Based-Frontend-for-Cpp
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intends to improve the Clang C++ frontend with the ability to handle these special
symbols, figure 3.1 shows the improved process.

Figure 3.1: Clang frontend for CUDA program

C++ source file extensions exhibit diversity and are not universally standardised.
Their names depending on factors like the compiler in use, the underlying operating
system, and other environmental considerations. Common extensions, such as .cc,
.ipp, and .cxx, manifest across different setups. Within the front-end of ESBMC, these
extensions are meticulously defined, ensuring that files with matching extensions are
put into to the C++ front-end for appropriate processing. As seen in Figure 3.1, we add
the .cu extension to the list for C++ so that we can recognise CUDA programs.

Listing 3.1: C++ source file extensions
1 static const char *const extensions_cpp[] =

2 {"cpp", "cc", "cu", "ipp", "C", "cxx", nullptr};

3
4 static const language_desct language_desc_CPP = {"C++",

extensions_cpp};

3.2 Clang-based Frontend Improvements

In this chapter we will show some improvements to the ESBMC C++ frontend. In
order to port COM from older versions of ESBMC, we need to ensure that the existing
frontend has the correct functionality and support for some of the operations involved
in the model.

COM is developed based on the old ESBMC C++ compiler, which is called C++
parser. When input is C++ source code, the C++ parser first lexically analysis the
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code, breaks it down and converts it into tokens, and finally generates an AST based
on the tokens. However, the C++ language is constantly changing, and some syntax is
updated and modified over time, so the C++ parser must be maintained frequently.

Ensuring correct parses is the basis of model checking. If the current frontend does
not parse the code correctly, subsequent analysis and validation may parse based on
incorrect premises, resulting in false positives or missing real errors. In our investi-
gation, we found that the C++ front-end of ESBMC currently has some flaws in the
handling of structs, causing some operations to fail, which is not acceptable, so we
have made some fixes to these parsing and tuning of structs.

3.2.1 Struct Assignment

In CUDA, we used the struct data type to store 3D data, such as the index of the
threads, the index of the blocks. Many of these require operations between structs. A
struct is a compound data type that is a user-defined data type that contains multiple
data members of different types. In contrast to C, structs in C++ can contain member
functions, which can be user-defined. These member functions support basic struct
operations such as initialisation, copy, move, and destruction. In general, we don’t
need to define all member functions explicitly; for simple structs, the compiler will
often be able to generate them implicitly. Our C++ front-end lacks the ability to parse
these implicit member functions. Here are some common features of member functions
[35]:

• Constructor: A default constructor is a unique type of constructor which does
not take any parameters. Typically, its role is to initialise member variables to
default values. It is invoked when an object is instantiated without providing
initial values, like when objects are created within arrays or through dynamic
allocation. Notably, in scenarios where no constructors are explicitly defined for
a class or structure, the compiler implicitly provides a default constructor, which
generally performs no specific actions [36].

• Copy Constructor: The copy constructor receives a reference to an object of the
same type and utilises it to initialise a new object. The utilisation of object pass-
ing as a function parameter, object return from a function, or object initialisation
based on an existing object is particularly advantageous. The copy constructor,
if not explicitly modified, executes a ”shallow copy” operation.
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• Copy Assignment Operator: The copy assignment operator is an overloaded ver-
sion of the ’=’ operator, designed to assign the state of one object to another of
the same type. Its primary utility surfaces when there’s a need to assign val-
ues between pre-existing objects. Mirroring the behaviour of the default copy
constructor, this operator performs a shallow copy by default. Such behaviour
might not always be desirable, especially when handling dynamically allocated
resources.

• Destructor: A destructor, distinguished by the tilde (˜) symbol preceding the
class name, neither takes parameters nor returns a value. Its main purpose is
to perform cleanup actions when an object goes out of scope or is explicitly
deleted. In cases where the class manages dynamically allocated resources or
other system resources like file handles, proper management in the destructor
becomes crucial. The default destructor, if not defined explicitly, usually does
nothing specific.

• Move Constructor and Move Assignment Operator: Introduced in C++ 11, both
the move constructor and move assignment operator bolster the language’s ef-
ficiency through ”move semantics”. Invoked primarily when initialising or as-
signing from a temporary object (often termed as an right value), they prevent
unnecessary copying, leading to optimisations. If certain criteria are met, the
compiler can implicitly provide default versions of these functions, which typi-
cally involve moving members individually.

Initially, the Clang frontend autonomously generates constructors, destructors, as
well as copy/move assignment operators for the struct. This intrinsic generation sub-
stantially alleviates our workload, necessitating only an accurate extraction from the
AST, as shown in Figure 3.2.

Figure 3.2: AST for implicit member functions
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By using the corresponding query function provided by clang::CXXMethodDecl,
we can easily determine whether a method has a particular property or feature. We pro-
pose a new function is CopyOrMoveOperator, it primary objective is to ascertain if a
given C++ method, represented by the parameter md of type clang::CXXMethodDecl,
is either a copy assignment operator or a move assignment operator. The method under
scrutiny leverages two pivotal utility functions from clang::CXXMethodDecl:

1. isCopyAssignmentOperator(): Checks if the method md is a copy assignment
operator. In C++, this operator is automatically created for classes if needed. Its
main job is to let one object take the values from another object of the same type.

2. isMoveAssignmentOperator(): Confirms if the method md is a move assignment
operator. Introduced in C++ 11, this operator is adept at efficiently reassigning
resources from one object to another, resulting in the source object being left in
a valid but unspecified state.

Listing 3.2: Determine copy/move assignment operator method

1 bool clang_cpp_convertert::is_CopyOrMoveOperator(const

clang::CXXMethodDecl &md)

2 {

3 return md.isCopyAssignmentOperator() || md.

isMoveAssignmentOperator();

4 }

The implicitly called member functions are then converted into symbols by im-
proving the conversion functions in the C++ frontend. In the Clang C++ frontend, we
usually inherit methods from the Clang C frontend. This is because C++ is almost fully
compatible with C, which means most C programs can be compiled and run in the C++
compiler, so our frontend architecture enables code reuse. In this case, the C++ struct
has a few more member functions than the C struct, so we just need to make some fil-
tering and optimisations on the C++ front end, and then call the C conversion function
on the front end to implement the desired functionality.

In the C++ frontend, the get method function selectively omits certain implicit
functions produced by Clang. This happens because Clang’s AST creates numerous
methods that aren’t essential for model checking. Although this process streamlines
the symbol table, it occasionally skips over certain implicit functions we require. To
address this, we employ the function shown in Listing 3.2 to identify if an implicit
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function is a copy or move assignment operator, This helps us convert AST Implicitly
generated member functions into symbols.

It’s important to mention that when Clang automatically creates member functions,
it often leaves the parameters unnamed. This is done to prevent any name clashes
with user-defined code and to make the internal processing simpler. While naming
parameters can streamline operations, in ESBMC, we rely on these parameter names
to build the symbol table. If the parameters are unnamed, we can’t call the member
function correctly. To address this, we introduced a function that assigns names to
these parameters, algorithm 5 describes the behaviour of this function.

Algorithm 5 Parameter named function
Function: name param and continue

1: Pre-condition Assertion: The name and id are empty
2: If the function is automatically created by the compiler and is a member function,

we give its arguments a name by combining the base name with the string ”ref”
3: Returns if it is not an implicit member function generated by the compiler

At this point, the ESBMC frontend is able to correctly parse the member functions
generated by the Clang frontend and convert them to a symbol table. We can see the
converted member functions under the flag –symbol-table-only of ESBMC. Figure a
shows the copy assignment operator generated according to the above AST, as evident
from the symbol table, the parameters have been appropriately assigned names.

Figure 3.3: Symbol table of the Copy Assignment Operator
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3.2.2 Temporary Variables

In our verification approach for a CUDA program, we first call the specific CUDA
kernel function. This function then sets the gridDim and blockDim values based on
the given arguments. Nevertheless, in the context of ESBMC’s Clang C++ frontend,
this specific situation presents challenges. The frontend doesn’t effectively address this
scenario, it is currently not equipped to effortlessly generate a temporary variable and
subsequently assign it a value through a constructor call.

gridDim = dim3(blocks); (3.1)

blockDim = dim3(threads); (3.2)

In the above method calls, dim3 is a struct in CUDA that is mainly used to specify
the size of three dimensions. While many CUDA applications only parallels in one or
two dimensions, dim3 provides three dimensions: x, y, and z to support a wider range
of use cases. Although dim3 has three dimensions, it is not necessary to specify the
values of the three dimensions at definition time, this is achieved by adding default
values in the constructor. listing a shows a simplified version of the dim3 definition.

Listing 3.3: Example struct

1 struct dim3

2 {

3 unsigned int x, y, z;

4
5 dim3(unsigned int vx = 1, unsigned int vy = 1, unsigned

int vz = 1)

6 {

7 x = vx;

8 y = vy;

9 z = vz;

10 }

11 }

In C++, when an instance of the dim3 type is instantiated via the call dim3(blocks),
the compiler undergoes a series of operations to facilitate this request [36]:

1. Resolution and Matching of the Constructor: The compiler initiates by ex-
amining available constructors and discerning the optimal match. In scenarios
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with multiple constructors, the compiler undertakes an overloading resolution to
ascertain the most fitting candidate.

2. Storage Allocation: Subsequent to constructor resolution, the compiler allo-
cates memory for the new object. For local instances (e.g., those defined within
a function), this typically corresponds to stack allocation. Conversely, for dy-
namically allocated objects, memory is sourced from the heap.

3. Constructor Invocation: The compiler subsequently emits instructions to in-
voke the matched constructor, which encompasses:

• Parameter Passing: The compiler ensures the parameters are conveyed in
the correct sequence, filling in absent parameters with default values. In
the current context, a value of blocks is supplied for vx, while vy and vz

inherit the default value of 1.

• Execution of the Constructor Body: The code within the constructor exe-
cutes, initialising the object’s member variables.

4. Handling of Temporary Objects: In specific instances, temporary objects might
be instantiated and subsequently destructed within this process.

In our analysis, we adapt in the goto program, which is an important intermediate
level of the ESBMC source code. This design aims to streamline the subsequent phases
of analysis and model checking. Firstly, the mentioned operations involve invoking
the constructor within the structure. In ESBMC, we refer to such operations as side
effects. These are statements or expressions that might introduce unintended changes,
like function calls, assignments, or other actions that could modify the program’s state.
Recognising and addressing these side effects is pivotal for ensuring accurate checks.
Typically, ESBMC would convert these expressions, which could have side effects,
into a set of equivalent atomic operations that are side-effect free.

Initially, a temporary variable is instantiated to store the return value. This variable
is assigned the return type of the struct dim3, and its location within the expression of
the function call. A temporary variable named &return value$ dim3$1 is created by
concatenating the string return value$ and the struct name dim3.



3.2. CLANG-BASED FRONTEND IMPROVEMENTS 37

Listing 3.4: goto program side effect handling
1 new_symbol.name = "return_value$";

2 new_symbol.type = expr.type();

3 new_symbol.location = expr.location();

4
5 new_symbol.id = tmp_symbol.prefix + id2string(new_symbol.

name);

6 new_name(new_symbol);

7
8 goto_programt tmp_program;

9 const typet &ftype = call.function().type();

10 if(ftype.return_type().id() == "constructor")

11 {

12 // for constructor , we need to add the implicit ‘this ‘ as

the first argument ,

13 // so convert to:

14 // BLAH(&return_value$_BLAH$1 , ...)

15 side_effect_expr_function_callt ctor_call;

16 ctor_call.function() = call.function();

17 exprt::operandst &args = ctor_call.arguments();

18 address_of_exprt tmp_result = address_of_exprt(call.lhs()

);

19 // first push the implicit ‘this ‘ arg

20 args.push_back(tmp_result);

21 // then append the remaining operands

22 args.insert(args.end(), call.arguments().begin(), call.

arguments().end());

23 ctor_call.location() = call.location();

24 // now convert this expr to code

25 codet ctor_call_code("expression");

26 ctor_call_code.location() = call.location();

27 ctor_call_code.move_to_operands(ctor_call);

28
29 convert(ctor_call_code , tmp_program);

30 }

Finally, it gets the function type and checks if the function is a constructor. If it
is a constructor, we need to take a special treatment. For constructor calls, we need
to pass the implicit temporary variable pointer as the first argument and then add the
previously initialised arguments to the argument list. At this point, the temporary
variable &return value$ dim3$1 has been successfully assigned. Figure 3.4 is the
final converted goto program that can be viewed using flag –goto-functions-only in
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ESBMC.

Figure 3.4: Goto program for Temporary variables

3.3 Operational Model Fix

The Clang-based frontend improves efficiency for ESBMC and also provides support
for newer C++ standards such as C++ 11 [37]. This brings new C++ features, but also
errors in existing operational models, therefore, an important goal of the project was
to fix and improve COM. In this process, we cannot simply repair OM randomly, and
random repair is likely to lead to more difficult and confusing repair in the future. This
repair plan follows the Guidelines for Fixing OM 2.

1. Start with a simple CUDA program and get its dependencies in COM.

2. Get the existing errors from all dependencies and fix them from the inside out
according to the dependencies.

3. After the repair is completed, switch to a more complex CUDA program and
repeat the operation of step 1.

Importantly, the repair of the model must preserve the original behaviour. For exam-
ple, the C++ < new > header files provide support for dynamic memory allocation
by defining the operators new and delete and the associated exception handling mech-
anism. When a program needs to request or free memory at run time, this header
ensures efficient resource management and proper exception handling, all of which are
implemented by the < new > operation model in ESBMC. In the detection through

2https://github.com/esbmc/esbmc/wiki/Guidelines-for-Fixing-Operational-Models-(OM)
-in-ESBMC

https://github.com/esbmc/esbmc/wiki/Guidelines-for-Fixing-Operational-Models-(OM)-in-ESBMC
https://github.com/esbmc/esbmc/wiki/Guidelines-for-Fixing-Operational-Models-(OM)-in-ESBMC
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the guidelines step, it is found that when we use the model, there will be a segmented
fault. After investigation, it is found that the problem occurs in the exception handling
function, as shown in Figure 3.5.

Listing 3.5: Outdated model

1 struct bad_alloc: public exception {

2 public:

3 bad_alloc() throw ();

4 bad_alloc(const bad_alloc&) throw ();

5 bad_alloc& operator=(const bad_alloc&) throw ();

6 const char* what() const throw () :

7 message("std::bad_alloc") {

8 return message;

9 }

10 };

Member initialises are frequently employed in constructors to initialise or invoke
the base class constructor and to initialise the member variables of the class. In the
preceding code snippet, the member initialisation list (message(”std :: bad alloc”)) is
used in the definition of a member function, which is not allowed in C++, For these out-
dated syntax, we follow the authoritative online C++ reference site3, which provides
a detailed, accurate list of components and functions in the C++ standard library. We
have made some corrections to some erroneous models to ensure that they work prop-
erly, listing 3.6 shows the corrected code. We need to gradually update these outdated
code usage to fit the Clang frontend.

Listing 3.6: The corrected model

1 struct bad_alloc: public exception {

2 public:

3 bad_alloc() throw() {}

4 bad_alloc(const bad_alloc& other) throw();

5 bad_alloc& operator=(const bad_alloc& other) throw();

6 virtual const char* what() const throw() {

7 return "std::bad_alloc";

8 }

9 };

In COM, several methods employ malloc to allocate memory on the heap. This
approach can be laborious, as memory assigned through malloc requires a subsequent

3https://en.cppreference.com/w/

https://en.cppreference.com/w/
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Free function call to avoid potential memory leaks. Conversely, alloca is a more
straightforward option for local variables, offering swift allocation and an automatic
release after the function call concludes. In the latest version ESBMC provides an in-
trinsic function __ESBMC_alloca, it ensures consistent and valid memory allocation.
Specifically, it was introduced to provide users with a mechanism to initialise byte ar-
rays or simulate register addresses within the harness. In addition, it does not trigger
any memory leaks or dangling pointer checks.

Listing 3.7: intrinsic function example
1 /*ESBMC_verify_kernel()*/

2 void ESBMC_verify_kernel_no_params(void *(*kernel)(), int

blocks , int threads)

3 {

4 __ESBMC_atomic_begin();

5 threads_id = (pthread_t *)__ESBMC_alloca(GPU_threads *

sizeof(pthread_t));

6
7 dev_no_params.func = kernel;

8
9 int i = 0, tmp;

10 assignIndexes();

11 while(i < GPU_threads)

12 {

13 pthread_create(&threads_id[i], NULL ,

ESBMC_execute_kernel_no_params , NULL);

14 i++;

15 }

16 __ESBMC_atomic_end();

17 }

In Figure 3.7, the code aims to dynamically allocate space on the stack for a array
to store thread IDs. The array’s size is determined by the value of GPU threads .
The function __ESBMC_alloca is utilised for this allocation. It streamlines the process
and, by ensuring that memory leaks or dangling pointers won’t occur, allows us to skip
those specific checks, thereby enhancing verification efficiency.

3.4 Optimisation of COM

When ESBMC checks CUDA programs, it starts by preprocessing the code before
compiling it. During this preprocessing, it recognises the ”#include” directive and
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inserts the content of the specified file into the main code. This action links them
together. For instance, if a function from COM is used in a CUDA program, the
preprocessing ensures that its definition is available from COM. To sum up, when we
validate a program with ESBMC, we are not only validating the behaviour of the code,
but also the used functions in the header file.

In CUDA’s parallel framework, determining the index of blocks and threads is
essential [38]. Each thread needs to handle a unique segment of data, and its index
determines its position within the dataset, by using the index, we can specify the work
part of each thread. During the calculation, the linear value is an intermediate variable
used to convert the multidimensional index to a single dimension, First, we calculate
the index of the block, which is calculated by the following formula:

linear value =
id

blockDim.x×blockDim.y×blockDim.z
(3.3)

By converting the linear value to a multidimensional index, the x, y and z of the
thread or block index can be calculated:

block index.z =
⌊

linear value
gridDim.x×gridDim.y

⌋
(3.4)

block index.y =
⌊

linear value mod (gridDim.x×gridDim.y)
gridDim.x

⌋
(3.5)

block index.x = linear value mod (gridDim.x×gridDim.y)

mod gridDim.x (3.6)

After the block index is obtained, the thread index is calculated. Given a linear thread
ID, the goal is to derive its corresponding 3D thread index within the CUDA com-
putational model considering both the block and grid structures. It can be defined as
follows:

block size = blockDim.x×blockDim.y×blockDim.z (3.7)

grid position = indexOfBlock[id].x

+ indexOfBlock[id].y×gridDim.x

+ indexOfBlock[id].z×gridDim.x×gridDim.y (3.8)
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From these, the linear position of the thread within its block is:

linear value = id −grid position×block size (3.9)

With this linear value, the 3D index of threads is derived as:

thread index.z =
⌊

linear value
blockDim.x×blockDim.y

⌋
(3.10)

thread index.y =
⌊

linear value mod (blockDim.x×blockDim.y)
blockDim.x

⌋
(3.11)

thread index.x = linear value mod (blockDim.x×blockDim.y)

mod blockDim.x (3.12)

In typical programs, index calculation can be a tedious process. However, for most
programs, this calculation might not significantly affect performance, as the value be-
comes clear during execution. But for ESBMC, it’s not about a specific run. Instead,
ESBMC generates a constraint to express the semantics of the calculation, considering
all possible runs. This is because ESBMC aims to identify inputs and paths that could
lead to errors in the program. For our purposes, we focus on verifying the correctness
of the CUDA program itself, and for the computation of COM, we need to make the
maximum simplification to improve the efficiency of software verification.

In the verification process of most CUDA programs, two-thread analysis can find
errors. For CUDA architecture, two-thread can be divided into two cases, namely, a
thread block containing two threads is enabled, and the corresponding kernel function
is kernel <<< 1,2>>> (), in the other case, two thread blocks are enabled, each with
a single thread, and the corresponding kernel function is kernel <<< 2,1 >>> ().
This gives us a finite range of block and thread indices, which we can plug into the
above formula to obtain the mathematical model. In order to simplify the complex
model, we create the following lookup table 3.1. The purpose is that when we output
a value, the result will be immediately obtained through the lookup table, optimising
the time complexity of this calculation to O(1).
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id gridDim blockDim getBlockIdx getThreadIdx
0 {1, 1, 1} {2, 1, 1} {0, 0, 0} {0, 0, 0}
1 {1, 1, 1} {2, 1, 1} {0, 0, 0} {1, 0, 0}
0 {2, 1, 1} {1, 1, 1} {0, 0, 0} {0, 0, 0}
1 {2, 1, 1} {1, 1, 1} {1, 0, 0} {0, 0, 0}

Table 3.1: The lookup table for the index

3.5 Modelling CuDNN

This subsection provides an in-depth examination of the techniques within CuDNN.
Initially, we study the acceleration of convolution, employing images and matrices for
clarity. We then replicate the convolution operation in CuDNN through simulation.
Following this, we delve into its activation function, deriving an approximate version
using a hash table. Finally, we compared the precision selection of the sigmoid ap-
proximation function and selected the appropriate precision .

3.5.1 Convolution in CuDNN

Convolution is widely used not only in neural networks, but also in operations such
as polynomial multiplication, which works by convolving two discrete series. While
in neural networks, it is used as edge detection of images, image blurring, sharpening,
etc. In the field of image processing, this convolution is also called two-dimensional
discrete convolution, and its naive method explains the principle and process of con-
volution in neural networks well [39]:

1. Iterating Through the Input: The outer loops traverse the width W and height
H of the input data, allowing the kernel or filter to cover each part of the input.

2. Filter Application: The next two loops with variables x and y iterate through
the filter’s width and height K, respectively. This process helps align the filter
with the input at different positions.

3. Multiple Filters Application: The subsequent loop with variable m iterates
through M different filters, allowing the algorithm to learn multiple features from
the input.

4. Depth Iteration: The innermost loop with variable d iterates through the depth
or channels D of the input, applying the filter across all channels of the input.
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5. Convolution Computation: Inside all these loops, the algorithm multiplies the
corresponding elements of the input and filter and adds them to the output at the
corresponding position w,h,m. This forms the convolution between the input
and filter at that position.

In summary, the algorithm systematically applies a kernel across the input data’s
width, height, and depth, taking the element-wise product and summing the results
to form the convolution. The output represents a transformed version of the input,
with features detected by the filters. This naive convolution algorithm, designed in the
CPU, is based on sequential execution when it is serial. However, GPU is dominated
by parallel computing. In GPU-accelerated libraries such as CuDNN, traditional con-
volution methods cannot be paralleled, resulting in low execution efficiency on GPU.
Therefore, it is necessary to design a new convolution algorithm to make GPU take
full advantage of its parallelism to improve the efficiency of convolution operation and
reduce the training time of neural network [40].

In CuDNN, normalised matrix multiplication is employed for convolution. This
process breaks down the convolution operation into two steps. First, the im2col method
is used to reorganise the image blocks, aligning each row sequentially, this computation
additionally preserves the structure of its matrix:

M =

[
1 2
3 4

]
(3.13)

im2col(M) = [1, 2, 3, 4] (3.14)

Specifically, for kernels and images, im2col also performs additional operations
based on the number of steps, padding, and so on of the convolution kernel. Given an
image of dimensions H ×W , it can be transformed into a matrix of size K ×N. The
value of N denotes the number of features extracted by sliding the convolution kernel
across the input image. It is mathematically expressed as:

N =

(
H +2×Pad− k

stride
+1

)
×
(

W +2×Pad− k
stride

+1
)

(3.15)

Where:

• Pad is the padding value for both height and width of the image.

• k denotes the size of the square convolution kernel.
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• stride is the stride value in both height and width directions.

The K rows in the resultant matrix symbolize the data associated with each k×k patch
in the image, as delineated by the convolution kernel. The kernel is much easier to
manipulate. After the im2col operation, the kernel is flattened, i.e., from a 2-D k x k

shape to a 1-D vector of length k times k. To make it easier to understand, we’ll use a
matrix to represent this process:

1 0 1

0 1 0

1 0 0

Input

×
1 0

0 1

Convolution kernel

=
2 0

0 1

Output

Figure 3.5: Convolution example
As demonstrated in the example provided (see 3.5), there exists a 3x3 input ma-

trix and a 2x2 kernel. To perform the convolution operation, we slide the kernel over
the input starting from the top left corner of the input matrix. At each discrete posi-
tion of the sliding window, the convolution kernel is element-wise multiplied with the
corresponding elements of the input matrix. The resulting products are then summed
together to obtain a single value. The sum value is incorporated as an element within
the resulting matrix. Initially, the kernel encompasses the 2x2 region situated in the
upper-left corner of the input matrix. The element-wise multiplication and summation
operations as previously described are executed, resulting in the extraction of the initial
element from the output matrix. Subsequently, the kernel is shifted one position to the
right, followed by the execution of element-wise multiplication and summation, result-
ing in the derivation of the subsequent element of the output matrix. As the process
of shifting the kernel persists, it gradually encompasses all conceivable 2x2 regions
within the input matrix. Ultimately, the outcome is a 2x2 output matrix that accurately
represents the comprehensive convolution result.

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 0

×


1
0
0
1

=


2
0
0
1

→ resize to 2×2 ⇒

[
2 0
0 1

]
(3.16)

The matrices in equation 3.16 originate from above foundational convolution op-
eration, When compared to the convolution operation above, they give the same result.
Specifically:
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• The 4×4 matrix represents the input image transformed by the im2col process.
This technique reshapes overlapping patches of the input image into columns,
producing the said matrix.

• The 3×1 vector mirrors the flattened convolution kernel, designed to align with
the columns of the transformed input.

Multiplying these matrices effectively replicates the convolutional process. After
obtaining two large matrices, all convolution calculations can be done at once by just
multiplying these two matrices. In this way, the calculation speed of convolution oper-
ation is greatly improved in CuDNN. It should be noted that CuDNN is not open source
and its internal implementation is not publicly available, therefore, we have modeled
its internal convolutional behaviour through existing literature and the formula already
method mentioned above, simulating the operation of im2col.

3.5.2 Activation Function

In neural networks and other machine learning models, the Sigmoid function is of-
ten employed as a non-linear activation function, which transforms real numbers into
values between 0 and 1. However, calculating this function involves exponential oper-
ations which can be time-consuming, especially in scenarios like hardware implemen-
tations or real-time computations.

To address this challenge, the lookup table (LUT) method has been introduced for
discretizing the Sigmoid function [41]. A lookup table is a pre-computed data structure
that stores the function’s output values within a specific range. This allows for quick
retrieval of results without the need for intricate real-time calculations. In this paper,
the sigmoid function is modeled and the lookup table is implemented:

1. Range: The characteristic of the Sigmoid function is that the output of the func-
tion tends to 1 or 0 when the input value is large or small, so it does not make
sense to add additional calculation points in these regions. Typically, when x is
in the range [-5, 5], the output of the Sigmoid function will cover most of the
range from 0 to 1, making [-5, 5] a commonly used range. This range can be
adjusted according to the actual application requirements. If we know that most
input values will be concentrated in a particular region, we can narrow or expand
that range. Therefore, in order to improve the robustness, a large range is safe.
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2. Precision: The quantity of data points in the lookup table is determined by this
factor. A greater number of data points in the lookup table leads to a higher
level of precision, resulting in a more precise approximation. Using 0.01 as an
example, this means that we precompute the Sigmoid at every 0.01 interval in the
range [-5, 5]. So there will be 1,000 data points (from -5.00, -4.99,... , 4.98, 4.99,
5.00). Note that while increasing the precision of the lookup table increases the
accuracy of the approximation, it also increases the space required to store the
lookup table and the time required to initialise the lookup table.

3. Computation: Commences the process of traversing the complete range of def-
initions with the specified level of precision. The Sigmoid function is employed
to compute the corresponding output value for each value of x within the given
range. The resulting value is subsequently stored within a lookup table. For
example, when x = 0, calculate Sigmoid(0) and store the result.

4. Re f erence: During the run of the model, when the Sigmoid value of some input
x needs to be calculated, instead of computing the whole function, we directly
find the output corresponding to the closest value of x in the lookup table.

Algorithm 6 Sigmoid Look Up Table
Function: sigmoidLUT ( f loat u)

1: Converts u to index using the specified precision
2: If the index is less than the table range, Result is 0
3: If the index is greater than the table range, Result is 1
4: If the index is within the range, the Result value is lookup[index], where lookup

is the pre-generated lookup table
Output: Result

For each input value in the range, we have the output of the original Sigmoid and
our discrete approximation. The error is the difference between these two:

Error = Original Sigmoid Output−Discrete Approximation (3.17)

We can observe the error brought by different accuracies in a limited range. As can
be seen in Figure 3.6, when the accuracy = 0.01, the error with the original sigmoid
function is almost negligible. Therefore, we finally chose a precision of 0.01 to build
the lookup table.
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Figure 3.6: Precision comparison



Chapter 4

Evaluation

In this chapter, we first introduce the benchmarks used, focusing on different types of
test cases, and then we compare them with other state-of-the-art CUDA verification
frameworks. For the COM simplification method we discussed earlier, we evaluate all
compatible test cases to contrast the verification duration before and after the simplifi-
cation. Details of the test environment are provided follow:

• Environment: Windows Subsystem for Linux (WSL2)

• CPU: Intel i7-9750h, 6 core

• RAM: 16 GB

• Operating System: Ubuntu 22.04.2 LTS

• ESBMC Verision: v7.3

4.1 Benchmarks

In this project, we’ve incorporated a benchmark suite to evaluate fundamental func-
tions typically utilised in genuine CUDA applications from the research on ESBMC-
GPU [3]. Our chosen benchmarks include the NVIDIA SDK v2.0, which contains a
collection of 20 CUDA kernels, another 20 from Microsoft C++ Projects, and an ad-
ditional 104 CUDA programs reflecting a broad spectrum of CUDA capabilities. No-
tably, these benchmarks have been employed in prior studies to gauge the efficiency
and accuracy of various GPU verifiers [3]. We will cover these different types of Test
Cases (TC) in the benchmark.

49
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4.1.1 TC type: Data Race

The occurrence of data races is a prevalent issue in parallel programmes. Concurrency
occurs when multiple threads concurrently access a shared memory location, resulting
in potential conflicts when one or more threads attempt to modify the memory loca-
tion. If the programmer does not properly synchronise the operations of the threads,
unpredictable read and write results can occur. In CUDA, threads run in parallel in the
core, so a CUDA application may have thousands of threads running simultaneously.
In general, CUDA brings powerful parallel capabilities to developers, but it also brings
concurrency problem - data races.

Listing 4.1: Data Race Example

1 __global__ void dataRace(int *sum) {

2 // Every thread tries to increment the same memory

location

3 sum[0] += 1;

4 }

In this program fragment, we employ a global variable named sum. As the code
runs, each thread executes this function. Assuming an initial value of zero for sum,
the ideal outcome should equate sum to the total number of threads. However, due to
a lack of synchronisation in the code, each thread might perceive a different value for
sum as they all attempt to increment it simultaneously. This discrepancy arises from a
phenomenon known as data race, leading to the possibility that the final sum might not
equal to the thread count.

Flag –data-races-check in ESBMC is used to check for data races, which will add
assertions when verifying the program. When multiple threads reads and writes to
the same memory, the assertion will be violated to indicate that a data race has oc-
curred. Upon identifying a data race, ESBMC promptly provides a counterexample
pinpointing the location of the race, as illustrated in Figure 4.1. Here, ”w/w” denotes
simultaneous writes to an identical memory spot across multiple threads. At the end,
accompanied by the variable’s name that was written.

In the benchmarks of this project, we added the inclusion of various types of data
races, such as computation, accumulation, etc. By using indexes in COM, we can have
different threads access the same memory address to reproduce the data race problem.
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Figure 4.1: Data race check results

4.1.2 TC type: Constant Memory

In CUDA programming, constant memory is frequently utilised. This memory type is
defined using the constant modifier, signifying its read-only nature—writing to it is
prohibited. Designed for speed, the constant cache ensures quicker and more stream-
lined data reads when many threads access the same data simultaneously. However,
constant memory is only available for data that does not change during the entire exe-
cution of the kernel. As a result, problems can arise when trying to write to variables
that are in constant memory.

Listing 4.2: Constant Memory Example

1 __constant__ int A[N] = {0, 1};

2
3 __global__ void foo(int *B) {

4 A[threadIdx.x] = 1;

5 }

The provided code 4.2 defines an array A in constant memory with the constant

modifier and initialises it with the values 0, 1. The function foo is a global kernel
set to run on the GPU. Within this function, there’s an attempt to modify an element
of the array A. In essence, this code tries to alter a read-only constant memory space,
which might result in unpredictable outcomes or even a program failure.

The benchmarks include some of scenarios showcasing the use of Constant Mem-
ory in CUDA. For instance, there are cases where numerous threads simultaneously
access the same data — a scenario where Constant Memory, with its optimised broad-
casting capabilities. Another common use demonstrated is static lookup tables; these
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are predefined tables where the values serve as references or conversions during com-
putations. It’s crucial to note that within these benchmarks, the values stored in Con-
stant Memory remain consistent and unaltered throughout the duration of the kernel’s
execution.

4.1.3 TC type: Null Pointer

The null pointer issue is a frequent challenge in CUDA programming. This problem
typically arises when a program attempts to access a memory address that hasn’t been
initialised or has already been released. For example, if a developer forgets to allocate
memory for a variable with cudaMalloc but tries to use that pointer, it will become
a null pointer, or if a developer has freed memory with cudaFree but tries to use that
memory afterwards, this is also a problem called a dangling pointer.

As shown in code 4.3, inside the kernel function, an integer pointer is initialised to
null ptr, which means that it does not point to any valid memory address. At the end of
the code, trying to use the ptr pointer to access and modify memory, this line of code
will result in an illegal memory access.

Listing 4.3: Null Pointer Example

1 __global__ void nPointer() {

2 int *ptr = nullptr;

3 int idx = threadIdx.x;

4 ptr[idx] = idx;

5 // Null Pointer

6 }

In a CUDA program, when a null pointer issue arises, it typically doesn’t trigger
an immediate error notification. This can lead the program to keep running until it
encounters another error or completes its execution. As a result, developers frequently
rely on additional memory detection tools to identify runtime problems such as null
pointer references. The benchmark includes various instances of null pointer usage in
its test cases, with the goal of assessing ESBMC’s capability to detect null pointers in
CUDA programs.
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4.1.4 TC type: Unit Testing

Unit testing is the method used in this project to verify the correctness of a particular
function or method in COM. For CUDA programs, unit testing is an important part, be-
cause the characteristics of GPU parallel computing makes it difficult to detect errors.
On the other hand, it is necessary to ensure that the behaviour of parallel functions
simulated in COM is accurate.

Listing 4.4: Parallel computing example

1 __global__ void Sums(int *a, int *b, int *c){

2 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

3 }

In the code provided, our aim is to test the Sums function. This function adds
elements from arrays a and b and saves the results in array C. Given the challenges in
directly observing parallel processes, we choose to use a serial version of the function
to generate a reference output for the CUDA parallel version. By applying identical
input data to both versions, we can generate output for cross-validation. By comparing
the CUDA version’s results to the serial version’s, if they align, it confirms the accuracy
of our parallel implementation in the CUDA environment.

Listing 4.5: Verification method

1 for (int i = 0; i < N; i++) {

2 v[i] = a[i] + b[i];

3 assert(c[i]==v[i]);

4 }

In this verification method shown in Listing 4.5, the assert function is used to check
whether the output array c of the parallel code matches the output array v of the serial
code. If any of the elements don’t match, the assertion fails with an error. In this
way, we can verify the correctness of each function and function in the CUDA parallel
program by checking whether it conforms to the expected result.

In addition to benchmarks, we also applied this validation method to the convolu-
tions in CuDNN, where the result of the convolutions is precomputed and stored in an
array. First we need to compute the convolutions using the convolution API in CuDNN
operational model. Then we use the verification array to compare the results of the
calculation. When the assertion is violated, it means that the convolution operation is
correct.
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4.2 Threats to the Validity

Internal Validity

In the benchmark, each faulty code is designed to have one and only one type of vul-
nerability. This is to ensure that the results are not derived from other factors. For
example, when we verify code with data races, we not only expect a verification fail-
ure, but also need to confirm whether the information in the counterexample provided
by ESBMC is accurate, and when both are satisfied, the experimental result is consid-
ered correct.

External Validity

Our benchmarks are derived from some basic applications of CUDA programs, and
some of them are from the official CUDA documentation, which proves the generali-
sation of this project. At the same time, there are some test cases that are not meaning-
ful, but they have test meaning and allow us to analyse specific errors. It’s important
to note that both CUDA and C++ are regularly updated. As a result, the outcomes of
certain validations might vary over time. To address this, maintenance is essential.

4.3 Experimental Setup

Our experiments aim to investigate two questions:

1. What are the results of ESBMC v7.3 running the above benchmarks?

2. How does ESBMC v7.3 compare with ESBMC-GPU and other CUDA verifica-
tion frameworks such as GKLEE and GPUVerify?

To validate a CUDA program using ESBMC v7.3, we first need to make some
changes to the program so that it compiles in ESBMC, replacing the kernel call func-
tion in CUDA with ESBMC veri f y kernel, we call two threads and a block, or use one
thread for each of the two blocks. After the preparation, we need some flags to support
the verification in ESBMC:

• –force-malloc-success: When it comes to allocating memory, we need to con-
sider whether the available memory on the device is sufficient. This flag indicates
that there is always enough memory on the device.
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• –context-bound n: When we verify concurrent programs, all possible thread
schedules as well as interleaving are considered. However, the number of thread
interleavings can grow quickly. Therefore, this flag is used to limit the maximum
number of instructions a thread can execute before it is switched.

• –data-races-check: ESBMC does not actively perform data race checks due to
resource overhead. We need to use this flag when we want to check for data
races.

• -I library: ESBMC supports external libraries, and we need to specify the path
to the library using this flag.

We expect two outcomes in our tests: VERIFICATION FAILED, which stands for
”ESBMC found an error in the program,” and then it prints out a counterexample and
some tips. VERIFICATION SUCCESSFUL, which means ESBMC found no errors
in the program, and no assertions in the program have been violated. All our exper-
iments will be performed using the Python scripts provided by ESBMC, which work
by judging the result of the validation by the matching of regular expressions.

python3 testing tool.py (4.1)

Regarding the second question, it’s important to mention that ESBMC-GPU is not
actively maintained anymore. As a result, we couldn’t test it directly. Instead, we
relied on data from relevant research paper [3] for our comparisons.

4.4 Experiments Results

• True Positive (TP): A scenario where a defect is present, and the detection tool
accurately identifies it.

• False Positive (FP): A scenario where no defect is present, yet the detection tool
mistakenly reports one.

• True Negative (TN): A scenario where no defect is present, and the detection
tool correctly refrains from reporting any.

• False Negative (FN): A scenario where a defect is present, but the detection tool
fails to recognise and report it.
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• Not Supported (NS): CUDA programs are not supported.

ESBMC v7.3 ESBMC-GPU GKLEE GPUVerify PUG CIVL
TP 57 67 57 30 15 24
TN 65 60 53 58 39 23
FP 1 3 8 8 11 3
FN 6 1 14 9 7 0
NS 25 23 22 49 82 104
Time (s) 216 811 128 147 12 158

Table 4.1: Comparison of Different GPU Verification Tools

Figure 4.2: Correct Rate of Different GPU Verification Tools

In the benchmark tests for correctness, ESBMC v7.3 had an accuracy of 79.2%,
a bit less than ESBMC-GPU at 82.5%. Other tools showed varied results: GKLEE
had 71.4%, GPUVerify had 57.1%, PUG scored 35.1%, and CIVL had 30.5%. Look-
ing closer at these numbers, there were some differences between ESBMC v7.3 and
ESBMC-GPU. ESBMC v7.3 can not handle with some kind of data races, missing a
few error programs that ESBMC-GPU caught. GKLEE had several issues: it didn’t
always detect data races, had problems with changing constant memory, got some as-
sertions wrong, and had some null pointer access errors. GPUVerify missed some data
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races, had problems with array limits, and also got some assertions wrong. PUG’s
main issues were with null pointer checks, data races, and not always catching when
an array went out of its limits. ESBMC-GPU had some errors too, mostly with kernel
assertions not returning right and with the cudaMalloc function when it worked with
copies of floating-point variables. GKLEE also had problems with getting assertions
wrong, missing some data races, getting array limits wrong, and had some issues with
its solver. PUG mainly had problems with data race checks. CIVL’s errors were mostly
about getting memory allocation checks wrong and assertion violation.

ESBMC v7.3 has a few more benchmarks than ESBMC-GPU that are not sup-
ported. This is mainly because ESBMC-GPU has its own compiler that can make
some tweaks and give special meanings to modifier. On the other hand, ESBMC v7.3
relies on the Clang compiler and might need extra changes to add certain features.
However, both tools face common challenges, such as accessing constant memory, us-
ing certain CUDA libraries, and using pointers to functions, structures, and character
variables when making kernel calls.

Figure 4.3: Execution Time Comparison

We implemented certain optimisations on COM, which greatly simplify the com-
putation in the model and reduce its time complexity while retaining its original be-
haviour. As shown in Figure 4.3, compared with the pre-optimisation, our verification
time is reduced to one-fifth of the original, which means the verification efficiency of
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ESBMC v7.3 is improved. The optimisations we propose in this project also have a sig-
nificant advantage over ESBMC-GPU. Compared to other CUDA verification frame-
works mentioned in this paper, our verification time has become competitive.



Chapter 5

Conclusion and Further Work

This chapter offers an overview of the project. It is structured into three sections.
The first section presents an evaluation of the project’s outcomes, assessing its suc-
cesses and areas for improvement. The subsequent section reflects on the project’s
progression and highlights key insights gained throughout its execution. The conclud-
ing section suggests potential avenues for future research, building upon areas identi-
fied within this project.

5.1 Achievements

This project delves into the potential risks that CUDA programs may encounter during
execution. It underscores the importance of verifying CUDA programs and aims to
bridge the gap in CUDA program verification within ESBMC. We adapted the oper-
ational model of ESBMC-GPU, which was previously unmaintained and unavailable,
to the current ESBMC v7.3.

To enhance the current ESBMC, we expanded its filename detection and refined the
Clang C++ front-end to better accommodate code behaviour in the operational model.
Notably, we implemented the implicit generation and utilisation of member functions
in C++ structs, catering to operations like assignment within structs. An improve was
also made for temporary variables, ensuring their correct generation when constructors
are directly applied. Subsequent steps included rectifying errors in the operational
model, revising certain non-standard code, and streamlining sections of the model to
expedite the validation process. Finally, we extend the CuDNN operation model. We
analyse and exemplify how the convolution operation and activation function operation
work in CuDNN, and build a model based on this theory.

59
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After evaluation and analysis using the benchmark, we obtain a pass rate of 79.2%,
which is close to ESBMC-GPU. Compared with other CUDA verification frameworks,
ESBMC version 7.3 exhibits not only a higher correct rate, but also an enhanced ca-
pability to identify instances of array out-of-bounds and data race violations. By com-
paring the verification time, we conclude that ESBMC v7.3 improves the verification
efficiency by nearly 4 times, which greatly reduces the time spent in our verification.

5.2 Reflection

It can be challenging to migrate application components that are out of maintenance.
This project involves a lot of knowledge, including model checking, compilers, ES-
BMC internal concepts, deep neural networks, etc. Finally, the porting work is com-
pleted and the validation is optimised, and the results of the evaluation show that our
work is meaningful.

In the development process, we met a lot of problems, the main challenge is to
learn the unknown field, ESBMC as a large C++ open source software, the source code
involved is complex and difficult for beginners to get started. Second, we had timing
issues because the Clang-based C++ frontend had just been released and the team
was working on improving it. Therefore, we should use parallelism in our projects to
increase efficiency and avoid taking too long to run into each problem.

5.3 Further Work

Despite obtaining satisfactory outcomes in our benchmark, the tabulated data indicates
that there remains considerable scope for enhancing our work. For example, ESBMC
v7.3 has some issues with data race detection. Specifically, it is better at detecting
global variables and weaker at detecting pointer races. In addition, the implementation
of the random function model in CUDA is also an important part, in many applica-
tions, especially statistical applications, efficient random number generation is very
important, we can simulate this process in the future to achieve this feature.

In addition, our modeling of CuDNN is still in the initial stage, so far it can only
support convolutions and activation functions. For future work, we can focus on build-
ing an entire neural network, such as pooling layer, fully connected layer, etc. Once all
the neural network models are built, we can start to validate the CuDNN-based neural
networks.
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