
SECURITY ANALYSER TOOL FOR
FINDING VULNERABILITIES IN

JAVA PROGRAMS

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

2020

By
Vi Lynn Tan (10479810)

Department of Computer Science

Contents

Abstract 6

Declaration 7

Copyright 8

Acknowledgements 9

1 Introduction 10
1.1 Problem Description . 11
1.2 Objectives . 12
1.3 Contribution . 12
1.4 Organization of Dissertation . 13

2 Background 14
2.1 Security Vulnerabilities . 14
2.2 Software Testing . 16

2.2.1 Software testing methods and techniques 18
2.2.2 Software testing as a method to reduce security vulnerabilities

within software and systems 22
2.3 Software Model Checking . 24
2.4 Witness Validation . 27

3 Proposed Methodology 29
3.1 System Architecture . 29
3.2 Algorithms . 31

3.2.1 Python script . 31
3.2.2 Validation Harness . 37
3.2.3 Verifier . 37

2

3.2.4 Complexity, completeness and soundness of algorithms 44
3.3 Illustrative Examples . 44

3.3.1 int example . 45
3.3.2 Long example . 47
3.3.3 char example . 50
3.3.4 Boolean example . 53

4 Experimental Evaluation 56
4.1 Setup . 56

4.1.1 Environment setup . 56
4.1.2 Environment versions . 59
4.1.3 Running the tests . 59

4.2 Objectives . 60
4.3 Results and Threat to Validity . 61

5 Related Work 66

6 Conclusion 68

Bibliography 70

Word Count: 13171

3

List of Tables

2.1 Vulnerability density results from 2008 study [AM08] 23

4.1 Experimental evaluation results using SV-COMP benchmark files . . 63

4

List of Figures

1.1 Java software development process [Ora19] 10
1.2 Java technology enabling platform independence through the use of

JVM [Ora19]. 11

2.1 JBMC Architecture [CKS19] . 26

3.1 Architecture of the proposed extension 30
3.2 Screenshot of JBMC output of an int example 46
3.3 Screenshot of Python script output of an int example 46
3.4 Screenshot of the validation harness of a int example 47
3.5 Screenshot of JBMC output of an Long example 48
3.6 Screenshot of Python script output of an Long example 49
3.7 Screenshot of the validation harness of a Long example 49
3.8 Screenshot of JBMC output of an char example 51
3.9 Screenshot of Python script output of an char example 52
3.10 Screenshot of the validation harness of a char example 52
3.11 Screenshot of JBMC output of an Boolean example 54
3.12 Screenshot of Python script output of an Boolean example 54
3.13 Screenshot of the validation harness of a Boolean example 55

4.1 Project directory . 60

5

Abstract

SECURITY ANALYSER TOOL FOR FINDING VULNERABILITIES IN

JAVA PROGRAMS

Vi Lynn Tan
A dissertation submitted to The University of Manchester

for the degree of Master of Science, 2020

The aim of this thesis is to understand the use of software verification as a tech-
nique to identify security vulnerabilities and implement an extension to validate the
results produced by software verifiers. Software verifiers are developed to be high per-
forming software verification tools that aim to produce an accurate verification of a
program based on given specifications. In this research, specifications refer to a cor-
rectness property or a violation property. Software verifiers such as the Java Bounded
Model Checking (JBMC) tool uses the concept of bounded model checking to perform
verification tasks. While software verifiers are highly accurate in verifying a program,
they may produce false alarms where a violation identified is not actually a valid bug.
Thus, this pushes for the need to validate the verification results.

This thesis describes a proposal for a methodology to perform validation using
witnesses. In specific, we explore the use of witnesses in the format of GraphML.
Although research on witness validation is not completely novel, most take place for
C programs. In this thesis, the focus is on witness validation for Java programs which
is implemented using Python and Mockito, a mocking framework in Java. The algo-
rithms for the proposed extension is described along with the results from experimen-
tal evaluation. Limitations within implementation is also described in the evaluation
chapter. Ideas on future work and improvement on limitations are described in the last
chapter on conclusion.

6

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

7

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

8

Acknowledgements

I want to thank Dr Lucas Cordeiro, my thesis supervisor, for providing guidance and
support throughout the process of completing my dissertation. Throughout times of
uncertainty, I appreciate you helping me to complete my research with my best effort.
I would also like to extend my gratitude to Peter Schrammel, one of the main contrib-
utors to the JBMC open source project for providing me with guidance and support
throughout the project.

I would also like to thank my friends and family for being constant support through-
out my MSc. I could not have done it without all this support.

9

Chapter 1

Introduction

The Java programming language is a general-purpose programming language devel-
oped by Sun Microsystems in 1995 [Kri14]. Since its release, it has been widely
adopted across industries in producing small to large applications. In 2014, Infoworld

reported that Java is used by 90% of Fortune 500 companies [Kri14].
Its swift adoption can be attributed to the architecture of the language, which aims

to be platform-independent [Bin15]. This is realised by introducing the Java Virtual
Machine (JVM), which acts as a middle-man to compile and interpret Java programs
on various platforms.

Figure 1.1: Java software development process [Ora19]

As illustrated in Figure 1.1, when a user writes a Java program, this file, known as
a source file is saved with a .java extension, which enables the compiler to recognise
the files to compile. The source file would then need to be compiled using a javac

compiler, which produces a .class file. This .class file is in bytecode, an interme-
diate language [Tec18] consisting of a set of instructions. This is the language used by
JVM in order to be able to execute the source code written by the user [Ora19].

Figure 1.2 illustrates the role of JVM and how the introduction of JVM attributes
to Java’s platform independence ability. JVM is a layer situated between the Java com-
piler and the operating system. The JVM is tasked to interpret the compiled .class

10

1.1. PROBLEM DESCRIPTION 11

Figure 1.2: Java technology enabling platform independence through the use of
JVM [Ora19].

file which contains bytecode into a machine language to be executed at a low-level.
Thus, this allows for the same .class file to be distributed and used among various
platforms with JVM installed [Ora19].

Java Runtime Environment (JRE) employs the use of the just-in-time (JIT) com-
piler where compilation of Java bytecode into machine readable code is done during
runtime. With the JIT compiler, it improves the performance of Java applications as
the time needed for compilation before runtime is reduced. JVM and the JIT compiler
work hand in hand during runtime. When an application is executed, the JIT com-
piler will compile the bytecode into machine readable code using some optimisation
strategies. These strategies include but are not limited to the use invocation counts
whereby most often called methods and classes are compiled first. This leaves JVM
the task of merely calling the specific compiled code when that particular method has
been invoked by the application [IBM].

1.1 Problem Description

The Java language and platform has various security schemes aimed to thwart security
attacks and discover security vulnerabilities at an early stage [Ora17]. However, with

12 CHAPTER 1. INTRODUCTION

the rapid advance of technology and as noticeable in the news, there is an increasing
amount of security issues rising in smart home appliances, or as it is also known as,
the internet of things (IoT) [Kel19]. This adds on to the ever increasing amount of
security issues that have and still occur within enterprise level servers and our personal
computers.

In this dissertation, we focus on using JBMC [CKK+18] as a form of software
verification to verify the existence of security vulnerabilities within a Java program.
Nonetheless, JBMC may occasionally produce false positives in which the bug may
never be achievable during runtime in reality. Thus, there exist a need to verify if the
bug found by JBMC is indeed a valid bug in the program.

1.2 Objectives

The overall objective of this dissertation is to understand software model checking as a
method to find security vulnerabilities and to implement an extension which performs
witness validation based on GraphML witness files produced by Java verifiers such as
JBMC.

The specific objectives of this thesis are to:

• Gain a good understanding of the JBMC tool to understand the principles and
mechanics used to discover security vulnerabilities.

• Evaluate strategies used in the JBMC in finding security vulnerabilities.

• Research and implement suitable extensions for JBMC in Mockito and Python.

• Evaluate the effectiveness and accuracy of implemented extensions.

1.3 Contribution

This research project produces two main implementations of which is a Python script
and a Mockito validation harness. The Python script coordinates the extraction of
the counterexample from JBMC, where a counterexample is a concrete value found
by JBMC. This concrete value triggers the conditions of a bug and the Python script
injects it into the validation harness which is built in Mockito. Mockito is a mocking
framework using the Java programming language. In this dissertation, Mockito is used
with the aim to simulate the bug found by JBMC by mocking the Java program.

1.4. ORGANIZATION OF DISSERTATION 13

1.4 Organization of Dissertation

The structure of this thesis starts with Chapter 2, a discussion of the relevant back-
ground knowledge. That is followed by Chapter 3, the methodology chapter, which
goes into detail on the implementation of the extension. Then, in Chapter 4, the eval-
uation chapter, the methods of testing and key results are displayed and discussed. In
Chapter 5, some related research is discussed and compared. Finally, in Chapter 6, the
outcome of the thesis is concluded and will be reflected upon.

Chapter 2

Background

The following sections aim to give proper and enough background into the dissertation
in order to facilitate understanding to the reader. There are four sections in total. Sec-
tion 2.1 gives context on security vulnerabilities and how it is a major part of today’s
world. Section 2.2 describes software testing as a concept and how it is used to reduce
the potential bugs and vulnerabilities in various software and systems. Section 2.3 de-
scribes the concept of software model checking and dives into JBMC as an instance
of a software model checker. Section 2.4 gives an insight into the idea of witness
validation as the foundation of the research in this dissertation.

2.1 Security Vulnerabilities

The world we live in today is getting more and more connected. The line between
what goes on in the real world and the digital world is getting increasingly blurred.
As the number of traditional systems such as banks and services including government
services going fully digital, the amount of data in the internet is exponentially growing.
In particular, there is a growing concern over the amount of personal data such as credit
card numbers being transmitted constantly over the internet. IdentityForce reports that
between the period of January and September 2019, there were more than 7.9 billion
data records exposed due to data breaches and security attacks [Tur20]. In most cases,
the existence of a vulnerability in hardware, software or people within the organisation
were the root cause of those data breaches.

A security vulnerability is most commonly described as a weak point within the
system, where it could be triggered or taken advantage of or exploited [Han19]. ISO

14

2.1. SECURITY VULNERABILITIES 15

27000 defines vulnerability as a “weakness or of an asset or control that can be ex-
ploited by one or more threats” [27017]. The susceptibility could range from the
technical origin such as a software bug or even of human origin such as using weak
passwords as they are much easier to recall [Tun20]. Vulnerabilities can be triggered
intentionally or unintentionally and can often result in a catastrophe from an organisa-
tion’s point of view.

The Common Weakness Enumeration (CWETM) Top 25 Most Dangerous Software
Weaknesses (CWE Top 25) reports a yearly list of frequent issues which resulted in
deep consequences over the last two calendar years [CWE20]. The 2020 CWE Top 25
is mainly dominated by specific security weaknesses such as systems able to be taken
advantage of using cross-site scripting (XSS). However, there are several class level
weaknesses that have persisted throughout the years to still continue affecting various
software at the code level. One such common weakness is the CWE-787: Out-of-
bounds Write [MiT09] which is defined as the event when the ”software writes data
past the end, or before the beginning, of the intended buffer”. The CWE-787 was
ranked second on the 2020 CWE Top 25 while its data read counterpart the CWE-125:
Out-of-bounds Read is ranked fourth on the same list [CWE20].

The Java language and platform is designed and built with several security features
embedded into the Java Development Kit (JDK) and the JVM [Ora17]. For instance,
the JDK automatically manages memory usage and garbage collection. This allows
potential vulnerabilities to be caught at the development stage by the user or devel-
oper. In the JVM bytecode, as described in the previous subsection, is checked for
various possible issues that could arise during Java runtime. On top of that, there are
features embedded in the Java programming language that can increase the level of
security of Java programs. This includes the use of access modifiers, which provide
the developer with a means of controlling the level of accessibility [Ora17]. Java pro-
grams also employ the use of Application Programming Interfaces (API) and libraries,
which aid in providing tools for developers to strengthen the level of security in their
Java application. One such API is java.security [Ora17]. This library contains var-
ious functionalities such as java.security.MessageDigest.getInstance, which
creates a message digest of the specified choice of an algorithm such as MD5. This
message digest can then serve as a cryptographic hash key where it is most commonly
used to verify the authenticity of a message [Ora17].

In 2019, MITRE documents through CVE, its security vulnerabilities database,
describe that the Java Runtime Environment (JRE) has 17 reported vulnerabilities in

16 CHAPTER 2. BACKGROUND

that year alone and 617 in total since 2010. JRE is the most common form of Java
technology found on a user’s machine since it has JVM bundled into it, which is a
vital part of running Java software within a web browser [Ora]. Thus, it is evident
that despite the features that Java has by design or through various add-ons, security
vulnerabilities are still highly likely to occur.

2.2 Software Testing

Testing is a crucial part of the software development process. It involves any activity
aimed at evaluating an attribute or capability of a program or system and determining
that it meets its required results [Het88]. Software is comparable to other physical pro-
cesses where input is received and output is produced. However, while most physical
processes can fail in a reasonably small set of ways, software can fail in a multitude
of different ways. Detecting and reacting to all the different failures, is not an option;
especially towards the end of the software development process where the costs of
addressing failures is much higher [San19].

Almost any software, of a moderate to high complexity, will present software de-
fects. This is not due to the carelessness or irresponsibility of programmers, but due
to the complexity of software. We, as humans, have a limited ability to manage com-
plexity efficiently. Design defects, due to their nature and stage of creation, can never
be completely ruled out from high complexity software.

Boris Beizer compares the difficulty in software testing with using pesticide in an
analogy known as the Pesticide Paradox [Bei90]:

”Every method you use to prevent or find bugs leaves a residue of subtler bugs

against which those methods are ineffectual.”

However, this alone cannot guarantee to make the software better, because the
Complexity Barrier [Bei90] principle states:

”Software complexity (and therefore that of bugs) grows to the limits of our ability

to manage that complexity.”

Through removing the previous defects, we have increased the complexity and
now have multiple, more subtle defects to face. We all, as consumers, want extra
functionality, extra features to satisfy various known and/or unknown needs. Thus,
the complexity barrier is constantly pushed and raised. How close we can reach it,
is entirely determined by the strength of our techniques and processes against more
complex and subtle defects.

2.2. SOFTWARE TESTING 17

More recent trends in software development emphasise the value of testing through-
out the whole development process, especially on issue prevention. Testing activities
must start as early as the requirements specification phase with test a strategy, and ra-
diate through test cases and quality practices along the different development phases.
Once the development process is “completed”, the testing does not stop; it continues
after deployment by logging and analysing the data and any potential failure reported
by customers [Het88].

Despite the challenges and limitations, testing, in all forms, is an integral part of
software development and maybe consume a large part of the effort required for pro-
ducing software. In fact, it is not uncommon that more than 50% of the development
time is spent in testing [Luo01].

Generally speaking, software testing is performed with multiple purposes in mind.
Typically those are:

1. To improve the overall quality

The usage of computers and software has increased dramatically over the years;
both in our private daily life, but also in critical applications where the results of
a bug [IST20b] can lead to huge losses. Bugs in critical systems have led to air
plane tragedies, led space shuttle missions to fail, blocked trading on the stock
market and many other incidents. Bugs can cost lives. The quality and relia-
bility of software is literally a matter of life and death. Broadly, quality refers
to the software’s level of conformance to the specified design requirement. The
minimum requirement of quality is therefore, performing as required under spec-
ified circumstances and environments. Debugging can be considered a narrowed
down form of software testing and is performed intensively by programmers to
find and isolate design defects. As mentioned above, our inability to handle in-
creased complexity in an efficient manner, makes it almost impossible to create
a complex program which can function flawlessly from the first time. Finding,
isolating and fixing problems early is the purpose of debugging during program-
ming [Bei90].

2. To verify and validate

Testing can often serve as metrics since testers can extract and analyse the data
in order to better understand how the product behaves under certain situations
and if this is according to the required specifications. This data can also serve
to compare different products under the same specifications, based on results

18 CHAPTER 2. BACKGROUND

from the same tests. Quality in itself cannot be tested directly, but factors related
to it can be tested to increase awareness and visualise the overall perception of
quality [Bei90].

The tests performed with a clear purpose of validating product functionality are
generally called clean tests, or ”positive tests”. The disadvantages for these types
of tests is that they can only validate that the software works for these specific
test cases. A defined number of tests will not able to guarantee that a particu-
lar software works in all situations. With only one failed test, however, can be
enough to prove that the software does not comply with the required specifica-
tions [Bei95].

Negative tests, or “dirty tests”, are tests aimed at breaking a software or proving
that it does not work. Software must have be capable of handling exceptions in
order to survive a significant level of negative tests [Bei95].

3. To estimate reliability

The probability of a piece of software to operate failure-free for a specified pe-
riod of time, in a specified environment, is commonly referred to as software
reliability. Software reliability is an important aspect in determining a system’s
robustness. A major contributing factor which leads to software reliability issues
is the high complexity of software itself. Despite the fact that software reliability
is described as a probabilistic function, and sometimes associated with the no-
tion of time, it must be noted that, compared to hardware reliability, it is not in
a direct relationship with time. Mechanical parts wear out with time and usage,
while software will not alter or wear out during its life cycle. Unless intention-
ally upgraded or changed, software does not change as a result of time passing
and/or usage [Bei90].

2.2.1 Software testing methods and techniques

There are plenty of methods and techniques by which to perform testing, each serv-
ing a different purpose in different phases during the software development process.
The reason for using numerous testing methods and techniques is to ensure that soft-
ware can successfully operate in multiple environments and across various platforms.
Typically, those can be grouped in two categories: functional and non-functional test-
ing [Bei90, Luo01].

2.2. SOFTWARE TESTING 19

Functional testing refers to testing the application against the business requirements
and it includes different test techniques designed to guarantee that each component
of a piece of software can behave as expected using use cases provided by a stake-
holder [Luo01]. Generally, these testing methods are performed in order as follows:

• Unit testing

Unit testing is often considered the first level of testing and is generally per-
formed by the programmers themselves. This process ensures that individual
components of a piece of software, at the code level, are functional and work
as designed. In a test-driven environment, programmers typically write and run
tests before the software is passed to the test team. Unit testing can be performed
manually, but in order to speed up the process and expand the test coverage, it
can also be automated. Unit testing also helps making debugging easier since
finding issues earlier means the cost of fixing is reduced compared to if they
were found late during the testing process [Bei95, Luo01].

• Integration testing

Integration testing is generally performed once each unit is tested and integrated
with the other units to create components or modules which are designed to
perform various tasks and activities. In order to test these components and
ensure that they function as expected as a whole, and that the interactions be-
tween units is friction-less, they are tested through what we name as integra-
tion testing. These tests are usually designed to follow user scenarios such as
creating an account into an application, accessing different functions, opening
files, etc. and generally be performed either by programmers or independent
testers. They are generally composed of a combination of automated and man-
ual tests [Luo01, Bei95].

• System testing

System testing is a testing method performed on a completed system, as a whole,
and is designed to evaluate and ensure it meets the specified requirements. The
functionality of the whole system is verified from end-to-end and most com-
monly is performed by a separate testing team before a product is pushed into
production [Luo01, Bei95].

• Acceptance testing

20 CHAPTER 2. BACKGROUND

Acceptance testing is used to assess whether the final software product is ready
for delivery or not. In order to pass this phase, the product must be in compliance
with all the original business requirements, as well as meeting the end user’s
needs. This requires the product to be tested both by the internal test team,
as well as the end users through beta testing. Beta testing is a critical step of
acceptance testing since it allows the business to get real feedback from potential
customers and can help highlight any usability concerns [Luo01, Bei95].

For non-functional tests however, the focus is on the operational aspects of a piece
of software and include different testing techniques [Bei90]. These typically are:

• Performance testing

Performance testing is generally described as a non-functional testing practice
performed to determine how a system will behave under various circumstances.
Performance testing can help investigate and answer questions regarding the
maximum number of users a system could handle, how well the system can
protect itself in case of an attack, which is the response time under normal and
unfavourable load conditions [Bei90, Het88]. The various types of performance
testing usually can be broken down as follows:

Load testing

Load testing is the process in which the main purpose is to verify a sys-
tem’s ability to handle normal, high, but also low load conditions. This can
confirm that the system would work as intended, as well as in exceptional
situations [Bei90].

Stress testing

Stress testing is the process in which a system is tested by overloading it
beyond its design expectations. The main goal is to stress a system until it
breaks through both realistic and unrealistic scenarios. It addresses mainly
the components that can fail first in order to help design a more solid sys-
tem [Bei90].

Endurance testing

Endurance testing, also known as Soak Testing, is often used to test and
investigate a system’s behaviour while running at a high level of load for
an extended period of time. The main purpose of it is to verify that the
system can handle an expected load over a defined period of time. Though

2.2. SOFTWARE TESTING 21

similar to load and stress testing, it differs in the fact that it is designed to
be run for a longer period of time compared to a few hours in the case of
the above. Maybe the biggest value of endurance testing comes from its
ability to uncover and highlight memory leaks [Bei90].

Spike testing

Spike testing is a testing process in which the main aim is to observe a
system’s behaviour under a sudden increase of load [Bei90]. For example,
a large number of transactions, or server requests, etc.

• Usability testing

Usability testing is mostly focused on measuring an application’s usability from
an end-user perspective and is most often executed during the acceptance test-
ing phase. Its main goal is to determine if the design of an application meets
the workflow intended for different processes, such as creating an account, log-
ging in, logging out, etc. Generally speaking, usability testing is a great way
for development teams to test and review how intuitive different aspects of an
application are as well as how functional the whole system is [Bei90, Het88].

• Compatibility testing

Compatibility testing is a testing method which is used to evaluate the ability
of an application to work in different environments and circumstances. In other
words, it is used to test that an application is compatible with different operating
systems, hardware platforms, browsers, display resolutions and aspect ratios,
etc. Its main goal is to prevent any potential incompatibility issues which can
result from the multitude of setups end users might use [Bei90, Het88].

• Security testing

Security Testing is a type of software testing that intends to uncover vulnerabil-
ities of the system and determine that its data and resources are protected from
possible intruders [IST20a]. It ensures that a system or application is free from
any threats or risks that can cause harm through loss of information, revenue,
reputation both towards the employees or outsiders of an organisation.

There are 7 main types of security testing as described in the Open Source Se-
curity Testing Methodology Manual [Her10]:

22 CHAPTER 2. BACKGROUND

1. Vulnerability scanning refers to the activity of scanning a system against
vulnerability signatures.

2. Security scanning can be both an automated or a manual scanning process
and generally focuses on identifying a network or a system’s weaknesses
for which to later provide solutions to reduce the risks.

3. Penetration testing aims at simulating an attack from a malicious actor.
This form of testing involves a thorough analysis of a particular system in
order to uncover all the potential vulnerabilities in case of an attempted
external hacking attack.

4. Risk assessment refers to the activity of analysing the risks observed in
the system. Typically the risks are classified through labels such as: Low,
Medium and High. This form of testing generally helps create recommen-
dations of measures to reduce risk.

5. Security auditing can be described as an internal investigation of various
applications and systems aimed at uncovering security flaws. Audits can
be performed on a larger scale, but also on a line by line inspection of code.

6. Ethical hacking refers to hacking an organisation’s software systems with
the intent of exposing security flaws in the system.

7. Posture assessment is a combination of security scanning, ethical hacking
and risk assessment to visualise an overall security status of an organisa-
tion.

Only by building a solid testing framework which contains both functional and
non-functional testing methods, can we ensure the creation of high-quality software.
Which, in return, can be delivered and successfully adopted by our end users.

2.2.2 Software testing as a method to reduce security vulnerabili-
ties within software and systems

There have been multiple publications [AMR07, AM08, HM04, LTW+06, SW11]
which support and are consistent with the thesis, that a large percentage of software
with quality defects, also presents or is more likely to present security vulnerabilities
as well. Low code quality often leads to unpredictable behaviour. It has been observed
that, often, vulnerabilities correlate with defects and result from development errors.

2.2. SOFTWARE TESTING 23

In a study from 2004, Jon Heffley and Pascal Meunier [HM04], reported that
64% of the known vulnerabilities in the National Vulnerability Database (NVD) are
attributed to programming errors. And up to half of which were: buffer overflow,
cross/site scripting and injection flaws [HM04].

Another study from 2006 found that between 9% and 17% of vulnerabilities were
memory related and out of those, 72−84% were semantic rather than syntactic [LTW+06].
The average time between the creation and introduction of a vulnerability and when it
has been discovered was between two and three years. Following this study, Li [LTW+06]
has specifically recommended examining the code before releasing using tools de-
signed to perform this task.

Robert Martin, while summarising findings from the Common Weakness Enumer-
ation (CWE) in 2014, linked vulnerabilities to common development defects. In his
study, he included a series of activities that can help finding and addressing issues early
in the software development process [Mar14].

A 2011 study of the Firefox browser reported that up to 21.1% of its files contained
faults. Out of which 13% were vulnerable to attacks [SW11]. The study concluded
that “prediction models based upon traditional metrics and substitute for specialised
vulnerability prediction models.” However, despite the correlation, further research
would be needed to identify vulnerabilities due to the large number of false positives
remaining.

During an investigation from 2007 and 2008, on the relationship between defects
and vulnerabilities, Omar Alhazmi analysed and compared various versions of Win-
dows and Linux operating systems [AMR07, AM08]. The results can be found below
in Table 2.1:

Systems KSLOC Known
Defects

Known
Defects
Density
(per KSLOC)

Known
Vulnerabilities

VKD
(per
KSLOC)

VKD/DKD
Ratio%

Release
date

Windows 95 15 5000 0.3333 50 0.0033 1.00 Aug 1995

Windows 98 18 10000 0.5556 84 0.0047 0.84 Jun 1998

Windows XP 40 106500 2.6625 125 0.0031 0.12 Oct 2001

Windows NT 16 10000 0.625 180 0.0113 1.80 Jul 1996

Win 2000 35 63000 1.80 204 0.0058 0.32 Feb 2000

Apache 0.376 1380 3.670212766 132 0.351064 9.565217 Apr 1995

RH Linux 6.2 17 2096 0.123294118 118 0.00694 5.628817 May 2000

RH Linux 7.1 30 3779 0.125966667 164 0.005467 4.339772 Apr 2001

RH Fedora 76 154 0.00203 Nov 2003

Table 2.1: Vulnerability density results from 2008 study [AM08]

24 CHAPTER 2. BACKGROUND

The relationship between software security and quality is sometimes analysed in-
dividually though more often than not are two sides of the same coin. An issue that
manifests as a system failure now, can be a critical vulnerability exploited by an at-
tacker tomorrow. Both QA and Software security aim at removing risks, whether it be
a quality or a security risk.

The results of the studies are often incomplete or ambiguous. However, it can pro-
vide a starting point in identifying the correlation between coding and design defects
and vulnerabilities which can help identify and address them earlier in the develop-
ment process. The wide range of defects and vulnerabilities, along with the various
uncertainties can often lead to a low ratio of vulnerabilities to defects. However, this
is expected, and the association is plausible. The amount of vulnerabilities measured
is consistent with the vulnerability defect ratio (between 0.3% and 10%). The lower
percentage of the ratio represents systems with higher security testing coverage and
more refined development practices [AM08].

2.3 Software Model Checking

With the increasing threat of software vulnerabilities, formal software verification and
model checking is gaining more prominence [DKW08]. In this section, we will ex-
plore concepts on model checking and bounded model checking as methods for formal
verification of software.

In 1981, Clarke and Emerson introduced the concept of model checking. The core
idea of model checking is ascertain if a correctness property holds by checking ex-
haustively within all reachable states of a program. In the event, where the property
does not hold, the model checking algorithm would return a counterexample. A coun-
terexample is the execution trace which lead to a state whereby the property has been
violated [CE81].

Within the concept of model checking, a model of a software or program is made
up of states, transitions and a property or specification. A state is the condition of the
program at a specific time, often using the value of a program counter. Transitions
describe the event when the program progresses from one state to another state. A
property or often known as a safety property within model checking is the specific
properties in which the program is checked for to determine correctness. An alterna-
tive method to understanding a safety property is such that if the safety property is
unreachable then the program is deemed to have been successfully verified. The state

2.3. SOFTWARE MODEL CHECKING 25

in which a safety property is reachable is also known as a bad state. A model checking
algorithm would have to extensively pore through all reachable states of a program.
If the state space such that there are a finite number of states possibly reachable, this
process of extensive checking is guaranteed to terminate [DKW08].

Building upon the concept of model checking is bounded model checking (BMC).
This technique conducts a depth-bounded exhaustive search of the state space. For-
mally, BMC can be described using the Definition 2.3.1 [CKK+18].

Definition 2.3.1 Given a transition system M, a property φ, and a bound k; BMC

unrolls the system k times and translates it into a verification condition (VC) ψ, which

is satisfiable if and only if φ has a counterexample of depth less than or equal to k.

JBMC is one of many open-source verifiers based on BMC and is the core of this
dissertation. It was developed on top of the CProver framework as a Java version to
its predecessor, the C Bounded Model Checker (CBMC). JBMC utilizes three signif-
icant concepts in its compositions; Bounded Model Checking (BMC) as indicated in
its name, as well as Boolean Satisfiability (SAT) and Satisfiability Modulo Theories
(SMT). The development of JBMC desired to address the issue of discovering not ob-
vious bugs in a Java program by verifying its Java bytecode. The process of verification
using JBMC can demonstrate program correctness, whereby JBMC can state that the
program is doing what it is supposed to do without producing any unintentional results
[CKK+18].

The core of JBMC is BMC, where a program is unrolled and checked whether a
particular state of the program can be achieved within a fixed number of steps, often
known as the upper bound and denoted as k. In JBMC, we are interested in finding out
if a bad state, which signifies a vulnerability, is realisable during runtime within the
known upper bound, k [CKK+18].

JBMC can be executed on the command line interface (CLI) using the command
below.

jbmc <filename> <additional properties (optional)>

JBMC only accepts class files, which has the .class file extension and Java archive
(JAR) files, which has the .jar file extension. It can also allow additional properties to
be further specified, e.g., if a specific upper bound k is to be determined. Below is an
example, where k is determined to be ten on a file example.class.

jbmc example.class {unwind 10

26 CHAPTER 2. BACKGROUND

Figure 2.1: JBMC Architecture [CKS19]

Figure 2.1 illustrates the JBMC architecture, which consists of three main sections.
The input is represented by the grey rectangles on the left-hand side of the diagram.
The white rectangles represent the verification steps in the middle of the diagram. The
output is represented by the grey rectangles on the right-hand side of the diagram.

JBMC accepts inputs in the form of a JAR archive file or a Java bytecode class
file. Then, JBMC will parse the input file using the Bytecode Parser as shown on the
first white box as part of the verification step to produce and feed parse trees into the
GOTO converter, which will translate the parse trees into a GOTO program. A GOTO
program is a representation of a control flow graph (CFG) for the CProver application,
which, as mentioned above, is the underlying framework in which JBMC is built. Now
that the file is in the correct format for verification, the GOTO program is passed to
the GOTO symex, which is responsible for unwinding loops and unfolding recursive
function calls according to the defined upper bound, k. The product of that process is
subsequently passed on to the SAT or SMT solver, which will determine if any bugs are
found. As a result, it brings the verification lifecycle to an end with an output. If a bug
in the program is found, then JBMC will output “VERIFICATION FAILED” with a
counterexample, which shows the exact properties in which the bad state is reachable
within k steps. However, if JBMC outputs “VERIFICATION SUCCESSFUL”, that
signifies that JBMC did not find any vulnerabilities at all, up to the upper bound k
[CKK+18].

JBMC has proved to be a valuable tool in the software verification research area.
It has participated in the Java track and won the gold medal in the SV-COMP ’19,
which is a software verification competition. In SV-COMP, participants send in their
submission of software verifiers, which are to be bench marked against many different
test cases. The verification results for the test cases as well as the time required to
output a result is used as the benchmark in producing the final ranking. JBMC has

2.4. WITNESS VALIDATION 27

done well so far as demonstrated in SV-COMP ’19. However, there are still some areas,
which can be further enhanced. These include but is not limited to improving ease of
verification of programs that require a large upper bound k, support of verification
of classes or libraries in Java and increasing efficiency for multi-threaded programs
[CKK+18].

2.4 Witness Validation

The concept of witness validation is fairly new if compared to software verification
and software model checking [BS20]. The first two validators were submitted to SV-
COMP in 2015 [BDD+15] and in 2020, there were six validators submitted in total,
including the two first submitted in 2015 [oSVSC20]. The motivation behind witness
validation lies in the problem that software verifiers sometimes produce false alarms
[BS20]. On top of that, the counterexamples produced by software verifiers such as
JBMC are often in a format which is not very accessible for further manipulation or
verification using different verifiers [BDD+15].

The objectives of witness validation is to improve the trust level of verification
results produced by software verifiers and to employ the use of an exchangeable format
to represent the witness data [BS20].

A witness file may take one of two forms: a violation witness or a correctness wit-
ness. A violation witness contains witness data that describes error paths or violations
identified by the software verifier along with the counterexample. On the other hand,
a correctness witness contains witness data that describes a correctness proof such
that the software verifier has found no possible event in which a violation could take
place. With a common witness format in place, this will allow verification results to
be validated independently and open up the possibility to take advantage of combining
various verification tools. [BS20]

One of the proposed format to be used as the exchangeable format for witness val-
idation is GraphML [Tea]. GraphML is based on XML and was designed initially as a
format to represent and store graph structures, hence the name of the format [Tea]. One
of the main reasons for the designation of GraphML as the chosen exchangeable file
format was the relative ease of use in terms of reading from and writing to GraphML
files. This can be attributed to the large number of libraries which support these activ-
ities for XML based files. GraphML is extensible by nature which allows custom data
to be defined and stored. This allows specific witness information such as error paths

28 CHAPTER 2. BACKGROUND

to be represented and stored. Therefore, with the adoption of an exchangeable format
such as GraphML by verifiers, witness validation can be done in a considerably more
straightforward fashion [BS20].

Chapter 3

Proposed Methodology

This chapter describes the proposed methodology to implement an extension on top of
a Java verifier to validate witnesses for Java programs using Python and Mockito. In
particular, we describe the system architecture as a whole in the first section, Section
3.1. Then, in Section 3.2, we proceed to dive deeper into the algorithms implemented
in the extension, which also covers an evaluation on the complexity, completeness and
soundness of the implemented algorithms. In the last section of this chapter, Section
3.3, we provide some illustrative examples to show how implemented extension works.

3.1 System Architecture

Figure 3.1 illustrates the overall architecture and flow of events. The user will provide a
Java program in the form of a .java file or a .class file via a command-line interface
(CLI). The Python script will coordinate the whole process and output the results of
whether the bug is valid to the user. In the following paragraphs, we describe the steps
as illustrated in Figure 3.1.

The first step will be for the user to supply the intended Java program to be tested
to the Python script. This step can be either a .java file or a .class file. However,
if the user chooses to supply a .class file, the primitive data type of the variable in
which the bounded model checking is applied to will need to be provided. This is due
to the need to specify the primitive data type of the specific Verifier method that will
be invoked by the validation harness built using Mockito.

Next, the script will need to ensure that the Java program is in the required .class

form as this is a requirement of JBMC. If the user has supplied a .java file, it will be
compiled to produce a .class file as needed. The script will then run JBMC using

29

30 CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.1: Architecture of the proposed extension

system commands, which will run and execute JBMC via the CLI.

Now, JBMC will produce the output of the execution in GraphML [Tea]. GraphML
is an XML based file format designed for representation of graphs as the name may
indicate. In this dissertation, we take advantage of this file format as it is a feature
of JBMC, where it can output the results in this format but also to allow easier ma-
nipulation of “application-specific attribute data” [Tea]. The use of GraphML as a
format to represent witness data is also commonly used by other Java verifiers in SV-
COMP[oSVSC20]. The output will indicate if there exists a presence of an assertion
violation within the program and consequently be verified by the Python script [Tan20].

If there exists an assertion violation, then the Python script will obtain the coun-
terexample from the GraphML file and inject it into the Mockito validation harness
[Moc]. The validation harness is created from a template whereby actual values and
keywords will replace the placeholder values. As the validation harness is built in
Mockito, which uses Java, the validation harness file will be saved as a .java file.
Now in the final step, the script will run and execute the validation harness, which will
produce the output on the CLI of the occurrence of an assertion violation. The user
is then able to view the details of the assertion violation if it occurs and verify if it is
indeed a valid bug.

The extension is focused on verifying whether a bug discovered by JBMC is indeed

3.2. ALGORITHMS 31

a valid bug. Therefore, the emphasis is to perform validation when JBMC produces a
“VERIFICATION FAILED” output. The following sections and subsections go more
into detail of the algorithms used to perform the steps described above.

3.2 Algorithms

This section describes the different algorithms implemented in this dissertation. Sub-
section 3.2.1 go into detail of the inner workings of the Python script implemented
while subsection 3.2.1.6 describe in detail the template of the validation harness built
using Mockito. Subsection 3.2.3 discusses about the modifications done to the Verifier
class which is used to obtain non-deterministic values and lastly subsection 3.2.4 dis-
cusses on the complexity, completeness and soundness of the algorithms implemented
as described in subsection 3.2.1 and subsection 3.2.2.

3.2.1 Python script

The Python script can be executed on the CLI with either one of the commands below:

Case One:

python3 script.py File.java

Case Two:

python3 script.py File.class int

In both cases, python3 indicates to the CLI that it is running a Python script and in
this case using Python 3. Next to the python keyword, separated with a single empty
space, script.py is indicated as the Python script to be run. For the third argument,
the user has the option to provide a .java file or provide a .class file. If the user has
chosen to supply a .class file, then the primitive data type of the variable in which
the bounded model checking is applied to must be supplied as a fourth argument.

The following subsubsections 3.2.1.1 to 3.2.1.7 detail the content of the Python
script, in order of execution, when executed on the CLI.

32 CHAPTER 3. PROPOSED METHODOLOGY

3.2.1.1 Java class name extraction

1 classnameArray = sys.argv[1].split(’.’)

2 classname = classnameArray[0]

3 if len(classnameArray) == 2 and classnameArray[1] == ’

java’:

4 subprocess.Popen([’javac’, sys.argv[1]]).wait()

Listing 3.1: Excerpt of script to extract class name of the Java program

The code fragment in Listing 3.1 obtains the program’s class name as it is a require-
ment of JBMC. This code section will be able to handle both .java files and .class

files as described previously in 3.2.1.

For instance, the user has supplied a file, File.java to the script. As seen in Line
1, the script accesses the passed arguments using sys.argv[1]. Then, it splits the
string by searching for ’.’ or the period character, which is done using .split(’.’).
Thus, now in classnameArray, which is a string array, would contain two elements:
’File’ and ’java’. In Line 2, we are capturing the program class name, which is in the
needed format by JBMC, whereby it will be ’File’ in this case. In Line 3 and 4, the
script checks if it was a .java file and will then compile it automatically on the CLI
to obtain a .class file.

3.2.1.2 JBMC execution

1 cmd = ’jbmc ’+ classname +’ --stop -on-fail --graphml -

witness witness’

2 try:

3 result = subprocess.check_output(cmd, shell=True)

4 except subprocess.CalledProcessError as e:

5 result = e.output

Listing 3.2: Excerpt of script to execute JBMC

The code fragment in Listing 3.2 executes JBMC with the classname obtained in
subsubsection 3.2.1.1. It saves the output in a GraphML file by supplying additional
arguments of --graphml-witness and witness whereby the latter is the filename to
save the output to. Without supplying the additional arguments, JBMC will output the
results on the CLI by default. This will make data access and manipulation easy in the
upcoming parts of the script.

3.2. ALGORITHMS 33

3.2.1.3 Violation check

1 witnessFile = nx.read_graphml("witness")

2 violation = False

3 for violationKey in witnessFile.nodes(data=True):

4 if ’isViolationNode’ in violationKey [1]:

5 violation = True

6
7 if (violation):

8 .

9 . ## Refer to subsubsections

10 . ## 3.2.1.4 to 3.2.1.7

11 .

12 else:

13 print (’No violation found’)

14 exit(1)

Listing 3.3: Excerpt of script to check for violation

The code fragment in Listing 3.3 will open the GraphML witness file obtained from
subsection 3.2.1.2. As top-level data are represented as nodes in GraphML, the script
will go through each node in search for the violation key as seen in Lines 3 to 5. If a
violation key exists, it signifies that a violation has indeed occurred. However, if no
violation occurred, the violation key will not be found in the witness file. Thus, we
have to assign a default false value for the violation flag as seen in Line 2 of the code
fragment in Listing 3.3. This violation flag will be reassigned to the Boolean value,
True if the violation key is found as seen in Line 5.

In Line 7, we check the Boolean value of violation as obtained in Lines 1 to 5. If
there exists a violation such that it carries a Boolean value of True, the script excerpts
in subsections 3.2.1.4 to 3.2.1.7 will be executed. The details of these subsections will
be described in its respective subsection. However, if there exists no violation found
such that it carries a Boolean value of False, the script will inform the user of the
findings and terminate successfully as seen in Lines 13 and 14.

3.2.1.4 Verifier data type determination

1 if (len(sys.argv) == 3):

2 type = sys.argv[2].lower()

34 CHAPTER 3. PROPOSED METHODOLOGY

3 else:

4 with open(sys.argv[1], "rt") as fin:

5 for line in fin:

6 index = line.find(’verifier.’)

7 if(index != -1):

8 type = line[index + 15 : -4].lower().

replace(’)’,’’).replace(’(’,’’)

Listing 3.4: Excerpt of script to determine the verifier data type

The code fragment in Listing 3.4 determines the verifier data type. This is to facil-
itate an accurate creation of the validation harness from its template. This is described
further in subsection 3.2.1.6. In this part of the script, Lines 1 and 2 obtain the verifier
data type from the command arguments if the user has supplied a .class file as men-
tioned in 3.2.1. With the .lower() function, we ensure uniformity. This will prevent
errors in the code execution due to differences in alphabetical capitalisation. If the user
has supplied a .java file, the script will go into the else statement block as illustrated
in Lines 4 to 8. Here, it will pore through the .java file in search for the "verifier."
phrase as the text that comes after this phrase is the desired result. In Line 8, some text
manipulation is performed to ensure only the required portion of the text is obtained as
it may contain other characters such as ;, (or).

3.2.1.5 Counterexample extraction

1 for data in witnessFile.edges(data=True):

2 if ’assumption’ in data[2]:

3 str = data[2][’assumption’]

4 if (str.startswith(’anonlocal’)):

5 counterexample = str.split(’ = ’)[1][:-1]

Listing 3.5: Excerpt of script to extract the counterexample produced by JBMC

The code fragment in Listing 3.5 will access the same GraphML witness file as in
subsection 3.2.1.3. This portion of the script will obtain the counterexample from the
witness file. The counterexample is usually in the form of anonlocal::1i = 60; or
similar. In this example, 60 is the counterexample value and therefore the script will
perform some string manipulation to only obtain the desired part of the whole data
string.

3.2. ALGORITHMS 35

3.2.1.6 Validation harness creation from template

1 with open("ValidationHarnessTemplate.txt", "rt") as fin:

2 with open("ValidationHarness.java", "wt") as fout:

3 for line in fin:

4 line = line.replace(’ClassName’, classname)

5 if(type == ’int’):

6 line = line.replace(’Type’, ’nondetInt’).

replace(’Counterexample’, counterexample)

7 if(type == ’short’):

8 line = line.replace(’Type’, ’nondetShort’

).replace(’Counterexample’, counterexample)

9 if(type == ’long’):

10 line = line.replace(’Type’, ’nondetLong’)

.replace(’Counterexample’, counterexample)

11 if(type == ’float’):

12 line = line.replace(’Type’, ’nondetFloat’

).replace(’Counterexample’, counterexample)

13 if(type == ’double’):

14 line = line.replace(’Type’, ’nondetDouble

’).replace(’Counterexample’, counterexample)

15 if(type == ’string’):

16 try:

17 counterexample = int(counterexample)

18 line = line.replace(’Type’, ’

nondetString’).replace(’Counterexample’, ’null’)

19 except ValueError:

20 line = line.replace(’Type’, ’

nondetString’).replace(’Counterexample’, ’"’ +

counterexample + ’"’)

21 if(type == ’char’):

22 line = line.replace(’Type’, ’nondetChar’)

.replace(’Counterexample’, ’\’’ + chr(int(

counterexample)) + ’\’’)

23 if(type == ’boolean’):

24 if(counterexample == ’1’):

36 CHAPTER 3. PROPOSED METHODOLOGY

25 line = line.replace(’Type’, ’

nondetBoolean’).replace(’Counterexample’, ’true’)

26 if(counterexample == ’0’):

27 line = line.replace(’Type’, ’

nondetBoolean’).replace(’Counterexample’, ’false’)

28 fout.write(line)

Listing 3.6: Excerpt of script to create the validation harness from the template

The code fragment in Listing 3.6 will create the validation harness from the tem-
plate based on the verifier data type obtained in 3.2.1.4. There exist two placeholders
to be replaced when creating the validation harness from the template: Classname and
Type. Classname refers to the classname of the Java program which was the first to
be obtained as described in subsection 3.2.1.1. However, Type refers to the verifier
data type, which was described in subsection 3.2.1.4. In the majority of the cases, the
replacement of the placeholders with the actual counterexample value is straightfor-
ward. Some primitive data types such as string, char and Boolean required a bit
of manipulation. This is to ensure that the counterexample is represented in its proper
form to be run and executed in Mockito.

3.2.1.7 Validation harness compilation and execution

1 subprocess.Popen([’javac’, ’ValidationHarness.java’]).

wait()

2
3 subprocess.Popen([’java’, ’-ea’, ’ValidationHarness’]).

wait()

Listing 3.7: Excerpt of script to compile and execute the validation harness

The code fragment in Listing 3.7 compiles and executes the validation harness after
its creation from the template is completed in subsection 3.2.1.6. In the code fragment
in Listing 3.7, Line 1 will compile the validation harness with a Java compiler and Line
2 will run the compiled validation harness. Once the program has completed executing,
it will output the result on the CLI as a standard text output.

3.2. ALGORITHMS 37

3.2.2 Validation Harness

1 import static org.mockito.Mockito.*;

2 import org.sosy_lab.sv_benchmarks.Verifier;

3
4 public class ValidationHarness {

5 public static void main(String[] args) {

6 Verifier verifier = mock(Verifier.class);

7 ClassName.verifier = verifier;

8 when(ClassName.verifier.Type()).thenReturn(

Counterexample);

9
10 ClassName.main(new String[0]);

11 }

12 }

Listing 3.8: Validation harness template built with Mockito

The code fragment in Listing 3.8 is the template of the validation harness built us-
ing the Mockito framework. This is written in Java as it is the language used by Mock-
ito. Here, the main goal is to intercept Verifier from providing a non-deterministic
value and inject it with the counterexample found by JBMC. This will simulate the
program with the counterexample, which is essentially a static value to verify whether
the bug found by JBMC is valid.

As seen in Listing 3.8, Line 6 mocks the Java class. This will allow the counterex-
ample value to be injected each time the Verifier class is invoked, which is done
in Line 8. Then finally, in Line 10, the validation harness will call the Java program,
which triggers the counterexample value injection and thus, a result will be outputted.

3.2.3 Verifier

1 /*

2 * Contributed by Peter Schrammel

3 *

4 * Licensed under the Apache License, Version 2.0 (the "

License");

5 * you may not use this file except in compliance with

the License.

38 CHAPTER 3. PROPOSED METHODOLOGY

6 * You may obtain a copy of the License at

7 *

8 * http://www.apache.org/licenses/LICENSE-2.0

9 *

10 * Unless required by applicable law or agreed to in

writing, software

11 * distributed under the License is distributed on an "AS

IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied.

13 * See the License for the specific language governing

permissions and

14 * limitations under the License.

15 */

16
17 package org.sosy_lab.sv_benchmarks;

18
19 import java.util.Random;

20
21 public final class Verifier

22 {

23 public static void assume(boolean condition)

24 {

25 if(!condition) {

26 Runtime.getRuntime().halt(1);

27 }

28 }

29
30 public static boolean nondetBoolean()

31 {

32 return new Random().nextBoolean();

33 }

34
35 public static byte nondetByte()

36 {

3.2. ALGORITHMS 39

37 return (byte)(new Random().nextInt());

38 }

39
40 public static char nondetChar()

41 {

42 return (char)(new Random().nextInt());

43 }

44
45 public static short nondetShort()

46 {

47 return (short)(new Random().nextInt());

48 }

49
50 public static int nondetInt()

51 {

52 return new Random().nextInt();

53 }

54
55 public static long nondetLong()

56 {

57 return new Random().nextLong();

58 }

59
60 public static float nondetFloat()

61 {

62 return new Random().nextFloat();

63 }

64
65 public static double nondetDouble()

66 {

67 return new Random().nextDouble();

68 }

69
70 public static String nondetString()

71 {

40 CHAPTER 3. PROPOSED METHODOLOGY

72 Random random = new Random();

73 int size = random.nextInt();

74 assume(size >= 0);

75 byte[] bytes = new byte[size];

76 random.nextBytes(bytes);

77 return new String(bytes);

78 }

79 }

Listing 3.9: Modified Verifier.java

1 /*

2 * Contributed by Peter Schrammel

3 *

4 * Licensed under the Apache License, Version 2.0 (the "

License");

5 * you may not use this file except in compliance with

the License.

6 * You may obtain a copy of the License at

7 *

8 * http://www.apache.org/licenses/LICENSE-2.0

9 *

10 * Unless required by applicable law or agreed to in

writing, software

11 * distributed under the License is distributed on an "AS

IS" BASIS,

12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either

express or implied.

13 * See the License for the specific language governing

permissions and

14 * limitations under the License.

15 */

16
17 package org.sosy_lab.sv_benchmarks;

18
19 import java.util.Random;

20

3.2. ALGORITHMS 41

21 public class Verifier

22 {

23 public void assume(boolean condition)

24 {

25 if(!condition) {

26 Runtime.getRuntime().halt(1);

27 }

28 }

29
30 public boolean nondetBoolean()

31 {

32 return new Random().nextBoolean();

33 }

34
35 public byte nondetByte()

36 {

37 return (byte)(new Random().nextInt());

38 }

39
40 public char nondetChar()

41 {

42 return (char)(new Random().nextInt());

43 }

44
45 public short nondetShort()

46 {

47 return (short)(new Random().nextInt());

48 }

49
50 public int nondetInt()

51 {

52 return new Random().nextInt();

53 }

54
55 public long nondetLong()

42 CHAPTER 3. PROPOSED METHODOLOGY

56 {

57 return new Random().nextLong();

58 }

59
60 public float nondetFloat()

61 {

62 return new Random().nextFloat();

63 }

64
65 public double nondetDouble()

66 {

67 return new Random().nextDouble();

68 }

69
70 public String nondetString()

71 {

72 Random random = new Random();

73 int size = random.nextInt();

74 assume(size >= 0);

75 byte[] bytes = new byte[size];

76 random.nextBytes(bytes);

77 return new String(bytes);

78 }

79 }

Listing 3.10: Modified Verifier.java

The code fragment in Listing 3.10 shows the modified Verifier.java file. The
original file as shown in Listing 3.9 obtained as part of the SV-COMP benchmarks
repository on Github. The purpose of this file is to provide a non-deterministic value
upon request to the caller. The proposed extension involves the use of Mockito as a
mocking framework. However, Mockito does not support the mocking of final or static
classes and methods. Thus, there is a need for changes to be applied as shown in 3.10.

This change will need to be propagated to the test cases or benchmark files as
well. Listing 3.11 shows the assert2.java benchmark which have been obtained
directly from SV-COMP’s benchmarks repository on Github. Listing 3.12 shows the
assert2.java benchmark file after the required changes have been applied and is

3.2. ALGORITHMS 43

ready for testing.

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/cbmc-java/assert2

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 class Main {

12 public static void main(String[] args) {

13 int i = Verifier.nondetInt();

14
15 if (i >= 1000)

16 assert i > 1000 : "i is greater 1000"; // should

fail

17 }

18 }

Listing 3.11: assert2.java before applied changes

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/cbmc-java/assert2

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 public class assert2 {

44 CHAPTER 3. PROPOSED METHODOLOGY

12 public static Verifier verifier = new Verifier();

13
14 public static void main(String[] args) {

15 int i = verifier.nondetInt();

16
17 if (i >= 1000)

18 assert i > 1000 : "i is greater 1000"; // should

fail

19 }

20 }

Listing 3.12: assert2.java after applied changes

3.2.4 Complexity, completeness and soundness of algorithms

The complexity of the algorithms is linear, represented as O(N). Referring to sub-
section 3.2.1, it can be observed that there are multiple single for loops such as in
subsection 3.2.1.3 and subsection 3.2.1.4. However, there exists no occurrence of any
nested for loops or recursive functions, which may affect the complexity differently.
Thus, this makes the algorithms linear in terms of complexity.

Based on the results obtained from the set of benchmarks by SV-COMP, the algo-
rithms are sound as correct results are consistently produced. This can be manually
verified given that the Java programs within the benchmark sets are small in size and
not too complicated. Since the Java programs are instantiated using Mockito, there is
little interest in the completeness of the algorithms.

3.3 Illustrative Examples

The following subsections outline several illustrative examples. These examples are
distinguished by the different Verifier data type to illustrate the workings of the
script on various primitive data types. All the following Java program examples are
retrieved from SV-COMP’s benchmarks, which are open source and can be freely ob-
tained from https://github.com/sosy-lab/sv-benchmarks.

3.3. ILLUSTRATIVE EXAMPLES 45

3.3.1 int example

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/cbmc-java/assert2

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 public class assert2 {

12 public static Verifier verifier = new Verifier();

13
14 public static void main(String[] args) {

15 int i = verifier.nondetInt();

16
17 if (i >= 1000)

18 assert i > 1000 : "i is greater 1000"; // should

fail

19 }

20 }

Listing 3.13: Illustrative example of int Java program

Listing 3.13 is a Java program, which contains a bug. In Line 18, the program
asserts that the int value of i must be more than 1000. However, it is immediately
noticeable that in Line 17, the if-statement checks for values of i of more than or equal
to 1000. Thus, the assert statement will fail as expected.

First, we obtain the initial results from JBMC by running the following command
on the CLI.

jbmc assert2 --stop-on-fail

In Figure 3.2, it can be observed that the assert2 program contains a bug as it has
output “VERIFICATION FAILED”. It should also be pointed out that the counterex-
ample is noticeable in this screenshot. At the top of the figure, it reads the following:

46 CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.2: Screenshot of JBMC output of an int example

State 245 file assert2.java function assert2.main(java.lang.String[])

line 15 thread 0

--

anonlocal::1i=1000 (00000000 00000000 00000011 11101000)

This is, in fact, the counterexample, or rather the value of 1000 is the counterex-
ample, which will be extracted by the Python script. Now we will verify this with the
Python script and validation harness built into Mockito.

Figure 3.3: Screenshot of Python script output of an int example

In Figure 3.3, the Python script is executed on the CLI. This is done by with the
following command:

3.3. ILLUSTRATIVE EXAMPLES 47

python script.py assert2.java

The output result of the script can be seen in the screenshot whereby the result
matches what had been obtained from JBMC directly. In both cases, the assert state-
ments are violated. Therefore, this means that this is indeed a valid bug, which has
been successfully verified.

Figure 3.4: Screenshot of the validation harness of a int example

Figure 3.4 shows a screenshot of the validation harness generated from the script
based on the template. Here, it can be witnessed that the creation of the validation har-
ness is done correctly. The Java class name replaced the placeholder values, assert2,
the verifier data type replaced by nondetInt() and the counterexample value of 1000
was injected accurately.

3.3.2 Long example

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/jbmc-strings/StringValueOf07

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 public class StringValueOf07 {

12 public static Verifier verifier = new Verifier();

48 CHAPTER 3. PROPOSED METHODOLOGY

13 public static void main(String[] args) {

14 long longValue = verifier.nondetLong();

15 System.out.printf("long = %s\n", String.valueOf(

longValue));

16 String tmp = String.valueOf(longValue);

17 assert tmp.equals("100000000000");

18 }

19 }

Listing 3.14: Illustrative example of Long Java program

Listing 3.14 is a Java program, which contains a bug. In Line 17, the program
asserts that the long value of tmp must be equal to than 100000000000. However, it
is immediately noticeable that the range oflong values start at 0, since it is a primitive
number type. Thus, since the value of tmp can be anything other than 100000000000,
the assert statement will fail as expected.

First, we obtain the initial results from JBMC by running the following command
on the CLI.

jbmc StringValueOf07 --stop-on-fail

Figure 3.5: Screenshot of JBMC output of an Long example

In Figure 3.5, it can be observed that the StringValueOf07 program contains a
bug as it has output “VERIFICATION FAILED”. The counterexample is not noticeable
in this screenshot but should read as the following:

3.3. ILLUSTRATIVE EXAMPLES 49

State 162 file StringValueOf07.java function StringValueOf07.main

(java.lang.String[]) line 14 thread 0

--

anonlocal::1l=0L (00000000 00000000 00000000 00000000 00000000

00000000 00000000 00000000)

The counterexample, or rather the value of 0L is the counterexample, which will
be extracted by the Python script. Now we will verify this with the Python script and
validation harness built into Mockito.

Figure 3.6: Screenshot of Python script output of an Long example

In Figure 3.6, the Python script is executed on the CLI. This is done by with the
following command:

python script.py StringValueOf07.java

The output result of the script can be seen in the screenshot whereby the result
matches what had been obtained from JBMC directly. In both cases, the assert state-
ments are violated. Therefore, this means that this is indeed a valid bug, which has
been successfully verified.

Figure 3.7: Screenshot of the validation harness of a Long example

50 CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.7 shows a screenshot of the validation harness generated from the script
based on the template. Here, it can be witnessed that the creation of the validation
harness is done correctly. The placeholder values were replaced by the Java class
name, StringValueOf07, the verifier data type replaced by nondetLong() and the
counterexample value of 0L was injected accurately.

3.3.3 char example

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/jbmc-strings/

StaticCharMethods04

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 public class StaticCharMethods04 {

12 public static Verifier verifier = new Verifier();

13
14 public static void main(String[] args) {

15 char c = verifier.nondetChar();

16 assert Character.isLetter(c);

17 }

18 }

Listing 3.15: Illustrative example of char Java program

Listing 3.15 is a Java program, which contains a bug. In Line 16, the program
asserts that the char variable c must be of a letter. However, symbols such as excla-
mation marks (!) and question marks (?) are also part of the char family. Thus, the
assert statement will fail as expected.

First, we obtain the initial results from JBMC by running the following command
on the CLI.

3.3. ILLUSTRATIVE EXAMPLES 51

jbmc StaticCharMethods04 --stop-on-fail

Figure 3.8: Screenshot of JBMC output of an char example

In Figure 3.8, it can be observed that the StaticCharMethods04 program contains
a bug as it has output “VERIFICATION FAILED”. It should also be pointed out that
the counterexample is noticeable in this screenshot. At the top of the figure, it reads
the following:

State 123 file StaticCharMethods04.java function

StaticCharMethods04.main(java.lang.String[]) line 15 thread 0

--

anonlocal::1i=60 (00000000 00000000 00000000 00111100)

This is, in fact, the counterexample, or rather the value of 60, which is the int value
of a char, is the counterexample that will be extracted by the Python script. Now we
will verify this with the Python script and validation harness built into Mockito.

In Figure 3.9, the Python script is executed on the CLI. This is done by with the
following command:

python script.py StaticCharMethods04.java

52 CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.9: Screenshot of Python script output of an char example

The output result of the script can be seen in the screenshot whereby the result
matches what had been obtained from JBMC directly. In both cases, the assert state-
ments are violated. Therefore, this means that this is indeed a valid bug, which has
been successfully verified.

Figure 3.10: Screenshot of the validation harness of a char example

Figure 3.10 shows a screenshot of the validation harness generated from the script
based on the template. Here, it can be witnessed that the creation of the valida-
tion harness is done correctly. The Java class name replaced the placeholder values,
StaticCharMethods04, the verifier data type replaced by nondetChar() and the
counterexample value of 60, which was then converted in character ’¡’ was injected
accurately.

3.3. ILLUSTRATIVE EXAMPLES 53

3.3.4 Boolean example

1 /*

2 * Origin of the benchmark:

3 * license: 4-clause BSD (see /java/jbmc-regression/

LICENSE)

4 * repo: https://github.com/diffblue/cbmc.git

5 * branch: develop

6 * directory: regression/jbmc-strings/StringValueOf04

7 * The benchmark was taken from the repo: 24 January 2018

8 */

9 import org.sosy_lab.sv_benchmarks.Verifier;

10
11 public class StringValueOf04 {

12 public static Verifier verifier = new Verifier();

13
14 public static void main(String[] args) {

15 boolean booleanValue = verifier.nondetBoolean();

16 String tmp = String.valueOf(booleanValue);

17 assert tmp.equals("true");

18 }

19 }

Listing 3.16: Illustrative example of Boolean Java program

Listing 3.16 is a Java program, which contains a bug. In Line 17, the program
asserts that the Boolean value of tmp must always be equal to true. However, a
Boolean variable will not always carry a true value. All Boolean values can be
either true or false. Thus, the assert statement will fail as expected.

First, we obtain the initial results from JBMC by running the following command
on the CLI.

jbmc StringValueOf04 --stop-on-fail

In Figure 3.11, it can be observed that the StringValueOf04 program contains a
bug as it has output “VERIFICATION FAILED”. The counterexample is not noticeable
in this screenshot but should read as the following:

State 134 file StringValueOf04.java function

54 CHAPTER 3. PROPOSED METHODOLOGY

Figure 3.11: Screenshot of JBMC output of an Boolean example

StringValueOf04.main(java.lang.String[]) line 15 thread 0

--

anonlocal::1i=0 (00000000 00000000 00000000 00000000)

The counterexample in essence itself is the value of 0, which is in fact equivalent
to the Boolean value of false. This counterexample value will be extracted by the
Python script and represented as false. Now we will verify this with the Python script
and validation harness built into Mockito.

Figure 3.12: Screenshot of Python script output of an Boolean example

3.3. ILLUSTRATIVE EXAMPLES 55

In Figure 3.12, the Python script is executed on the CLI. This is done by with the
following command:

python script.py StringValueOf04.java

The output result of the script can be seen in the screenshot whereby the result
matches what had been obtained from JBMC directly. In both cases, the assert state-
ments are violated. Therefore, this means that this is indeed a valid bug, which has
been successfully verified.

Figure 3.13: Screenshot of the validation harness of a Boolean example

Figure 3.13 shows a screenshot of the validation harness generated from the script
based on the template. Here, it can be witnessed that the creation of the validation
harness is done correctly. The placeholder values were replaced by the Java class
name, StringValueOf04, the verifier data type replaced by nondetBoolean() and
the counterexample value of ’False’ was injected accurately.

Chapter 4

Experimental Evaluation

This chapter describes the experimental evaluation of the algorithms implemented,
which is divided into three main sections. Section 4.1 details the requirements needed
to set up the environment for the experimental evaluation. Section 4.2 describes the
objectives of this experimental evaluation, While Section 4.3 outlines the results and
describes threats to the validity of the results.

4.1 Setup

4.1.1 Environment setup

The following subsections list the required steps to be performed before starting the
experimental evaluation. The order is not strict except for Java as it is required to be
pre-installed before JBMC [CKS19] and Mockito [Moc].

4.1.1.1 Java environment installation

Java is available for download at the following official site:

https://www.java.com/en/download/manual.jsp

The Java Development Kit (JDK) is available for download at the following site:

https://www.oracle.com/java/technologies/javase-downloads.html

A comprehensive installation guide for installing the JDK on various platforms are
available here:

https://www3.ntu.edu.sg/home/ehchua/programming/howto/JDK_Howto.html

56

4.1. SETUP 57

4.1.1.2 Python environment installation

Python is available for download at the following official site:

https://www.python.org/downloads/

For this project, it is mandatory to install Python 3. A comprehensive installation
guide for installing Python on various platforms is available here:

https://realpython.com/installing-python/

Ensure that the following Python packages are installed as well:

• subprocess

• sys

• networkx

A comprehensive guide on how to install Python packages is available here:

https://packaging.python.org/tutorials/installing-packages/

4.1.1.3 Java verifier installation (JBMC)

As JBMC is built based on C Bounded Model Checker (CBMC), it is useful to have
CBMC installed first. CBMC is available for download here:

https://github.com/diffblue/cbmc

JBMC is available as part of the CBMC repository. The standalone JBMC tool is
available for download from its GitHub repository here:

https://github.com/diffblue/cbmc/tree/develop/jbmc

The installation instructions for both CBMC and JBMC are available in the README
files located in the Github repository.

Then, finally add the JBMC PATH variable to point to the directory containing the
JBMC executable as below:

export PATH="path-to-directory/cbmc/jbmc/src/jbmc:$PATH"

4.1.1.4 Mockito installation

Mockito is available to download from the following site:

https://mvnrepository.com/artifact/org.mockito/mockito-core

There are three dependencies of Mockito required to be downloaded separately:

• byte-buddy

58 CHAPTER 4. EXPERIMENTAL EVALUATION

• byte-buddy-agent

• objenesis

These dependencies are available on the same site and can be seen under the
”Compile Dependencies” section of the page. It lists the compatible version with the
mockito-core version selected as well as the latest version of each dependency.

Then, the environment variables need to be set using the following commands (be-
low shown for MacOS):

Mockito_HOME=/Library/Mockito

export Mockito_HOME

export CLASSPATH=$CLASSPATH:$Mockito_HOME/mockito-core-3.3.3.jar:

$Mockito_HOME/byte-buddy-1.10.5.jar:$Mockito_HOME/byte-buddy-agent

-1.10.5.jar:$Mockito_HOME/objenesis-2.6.jar:.

This can alternatively be added to the ./bash profile file.

4.1.1.5 Proposed extension

The Python script and validation harness template implemented in this project is avail-
able for download at the Github repository below:

https://github.com/vilynntan/msc-project

It includes the Python script, the validation harness template, the modified Verifier.java
file from SV-COMP benchmarks repository and some sample benchmarks.

4.1.1.6 Benchmarks

The complete list of benchmarks are available for download at the Github repository
below:

https://github.com/sosy-lab/sv-benchmarks

The benchmark files used can be found at sv-benchmarks/java/jbmc-regression.

The benchmarks for the Java category of SV-COMP mainly involves verification
of reachability. This category known as ReachSafety in SV-COMP is one of the cat-
egories tested for C programs among five other categories; ConcurrencySafety, Mem-
Safety, NoOverflows, SoftwareSystems and Termination [oSVSC20].

4.1. SETUP 59

4.1.2 Environment versions

In this project, the software and its respective versions used are as below:

• JDK/JRE (Version 1.8.0 77)

• python3 (Version 3.8.3)

• pip3 (Version 20.0.2)

• Homebrew (Version 2.4.7)

• CBMC/JBMC (Retrieved from GitHub repository on 12th March 2020)

• mockito-core (Version 3.3.3)

• byte-buddy (Version 1.10.5)

• byte-buddy-agent (Version 1.10.5)

• objenesis (Version 2.6)

• MacOS Terminal (Version 2.9.5)

The specification of the hardware used in this project are as below:

• Model: Macbook Pro (Late 2013)

• Processor: 2.6 GHz Intel Core i5

• RAM: 8GB

• Operating System: MacOS Mojave (Version 10.14.6)

4.1.3 Running the tests

The benchmark file desired to be tested needs to be on the same directory level as the
Python script and the validation harness template. Some samples of the benchmark
files have been uploaded as part of the project repository as guidance. These include
assert2.java, StaticCharMethods04.java and StringValueOf04.java. The di-
rectory style and sample benchmarks is illustrated in Figure 4.1.

60 CHAPTER 4. EXPERIMENTAL EVALUATION

Figure 4.1: Project directory

Before running the script on the CLI, a crucial step is to ensure that the necessary
changes have been implemented as described in Section 3.2.3. Now, the tests are ready
to be carried out.

First, run the benchmark tests with JBMC. As the benchmark files are .java files,
it would need to be compiled beforehand. This can be done with the command below:

javac assert2.java

Then, run the compiled file with JBMC using the command below:

jbmc assert2 --stop-on-fail

The output will be printed on the CLI along with the stack trace if the verification
has failed.

Next, run the script with the benchmark using the command below:

python3 script.py assert2.java

The output will be printed on the CLI.
All results are recorded and displayed in Table 4.1 in Section 4.3.

4.2 Objectives

The overall objective of this experimental evaluation is to be able to evaluate the per-
formance of the algorithms implemented for the witness validator. This will allow us
to understand the effectiveness and value that the proposed extension may bring forth.

4.3. RESULTS AND THREAT TO VALIDITY 61

The specific objectives of the experimental evaluation are:

• Test the algorithms against benchmarks used in SV-COMP.

• Obtain and analyse results.

• Compare results produced by the algorithms against those produced by JBMC.

• Identify any potential discrepancies between results.

4.3 Results and Threat to Validity

No FileName Testable? Type JBMC output Script output Comment
1 aastore aaload1 Y int N/A N/A Execution time out

2 array1 Y int N/A N/A Execution time out

3 array2 N int S N/A

4 arraylength1 N int S N/A

5 arrayread1 N int S N/A

6 assert1 N int S N/A

7 assert2 Y int F F

8 assert3 Y int F F

9 assert4 Y int F F

10 assert5 N int S N/A

11 assert6 N int S N/A

12 astore aload1 N N/A N/A No verifier type

13 athrow1 N N/A N/A No verifier type

14 basic1 N N/A N/A No verifier type

15 bitwise1 N int S N/A

16 boolean1 N bool S N/A

17 boolean2 N bool S N/A

18 bug-test-gen-095 Y string F F

19 bug-test-gen-119 Y bool F F Null pointer exception

20 bug-test-gen-119-2 N N/A N/A No verifier type

21 calc N N/A N/A Multiple verifiers

22 cast1 N int S N/A

23 catch1 N N/A N/A No verifier type

24 char1 Y string F F Null pointer exception

25 charArray Y string F F Null pointer exception

26 classtest1 N N/A N/A No verifier type

27 const1 N N/A N/A No verifier type

28 constructor1 N N/A N/A No verifier type

29 enum1 N N/A N/A No verifier type

30 exceptions1 N N/A N/A No verifier type

31 exceptions2 N N/A N/A No verifier type

32 exceptions3 N N/A N/A No verifier type

33 exceptions4 N N/A N/A No verifier type

34 exceptions5 N N/A N/A No verifier type

35 exceptions6 N N/A N/A No verifier type

36 exceptions7 N N/A N/A No verifier type

37 exceptions8 N N/A N/A No verifier type

38 exceptions9 N N/A N/A No verifier type

39 exceptions10 N N/A N/A No verifier type

40 exceptions11 N N/A N/A No verifier type

41 exceptions12 N N/A N/A No verifier type

42 exceptions13 N N/A N/A No verifier type

43 exceptions14 N N/A N/A No verifier type

44 exceptions15 N N/A N/A No verifier type

45 exceptions16 Y int F F

46 exceptions18 N N/A N/A No verifier type

47 fcmpx dcmpx1 N N/A N/A No verifier type

62 CHAPTER 4. EXPERIMENTAL EVALUATION

No FileName Testable? Type JBMC output Script output Comment
48 iarith1 N N/A N/A No verifier type

49 iarith2 N N/A N/A No verifier type

50 if acmp1 N N/A N/A No verifier type

51 if expr1 N int S N/A

52 if icmp1 N int S N/A

53 ifxx1 N N/A N/A No verifier type

54 instanceof1 N N/A N/A No verifier type

55 instanceof2 N N/A N/A No verifier type

56 instanceof3 N N/A N/A No verifier type

57 instanceof4 N N/A N/A No verifier type

58 instanceof5 N N/A N/A No verifier type

59 instanceof6 N N/A N/A No verifier type

60 instanceof7 N N/A N/A No verifier type

61 instanceof8 N N/A N/A No verifier type

62 interface1 N N/A N/A No verifier type

63 java append char Y bool F F

64 lazyloading4 N N/A N/A No verifier type

65 list1 N int S N/A

66 long1 N N/A N/A No verifier type

67 lookupswitch1 N int S N/A

68 multinewarray N N/A N/A No verifier type

69 overloading1 N N/A N/A No verifier type

70 package1 N N/A N/A No verifier type

71 putfield getfield1 N N/A N/A No verifier type

72 putstatic getstatic1 N N/A N/A No verifier type

73 recursion2 N N/A N/A No verifier type

74 return1 N N/A N/A No verifier type

75 return2 N N/A N/A Multiple verifiers

76 store load1 N N/A N/A No verifier type

77 swap1 N N/A N/A No verifier type

78 synchronized N N/A N/A No verifier type

79 tableswitch1 N int S N/A

80 TokenTest01 N N/A N/A No verifier type

81 TokenTest02 Y string N/A N/A Execution time out

82 uninitialised1 N N/A N/A No verifier type

83 Validate01 N N/A N/A No verifier type

84 Validate02 N N/A N/A Multiple verifiers

85 virtual function unwinding N N/A N/A No verifier type

86 virtual1 N N/A N/A No verifier type

87 virtual2 N N/A N/A No verifier type

88 virtual4 N N/A N/A No verifier type

89 ArithmeticException1 Y int F F

90 ArithmeticException5 N N/A N/A No verifier type

91 ArithmeticException6 Y int F F

92 ArrayIndexOutOfBoundsException1 Y int F F

93 ArrayIndexOutOfBoundsException2 Y int F F

94 ArrayIndexOutOfBoundsException3 Y int F F Counterexample (array index) <array length

95 BufferedReaderReadLine Y string N/A N/A Execution time out

96 CharSequenceBug Y string F F Null pointer exception

97 CharSequenceToString Y string F F Null pointer exception

98 Class method1 N N/A N/A No verifier type

99 ClassCastException1 N N/A N/A No verifier type

100 ClassCastException2 N N/A N/A No verifier type

101 ClassCastException3 N N/A N/A No verifier type

102 Inheritance1 N N/A N/A No verifier type

103 NegativeArraySizeException1 N N/A N/A No verifier type

104 NegativeArraySizeException2 N N/A N/A No verifier type

105 NullPointerException1 N N/A N/A No verifier type

106 NullPointerException2 N N/A N/A No verifier type

107 NullPointerException3 N N/A N/A No verifier type

108 NullPointerException4 N N/A N/A No verifier type

109 RegexMatches01 N N/A N/A No verifier type

110 RegexMatches02 Y string N/A N/A Execution time out

111 RegexSubstitution01 N N/A N/A No verifier type

112 RegexSubstitution02 N N/A N/A Multiple verifiers

113 RegexSubstitution03 N N/A N/A No verifier type

114 StaticCharMethods01 N N/A N/A No verifier type

115 StaticCharMethods02 Y string F F Null pointer exception

4.3. RESULTS AND THREAT TO VALIDITY 63

No FileName Testable? Type JBMC output Script output Comment
116 StaticCharMethods03 Y string F F Null pointer exception

117 StaticCharMethods04 Y char F F

118 StaticCharMethods05 N N/A N/A Multiple verifiers

119 StaticCharMethods06 Y string F F Null pointer exception

120 StringBuilderAppend01 N N/A N/A No verifier type

121 StringBuilderAppend02 N N/A N/A Multiple verifiers

122 StringBuilderCapLen01 N N/A N/A No verifier type

123 StringBuilderCapLen02 Y string F F Null pointer exception

124 StringBuilderCapLen03 Y string F F Null pointer exception

125 StringBuilderCapLen04 Y string F F Null pointer exception

126 StringBuilderChars01 N N/A N/A No verifier type

127 StringBuilderChars02 Y string F F Null pointer exception

128 StringBuilderChars03 Y string F F Null pointer exception

129 StringBuilderChars04 Y string N/A N/A Execution time out

130 StringBuilderChars05 Y string F F Null pointer exception

131 StringBuilderChars06 Y string F F Null pointer exception

132 StringBuilderConstructors01 Y string F F Null pointer exception

133 StringBuilderConstructors02 Y string F F Null pointer exception

134 StringBuilderInsertDelete01 N N/A N/A No verifier type

135 StringBuilderInsertDelete02 N N/A N/A Multiple verifiers

136 StringBuilderInsertDelete03 N N/A N/A Multiple verifiers

137 StringCompare01 N N/A N/A No verifier type

138 StringCompare02 N N/A N/A Multiple verifiers

139 StringCompare03 N N/A N/A Multiple verifiers

140 StringCompare04 N N/A N/A Multiple verifiers

141 StringCompare05 Y string F F Null pointer exception

142 StringConcatenation01 N N/A N/A Multiple verifiers

143 StringConcatenation02 N N/A N/A Multiple verifiers

144 StringConcatenation03 N N/A N/A Multiple verifiers

145 StringConcatenation04 Y string F F Null pointer exception

146 StringConstructors01 N N/A N/A No verifier type

147 StringConstructors02 Y string F F Array size should be >=0

148 StringConstructors03 N N/A N/A Multiple verifiers

149 StringConstructors04 Y string F F Null pointer exception

150 StringConstructors05 Y string F F Null pointer exception

151 StringContains01 N N/A N/A Multiple verifiers

152 StringContains02 Y string F F Null pointer exception

153 StringIndexMethods01 N N/A N/A No verifier type

154 StringIndexMethods02 Y string F F Null pointer exception

155 StringIndexMethods03 Y string F F Null pointer exception

156 StringIndexMethods04 Y string F F Null pointer exception

157 StringIndexMethods05 Y string F F Null pointer exception

158 StringMiscellaneous01 N N/A N/A No verifier type

159 StringMiscellaneous02 Y string F F Null pointer exception

160 StringMiscellaneous03 N N/A N/A Multiple verifiers

161 StringMiscellaneous04 N N/A N/A No verifier type

162 StringStartEnd01 N N/A N/A No verifier type

163 StringStartEnd02 N N/A N/A Multiple verifiers

164 StringStartEnd03 N N/A N/A Multiple verifiers

165 StringValueOf01 N N/A N/A No verifier type

166 StringValueOf02 Y string F F Null pointer exception

167 StringValueOf03 Y string F F Null pointer exception

168 StringValueOf04 Y bool F F

169 StringValueOf05 Y string F F Null pointer exception

170 StringValueOf06 Y int F F

171 StringValueOf07 Y long F F

172 StringValueOf08 Y string F F Null pointer exception

173 StringValueOf09 Y string F F Null pointer exception

174 StringValueOf10 Y string F F Null pointer exception

175 SubString01 N N/A N/A No verifier type

176 SubString02 Y string F F Null pointer exception

177 SubString03 Y string F F Null pointer exception

Table 4.1: Experimental evaluation results using SV-COMP benchmark files

64 CHAPTER 4. EXPERIMENTAL EVALUATION

Table 4.1 shows the results from the experimental evaluation using the SV-COMP
benchmarks [oSVSC19]. There are six columns; “Filename”, “Testable?”, “Type”,
“JBMC output”, “Script output” and “Comment”. The “Filename” column indicates
the file name of the benchmark. The “Testable?” column indicates if the file is eligible
for testing using “Y” for yes and “N” for no. Files with no or multiple calls to the
Verifier class are not eligible for evaluation as they are not supported. This will be
described in the “Comment” section. The “Type” column indicates the Verifier’s
data types such as integer or string. The “JBMC output” column indicates the result
of the benchmark when executed using JBMC. Similarly, the “Script output” column
indicates the result of the benchmark when executed using the Python script developed
for this dissertation. For both the “JBMC output” and “Script output” column, “S”
indicates that the verification has been successful, “F” indicates that the verification
has failed and “N/A” indicates that a result has not been able to be obtained. In all
cases of “N/A”, a description as to why the result had not been able to be obtained is
described in the “Comment” section.

The “Comment” section provides more insight into the results. If this column is
left empty, it indicates that the benchmark has achieved the same outcome when ex-
ecuted using both JBMC and the script. There are three types of comments which
indicate that the evaluation could not be performed using JBMC and/or the Python
script. The first is ”Execution time out” which indicates that the CLI has terminated
the execution. This is due to the execution taking too much time or memory and thus
no outcome of whether the verification was successful or otherwise could be reached.
The second is ”No verifier type” which indicates that the particular benchmark did not
involve the use of the Verifier method. As the proposed extension involves the use
of injecting a static counterexample value into the mocked Verifier method, no eval-
uation can be performed if the benchmark does not involve the use of the Verifier

method. The third is ”Multiple verifiers” which indicates that the particular benchmark
involves the use of multiple various invocation to the Verifier method. As the pro-
posed extension is limited to only one Verifier method invocation call, no evaluation
can be performed on that particular benchmark. Other comments such as ”Null pointer
exception”, ”Counterexample (array index) ¡ array length” and ”Array size should be
¿=0” are specific errors which arised due to assertion violation within the Verifier

method. This limitation is exclusive to the String data type as there are some issues
when the Verifier method in invoked to return a non-deterministic string.

The results have indicated that the performance of this script has been consistent

4.3. RESULTS AND THREAT TO VALIDITY 65

with JBMC’s output. There have not been any cases in which the script produces a dif-
ferent output to JBMC. This is an expected outcome since JBMC has been performing
well on these benchmarks, such that it has successfully produced the correct outcome
of all of the test cases [Bey20]. As such, there is no concrete example of any bench-
mark in which the script will be able to prove that JBMC has produced a false positive
in identifying bugs in the program. On top of that, the performance of the proposed
extension has not been tested against several primitive data types such as byte, short,
float and double. This is because of limitations due to the set of benchmarks available.

Chapter 5

Related Work

Research within the realm of software verification for Java programs and witness val-
idation specifically for Java verifiers are relatively new, if to be compared with within
the C language verifiers. Implementations for witness validators for C programs have
shown good results and promise for this research area [BS20].

MetaVal [BS20] is a witness validator for C Programs developed by a team from
LMU Munich, Germany. In its submission to SV-COMP 2020, it has confirmed 3,653
violation witnesses and 16,376 correctness witnesses. The overall results based on a
large benchmark set indicate that MetaVal improves the effectiveness of the valida-
tion process as a whole. It uses what it calls a transformer which receives the original
input program and applies selected transformations. For instance, if the transformer
receives a violation witness, it will output a new program which strictly contains nec-
essary information related to the counterexample. This pruning process is similar to
the condition reducer found in reducer-based conditional model checking. MetaVal
has been implemented to enable the use of any verifier such as CPAChecker or Ulti-
mate Automizer, both are submissions to SV-COMP 2020. This will allow the witness
validator to choose the best verifier in an ”off-the-shelf” manner.

NITWIT [ŠBK20] is another tool for witness validation first submitted to SV-
COMP in 2020. Developed by a team from RWTH Aachen University, Germany,
NITWIT is described as ”interpretation-based violation witness validation” for C pro-
grams. NITWIT describes an interpreter as ”a program that takes as input a program,
parses it and executes commands as part of its own runtime instead of producing ma-
chine code like a compiler”. The interpreter will perform direct translation of programs
into their exact behaviour representation in which values of all variables in the program
are tracked and statements are executed on the basis of results from expressions and

66

67

control flow [ŠBK20]. This tool, which has a small memory footprint and is proven to
be notably faster than other competitors within the category [ŠBK20], has successfully
validated 8,526 witnesses out of 11,533 witnesses [oSVSC20]. Additionally, it was the
only tool in SV-COMP 2020 which managed to validate 399 witnesses which were not
validated by other validators within the competition [oSVSC20, ŠBK20].

This dissertation proposed an extension to perform witness validation on Java pro-
grams. The main goal is similar to what MetaVal and NITWIT desire and had achieved;
which is to verify the counterexample in the form of a witness produced by a software
verification tool. In this dissertation, the proposed extension implementation verifies
the validity of the violations identified by a software verifier for Java programs such
as JBMC. The research has managed to demonstrate using some instances from SV-
COMP benchmarks using a unique methodology of using Mockito, a mocking frame-
work. The proposed methodology is still in the early stages with implementations
of rather straightforward and purely functional algorithms without any optimisation.
However, this research should serve as a demonstration of feasibility in validating wit-
nesses for Java programs.

Chapter 6

Conclusion

This dissertation has managed to produce an implementation of a witness validation
extension for software verifiers of Java programs. In specific it has demonstrated the
ability to perform witness validation of violation witnesses based on GraphML. The
implementation was built using Python and Mockito. Limitations of the implemen-
tation have been identified and described in experimental evaluation chapter, Chapter
4. While the implementation is still rough around the edges, the initial results shows
some potential especially in the field on interest, for finding security vulnerabilities.

Now, more than ever, it is a constant race against finding and verifying security
vulnerabilities preventively to avoid catastrophic security breaches and attacks. As we
have discussed in Section 2.2, the cost of a single security incident can cause a huge
blow. Software verification currently is and will continue growing to be of high impor-
tance. Thus, this implementation extension for Java verifiers which aims to perform
witness validation will hopefully support the research area around this topic.

Further work and improvements can be done on the proposed extension such as
implementation of a test suite which will increase the level of automation within this
implementation. There could also be more done to improve support for string vari-
ables as described in Chapter 4. Due to the limitations with the benchmark files, not all
primitive data types could be tested. A collaboration with the committee of SV-COMP
could perhaps result in a better benchmark data set. Furthermore, there should also be
more testing to be conducted to support witness validation of various other Java veri-
fiers such as JayHorn [KRS19] and Java Ranger [SHW+20]. This will promote the use
of witness validation and allow flexibility in choosing the best state-of-the-art verifier.
And lastly, the algorithms should be optimized for performance since the software and

68

69

programs that are being built are only getting bigger in size and more complex. Ul-
timately, performance as noted by the team that developed NITWIT [ŠBK20] will be
the focal point which sets you apart.

On a side note, throughout this dissertation, we have found ourselves in unprece-
dented times. There were various aspects in the process of completing this dissertation
that had to be adapted in order to ensure that progress was still being made. We are for-
tunate enough to live in a connected world, where non-physical communication is easy.
Times like this only reinforces the need for software security and software verification
is one of many ways we could go about it.

Bibliography

[27017] ISO/IEC 27000:2017. Information technology - security techniques -
information security management systems - overview and vocabulary
(iso/iec 27000:2016). Technical report, BSI, 2017.

[AM08] O. H. Alhazmi and Y. K. Malaiya. Application of vulnerability discovery
models to major operating systems. IEEE Transactions on Reliability,
57(1):14–22, 2008.

[AMR07] O.H. Alhazmi, Y.K. Malaiya, and I. Ray. Measuring, analyzing and pre-
dicting security vulnerabilities in software systems. Computers & Secu-

rity, 26(3):219–228, 2007.

[BDD+15] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, and An-
dreas Stahlbauer. Witness validation and stepwise testification across soft-
ware verifiers. In Proceedings of the 2015 10th Joint Meeting on Foun-

dations of Software Engineering, ESEC/FSE 2015, page 721–733, New
York, NY, USA, 2015. Association for Computing Machinery.

[Bei90] Boris Beizer. Software testing techniques. International Thomson com-
puter Press, 2 edition, 1990.

[Bei95] Boris Beizer. Black box testing: techniques for functional testing of soft-

ware and systems. Wiley, 1995.

[Bey20] Dirk Beyer. Advances in automatic software verification: Sv-comp 2020.
In Armin Biere and David Parker, editors, Tools and Algorithms for

the Construction and Analysis of Systems, pages 347–367, Cham, 2020.
Springer International Publishing.

[Bin15] Andrew Binstock. Java’s 20 years of innovation. https://www.forbes.

70

BIBLIOGRAPHY 71

com/sites/oracle/2015/05/20/javas-20-years-of-innovation/,
May 2015.

[BS20] Dirk Beyer and Martin Spiessl. Metaval: Witness validation via verifi-
cation. In Shuvendu K. Lahiri and Chao Wang, editors, Computer Aided

Verification - 32nd International Conference, CAV 2020, Los Angeles, CA,

USA, July 21-24, 2020, Proceedings, Part II, volume 12225 of Lecture

Notes in Computer Science, pages 165–177. Springer, 2020.

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchroniza-

tion skeletons using branching-time temporal logic. In Logic of Programs,
volume 131 of Lecture Notes in Computer Science. Springer, 1981.

[CKK+18] Lucas C. Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel,
and Marek Trtı́k. JBMC: A bounded model checking tool for verifying
java bytecode. In Hana Chockler and Georg Weissenbacher, editors, Com-

puter Aided Verification - 30th International Conference, CAV 2018, Held

as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July

14-17, 2018, Proceedings, Part I, volume 10981 of Lecture Notes in Com-

puter Science, pages 183–190. Springer, 2018.

[CKS19] Lucas C. Cordeiro, Daniel Kroening, and Peter Schrammel. JBMC:
bounded model checking for java bytecode - (competition contribution).
In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen,
editors, Tools and Algorithms for the Construction and Analysis of Systems

- 25 Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague,

Czech Republic, April 6-11, 2019, Proceedings, Part III, volume 11429 of
Lecture Notes in Computer Science, pages 219–223. Springer, 2019.

[CWE20] MiTRE CWE. 2020 cwe top 25 most dangerous software weak-
nesses. https://cwe.mitre.org/top25/archive/2020/2020_cwe_

top25.html, 2020.

[DKW08] Vijay D’silva, Daniel Kroening, and Georg Weissenbacher. A survey of au-
tomated techniques for formal software verification. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 27(7):1165–
1178, 2008.

72 BIBLIOGRAPHY

[Han19] Derek Handova. What are the different types of security vulnera-
bilities? https://www.synopsys.com/blogs/software-security/

types-of-security-vulnerabilities/, August 2019.

[Her10] Pete Herzog. Open Source Security Testing Methodology Manual (OS-

STMM). Institute for Security and Open Methodologies, 3 edition, 2010.

[Het88] Bill Hetzel. The complete guide to software testing. QED Information
Sciences, 2 edition, 1988.

[HM04] J. Heffley and P. Meunier. Can source code auditing software identify
common vulnerabilities and be used to evaluate software security? In 37th

Annual Hawaii International Conference on System Sciences, 2004.

[IBM] IBM. The jit compiler. https://www.ibm.com/support/

knowledgecenter/SSYKE2_8.0.0/com.ibm.java.vm.80.doc/docs/

jit_overview.html.

[IST20a] ISTQB. Advanced level security tester - istqb R© international soft-
ware testing qualifications board. https://www.istqb.org/

certification-path-root/advanced-security-tester.html,
2020.

[IST20b] ISTQB. Istqb glossary. https://glossary.istqb.org/en/term/

defect-3, 2020.

[Kel19] Tom Kellermann. If your home is getting smarter, don’t leave it vulner-
able to hackers: Cyber strategist. https://www.cnbc.com/2019/11/30/
how-to-defend-your-smart-home-from-hackers-after-black-friday-buys.

html, 2019.

[Kri14] Paul Krill. 4 reasons to stick with java – and 4 reasons
to dump it. https://www.infoworld.com/article/2687995/

4-reasons-to-stick-with-java.html, 2014.

[KRS19] Temesghen Kahsai, Philipp Rümmer, and Martin Schäf. Jayhorn: A java
model checker. In Dirk Beyer, Marieke Huisman, Fabrice Kordon, and
Bernhard Steffen, editors, Tools and Algorithms for the Construction and

Analysis of Systems, pages 214–218, Cham, 2019. Springer International
Publishing.

BIBLIOGRAPHY 73

[LTW+06] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and
Chengxiang Zhai. Have things changed now? Proceedings of the 1st

workshop on Architectural and system support for improving software de-

pendability - ASID ’06, pages 25–33, 2006.

[Luo01] Lu Luo. Software testing techniques: Technology Maturation and Re-

search Strategy. Institute for Software Research International, Carnegie
Mellon University, 2001.

[Mar14] Robert A. Martin. Non-Malicious Taint: Bad Hygiene is as Dangerous to

the Mission as Malicious Intent. CrossTalk. MiTRE, 2014.

[MiT09] MiTRE. Cwe-787: Out-of-bounds write. https://cwe.mitre.org/

data/definitions/787.html, 2009.

[Moc] Mockito. Mockito framework site. https://site.mockito.org/.

[Ora] Oracle. What is java and why do i need it? https://java.com/en/

download/faq/whatis_java.xml.

[Ora17] Oracle. Java security overview. https://docs.oracle.com/javase/9/
security/java-security-overview1.htm, 2017.

[Ora19] Oracle. About the java technology. https://docs.oracle.com/

javase/tutorial/getStarted/intro/definition.html, 2019.

[oSVSC19] International Competition on Software Verification (SV-COMP). Col-
lection of verification tasks. https://github.com/sosy-lab/

sv-benchmarks, 2019.

[oSVSC20] International Competition on Software Verification (SV-COMP). 9th
intl. competition on software verification. https://sv-comp.sosy-lab.
org/2020/index.php, 2020.

[San19] Sanket. Exponential cost of fixing bugs. https://deepsource.io/

blog/exponential-cost-of-fixing-bugs/, 2019.

[ŠBK20] Jan Švejda, Philipp Berger, and Joost-Pieter Katoen. Interpretation-based
violation witness validation for c: Nitwit. In Armin Biere and David
Parker, editors, Tools and Algorithms for the Construction and Analysis

of Systems, pages 40–57, Cham, 2020. Springer International Publishing.

74 BIBLIOGRAPHY

[SHW+20] Vaibhav Sharma, Soha Hussein, Michael W. Whalen, Stephen McCamant,
and Willem Visser. Java ranger at sv-comp 2020 (competition contribu-
tion). In Armin Biere and David Parker, editors, Tools and Algorithms for

the Construction and Analysis of Systems, pages 393–397, Cham, 2020.
Springer International Publishing.

[SW11] Yonghee Shin and Laurie Williams. Can traditional fault prediction models
be used for vulnerability prediction? Empirical Software Engineering,
18(1):25–59, 2011.

[Tan20] Vi Lynn Tan. msc-project — github. https://github.com/vilynntan/
msc-project, 2020.

[Tea] GraphML Team. The graphml file format. http://graphml.

graphdrawing.org/.

[Tec18] TechTerms. Bytecode definition. https://techterms.com/

definition/bytecode, 2018.

[Tun20] Abi Tyas Tunggal. What is a vulnerability? https://www.upguard.

com/blog/vulnerability#causes, May 2020.

[Tur20] Steve Turner. 2020 data breaches — the worst so far. https://www.

identityforce.com/blog/2020-data-breaches, January 2020.

