MANCHESTER

1824
The University of Manchester

Develop and Evaluate a Security
Analyser for Finding Vulnerabilities

in Java programs

A dissertation submitted to The University of Manchester for the degree of Master of

Science in the Faculty of Science and Engineering

2021

By
Tong Wu (10772895)

Department of Computer Science

Contents

F N o1 2 1] AU OO PP USSR 4
D TTe] 3 ()3 USSR 5
(07007 514 1| SRRSO PRRRRRRTN 6
ACKNOWIEAGEMENTSveieiiiieiiie ettt et e et e et e e s beeesbaeessaeessseeessaeesseennnes 7
R 6413 (oY 10 To1 5 0} 1 RSP SRRPRTR 8
1.1 Problem deSCIIPLiONccceerieriirieiieeieeieeieeieesieesteseeseeeseressaesnseesseesseesseesseenseensees 8
1.2 AIMS aNd ODJECHIVES ..eeuvieiieiieiieeiie ettt ettt ettt sttt st esateeteebeebeesseesseenaeas 9
1.3 CONTIDULION .ttt ettt et ettt e sb e sbt e st e et sabe et e e e enbeenaeas 9
1.4 Organization Of diSSEItationceeevieevieeiirciierieerieereeseeseesresresneseresssessseesseenseenns 10

N 5 To) ¢4 (0] 1111 IR TP 11
2.1 Security VUINEIrabilities.cccviiiiiiiiieecieeciee ettt re e e 11
2.2 SOTIWAIE LESTINZ....veiviereeieeirieieesieeeesterteseesaeebeesbeesbeesseesseesseessaesseesssesssesssenssensns 13
2.3 Bounded model CheCKing.........ccccueviiriiriiiiiiieeieee et 15
2.3.1 Model ChECKINGoeuvieiieiieiieee et 15
2.3.2 Symbolic model CheCKINGccccvirriiiiiiieiieiieeece e 15
2.3.3 Bounded model Checkingc.ccccvveviriiiciieiiieniiereecteseesee e 16

2.4 WiItness Validationc.cecuieriieriieriesieriierie ettt ettt ettt ettt st 20
241 WVIEIIESS ettt ettt ettt sttt et ettt et e bt e s bt e sbtesaeesaeeeateenteens 20
242 Witness validation for C.........ccooiiiiiiiiiieeeee e 21
243 Witness validation for Java..........occeoiiiiiiiiiine e 24

2.5 BENChEXEC....couiiiiiiiii e e 29
2.6 Summary of backgroundcccceevieriiiiiiiiiiieie e 30

3. Proposed MethodOIOZYccciiriiriiiiieiieiieeeee ettt srae e snne e 31
3.1 System ATCRILECTUIEecvieiieiieiieieeee ettt et et saee s e saees 31
3.2 ALGOTIERMS. ..ottt ettt e ettt e e e e e e rtaeetbeeenbaeerae s 33
3.2.1 STATT SCTIPE. .. veevrerereereereeteereerteesreesteesteesteesseesseesssesssessseasseasseasseesseesseesseesseesses 33
322 WiItness Validatorcociiiiiiriiniiieesieese et 39
323 Tool Integration Module..........c.cocvieiiiiiiiiieiieeciee e e 47
3.24 Complexity of the validation algorithm............cccccveevinciieiiienieeiereeseecee e 49

3.3 [ustrative EXamPLeoccvveciieiieiieiieieeceeseese et sie et snees 49

4. Experimental Evaluationcccoeviiiiiiiiniiie ettt 54
4.1 Benchmarks....o..oooiiiii et 54
T T 111 o PR USRUT 55
4.2.1 ENVIrONmMENt SETUPeeoveeiieiieetieciieeiieete ettt ettt sttt s st 55
422 ENVIroNment VETSIONSccc.eerueiriierieniieeiteeie ettt ettt sttt s st 56

423 RUNNING the tESTS 1.uuieitieiieiieiiie ettt ettt ettt et eeeeeeens 57

4.3 OB CCHIVES . cecuiieetiieeiiieeiieeite e bt e etteestteeseaeeebeeetbeestbeessbeeessaeessbaeasbaeetaeesreeansaeesraenes 59
44 RESUIES -ttt ettt ettt ettt aeen et seeeneeaeas 59
4.4.1 RESUIL STATISTICS ...veveeutiiieieieet ettt ettt 59
4.4.2 ReESUIt NALYSIS ..c.veiiiiieiiieciie ettt e seb e e nes 71

4.5 Threats to VAIIAILYc.cccveviieriieriieiiecte e ere et ere e et eesreesteestaesenessaesssessseenseessaens 76
4.0 CONCIUSION.eitiitieiiitieitee ettt ettt sttt st be s s et eseeeaeenees 81

5. FUIRET WOTK oottt et e e e be e e ve e e ereeeens 82
L3 10) D U0 eav:1 o) 1) USRS PRTUURRRRRRNt 84

Word Count: 12982

Abstract

The purpose of this dissertation is to understand the use of a software verification
technique for Java to discover security vulnerabilities in Java programs, and imple-
ment appropriate extensions to validate the results produced by the Java software veri-
fier. In this research, the software verifier refers to the Java Bounded Model Checker
(JBMC), which is a BMC-based checker for Java bytecode. It can output the verifica-
tion results to a GraphML format file called witness, which can indicate the path to
the specific attribute state in the program. However, we cannot be sure whether the
witnesses generated by JBMC for all tasks can correctly indicate the path to the de-
tected attribute state. Therefore, validating the witnesses is necessary for increasing

the trust level of JBMC.

In the annual Competition on Software Verification (SV-COMP) held at TACAS,
people have not yet provided a witness validation tool for Java programs, and the wit-
ness validation for Java is still in the beginning stage. This dissertation introduces the
use of JBMC to benchmark the Java benchmarks in the SV-COMP, and develop a new
tool to validate the witnesses generated by JBMC. At the same time, effective and re-
liable management of resources is realized when benchmarking JBMC and the wit-
ness validator. In this dissertation, we focus on using Python scripts to run witness
validation, and integrate the validation tool into BenchExec ecosystem so that it can
implement resource management at runtime and contribute to the SV-COMP. The fol-

lowing chapters will describe the extension and its evaluation and further work.

Declaration

No portion of the work referred to in the dissertation has been submitted in support of
an application for another degree or qualification of this or any other university or

other institute of learning.

Copyright

ii.

1il.

1v.

The author of this dissertation (including any appendices and/or schedules to this
dissertation) owns certain copyright or related rights in it (the “Copyright”) and
s’/he has given The University of Manchester certain rights to use such Copyright,
including for administrative purposes.

Copies of this dissertation, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has entered
into. This page must form part of any such copies made.

The ownership of certain Copyright, patents, designs, trademarks and other intel-
lectual property (the “Intellectual Property”) and any reproductions of copyright
works in the dissertation, for example graphs and tables (“Reproductions”),
which may be described in this dissertation, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written permis-
sion of the owner(s) of the relevant Intellectual Property and/or Reproductions.
Further information on the conditions under which disclosure, publication and
commercialisation of this dissertation, the Copyright and any Intellectual Proper-
ty and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy, in any relevant Dissertation restriction declarations deposited in the

University Library, and The University Library’s regulations.

Acknowledgements

I would like to thank the university for providing me with high-quality learning re-
sources, especially my supervisor, Dr Lucas Cordeiro, for guiding my research direc-
tion and making progress during the entire project research process. At the same time,
I would also like to thank my family and friends for their care for me. I could not have

done it without all this support.

1.Introduction

1.1 Problem description

With the development of the Internet and the popularity of the Java programming lan-
guage, more and more complex Java codes are being built. According to PYPL statis-

tics, as of May 2021, Java is the second most popular language in the world [1].

Minor security incidents may cause high recovery costs. Computerworld UK staff
listed the ten most serious software failures in recent history. For example, British
Airways’ IT failure caused hundreds of flights to be cancelled or delayed [2]. Thus, it
is very important to fully conduct various tests at the beginning of a software project

cycle to avoid catastrophic software security problems.

Since errors and defects that are rarely reached in the program are difficult to be de-
tected completely through traditional simulation and testing methods, people intro-
duced the model checking technique as a supplement, which can automatically check
whether the software being built has errors by checking all the achievable states [3].
In this project, we focus on JBMC, a bounded model checking tool for Java, to detect
vulnerabilities in the Java programs [4]. When JBMC detects a program vulnerability,
it generates a counterexample. However, JBMC is not yet fully mature, and it some-
times produces incorrect verification results, such as a false alarm [5]. Therefore, it is
necessary to implement appropriate extensions to validate the counterexamples gener-

ated by the verifier, thereby enhancing the trustworthiness of JBMC.

Vi implements an extension to validate the witnesses generated by JBMC by creating
and executing Java unit tests. but due to the limitations of its validation algorithm, it
only supports validating some simple Java benchmarks in the SV-COMP. In addition,
since the content of Java benchmarks must be modified before running, it cannot be
directly used as a validation tool for the SV-COMP to benchmark the Java bench-

marks [6]. This drives the need to develop a better performance validation tool that

can be used as an executable tool in the SV-COMP and supports as many Java

benchmarks in the SV-COMP as possible.

1.2 Aims and objectives
In this paper, the aims and objectives are as follows.

Aims:
* Evaluate the existing verification strategies in JBMC to find security vulnerabili-
ties.

* Implement suitable extensions for the verifier to verify large programs.

Objectives:

* Gain a good understanding of JBMC to understand the strategy used to detect se-
curity vulnerabilities in Java programs.

* Implement a witness validation tool for Java to solve the existing limitations to
have a better performance over the benchmarks in the SV-COMP.

* Integrate the validation tool into BenchExec ecosystem to have precise resource
limits and measurement that can contribute to the SV-COMP.

¢ Evaluate the performance of the witness validator.

* Evaluate the soundness and completeness of JBMC.

1.3 Contribution

This research project produces two main implementations which is a witness valida-
tion script and a startup script. Both of the scripts are written in Python language. The
witness validation script reads the violation witness file produced by JBMC to extract
counterexamples from it, and then assigns the counterexamples to the newly generat-
ed Java programs and runs them with JVM to reproduce the identified error which is
found by JBMC. The startup script benchmarks JBMC and the witness validator in

BenchExec, and finally generates an interactive table to display all the results.

BenchExec is a benchmarking tool that can execute commands with a large set of in-
put files [7]. In this project, it is used with the aim of benchmarking and resource limi-

tation.

1.4 Organization of dissertation

The structure of this dissertation starts from Chapter 2, discussing relevant back-
ground knowledge. The following Chapter 3 introduces the implementation of the ex-
tensions in detail. Then, in Chapter 4, the experimental results are presented and ana-
lysed. Finally, Chapter 5 summarizes the limits of this extension and the work worth

continuing to do in the future.

10

2.Background

This chapter will discuss some of the relevant background of the dissertation, so that
readers can fully understand the project. There are six subchapters in total. First, sub-
chapter 2.1 introduces security vulnerabilities and their threats to the industry. Then,
subchapter 2.2 introduces software testing and its significance in reducing program
vulnerabilities. Next, subchapter 2.3 introduces the bounded model checking tech-
nique and its instantiation tool JBMC, which is the Java verifier used in our project.
After that, subchapter 2.4 discusses witness validation, which lists some existing wit-
ness validation tools, and discusses the limitations of an existing witness validator for
Java in detail. Finally, subchapter 2.5 introduces the BenchExec framework which is

applied to the project and subchapter 2.6 summaries the main findings.

2.1 Security vulnerabilities

The Internet of Things technology (IoT) plays an increasingly important role in peo-
ple's communication systems. Research shows that by 2020, 30.7 billion devices are
connected to the Internet of Things, and this number will reach 75.4 billion in 2025[8].
As this network becomes more and more complex, security issues have become a se-
rious challenge. The Internet of Things (IoT) architecture includes three basic layers:
perception layer, network layer and application layer, and different layers may be vul-

nerable to vulnerabilities[9].

11

GLASSIFICAT[UN OF I0OT SECURITY ATTAEKS)

PHYSICAL NETWORK ENCRYPTION
ATTACK ATTACK ATTACK ATTACK

-Node Tamperingll-Traffic Analysis -Virus and Worms [[-Side Chanel

“RF Interface -RFID Spoofing -Spyware and Attack

-Node Jamming -RFID Cloning Malicious ~Cryptanalysis

-Malicious -RFID Unauthorised Node Adware Attacks

Node Adware Access -Trojan -Man in the

-Physical -SinkHole Attack Social Horse middle Attack
Damage -Man in the middle -Malicious Scripts

-Social -Denial of Service -Denial of Service

Engineering -Routing Information

-Sleep Attacks

Deprivation -Sybil Attack

-Malicious Code

Injection

Figure 2.1: Classification of loT Security Attacks
Source [10]

The vulnerabilities of IoT can exist on devices, data, software, and networks. As
shown in Figure 2.1, Intruders can use various methods to implement physical attacks,
network attacks, software attacks, and encryption attacks.

Software security includes building programs that can still function normally under
malware attacks, and vulnerability is the root cause of malware attack. In the Son-
icWall report, the number of global IoT malware attacks in 2018 increased by 215.7%
year-on-year [11]. Since the Internet of Things is facing many security challenges, we
need to conduct more research on it and design reliable algorithms and tools to detect
and repair various possible vulnerabilities in the Internet of Things and improve the

security of the Internet of Things.

T

SELECT * FROM users WHERE usernams = 'administrator'--' AND password =

Figure 2.1.2: Example of SQL injection
Source [12]

Although Java runs on the server side and is considered a language with good security,

hackers still have many ways to attack it to steal users’ privacy and expose users to

12

security threats, such as SQL injections [13]. There are many ways to illegally obtain
database information by implementing SQL injections to attack the system. Figure
2.1.2 shows an example to skip password verification to log in to the system through
SQL injection. When the Java program obtains this string to execute the database
command, the content behind the administrator will be used as the SQL com-

ment, so the password verification process is skipped and the login is illegal.

2.2 Software testing

Testing plays a very important part in confirming that the software has met the func-
tional and non-functional requirements in the software development process. Software
testing includes defining test conditions, designing test cases, and executing test cases.
This is followed by analysis and reporting the test results. In other words, software
testing is the review or comparison process between actual output and expected output.
It can increase confidence before releasing the product to potential customers, and the
recommendations made by the testing department based on the analysis of the test re-

sults play a key role in deciding whether to release the product [14].

Even the most well-known companies occasionally deliver software with quality
problems. Defects in this software may cause different levels of loss to customers, and
may be life-threatening in serious cases [14]. But this does not mean that the compa-
ny's attitude in the software development process is not serious or irresponsible, but
because with the continuous expansion of the software scale and the complexity of the
program, it is difficult for people to fully consider all potential defects. When we
eliminate a defect, it may make the program more complicated, resulting in more po-
tential defects [15].

Therefore, it is necessary to conduct multiple tests as much as possible to improve the

confidence of the software.

Software testing methods can be divided into two types:
* Black box testing
Black box testing is usually a functional test, which aims to validate whether we are

building the right software. In black box testing, the tester does not know the internal

13

structure of the source code, so the code looks like a "black box" to him. The tester
enters the test case according to the software requirements, obtains the returned result

and judges whether it is the result he expects [16].

* White box testing

White box testing is usually structural testing. It is designed to verify whether the
software we build is right. In white box testing, the tester is usually the person who
understands the specific structure of the source code, such as the developer of the

code [16].

There are different stages of software testing:

* Unit Testing

Unit testing is the first stage of software testing. When developers have completed the
source code, they need to design, write and execute test cases before submitting to the
testers to cover as much as possible in each branch of the code. This is also a white
box test. Unit testing can find and eliminate program defects at the earliest and reduce

the cost of repairing code [17].

* Integration testing

Integration testing is to adopt appropriate measures to integrate the units that have
completed the unit test to test whether the integrated functions are correct. The test
can be performed by developers or testers, usually to check whether the interfaces be-
tween the functional units are correct [17]. It can belong to both white box testing and
black box testing, depending on whether the tester is its developer or an independent

tester.

e System testing

System testing is usually executed by a separate testing team. It is to use the software
to be tested as an element of the computer system, to test whether the software meets
the software requirements when running in the system, and to test its support by com-

bining computer software and hardware and other elements [17].

* Regression testing

14

Regression testing is also an important part of the software life cycle. It is designed to
check whether the modified code remains intact, so multiple regression tests should

be performed at all stages of software development [17].

As a method to reduce software and system security vulnerabilities, software testing

needs to be implemented many times in each cycle of software development.

2.3 Bounded model checking

Since it is impossible to easily find all the defects of a complex software by designing
test cases, model checking tools are introduced as a supplement to software testing.
Because compared with traditional software testing which can only design limited test

cases, model checking tools can consider all possible behaviours of a finite system [3].

2.3.1 Model checking

Model checking is a verification technique that can automatically check the temporal
properties of a finite system. This concept was created by Clarke and Emerson in the
1980s. When the state attribute of the system fails, a counterexample will be produced.
This counterexample is the trace of system states, where the last state violates the at-
tribute. The first checking algorithm was to enumerate the reachable states of a finite
system, but for a system with an exponentially increasing number of states, the check-

ing ability is very limited [3].

2.3.2 Symbolic model checking

Based on the limitations of early model checking on the system of exponentially in-
creasing state sets, symbolic model checking technique was introduced. In this tech-
nique, a certain behaviour of the system is determined by some variables whose val-
ues are 0 or 1, then the state list of the system is represented by some Boolean func-

tions. And the Boolean formulas can be effectively processed using Reduced Ordered

15

Binary Decision Diagrams (BDD), which is a diagram representation of Boolean
functions. This technique realizes the verification of the system in reality and is grad-
ually adopted by the industry. As the number of Boolean functions representing the
state set increases exponentially, storing and operating BDD will also require an in-

creasing amount of memory [3].

2.3.3 Bounded model checking

Bounded model checking (BMC) technique uses SAT solvers to solve Boolean formu-
las instead of BDD, so it does not have the memory problem of BDD-based model
checkers. Its basic idea is to find counterexamples in a given execution depth, which
is bounded to a given bound k. If the checker does not find a counterexample in the
finite states within the bound k, it cannot prove that all the states of the system are sat-

isfiable, because the state at the bound k+1 may not be satisfied [3].

JBMC is an open-source verifier that based on the bounded model checking technique
for Java Bytecode. It is an extension to the C Bounded Model Checker (CBMC)
which is developed on top of the CProver framework[4]. It won the third place in the
verification results of the Java benchmarks in the 10th Competition on Software Veri-
fication, where it successfully verified 180 correct results and found 243 program er-
rors. However, due to its limits, there are still 50 wrong or unknown verification re-

sults [18].

Run the following command line in the terminal to execute JBMC:

Jjbmc <file> <option>

It does not accept Java source code as input, but only accepts class file or jar files as
input. Besides, it can also allow further specification of other properties. For example,

whether to generate a witness file, the bound k to be checked, etc.

The following is a command example to run JBMC. The name of the input class file

is Main. In the following options, —unwind 100 means to unwind the loop in the

16

program 100 times, and --graphml-witness file means to generate a wit-

ness file named £file.

jbmc Main -unwind 100 --graphml-witness file

The difference in the times of loop unrolling in the program also affects the verifica-

tion result.

org.sosy_lab.sv_benchmarks.Verifier;
public class Main {

private static void recursion(int i) {
if (L == 08) {
return;
1
if (1 =
recursion(i - 1);
i
if (L <0){
assert

public static void main(String[] args) {
int x = Verifier.n etInt();
if (x <30 || x = i
return;

1
J

recursion(x);

assert

Figure 2.2: A recursive program example

In this code in Figure 2.2, x is an int variable with random value. When the value of x
is 30, the recursive function in the program will be recursively called 30 times, and
finally the value of i is reduced to 0, reaching the assertion error on line 31 of the
program. Therefore, according to the BMC theory, if this recursive function is un-

rolled within 30 times, no assertion error will be detected.

jbmc Main -unwind 10

17

Array should be
Array should be
Array should be

.4] Array should be
Array should be
Array should be
Array should be
should be

should be

.1] line 9 Null pointer check:

java/lang/String;)V
j] line 24 no uncaught exception:
[] .] 1] line 31 assertion at file Main.java line
31 function j i i j String;)V bytecode-index 16:
[java: 1 t excepti 1] line 31 Null pointer check:

::Main.recursion: (I)V
rti] line 19 assertion at file Main.java line 19 function
::Main.recursion:(I)V bytecod
H r n:(I)V.nul Lnte 1] line 19 Null pointer check:

* @ of 15 failed (1 iterations)
ERIFICATION SUCCESSFUL

Figure 2.3: Unwind the program 10 times

Jbmc Main -unwind 30

Array size should
Array size should
Array size should
Array size should
Array size should
Array size should
Array size should
Array size should
Array size should
java::Main.<clinit>:()Vv
.1] 1ine 9 Null pointer check:

java/lang/String;)Vv
] 1ine 24 no uncaught exception:
ton.1] line 31 assertion at file Main.java line
5tring;)V bytecode-index 16:
1 ter- .1] 1ine 31 Null pointer check:

Main.java function jawva::Main.recursion:(I)V
[3 i i (I ti] line 19 assertion at file Main.java line 19 function

Main.recursion:(I)V bytecode-index

.1] line 19 Null pointer check:

** 1 of 15 failled (2 iterations)
ERIFICATION FAILED

Figure 2.4: Unwind the program 30 times

The two figures above are the verification results of unfolding the recursive function
of the program 10 and 30 times by JBMC respectively. It can be seen that no program
assertion error was found when the recursive function was unfolded 10 times, and the
program assertion error was detected when the recursion function was unfolded 30

times.

18

Counterexample

JOM Jar file Property
IRParse ___________ GOTO Logical violation
: i Tree i | Program | Formula |
| Bytecode > GOTO | i GOTO | > SAT
Scan i Parser ! i Converter i i Symex | i Solver /
User Java Fe -
bytecode / Unwinding
JAR file assertion
| holds

Verification
Successful
Figure 2.5: JBMC Architecture
Source [19]

Figure 2.5 illustrates the JBMC architecture, which consists of three main parts. The
grey rectangle on the left side of the chart represents the input. The white rectangle in
the middle represents the verification steps of JBMC. The grey rectangle on the right

represents the output verification result.

First, JBMC receives a JAR file or class file as input. Then, it uses a bytecode parser
to parse the input file into a parse tree. Next, it uses the GOTO converter to convert
the parse tree into a GOTO program. After that, it uses the GOTO Symex to translate
the GOTO program to Boolean logic formulas. Finally, the Boolean logic formula will
be checked by a SAT Solver to determine if the formula is satisfiable. If no UNSAT
results are returned by the SAT Solver, which means all property holds in the program,
then JBMC will output “Verification Successful”. Otherwise, if a UNSAT result is re-
turned by the SAT Solver, which means there exists a violation property, then JBMC

will output “Verification Failed” and also produced a counterexample.

Although JBMC has good verification performance, it still has some areas for im-
provement. First of all, due to the feature of bounded model checking, it cannot check
the state upper the bound k. Second, it has some restrictions on String object opera-
tions, such as regular expressions. The witness he produced on this is also difficult to
validate. Third, it can be expanded to support verification of more Java libraries. Fi-

nally, it cannot effectively support multi-threaded program verification [19].

In addition to JBMC, there are some other Java verifiers. Such as JPF [20] and Jay-
Horn [21]. JPF is an explicit-state model checker that is used to find defects along all

19

potential paths [20]. JayHorn is a Java verifier that can produce Horn clauses to en-

code the verification condition [21].

2.4 Witness validation

2.4.1 Witness

The trace to the specific property within the finite bound k is called the witness for the
property. But for a finite path without a back loop, even if all the states are satisfied, it

does not mean that it has found a witness [3].

Si Sk St Si Sk
(a) no loop (b) (k,1)-loop

Figure 2.6: The two cases for a bounded path

Source [3]

The Figure 2.6 shows two cases for a bounded path. The difference between the two
paths in the figure is that there is a back loop in the finite path on the right, so it is still
an infinite path. For the finite path on the left of the figure, it cannot reach the infinite
path outside the bound k, so it is unable to prove whether the states outside the bound

k is satisfied [3].

Witnesses can guide us the path to the expected property. A witness can be one of the
two forms: a correctness-witness or a violation-witness. On one hand, a correctness-
witness can guide us the path to show why the formula is satisfiable over the model.
On the other hand, a violation-witness gives counterexamples for us to find the viola-

tion property to prove why the formula is not satisfiable over the model [22].

The witness produced by a model checker, such as JBMC, are represented by the

XML-based format GraphML. However, the witness cannot guarantee to be a valid

20

one since the verifier may produce false results, and the format of the counterexam-
ples are complicated and difficult to read by subsequent programs, which pushes the

need to do the witness validation.

2.4.2 Witness validation for C

The categories in SV-COMP provide guidance for which verifier is suitable for which
kinds of programs, but the verification technique cannot be fully applied in practice
because it has an important unsolved problem: the verifier may generate false alarms,
and validating the witnesses generated by the verifier may take a lot of effort. Witness
validation is a process of checking whether the same results can be reproduced inde-
pendently according to the given programs, specifications, verification results and the

generated witnesses, thereby improving the trust level of the model checking tool [5].

However, the development of witness validation technique is still at an early stage. At
present, there are seven open-source witness validators participated in the SV-COMP,

but all of them are for C programs. Here we introduce the MetaVal and the NitWit.

MetaVal: The concept of the C witness validator MetaVal (see Figure 2.7) is to gen-
erate a new program based on the input source program and witness, and then use any
available software verifier to check if the new program contains a specific assertion

error, or if all the assertions hold[23].

N Validator
Program | e, , TRUE
. i)
— ~. ‘
—~ :
~l N |
~ = Program k /:/
— N ‘ i
Witness +———————————| Transformer Verifier ———— UNKNOWN
/3/’ ™ Specification’ r A i
|
7 |
by~ ‘ !
Specification ; i Y FALSE

CPACHECKER —|

SYMBIOTIC

ULTIMATE
AUTOMIZER

Figure 2.7: Architecture of the MetaVal

21

Source [23]

NitWit: This tool combines a C interpreter and a witness automaton to run validation.

Figure 2.4.2.2 shows the validation technique.

GraphML C code

__VERIFIER error()

1
1
1
1
: /_" false

|
|
|
|
- |
replies, |

resolves non-determinism

Witness Automaton Interpreter

— N\

drives and provides
control flow + variables

NITWIT

terminate

Figure 2.8: Architecture of the NitWit
Source [24]

As can be seen in Figure 2.8, the interpreter and witness automation (WA) work to-
gether. The C interpreter parses the program step by step, provides the current loca-
tion of the program to WA, and then WA resolves the current non-deterministic varia-
bles. When the assumption from WA does not hold in the current statement, the vali-

dation ends, otherwise the validation result is unknown.

The C interpreter can execute each statement of the C program step by step without

compiling the entire program, which is suitable for one-time execution.

22

12000

I e B
I

10000

8000 I .

- I

4000
Em False
s Unknown
mm True

2000 — s Timeout
B Error
e Qut of memaory

U —— I

MetaVal Ult. Auto. CPA-w2t FShell-w2t CPAchecker NITWIT

Figure 2.9: Validator outcomes on 11533 witnesses from SV-COMP 2020
Source [24]

These validators have different performances over the C benchmarks in SV-COMP.
The Figure 2.9 shows the validation results of six C witness validators. In this figure,
the blue bars indicate the number of successful violation-witness validations. Among
the 11533 witnesses, MetaVal only has less than 2000 expected validation results,
while the number of expected results of NitWit exceeds 8000, which is the highest

number of the correct results among these tools.

This statistic shows that the validator based on the C interpreter is the most stable
witness validator. Inspired by this technique, a similar interpreter for Java is Jshell,
which is a command line program that available in JDK 9 and above. It can evaluate
the entered Java statements or expressions and immediately output the result [25].
Although it seems to require many different technical and engineering work to intro-
duce the Java interpreter into witness validation for Java, it is a very meaningful and

challenging attempt.

23

2.4.3 Witness validation for Java

Since no stable witness validator for Java programs is contributed to the SV-COMP, it

drives the need to develop a tool to validate the witnesses generated by Java verifiers.

The widely used validation method for the violation-witness is to check for counter-
examples [5]. At present, Vi made an attempt to run the witness validation for Java
programs, specifically validate the witnesses generated by JBMC [6]. Figure 2.10
shows the architecture of the extension, which contains the process of JBMC verifica-

tion and witness validation.

Jjava/
.class file

2. Script compiles Java program into .class file
and executes JBMC with it

.class file
v //_- —\

1. User supplies
Java program

Python script JBMC
4. Script injects k GraphML —////
counterexample file
into validation
harness
v 3. JBMC produces counterexample in GraphML

Mockito validation
harness

Figure 2.10: Architecture of the proposed extension by Vi
Source [6]

In this figure, the main program is a script written in Python. It takes a Java file or a
compiled Java class file as input to run JBMC to detect vulnerabilities in the program,
then extracts one counterexample from the witness file which is in the GraphML for-
mat, and inject it into a template to produce a Java unit test case. Specifically, in Java
unit test, it introduces a unit testing framework Mockito [26] to simulate the class

containing functions that can generate random values of various data types in the Java

24

benchmarks, and uses the counterexample value as the return value of the function
that generates the random value, thereby assigning the counterexample value to the

source program variable.

int i = Method.int();:

Main.java

Method method = mock(Method.class):
Main.method = method;

when (Main.method.int ()) .thenReturn (Counterexa
mple) ;

Main.main (new String[0])

Test with Mockito

Figure 2.11: Example of Witness validation via Mockito

Figure 2.11 illustrates an example of the validation algorithm using Mockito. In the
Main.java program, i is a variable of int type, Method.int () is a function
from a class that returns a random value of type int. A counterexample of i is given in
the witness when a violation property was found by JBMC. In witness validation, the
class Method is simulated by mock () function of Mockito, and when the Meth-
od.int () function was called, it will return the value of the counterexample in the
witness. Thus, the assignment of counterexample equals to the java statement int i
= counterexampleValue. Finally, run the program of Java unit test with Mock-
ito, If the same error attribute as that detected by JBMC is found, then it means that

the counterexample is accepted and the validation is successful.

This extension provides a solution to do the witness validation for Java programs, but

has a limited performance on the Java benchmarks in the SV-COMP.

25

Total benchmarks Failed validation String limits Successful validation

177 109 40 28

Table 2.1: Result of witness validation of Vi’s extension

As shown in Table 2.1, we summarized the validation results of this extension based
on the data in his dissertation [6]. Among all 177 Java benchmarks, only 28 witnesses
were successfully validated, 109 were not supported, and the remaining 40 were una-
ble to be validated due to the restrictions of string manipulation by JBMC. The main
reason why this extension does not support the witness validation of the 109 bench-
marks is that the algorithm does not consider no or multiple calls to the functions in

Method class.

In addition, this extension has many other limitations. First, it does not distinguish
between validation of the correctness-witness and the violation-witness, but uses the
same algorithm to perform it. However, the content structure of the two kinds of wit-
nesses is different. In the correctness-witness, there is no data named assumption that
represents the counterexample of the verifier hypothesis. Therefore, the validation of
the correctness-witness is wrong, although it did not find an unexpected violation
property. Because the validation process did not actually make use of the content of
the edges in the correctness-witness. In fact, people mainly focus on the violation-
witness validation to prove whether the verifier has generated a false alarm, and little

attention is paid to the validation of the correctness-witness.

Second, it did not run all the 473 Java benchmarks in the SV-COMP. The Java
benchmarks used are from the same branch of Java benchmarks in the SV-COMP,
which are not sufficient to represent more complex Java programs in other branches
of Java benchmarks in the SV-COMP. Thus, in order to have more sufficient data to
analyse the performance of the extension, more testing should be performed against
other Java benchmarks. Only when all Java benchmarks in the SV-COMP are tested

can we analyse its validation ability based on the competition.

Third, As the program becomes more complex, its validation ability will be insuffi-

cient. There are two main flaws in this validation algorithm:

26

¢ Counterexample extraction

There are deficiencies in the way to find counterexamples in witnesses. A violation-
witness will have counterexample values related to all variables in the program, but
this algorithm only obtains one counterexample value, which will lead to incorrect
instantiation of a Java program with multiple variables.

* Counterexample assignment

The method of assigning counterexample values is not rigorous and sometimes errors
occur. It defaults that the counterexample value in witness is equal to the random val-
ue generated by the function in Method class, but this equation does not hold be-
cause sometimes the variable is not only determined by the Method class. For exam-
ple, An int variable i in the Java code is equal to Method.int () +1, and the
counterexample in witness is 1 = 1. Then if 1 is used as the return value of the
function Method. int (), the value of i in the generated test case will be 2, and the
counterexample assignment process will be wrong, which may cause the validator to

not find the expected violation property.

Finally, this validation tool does not support multi-file input and multi-task execution.
When a task involves multiple Java files, the algorithm needs to be optimized. In ad-
dition, due to the limitation that Mockito cannot simulate static methods, it is neces-
sary to modify part of the code of Method class and Java benchmarks to run the tool
(see Figure 2.12 and 2.13), which is very cumbersome for multitasking, and modify-
ing the benchmarks is an illegal operation for the SV-COMP. Although the limitations
of Mockito can be solved by using more advanced testing frameworks, such as the
introduction of powermock to solve the problem that Mockito cannot simulate static
methods [27], considering the flaws of the Java unit testing above, we will not intro-

duce it in this experiment.

27

package org.sosy lab.sv_benchmarks;
import java.util.Random;

public firal-class Verifier {
public statie void assume(boolean condition) {
if (lcondition) {
Runtime.getRuntime().halt{1};
¥
}

public statie-boolean nondetBoolean() {
return new Random().nextBoolean():

}

publicstatie-byte nondetByte() {
return (byte) (new Random(}.nextint);
}

public static-char nondetChar(} {
return (char) (new Random{).nextlnt():

}

public static short nondetShort() {
return (short) (new Random().nextint():
}

public staticint nondetint() {
return new Randomi).nextint();

}

public static long nondetLong() {
return new Random().nextLong();

}

public static float nondetFloat() {
return new Randomi().nextFloat():

}

public static double nondetDouble() {
return new Random{).nextDouble():

}

public static String nondetString() {
Random random = new Random();
int size = random.nextint():
assume(size >= 0);
bytel] bytes = new byte[size];
random.nextBytes(bytes);
return new String(bytes);

Figure 2.12: Modified Verifier.java

28

import org.sosy_lab.sv_benchmarks.Verifier;
public class Main {
public static Verifier verifier = new Verifier();
public static void main(String[] args) {
int i = Verifier.nondetInt();
verifier
if (i >= 1000) assert i > 1000 : "i is greater 1000"; // should fail

}
}

Figure 2.13: Modified Main.java

In these two figures, the red parts indicate the modifications in the programs. In the
SV-COMP, the Method class refers to Verifier. java, which contains static
functions that generate random values. In these modifications, the Verifier class
containing static functions is modified to a non-static ordinary class. When calling
this class in the program, an object of this class is created first, and the class functions

are called by this object, instead of calling the static functions of the original class.

Although the extension has some limits, it provides a method for Java witness valida-
tion by extracting counterexample values in witness and designing algorithms to as-
sign counterexample values to new programs. In this project, we designed a new vali-

dator to better extract and utilize counterexample values in witness.

2.5 BenchExec

When there is no resource limit for the operation of the task, if an infinite loop occurs
during operation, it may cause unlimited occupation of system resources and affects
the subsequent tasks, which will also eventually lead to system crashes. Therefore,

reasonable resource usage restrictions are necessary for batch execution of programs.

BenchExec is an open-source framework that can execute programs in batches and
limit their resource usage. As the benchmark tool applied to the SV-COMP, BenchEx-
ec has successfully benchmarked thousands of benchmarks for dozens of participating
tools in the competition. It can provide precise limits and measurements on running

time, memory, CPU and other resources. In addition, it can also generate an interac-

29

tive table from the benchmark result set, which displays the running status and re-
source usage of each task, and provides the function of viewing the running log of

each task[7].

In this project, we introduced the BenchExec framework to manage the operation of
the witness validator. At the same time, the validator can contribute to SV-COMP af-

ter being integrated into the BenchExec ecosystem.

2.6 Summary of background

Software testing plays a vital role in reducing program vulnerabilities and improving
product quality in the software life cycle. Model checkers can be used as a supple-
ment to traditional software testing methods to find program vulnerabilities, to test
situations that are difficult to simulate artificially. But the key challenge in applying
model checkers to practice is to check whether the witnesses that represent their veri-
fication results are valid. At present, the technology of witness validation is still im-
mature, especially for the witness validation for Java programs, there is no stable al-

gorithm yet.

30

3.Proposed Methodology

This chapter describes the methodology for implementing extensions to witness veri-
fication on top of JBMC. First, subchapter 3.1 introduces this extended system struc-
ture. Then, subchapter 3.2 introduces the implemented algorithm functions in detail
by showing some code snippets. Finally, subchapter 3.3 introduces an example to

show the results of the extension.

3.1 System Architecture

Java benchmarks

l Xml configuration of JBMC

JBMC in benchexec

Verification results and witnesses

A 4

Configure witness
validation

l Xml configuration of witness validation

Witness validation in
benchexec

l Result sets

Generate result table

Figure 3.1: Architecture of the proposed extension

Figure 3.1 illustrates the overall structure and flow of the events. The user provides an

xml configuration file for running JBMC in BenchExec as input via a Linux terminal,

31

which defines the input Java files and resource usage limits.

The first step is to run JBMC in BenchExec. BenchExec will call JBMC to bench-
mark all the defined task files in the xml configuration file, output the results and gen-
erate the corresponding witness files. In particular, when a program has vulnerabilities
and the output status of JBMC is verification failure, it will generate a violation-
witness file, which represents the path to reach the assertion violation in the program.

The code for this step is introduced in subchapter 3.2.1.1.

The second step is to configure the xml configuration file for witness validation run-
ning in BenchExec, which contains the JBMC task files set and the generated wit-

nesses set. The code for this step is introduced in subchapter 3.2.1.2 and 3.2.1.3.

The third step is to run the witness validator in BenchExec. It traverses each task file
and the corresponding witness, checks whether there is a violation-witness and vali-
date it. Similarly, BenchExec will generate a result set of witness validation. The code

for this step is introduced in subchapter 3.2.1.4.

The last step is to invoke the program provided by BenchExec to summarize the re-
sults of the two BenchExec runs into an html table, so that we can view the verifica-
tion and validation results of each task and its corresponding resource usage. The code

for this step is introduced in subchapter 3.2.1.5.

Java program(s) II

New Java validation

result
program(s)

e
e

Co,

Y,
s
\ transform
e
o

b
z
%

(A
)

Figure 3.2: Architecture of the witness validator

32

Figure 3.2 illustrates the overall structure and flow of the witness validator. We need
to take the Java program(s) and a witness as input. When the type of witness is vio-
lence-witness, it will provide counterexamples of the programs, and then inject the
counterexamples into the corresponding position of the source programs to generate
new programs. If the witness content is valid, then running the programs with coun-
terexamples should reach the assertion violation statement, which shows that the veri-
fication result of the verifier is correct. The code for this process is introduced in sub-

chapter 3.2.2.

3.2 Algorithms

3.2.1 Start script

This project first runs JBMC to verify the Java programs. Then, after all Java pro-
grams are verified, it will begin witness validation. The validation tool will read the
witness file corresponding to each Java program. If it reads a violation-witness, then it
will perform witness validation. Finally, after all witnesses are validated, it will dis-
play the results in a static html table, which shows both verification and validation
results of these Java benchmarks. We automate this process through a program called

startup script.

The startup script is a program written in python programming language, which can

be run by executing the following commands in the ubuntu terminal:

sudo chmod +x execute.py

./execute.py ../File.xml

or

python3 execute.py ../File.xml

The first command is to set the script as an executable program in ubuntu. If you have

33

set the startup script named execute. py as an executable program, you can execute
the . /execute.py command (the second command) to run it, otherwise, execute
the latter python3 command to run this script. For the last argument, the user needs
to provide a file (see Figure 3.2.1) in the form of xml, which defines the execution

commands of BenchExec, the resource limits and the task files to be executed [28].

<?xml version="1.8"2>
<IDOCTYPE benchmark PUBLIC "+//IDN sosy-lab.org//DTD BenchExec benchmark 1.9/ /EN

<benchmark tool="jbmc” timelimit="15s5" memlimit="15 GB" cpuCores="8">

<rundefinition name="5V-COMP21_assert_java">»

<option name="--graphml-witness”>witness.GraphML</option>

<tasks name="ReachSafety-Jlava’

<includesftile>sv-benchmarks/java/ReachSafety-Java. fincludesfile>»
<propertyfile>sv-benchmarks/java/properties/assert.prp</propertyfile>
<ftasks>

</rundefinition>

</benchmark>

Figure 3.3: Configuration of JBMC in BenchExec

As can be seen from Figure 3.3, In the tag named BenchExec, we set the value of the
attribute named tool to jbmc. The remaining three attributes are named timelimit,
memlimit and cpuCores define resource limits. In this experiment, we limit the run-
ning time of each task to 15 seconds, the maximum memory usage to 15GB, and the
number of cpu cores to 8. In the rundefinition area, we define the set of benchmarks to
be executed in the tag named includesfile, and define the attribute value and witness

file name in the tag named option.

The following subchapters show the details of the startup script.

3.2.1.1 Execution of the JBMC in BenchExec

1. log = open('log.txt', 'a')
2. subprocess.Popen(['benchexec', sys.argv[l],'--no-

compress-results'],stdout=1log, stderr=log).wait/()

34

3. with open("log.txt", "rt") as fin:

4 for line in fin:

5. print (line)

6. os.remove ("log.txt")

7. tableXml = line[line.find(' ")+l:line.rfind('\n"')]

Listing 3.1: Excerpt of script to benchmark JBMC in BenchExec

The main function of this code snippet is to execute the jbmc wrapper script in
BenchExec. In this experiment, we do not run JBMC directly, but run the wrapper
script, which is used as a tool for JBMC benchmarking in SV-COMP. Since JBMC
can only support the verification of Java bytecode, it cannot read Java source code
directly, so the programs in the Java benchmarks need to be compiled in advance. The
script can parse the input property files to the actual JBMC, and return the running

status codes for SV-COMP.

First, We execute the command through the subprocess.Popen module of py-
thon to execute the JBMC benchmark subprocess, and save and output the log content
to the terminal. sys.argv[1l] is the input xml definition file for running
BenchExec, which defines the tool name jbmc, resource limits and task files to be ex-
ecuted. Then, in line 7, we save the string containing the file name and path of the re-
sult set to the variable tableXml in the last line of the log, which will be used to

generate the result table later.

3.2.1.2 Extraction of witness filename and path

When the execution of the JBMC benchmark is finished, BenchExec will save all the
generated witnesses to a result folder. We need to extract the folder path as input for

the next run of the witness validator benchmark.

import xml.etree.ElementTree as ET
JBMC taskFile Root = ET.parse(sys.argv[l]) .getroot ()

witness FileName = JBMC taskFile Root[0][0].text

s w N

witness File = line[line.find('

35

"Y+1l:line.rfind('results')] + 'files' + '"/' + 'S{run-
definition name}' + '/'+ '${taskdef name}' + '/' +
witness FileName

Listing 3.2: Excerpt of script to extract witness filename and path

In this code snippet, we first read the xml configuration file of jbmc running in
BenchExec through xml.etree.ElementTree module of python to obtain the
file name of the witnesses generated by jbmc. Then we define the complete file name
and path of witnesses in line 4, which is used to provide input witnesses to the witness

validator later.

Each witness file generated will be saved to a specific directory separately in the re-
sult folder. This witness file set will be used for subsequent witness validation. In or-
der to input the specific witness for each benchmark, we need to find the correspond-
ence between each benchmark and the witness. We use the variables ${rundefini-
tion name} and ${taskdef name} defined by BenchExec, which respectively define
the current run definition and task-definition file that can be used to search for the
corresponding witness file. As a result, we can find the witness for each Java bench-

mark according to the string variable witness File.

3.2.1.3 XML configuration of the witness validator

1. task Validation Config =
'../Tasks JBMCWitnessValidator.xml'

2. copyfile(sys.argv[1l], task Validation Config)

3. Validator taskFile = ET.parse(task Validation Config)

4. Validator taskFile Root = Validator taskFile.getroot ()

5. Validator taskFile Root.set('tool', 'WitForJBMC')

6. option = Validator taskFile Root.find('rundefinition')
.find('option")

7. option.set ('name', '--witness')

8. option.text = witness File

9. Validator taskFile.write(task Validation Config, en-

36

coding='UTF-8', xml declaration=True)

Listing 3.3: Excerpt of script to configure xml for witness validation

This code creates and configures the xml file that runs the witness validator in
BenchExec. First, line 1 defines the file name and path of the xml configuration file
for running the witness validator. Then, in line 2 to line 9, we make a copy of the xml
configuration file for running jbme in BenchExec and modify the content of the new
xml configuration file to run the witness validator benchmark. We first change the
tool name to WitForJBMC. WitForJBMC is the name of the witness validator we
defined in BenchExec. then add the value of the string witness File as an option
in rundefinition, which contains the file name and path of the witness file.
In this experiment, we use the same resource limits for both benchmark runs. These
two tasks use the same Java benchmarks set, and there are two differences in the xml
configuration: First, the input option for JBMC is used to generate a witness while the
option for witness validator is to input the corresponding witness. Second, the tool

names of the two configurations are different (see Figure 3.4).

version="1.8" encoding="UTF-8"2>

<benchmark tool="WitForlBMC" timelimit="15s" memlimit="15 GB™ cpuCores="8">

<rundefinition name="SV-COMP21_asse

et</includesfile>

rt.prp</propertyfile>

</benchmark>

Figure 3.4: Configuration of witness validator in BenchExec

3.2.1.4 Execution of the witness validator in BenchExec

1. log = open('log.txt', 'a')

2. subprocess.Popen (['benchexec',
'../Tasks JBMCWitnessValidator.xml', '—-no-compress-
results'], stdout=1log) .wait ()

3. with open("log.txt", "rt") as finl:

4., for linel in finl:

)]

print (linel)

37

6. os.remove ("log.txt")
7. tableXmll = linel[linel.find(' ")+1l:linel.rfind('\n'")]

Listing 3.4: Excerpt of script to benchmark validator in BenchExec

The structure of this code snippet is the same as that of subchapter 3.2.1.1. In line 2,
we execute the BenchExec command in Python subprocess and input the xml configu-
ration file for the witness validator to benchmark. Similarly, we output the benchmark
log and save the string containing the file name and path of the result set in the last

line of the log to the variable tableXmll.

3.2.1.5 Generation of result table

After BenchExec runs, it will save the benchmark results to an xml file, and output
the xml file name and path in the last line of the log. However, obtaining the log cor-
responding to each task result requires manually finding the corresponding folder,
which is very cumbersome. Therefore, we need to visually display the results to view
the running status and logs of each task. BenchExec provides a program called table-
generator to read the xml result file to generate a beautiful and easy-to-view table. It is
also applied to the SV-COMP to generate tables of all benchmark results. In this ex-

periment, we also use the program to generate the result table.

tables = []

tables.append (tableXml)

tables.append (tableXmll)

table = ET.parse('table.xml')

table Root = table.getroot()

for result,ta in zip(table Root.iter('result'), tables):

result.set ('filename', ta)

O J o 0o w N

table.write('table.xml',encoding="'UTF-

8',xml declaration=True)

9. subprocess.Popen(['table-generator', '-x', 'ta-
ble.xml']) .wait ()

Listing 3.5: Excerpt of script to generate the table

38

The function of this code snippet is to summarize the results of two BenchExec runs
to generate a html and csv table. First, from line 1 to line 3, we store the two strings
containing the xml file names and paths of the two running results into a list. Then,
from line 4 to line 8, we write the elements of the list into the xml configuration file
for the table-generator. Finally, in line 9, We execute the program table-generator with

the input xml configuration file (see Figure 3.5) to generate the table.

<txml version="1.8" encoding="UTF-8'?>
<table>
<result filename="results/Tasks_JBMC.2021-07-18_23-43-10.results.SV-COMP21_assert_java.Reachsafety-Java.xml">
<column title="status" displayTitle="Status"” />
<column tit putime” displayTitl U Time™ />
<column tit "walltime" displayTitle="Wall Time"™ />
<column title="memory" displayTitle="Memory" sourceUnit="B" displayUnit="MB" />
</result>

<result filename="results/Tasks_J)BMCWitnessvalidator.2021-07-18_23-45-42.results.SV-COMP21_assert_java.Reachsafety-Java.xml">

<column tit tatus” displayTitle="Status™ />

<column title="cputime"” displayTitl U Time™ />

<column title="walltime" displayTitle="Wall Time"™ />

<column title="memory" displayTitle="Memory" sourceUnit="B" displayUnit="MB" />
</result>
</table>

Figure 3.5: Configuration of table-generator

As can be seen from this configuration, The table will display two result sets, which
are the results of JBMC and witness validator. In addition, the results of each running

task will show its running status, cpu time, wall time, and memory usage.

3.2.2 Witness Validator

The concept of this witness validator is to generate a new Java program based on the
input source program and its corresponding witness file (which is similar to the
MetaVal), and then run the new program to check whether it will reach the specified
assertion error. It will assign the counterexample value of the variable in the witness
to the corresponding variable in the new program. When all the non-deterministic var-
iables in the program are assigned the specific counterexample value in the witness,
there will be only one result after the program is run. Therefore, the key to designing
the witness validation algorithm is to correctly extract and make use of counterexam-

ples in witness.

Our approach is to do the violation-witness validation, since the validation algorithm

extracts counterexamples from witnesses, which only exists in the violation-witnesses.

39

Witness validator for Java we designed is a program written in python programming
language, which can be run by executing the following command in the terminal:

First:

sudo chmod +x Wit4JBMC.py

Second:

./Wit4JIBMC.py —--witness witness.GraphML *.java

or

./Witd4JIBMC.py —--witness witness.GraphML somepath

The first command is to set the witness validation script named Wit4JBMC.py as an
executable program in ubuntu. It is necessary if the script needs to be run in
BenchExec because BenchExec can only run executable tools while the script needs
to be run using the python command. Then execute the . / Wit 4JBMC.py command
to run it. Otherwise, if you only need to run the witness validator without integrating

it into BenchExec, execute the script Wit4JBMC.py by command python3:
python3 Wit4JBMC.py --witness witness.GraphML *.java

or

python3 Wit4JBMC.py --witness witness.GraphML somepath
When executing the commands to run the witness validator, you first need to enter the
string —-witness as an option name after the script name, then enter the relative
path of the file containing the witness file name, and finally enter the relative path of
all Java source files with file names involved in this task, or enter the relative directo-

ries of the parent folder of Java source files.

The following subchapters show the details of the validation script.

40

3.2.2.1 Extraction of Java source files

benchmarks dir = []
for 1 in sys.argv[3:]:
if '.java' in 1i:

benchmarks dir.append(1)

1

2

3

4

5. else:
o for path, subdirs, files in os.walk(i):

7 for name in files:

8 if fnmatch (name, '*.java'):

9 benchmarks dir.append(os.path.join(path, name))

Listing 3.6: Excerpt of script to extract Java source files

The function of this code snippet is to save all input Java file names with their paths
to a list. First of all, our algorithm considers two input formats for Java source files.
On the one hand, if the input arguments are Java file names with their paths, then in
lines 3 and 4, we store the matched argument in the form of . java to the list. On the
other hand, if the input argument is the parent folder directory of the Java files, then
from line 5 to line 9, we call the python function os.walk() to traverse the Java files in
the folder and save the file names and paths into the list. Finally, in line 2, we traverse
each argument starting from sys.argv[3] to ensure that all Java source files are
saved. The purpose of saving them to a list is to facilitate subsequent traversal of each

Java file.

3.2.2.2 Determination of witness file

from networkx import networkx as nx
witness File Dir = sys.argv([Z]

witnessFile = nx.read graphml (witness File Dir)

for violationKey in witnessFile.nodes (data = True) :

1
2
3
4. Witness = False
5
6 if 'isViolationNode' in violationKey[1l]:
7

Witness = True

Listing 3.7: Excerpt of script to determine witness

41

This code snippet checks if there is a violation node in the witness as a judgment con-
dition for whether witness verification needs to be run. Sometimes when the JBMC
verification result is true, there may be no content in the witness file. We call the
read graphml () function of the networkx package, which provides powerful
manipulation on the graphs in xml format to read the graph format content of the wit-

ness file.

3.2.2.3 Counterexample extraction

When extracting counterexamples, the algorithm needs to consider the following data

values in the edges in witness:

witness_type: The witness type. It is divided into correctness-witness and violation-
witness. The algorithm determines whether the witness is a violation-witness, and if it

is a correctness- witness, the witness validation is not performed [22].

originFileName: The name of the Java program given the counterexample. The algo-
rithm judges whether the data value is the current program name, and if it is, the algo-

rithm should extract the counterexample contained in this edge [22].

assumption.scope: The scope of the program corresponding to the counterexample.
The algorithm judges whether the name of the program contained in the data value is
the current program name, and if it is, the algorithm should extract the counterexam-

ple contained in this edge [22].

assumption: Counterexample to the scope of the current program. If the above condi-
tions are all met, the data value is obtained as the value of the corresponding variable

in the newly generated program [22].
startLine: The line number of the counterexample value in the program. If the above

conditions are met, the data value is obtained as the line number of the corresponding

variable in the newly generated program [22].

42

01. def takeFirst (elem):
02. return elem[0]

03. 1f (Witness):

04. witness type = witnessFile.graph['witness-type']
05. if (witness type == 'violation witness'):

06. for benchmark in benchmarks dir:

7. new benchmark dir = "'

08. counterexample = []

09. for data in witnessFile.edges(data = True):
10. if(data[2]['originFileName'] in benchmark and

'assumption.scope' in datal[2]):

11. scope = data [2]['assumption.scope']

12. startlLine = data[2]['startline']

13. if benchmark[benchmark.rfind('/"')+1l:benchmark
.find('.java')] in scope or 'java' == scope:

14. assumption = data [2]['assumption']

15. counterexample.

append (tuple((startLine,assumption)))
16. counterexample.sort (key = takeFirst)

Listing 3.7: Excerpt of script to extract counterexamples

This code snippet extracts counterexample values of variables from witness. When the
witness type is violation witness, we extract counterexamples from the wit-
ness. The algorithm contains a double loop, the outer loop is to traverse each Java file
name, and the inner loop is to traverse each edge of the witness, so as to traverse each
edge of witness for each Java file in the list. In the inner loop, it finds the edge whose
value of the attribute originFileName in the witness matches the Java file name.
When there is a match, it extracts the values of the attributes startLine and as-

sumption, and stores them in a list as a tuple.
After all counterexamples are extracted and stored, in line 16, we call the sort ()

function to sort the tuples in the list according to startLine, and arrange the tuples

in the list in the ascending order of startLine natural number, which is convenient

43

for instantiating the Java source code in line order. Figure 3 shows the sort principle.

[startLine, assumption]

[2,intc=3] [1,intb =2]
[1,intb=2] [1,inta=1]
[1,inta=1] [2,intc=3]
[4, intf=6] [2, intd =4]
[6, int h = 8] [3, inte=5]
[2,intd =4 [4. intf=6]
[3,inte=5] [5 intg=7]
[5 intg=7] [6, inth = 8]

Figure 3.6: Rearrange the order of counterexamples

In the Figure, the tuples in the list on the left are listed in the order of their positions in
the witness, and the tuples in the list on the right are arranged in ascending order ac-
cording to the first element of each tuple, which is the row number.

The use of sorted tuples in the list is described in the next section.

3.2.2.4 Instantiation of source code

0l. with open (benchmark,'rt') as fi:

02. for line in fi:

03. filename = benchmark[benchmark.rindex ('/"')+1:]

04. if (line.strip().find('package') == 0):

05. new benchmark dir = line.strip().replace('.','/").
replace(';',"'" ") .replace('package','").
replace(' ','")

06. if not os.path.exists (new benchmark dir):

07. os.makedirs (new benchmark dir)

08. Break

44

09.
10.

11.
12.
13.
14.
15.
16.

17.
18.
19.
20.

21.

22.
23.
24.
25.
26.
27.

28.
29.

with open (benchmark,'r') as fii:
with open(os.path.join (new benchmark dir,
filename), 'wt') as newfi:

for position,linel in enumerate (fii,1):

line new = linel
if (len(counterexample) != 0):
while (position == counterexample[0][0]) :
str = counterexample[0] [1]
if('++'" in 1linel or '--' in 1linel or '*='
linel) :
line new = linel
else:
try:
if(last str(linel[:linel.index('=")].
strip()) == str[:str.index('=")].strip()):

if('&"' not in str):
line new = line new.replace
(line new[line new.index('="'):

line new.rindex(';")].strip(),str

[str.index('="):str.rindex (';"')].strip())
except:
line new = linel

counterexample.remove (counterexample[0])

if (len(counterexample) == 0):

Break
if ' void ' in linel and ' main' in linel and
'public ' not in linel:
line new = 'public ' + line new

newfi.write(line new)

Listing 3.8: Excerpt of script to assign counterexamples

in

In this code snippet, we create a new Java file by assigning counterexample values to

variables corresponding to the Java source file. First of all, in order to ensure the nor-

mal operation of the compiled Java program, we standardize the relationship between

45

the package definition in each Java source file and the relative directory of the actual
file. From line 4 to line 8, we find the content after the keyword package in the Java
code, call the function os .makedirs (), and use it as a relative directory for storing
the newly instantiated Java file. Second, starting from line 9, we create a file in the
new directory based on the name of the source Java file, and then copy the content of
the source file line by line starting from the first line. At the same time, we traverse
the list of counterexample tuples, when the current new program line number exists in
the list of two-tuples, we assign values to the variables of the new Java code. From
line 13 to line 26, if the variable name in this line of code is the same as the variable
name of the counterexample corresponding to the line of the two-tuples list, then we
assign the counterexample value to the variable in this line of code and delete the tu-
ples in the list. Finally, for some Java benchmarks where public is not declared in
the main function, so that it cannot be freely accessed by the JVM, from line 27 to

line 29, we add the public keyword to the main function.

The algorithm skips two cases in the process of assigning values. The first one is vari-
able increment and decrement, because they usually appear in Java loops, assignments
may result in insufficient loop times and incorrect verification results. Because for a
loop condition variable i, the algorithm will continuously iterate i to a new value until
the value of 1 is the last iteration value, but the Java statements in the current condi-
tion is not executed during the iteration, and the generated program only contains the
statement at the last loop iteration, and dose not completely traverse the loop of the
source program. While the increment or decrement variables that do not appear in the
loop do not need to be assigned, because its calculated value is the same as the coun-
terexample value. The second is the assignment of St ring objects. Since JBMC has
limits on String operations, it does not actually give valid counterexamples to non-

deterministic String values.

3.2.2.5 Execution of instantiated code

0l. cmd = 'javac Main.java'
02. subprocess.Popen (cmd,shell=True) .wait ()
03. cmdl = 'java -ea Main'

46

04. subprocess.Popen(cmdl, shell=True) .wait ()

Listing 3.9: Excerpt of script to execute the new program

This code snippet is to compile and run the new generated Java program. We call the
subprocess.Popen module to run a subprocess that executes the Java command
line. We execute the command javac to compile the Java program which contains
the main function to generate bytecode, and then execute the command java to run
the compiled codes. The -ea option must be added after the java command to output

the assertion errors to reproduce the failure found by JBMC.

3.2.3 Tool Integration Module

In order to benchmark the witness validator and contribute it to the SV-COMP, it
needs to be added to the tool module of BenchExec[29]. The following is the com-

plete tool module information script written in Python.

0l. import benchexec.tools.template

02. import benchexec.result as result

03. class Tool (benchexec.tools.template.BaseToo0l?2) :

04. def executable(self, tool locator):

05. return tool locator.find executable ("Wit4JBMC.py")

06. def name (self):

07. return "Wit4JBMC"

08. def cmdline(self, executable, options, task, rlim-
its):

09. return [executable] + options + list

(task.input files or identifier)

10. def determine result(self, run):
11. output = run.output

12. validation = 'unknown'

13. for line in output:

14. if '"Exception' in line:

15. if 'AssertionError' in line:

47

l6. validation = 'false'

17. else:

18. validation = 'unknown'

19. break

20. else:

21. validation = 'true'

22. if validation == 'false':

23. status = result.RESULT FALSE PROP
24. elif validation == 'true':

25. status = result.RESULT TRUE PROP
26. else:

27. status = result.RESULT UNKNOWN
28. return status

Listing 3.10: Excerpt of script to integrate the tool

As can be seen from this code that it mainly provides three functions:

Find the executable tool. the function executable finds the executable program

named Wit 4JBMC . py, which is the witness validation program.

Configure the command line to run the tool. The function cmdline will return the
command to run witness verification. The command line includes the name of the ex-
ecutable program, the running option and input files. The command line examples of

the validator are introduced in subchapter 3.2.2.

Confirm the result. The function determine result will return the result of
each task. We check every line in the result log of the witness validator. In the case of
finding the Exception keyword, if there is also the AssertionError keyword,
it means that the assertion error has been reproduced, otherwise it is another unknown
error. When the Exception keyword does not appear, it means that the instantiated

program ends normally and no exception is found, so the validation of the witness

fails.

48

3.24 Complexity of the validation algorithm

Let L represent the number of programs in one task definition file, M represent the
number of edges in the witness, and N represent the number of lines in each program.
The validation algorithm contains a nested loop. The outer loop is to iterate each pro-
gram, and the inner loop is to read each edge of the witness and write each line of the
source program in the new program. Therefore, the complexity of the algorithm is

represented as O(L(M+N)).

3.3 Illustrative Example

This sub-chapter outlines an illustrative example with a very simple Java program.
This Java program is one of the Java benchmarks in SV-COMP, and the complete

code screenshot is shown in Figure 3.7.

org.sosy_lab.sv_benchmarks.Verifier;

class Main {
public static void main(String[] args) {
int vl = Verifier.nondetInt();
int v2 = Verifier.nondetInt();
assert vl == v2;

Figure 3.7: Screenshot of the Java program example

There is a vulnerability in this program. Since the values of variables v1 and v2 are
random integer values generated by the nondetInt () method of the verifier
class, they are non-deterministic. When the values of these two variables are not equal,
the assertion statement in line 15 will fail. Therefore, when we run JBMC to verify

this program, it should detect the vulnerability.

49

Next, we run this project, call the startup script to use JBMC to verify the program

and do the witness verification.

In ubuntu terminal, input the command below:

./execute.py ../File.xml

Where execute.py is the name of the startup script and File.xml is the xml

configuration file in which task file is the example program.

format_version: "2
input_files:
. «f COmmon,/
- returnz2/

properties:

- property_file: ../properties

expected_wverdict: false

options:

language: Java

Figure 3.8: Screenshot of the task-definition file

The task file name defined in the File.xml is not the name of the Java program, but
the name of the task-definition file (see Figure 3.8). The task-definition file is in the
YAML language, which defines the configuration files and properties used. From the
figure, tag input files defines the parent directory path of the Java program to
be input. In tag properties, assert.prp defined in subtag property file
indicates the specifications to be verified for the programs, and subtag ex-

pected verdict indicates the expected verification result.

When the command is executed, we can see a newly generated html and csv file. The

running result in the html file is shown in Figure 3.9.

50

JBMC 2021-07-23 18:40:55 BST Tasks_JBMC.SV-COMP21_asser... K Wit4JBMC 2021-07-23 19:04:27 BST Tasks_JBMCWitnessValidat...

Status CPU Time Wall Time Memory Status CPU Time Wall Time Memory
(s) (s) (MB) (s) (s) (MB)

Show all ~ Show all ~

false 1.07 .607 51.6 false 974 .506 67.8

Figure 3.9: Screenshot of the demo result table

In this table, the first four columns are the running information of JBMC, and the last
four columns are the running information of witness verification. These two pieces of
information are separated by a thick line in the middle. We can read the running status
of the task, cpu time, wall time and memory usage from the table. Among them, in the
cell of the status information, the green font indicates that the running status is the ex-
pected result. At the same time, this cell provides a link to view the running log. We
click on these two links respectively to view the JBMC log and the witness validation

log.

State 338 file java/lang/Throwable.java function java.lang.Throwable() line 201 thread 8

dynamic_objectll.@java.lang.Error.@java.lang.Throwable.cause=&dynamic_objectll.@java.lang.Error.@java.

State 340 file java/lang/Throwable.java function java.lang.Throwable() line 266 thread 8

dynamic_objectll.@java.lang.Error.@java.lang.Throwable.detailMessage=null (000OE000 AEAOONEEE OOOEEOOO

Violated property:
file Main.java function Main.main(java.lang.String[]) line 15 thread @
assertion at file Main.java line 15 function java::Main.main:([Ljava/lang/String;)V bytecode-index 12
false

VERIFICATION FAILED
EC=10
FALSE

Figure 3.10: Screenshot of the JBMC output

Figure 3.10 is the screenshot of JBMC running log. It can be seen that the verification
failure and the position of the violation property in the program is printed in the log,

which is the assertion statement in line 15.

Exception in thread "main" java.lang.AssertionError
at Main.main(Main.java:15)

Figure 3.11: Screenshot of the witness validator output

Figure 3.11 is the screenshot of witness validator running log. It throws an exception

because of the assertion error in line 15 of the program. It is consistent with the verifi-

51

cation result of JBMC, which proves that the witness validator reached the specified
program assertion error statement through the counterexamples in the witness.
In addition to the logs shown in the generated html table, we can also check the result

folder generated by BenchExec to view other information, such as the witness and the

newly generated programs.

Figure 3.12: Screenshot of the witness content

Figure 3.12 is the screenshot of part of the content of the witness file. The content cor-
responding to the key originfile is the Java program name, the content corre-
sponding to the key startline is the line number of the statement in the program,
and the content corresponding to the key assumption is the hypothetical variable
value to reach the assertion violation, which is called a counterexample. In this exam-

ple, the counterexamples are vl = 1andv2 = 0.

org.sosy_lab.sv_benchmarks.Verifier;

class Main {
public static veid main(string[] args) {
int vl = 1;

Figure 3.13: Screenshot of the new Java program

52

Figure 3.13 is the screenshot of part of the new Java program. As can be seen from
lines 13 and 14, the counterexamples in witness have been successfully assigned to
the new program. We can manually check that the counterexamples were successfully
injected to this new program and the program will throw an exception of assertion er-

ror in 15 lines.
The above example introduces how this project works by entering a very simple Java

program. The next chapter will introduce the test results of all Java benchmarks in the

SV-COMP, some of which are much more complicated than this example.

53

4. Experimental Evaluation

This chapter introduces the experimental results of the project. First, subchapter 4.1
introduces the Java benchmarks used in this project. Then, subchapter 4.2 introduces
the software and hardware environment information of the project, project directory,
and suggestions before starting the experiment. Next, subchapter 4.3 introduces the
objectives of the experimental evaluation. After that, subchapter 4.4 and 4.5 introduc-
es the results in detail, as well as a detailed analysis of the results. Finally, subchapter

4.6 summaries the experimental conclusions.

4.1 Benchmarks

In this experiment, the benchmarks used are all Java benchmarks in the SV-COMP.
For each Java benchmark, Java programs need to be listed in their corresponding task

definition files.

jayhorn-recursive,/#*.yml

.

.

-regression/a

b
[TI=THR-TR=T]

- regression/

b

3
TEn

regres in/ nanoxml

regression/printtokens_eqchky/* . yml

juliet-jav

jdart-regression/*.y

Figure 4.1: Task set screenshot

Figure 4.1 shows the task set used to run the project, which contains all the task defi-

54

nition files in the *ym/ format in these directories.

4.2 Setup

4.2.1 Environment setup

4.2.1.1 Java environment installation

Java is available for download at:

https://www.java.com/en/download/manual.jsp

4.2.1.2 Python environment installation

Python is available for download at:

https://www.python.org/downloads/

In our experiment, to ensure the correct work of BenchExec, Python needs to be ver-
sion 3.6 or higher. Also make sure that the networkx package and pip3 package

are installed.

4.2.1.3 JBMC and the wrapper script

JBMC is available at the Github repository:
https://github.com/diftblue/cbmc/tree/develop/ibmec

JBMC wrapper script is available at the Github repository:
https://github.com/diffblue/cprover-sv-comp

It is recommended to install CBMC first, and JBMC should be installed before in-

stalling the wrapper script.

In addition, a complied and ready-to-use archive is available at the SV-COMP page:

55

https://www.java.com/en/download/manual.jsp
https://www.python.org/downloads/
https://github.com/diffblue/cbmc/tree/develop/jbmc
https://github.com/diffblue/cprover-sv-comp

https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/jbmc.zip

4.2.1.4 BenchExec installation

BenchExec is available at the Github repository:
https://github.com/sosy-lab/benchexec

BenchExec provides a variety of installation packages. But it must be noted that since
we will add a tool information module of the witness validator to BenchExec, you
need to download the development version of BenchExec (source code) instead of the

installation packages.

4.2.1.5 Proposed extension

The implementation in this project is available at the Github repository:

https://github.com/Anthonysdu/MSc-project

4.2.1.6 Java benchmarks

The complete Java benchmarks used in this project are available at the Github reposi-

tory:

https://github.com/sosy-lab/sv-benchmarks/tree/master/java

4.2.2 Environment versions

The software and hardware used in this project are as follows:
e JDK/JRE (version 1.8.0 292)

* python3 (version 3.8.10)

e JBMC (version 5.17.0)

* pip3 (version 20.0.2)

* BenchExec (version 3.8-dev)

* table-generator (version 3.8-dev)

56

https://gitlab.com/sosy-lab/sv-comp/archives-2021/raw/svcomp21/2021/jbmc.zip
https://github.com/sosy-lab/benchexec
https://github.com/Anthonysdu/MSc-project
https://github.com/sosy-lab/sv-benchmarks/tree/master/java

* PQoS (version 4.1.0)

* Model: LENOVO _MT 82AV BU idea FM Legion Y7000 2020
* Operating System: Ubuntu 20.04.2 LTS.
* CPU: Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz,12 cores

* RAM:16GB

The Linux operating system is required because BenchExec cannot work on other op-

erating systems [7].

4.2.3 Running the tests

The directory tree of this project is illustrated in Figure 4.2.

Tasks_
Tasks_

JBMCWitnessValidator.xml
JBMC.xmLl

5 directories, 2 files

table.
table.
table.
table.
table.

1 directory, 13 files

S cd jbmc
S tree -L 1

diff.csv
diff.html
table.csv
table.html
xml

¢

b

Figure 4.2: Project directory tree

Here is a basic introduction to the subdirectories under the project directory:

Benchexec-develop: The directory where the BenchExec installation version pack-

age is stored.

57

intel-cmt-cat: The directory where additional library (Intel PQoS) for BenchExec is

stored.

jbme: The directory where the JBMC wrapper script is stored.

pqos-wrapper: The directory where additional interface for BenchExec to use Intel

PQoS is stored.

sv-benchmarks: The directory where the Java benchmarks are stored.

Tasks JBMCWitnessValidator.xml: Xml configuration file to run witness validator

in BenchExec.

Tasks_JBMC.xml: Xml configuration file to run JBMC in BenchExec.

In the jbmc folder, in addition to the original files, the newly created files are as fol-

lows:

execute.py: The startup script of the project.

results: The directory where all the results by BenchExec are saved.

witdJBMC.py: The script of the witness validator.

table.xml: Xml configuration to generate the result tables.

table.*.csv/html: Generated html and csv tables.

In addition, the new tool-info module we introduced in the previous chapter named

WitForJBMC. py should be saved into the relevant BenchExec tools directory [29].

58

if [$ECR -eq 1] ; then
EC=18

mv $LOG.latest $LOG.ok
echo "EC=%EC™ >>» $LOG.ok

Figure 4.3: Code segment of JBMC Wrapper Script

Before running the experiment, a modification to the JBMC wrapper script needs to
be made. The wrapper script parses input Java programs for JBMC. However, it uses
the JVM to check the assertion properties of the program before sending the compiled
bytecode to JBMC. If an assertion error is found, the program error is directly re-
turned without calling JBMC to check the program, so there will be no witness file

generated by JBMC.

As shown in Figure 4.3, it is part of the code of the wrapper script. In order to gener-
ate more violation-witness files for witness validation, we should comment the code

in the figure so as to ensure that all programs will be passed to JBMC.

4.3 Objectives

The specific objectives of this experimental evaluation are:
» Obtain the benchmark results of JBMC and the witness validator.
* Analyse the verification results of JBMC.

* Analyse the validation results of the witness validator.

4.4 Results

4.4.1 Result statistics

In order to compare the effect of the code of the JBMC wrapper script on the experi-

ment after being commented, we conducted two experiments. One experiment kept

59

the packaging script unchanged, and the other experiment commented out the code.

Showing 473 of 473 tasks ¥
Summary = Table Quantile Plot Scatter Plot | Info @

JBMC 5.17.0 (cbme-5.17.0-7- JBMC 5.17.0 (cbmc-5.17.0-7-

Tool gbfasfasse-dirty) WitdJBMC g6 46fas56-dirty) WitdIBMC

Limits timelimit: 15 s, memlimit: 15000 MB, CPU core limit: &

Host tong

0s Linux-5.8.0-63-generic-x86_64-with-glibc2.29

System CPU: Intel Core i7-10750H CPU @ 2.60GHz, cores: 12, frequency: 5000 MHz, Turbo Boost: enabled; RAM: 16645 MB

::;i::;nn 2021-07-23 22:43:34 BST 2021-07-23 23:04:51 BST 2021-07-23 18:40:55 BST 2021-07-23 19:04:27 BST

Tasks_JBMC.SV-
Run set COMP21_assert_java.ReachSafety-

Tasks_JBMC.SV-

Tasks_JBMCWitnessValidator.SV- COMP21_assert_java.ReachSafety-

COMP21_assert_java.ReachSafety-Java

Tasks_JBMCWitnessValidator.SV-
COMP21_assert_java.ReachSafety-Java

Java Java
Options —-erssmmwitness witress GraptfL 3 et mamep nitness . ST oS itness st GraBtiL e e
Properties assert
3
Statistics
Fixed row title: JBMC 2021-07-23 22:43:34 BST Ta... | Wit4JBMC 2021-07-23 23:04:51 BS... | JBMC 2021-07-23 18:40:55 BST Ta.. | Wit4JBMC 2021-07-23 19:04:27 BS...
Click here to select columns Status CPU Time Wall Time Memory | Status CPU Time Wall Time Memory | Status CPU Time Wall Time Memory | Status CPU Time Wall Time Memory
(s) (s) (MB) (s) (s) (MB) (s) (s) (MB) (s) (s) (MB)
total 473 1280 1070 57900 473 178 128 20000 473 1430 1210 71800 473 382 272 61000
local summary - 1340 1280 - -2 Eral - - 1480 1410 - - 437 451
correct results 422 232 346 21600 87 91.0 48.3 6590 409 268 383 24900 177 183 103 17400
correct true 179 254 170 9420 0 - - - 179 252 168 9350 o]
correct false 243 278 175 12200 87 91.0 48.3 6590 230 316 217 15600 177 183 103 17400
incorrect results 0 - - - 1 904 447 56.8 0 2 1.85 967 124
incorrect true 0 - - - 1 904 447 56.8 0 2 1.85 967 124
incorrect false 0 - - - 0 - - - 0 - - - 0
score (473 tasks, max score: 693) 601 - - - 55 - - - 588 - - - 113

Figure 4.4: Statistics of two experimental results

Figure 4.4 provides a summary of the results of the two experiments. The top inside
this figure shows the benchmark setup, which contains information such as tool name,
resource limit, host name, operating system, hardware information, date of execution,
run task set, etc. The bottom inside the figure shows the statistics of the running re-
sults. The statistical results have four columns: the first column is the benchmark re-
sults of JBMC, and its wrapper script remains unchanged. The second column is the
validation results of the witnesses generated by JBMC. The third column is also the
benchmark results of JBMC, but its wrapper script was modified. The fourth column

is the validation results of the witnesses generated by subsequent JBMC.

Although it can be seen from the first and third columns that the JBMC benchmark
using the modified wrapper script reduced 13 correct results and its score also
dropped from 601 to 588, as can be seen from the second and fourth columns, the cor-
rect results of the latter are approximately twice that of the former, which means that

running the modified wrapper script for benchmarking produces more witness files.

60

Statistics

Fixed row title: [JBMC 2021-07-23 18:40:55 BST Ta... | Wit4JBMC 2021-07-23 19:04:27 BS...
Click here to select columns Status CPU Time Wall Time Memory |Status CPU Time Wall Time Memory
(s) (s) (MB) (s) (s) (MB)
total 473 1430 1210 71800 473 382 272 61000
local summary - 1480 1410 - - 437 451

correct results 409 568 385 24900 177 183 103 17400
correct true 179 252 168 9350 0

correct false 230 316 217 15600 177 183 103 17400

incorrect results 0 - - - 2 1.85 .967 124

incorrect true 0 - - - 2 1.85 967 124
incorrect false 0 - - - 0
score (473 tasks, max score: 693) 588 - - - 113

Generated by

Figure 4.5: Statistics of single experimental results

Figure 4.5 shows the JBMC benchmark results and witness validator benchmark re-
sults after modifying the JBMC wrapper script. The left side of the table in the figure
is the statistical results of JBMC. For all of these 473 Java benchmarks, JBMC cor-
rectly verified 409 of them, and the remaining 64 verification results are unknown.
Among the 409 correct results, 179 corresponding programs have no violation attrib-
utes and the verification results are true, while the other 230 are found to have the vio-

lation attributes of the programs, and the verification results are false.

The right side of the table in the figure is the statistical results of the witness valida-
tion run. Regarding the 230 benchmarks with violation attributes verified by JBMC
against these 473 Java benchmarks, the witness validator successfully validated 177

with 2 incorrect and 51 unknown results.

61

Fixed task: O M JBMC 2021-07-23 18:40:55 BST Tasks_JBMC.... | Wit4JBMC 2021-07-23 19:04:27 BST Tasks_J...
Click here to select columns W Status CPU Time Wall Time Memory Status CPU Time Wall Time Memory

(s) (s) (MB) (s) (s) (MB)

Show al + Show al «

jayhorn-recursive/Ackermann01.yml | false false 929 .536 51.2 false .898 .488 66.0
jayhorn-recursive/Addition.yml | true TIMEOUT 15.3 14.9 377 137 137 17.0
jayhorn-recursive/InfiniteLoop.yml | false false .885 .500 51.2 false 969 .500 67.5
jayhorn-recursive/SatAckermann01.yml | true TIMEOUT 15.3 14.8 1030 139 139 17.1
jayhorn-recursive/SatAckermann02.yml | true TIMEOUT 15.3 14.8 1030 135 135 17.2
jayhorn-recursive/SatAckermann03.yml | true TIMEOUT 15.3 14.8 1010 134 134 17.2
jayhorn-recursive/SatAddition01.yml | true TIMEOUT 15.3 14.8 375 135 135 17.1
jayhorn-recursive/SatEvenOdd01.yml | true TIMEOUT 15.3 14.8 118 131 132 17.2
jayhorn-recursive/SatFibonacciO1.yml | true TIMEOUT 15.3 14.9 605 137 137 17.1
jayhorn-recursive/SatFibonacci02.yml | true true 782 .362 48.4 131 131 17.1
jayhorn-recursive/SatFibonacci03.yml | true TIMEOUT 15.3 14.9 664 131 132 17.2
jayhorn-recursive/SatGed.yml | true TIMEOUT 15.3 14.8 68.1 135 135 17.1
jayhorn-recursive/SatHanoi01.yml | true TIMEOUT 15.3 14.8 721 134 134 17.2
jayhorn-recursive/SatMccarthy@1.yml | true TIMEOUT 15.3 14.9 725 131 131 17.1
jayhorn-recursive/SatMultCommutative01.yml TIMEOUT 15.3 14.8 675 132 132 17.2
jayhorn-recursive/SatPrimes01.yml | true TIMEOUT 15.3 14.9 1800 137 137 171
jayhorn-recursive/UnsatAckermann01.yml | fals false 3.97 3.56 88.9 false 918 .503 58.8
jayhorn-recursive/UnsatAddition01.yml | false false 933 564 51.5 false .809 .448 56.0
jayhorn-recursive/UnsatAddition02.yml | false TIMEOUT 15.3 14.9 487 136 137 17.1
jayhorn-recursive/UnsatEvenOdd01.yml | false false .908 .540 51.2 false .993 .486 66.2
jayhorn-recursive/UnsatFibonacciO1.yml | false false 1.29 .938 54.4 false 877 511 56.3
jayhorn-recursive/UnsatFibonacci02.yml | false false 4.62 4.18 303 false .849 471 57.3
jayhorn-recursive/UnsatMccarthy91.yml | false false 1.03 539 51.2 false .899 .465 58.8
jbme-regression/ArithmeticException1.yml | fal false 971 .549 51.3 false .838 .429 58.8
jbme-regression/ArithmeticException5.yml | tr| true 722 .373 39.3 132 133 17.3
jbme-regression/ArithmeticExceptioné.yml | fal false 997 .600 51.1 false .924 .448 58.9
jbme-regression/ArraylndexOutOfBoundsExcep) false .984 617 51.2 false .785 427 55.5
jbme-regression/ArraylndexOutOfBoundsExcep) false 925 .549 51.2 false .897 .449 67.1
jbme-regression/ArraylndexOutOfBoundsExcep) false 919 513 51.3 false .788 .430 55.9
jbme-regression/BufferedReaderReadLine.yml false 1.02 564 51.4 .789 434 56.7
jbmc-regression/CharSequenceBug.yml | false false .875 534 51.6 .909 .456 58.9
jbme-regression/CharSequenceToString.yml | tr) true 1.36 911 51.6 .138 .138 18.1
jbme-regression/ClassCastExceptiont.yml | false false .883 .505 51.7 false 753 419 55.1
jbme-regression/ClassCastExceptionZ.yml | true true 821 .385 491 135 135 17.3
jbme-regression/ClassCastException3.yml | false false .886 511 50.9 false .849 .478 58.0
jbmc-regression/Class_method1.yml| true true .686 .349 39.2 142 .142 17.0
jbmc-regression/Inheritance1.yml | true true 783 .387 48.8 135 135 17.1
jbme-regression/NegativeArraySizeException, false .861 .505 51.2 false .810 444 57.9
jbme-regression/NegativeArraySizeException2., false .899 .536 51.0 false 797 .439 58.1
jbme-regression/NullPointerExceptioni.yml | tr true 704 .365 39.0 133 133 17.2
jbme-regression/NullPointerException2.yml | fa) false .895 534 51.3 false .860 .438 65.9
jbme-regression/NullPointerException3.yml | fa) false .965 539 51.0 false .805 .456 58.0
jbme-regression/NullPointerException4.yml | fa) false 936 511 51.4 false .828 .447 57.9
jbmc-regression/RegexMatches01.yml | true true 778 .389 39.8 135 136 17.2

jbmc-regression/RegexMatches02.yml | false .956 594 53.6 9.14 8.34 2030
jbme-regression/RegexSubstitution01.yml | true true .898 .363 42.8 136 136 17.2
jbme-regression/RegexSubstitution02.yml | false 1.02 .614 52.8 979 .478 73.2
jbme-regression/RegexSubstitution03.yml | true true .708 .335 40.3 133 134 17.1
jbme-regression/StaticCharMethods01.yml | tru true .820 .336 39.9 141 141 17.1
jbme-regression/StaticCharMethods02.yml | fals false 1.00 .610 52.4 .892 .481 66.1
jbme-regression/StaticCharMethods03.yml | fals false .959 588 52.6 .904 .447 59.7
jbme-regression/StaticCharMethods04.yml | fals false 973 575 51.8 false .994 .564 68.8

jbme-regression/StaticCharMethods05.yml | fals false 1.09 670 52.9 5.34 4,55 1910
jbme-regression/StaticCharMethods06.yml | tru true 1.59 1.18 52.8 164 .165 19.7

62

jbme-regression/StringBuilderAppend01.yml | 4
jbme-regression/StringBuilderAppend02.yml |
jbme-regression/StringBuilderCaplLen01.yml | &
jbme-regression/StringBuilderCaplLen02.yml | 7
jbme-regression/StringBuilderCaplLen03.yml | 7
jbme-regression/StringBuilderCaplLen04.yml | 7
jbme-regression/StringBuilderChars01.yml | true
jbme-regression/StringBuilderChars02.yml | fals)
jbme-regression/StringBuilderChars03.yml | fals)
jbme-regression/StringBuilderChars04.yml | fals)
jbme-regression/StringBuilderChars05.yml | fals)
jbme-regression/StringBuilderChars06.yml | fals)
jbme-regression/StringBuilderConstructors01.y,
jbme-regression/StringBuilderConstructors02.y,
jbme-regression/StringBuilderinsertDelete01.y
jbme-regression/StringBuilderinsertDelete02.y
jbme-regression/StringBuilderinsertDelete03.y
jbmc-regression/StringCompare01.yml | true
jbmc-regression/StringCompare02.yml | false
jbmc-regression/StringCompare03.yml | false
jbmc-regression/StringCompare04.yml | false
jbmc-regression/StringCompare05.yml | false
jbme-regression/StringConcatenation01.yml | o
jbme-regression/StringConcatenation02.yml |
jbme-regression/StringConcatenation03.yml |
jbme-regression/StringConcatenation04.yml |
jbme-regression/StringConstructors01.yml | true
jbme-regression/StringConstructors02.yml | fals,
jbme-regression/StringConstructors03.yml | fals,
jbme-regression/StringConstructors04.yml | fals,
jbme-regression/StringConstructors05.yml | fals,
jbmc-regression/StringContains01.yml | false
jbmc-regression/StringContains02.yml | false
jbme-regression/StringIndexMethods01.yml | tr|
jbme-regression/StringIndexMethods02.yml | fal
jbme-regression/StringIndexMethods03.yml | fal
jbme-regression/StringIndexMethods04.yml | fal
jbme-regression/StringIndexMethods05.yml | fal
jbme-regression/StringMiscellaneous01.yml | tr
jbme-regression/StringMiscellaneous02.yml | fal
jbme-regression/StringMiscellaneous03.yml | fal
jbme-regression/StringMiscellaneous04.yml | tr
jbmc-regression/StringStartEnd01.yml | true
jbme-regression/StringStartEnd02.yml | false
jbmc-regression/StringStartEnd03.yml | false
jbmc-regression/StringValueOf01.yml | true
jbmc-regression/StringValueOf02.yml | false
jbmc-regression/StringValueOf03.yml | false
jbmc-regression/StringValueOf04.yml | false
jbmc-regression/StringValueOf05.yml | false
jbmc-regression/StringValueOf06.yml | false
jbmc-regression/StringValueOf07.yml | false
jbmc-regression/StringValueOf08.yml | false
jbmc-regression/StringValueOf09.yml | false
jbmc-regression/StringValueOf10.yml | false
jbmc-regression/SubString01.yml | true
jbmc-regression/SubString02.yml | false

jbmc-regression/SubString03.yml | false

true
TIMEOUT

true

true

true

769
15.4

7.48

4.21
943
693
953
960

.386

14.9

334
.554
544
.497
364
508
.547
.624
.580
666
.934
965
413
1.87
1.84
.356
R
5925
.67
038

2.95

63

591
.680
5952
369
.547
.627
.822
1.22
.629
548
334
514
.614
560
R
381
508
.656
.340
.359
.831
.812
.355
762
763
508
.87
.71
1.06
7.06
3.79
.56
.347
.570
.58

41.3
2820

39.5
52.2
52.2

134
133
134
907
912
5.71
135
902
.985
10.5
.824
940
139
4.93
137
10.8
.862
.150
.818
3.19
5.51
4.00
143
957
3.04
956
135
3.1z
11.0
903
.875
5.21
false 3.47
135
.845
5.51
.948
false 2.65
137
978
965
147
131

9.07
131

2.96

5.61
false .846
935
false .887
false 1.06
5.19

5.35
.888
134

10.9
924

134
134
134
.493
.496
5.11
136
473
.502
9.92
472
.497
139
4.41
138
10.1
477
151
.447
1.67
4.85
3.52
143
.508
2.39
.503
135
2.61
10.4
.504
.463
4.60
2.92
135
.446
4.92
.476
2.15
137
.499
.481
147
131
519
8.39
131
2.45
5.06
.461
510
.490
513
4.61
4.85
.451
134
10.3
.468

17.2
17.2
17.2
59.0
59.4
2180
17.2
59.7
69.8
2210
55.8
59.2
18.3
1880
17.2
2250
57.5
17.2
55.2
862
2060
1470
19.3
59.1
1020
69.7
17.2
1010
2290
59.8
60.1
1940
980
17.2
58.7
2110
68.8
648
17.2
67.6
68.1
17.2
17.2
69.7
2020
17.1
960
2160
58.8
59.5
58.7
72.5
1940
2030
59.4
17.2
2280
58.9

jbmc-regression/TokenTest01.yml | true
jbmc-regression/TokenTest02.yml | false
jbmc-regression/Validate01.yml | true
jbmc-regression/Validate02.yml | false
jbmc-regression/aastore_aaload1.yml| true
jbmc-regression/array1.yml| true
jbmc-regression/array2.yml | true
jbmc-regression/arraylength1.yml| true
jbmc-regression/arrayreadi.yml| true
jbmc-regression/assert1.yml| true
jbmc-regression/assert2.yml | false
jbmc-regression/assert3.yml | false
jbmc-regression/assertd.yml | false
jbmc-regression/assert5.yml | true
jbmc-regression/asserté.yml | true
jbme-regression/astore_aload1.yml| true
jbmc-regression/athrow1.yml | false
jbme-regression/basic1.yml| true
jbmc-regression/bitwise1.yml | true
jbmc-regression/booleant.yml | true
jbmc-regression/boolean2.yml | true
jbmc-regression/bug-test-gen-095.yml | false
jbmc-regression/bug-test-gen-119-2.yml | true
jbmc-regression/bug-test-gen-119.yml | true
jbmc-regression/calc.yml | true
jbmc-regression/cast1.yml| true
jbmc-regression/catchi.yml| true
jbmc-regression/char1.yml| true
jbmc-regression/charArray.yml | true
jbme-regression/classtest1.yml | true
jbme-regression/const1.yml| true
jbme-regression/constructori.yml| true
jbmc-regression/enumi.yml| true
jbmc-regression/exceptions1.yml | false
jbmc-regression/exceptions10.yml | false
jbmc-regression/exceptions11.yml | false
jbmc-regression/exceptions12.yml | false
jbmc-regression/exceptions13.yml | false
jbmc-regression/exceptions14.yml | true
jbmc-regression/exceptions15.yml | true
jbmc-regression/exceptions16.yml | false
jbmc-regression/exceptions18.yml | true
jbme-regression/exceptions2.yml | false
jbmc-regression/exceptions3.yml | false
jbmc-regression/exceptions4.yml | true
jbmc-regression/exceptions5.yml | true
jbmc-regression/exceptionsé.yml | false
jbmc-regression/exceptions7.yml | false
jbme-regression/exceptions8.yml | false
jbmc-regression/exceptions9.yml | true
jbmc-regression/fempx_dempx1.yml | true
jbme-regression/iarith1.yml | true
jbme-regression/iarith2.yml | true
jbmc-regression/if_acmp1.yml| true
jbmc-regression/if_expri.yml| true
jbmc-regression/if_icmp1.yml| true
jbmc-regression/ifxx1.yml| true

jbmc-regression/instanceof1.yml| true

true
TIMEOUT

true

TIMEOUT
TIMEOUT
true
true
true

true

true
true
TIMEOUT
true
true
true
true
true
true
true

true

true
true
true
true
true
true
true
true

true

.845
15.3
731
1.08
15.2
15.3

.985

.825
897
721

728

15.3

1.42
781

1.38

2.35
690
726
T79
737
963
.947
928
962
.947
736
670
973
811
.900
950
713
75
896
968
987
726
720
.657
749
AL

671
.653

381

14.9

368
.634

14.9

14.9

.951
.945
.903
.26

.612
951
.637
.23

.906
405
.513
334
.868
938
.895
.557
367
.942

14.9

1.03

64

366
.01

.99

364
.356
394
372
L5638
.547
537
.73
560
363
324
.86
372
.24
.34
361
.380
514
.28
941
367
364
318
.354
.352
.907
.905
327
.37

47.0
2260
40.3
51.9
374
492
51.3
51.7
51.8
53.7
53.2
51.2
53.7
53.2
51.7

39.6

false
false

false

false

false

false
false
false
false

false

false

false

false

false
false

false

149
134
135

135
137
138
145
135
137
875
.851
909
134
138
134
943
136
136
136
135
6.95
157
138
31
137
130
137
145
136
133
133
133
793
.858
790
.824
971
134
145
.823
145
.890
902
130
134
913
793
811
.154
31
132
132
132
138
135
.152
133

150
34
135
.522
135
137
138
146
135
137
462
467
513
34
138
34
491
136
136
136
135

5.92
57
139
A31
137
130
138
145
136
34
133
133
470
474
.478
.488
.518
34
145
493
146
462
.478
130
34
474
461
469
155
A32
A32
A32
A32
138
135
A52
133

171
171
17.2
72.7
17.2
17.2
18.6
18.0
17.9
18.5
58.7
58.5
58.0
18.0
17.9
171
58.2
17.2
17.9
18.0
17.9
2470
17.2
18.6
17.2
19.2
17.2
18.6
21.7
17.2
17.2
17.2
17.2
55.2
59.0
535.6
55.8
66.9
17.2
17.2
535.7
17.2
58.0
67.0
17.2
171
64.8
55.2
55.8
171
17.2
17.2
171
17.2
18.3
18.5
17.2
17.2

jbme-regression/instanceof2.yml | true
jbme-regression/instanceof3.yml | true
jbme-regression/instanceof4.yml | true
jbme-regression/instanceof5.yml | true
jbme-regression/instanceof6.yml | true
jbme-regression/instanceof7.yml | true
jbme-regression/instanceof8.yml | true
jbme-regression/interfacet.yml | false
jbme-regression/java_append_char.yml | false
jbme-regression/lazyloading4.yml | true
jbme-regression/list1.yml | true
jbme-regression/long1.yml | true
jbmc-regression/lookupswitch1.yml | true
jbme-regression/multinewarray.yml | true
jbmc-regression/overloading1.yml | true
jbme-regression/package1.yml | true
jbmc-regression/putfield_getfield1.yml| true
jbme-regression/putstatic_getstatict.yml | true
jbme-regression/recursion2.yml | true
jbme-regression/returni.yml | false
jbme-regression/return2.yml | false
jbmc-regression/store_load1.yml | true
jbmc-regression/swap1.yml | true
jbme-regression/synchronized.yml | true
jbmc-regression/tableswitch1.yml | true
jbme-regression/uninitialised1.yml | true
jbmc-regression/virtuall.yml | true
jbme-regression/virtual2.yml | false
jbmc-regression/virtual4.yml | true
jbme-regression/virtual_function_unwinding.y
jpf-regression/ExDarko_false.yml | false
jpf-regression/ExDarko_true.yml | true
jpf-regression/ExException_false.yml | false
jpf-regression/ExException_true.yml | true
jpf-regression/ExGenSymExe_false.yml | false
jpf-regression/ExGenSymExe_true.yml | true
jpf-regression/ExLazy_false.yml | false
jpf-regression/ExLazy_true.yml| true
jpf-regression/ExMIT_false.yml | false
jpf-regression/ExMIT_true.yml | true
jpf-regression/ExSymExe10_false.yml | false
jpf-regression/ExSymExe10_true.yml | true
jpf-regression/ExSymExe11_false.yml | false
jpf-regression/ExSymExe11_true.yml | true
jpf-regression/ExSymExe12_false.yml | false
jpf-regression/ExSymExe12_true.yml | true
jpf-regression/ExSymExe13_false.yml | false
jpf-regression/ExSymExe13_true.yml | true
jpf-regression/ExSymExe14_false.yml | false
jpf-regression/ExSymExe14_true.yml | true
jpf-regression/ExSymExe15_false.yml | false
jpf-regression/ExSymExe15_true.yml | true
jpf-regression/ExSymExe16_false.yml | false
jpf-regression/ExSymExe16_true.yml | true
jpf-regression/ExSymExe17_false.yml | false
jpf-regression/ExSymExe17_true.yml | true
jpf-regression/ExSymExe18_false.yml | false

jpf-regression/ExSymExe18_true.yml | true

true
true
true
true

true

true
TIMEOUT
true
true
true
true
true
true
true

true

true
true
true

true

715
.681
707
.760
703
761
.660
.863
.36

.808

.786
.28
.678
.839
T4
.659
758
787
943
.07
795
727
.668
.40
732
791
976
799
.805
.10
.40
.00
.33
924
.26
936
.36
.893
.30
.900
.41
961
.38
963
.43
.958
.47
.01
.31
978
.46
.925
I3
928
.675
91
.803

.362
.332
.398
.337
351
.366
.316
.502
976
.378

14.8

65

.374
.897
.316
.394
.318
.314
L343
.382
.525
.607
.378
.37
.305
961
.349
.368
.554
.373
.390
.610
.03

.550
.937
.533
.899
.498
.936
512
.883
.525
.931
515
.908
.555
.960
.557
997
.549
.939
.536
.00

.535
351
.533
.313
.539
377

39.4
391
391
39.8
39.9
49.5
39.8
51.6
57.7
49.7
79.6
49.1
51.5
39.3
40.0
39.6
38.7
49.2
48.1
51.3
51.6

49.1

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

132
134
133
133
.149
133
131
786
976
134
133
133
137
131
130
132
131
131
130
780
974
135
134
140

174
139
934
145
137
.04

139
.895
137
926
145

145
79
142
923
.154
.995
139
915
147
.859
141
.812
145
927
140
784
139
734
140
.895
135

132
134
.133
.133
149
.133
J131
.481
.499
134
134
.133
137
J131
J131
.133
132
132
J131
.425
.506
.135
.135
140

74
139
484
145
137
541
140
471
137
497
145
.516
146

142
480
154
.519
139
513
147
.485
141
466
145
.532
141
434
140
420
141
474
136

17.1
17.2
17.2
17.2
17.2
17.2
17.2
55.1
70.0
17.2
17.2
17.2
18.4
17.2
17.1
17.1
17.2
17.2
17.2
58.2
67.8
17.2
17.2
17.1
18.5
17.1
17.1
66.6
17.1
17.2
58.3
19.0
58.6
18.0
65.6
18.3
68.9
18.1
55.7
17.9
66.9
17.9
65.9
17.9
56.2
18.1
55.9
18.1
56.1
18.2
56.5
18.1
54.8
17.2
55.2
17.1
57.1
17.2

jpf-regression/ExSymExe19_false.yml | false
jpf-regression/ExSymExe19_true.yml | true
jpf-regression/ExSymExe1_false.yml | false
jpf-regression/ExSymExe1_true.yml | true
jpf-regression/ExSymExe20_false.yml | false
jpf-regression/ExSymExe20_true.yml | true
jpf-regression/ExSymExe21_false.yml | false
jpf-regression/ExSymExe21_true.yml | true
jpf-regression/ExSymExe25_false.yml | false
jpf-regression/ExSymExe25_true.yml | true
jpf-regression/ExSymExe26_false.yml | false
jpf-regression/ExSymExe26_true.yml | true
jpf-regression/ExSymExe27_false.yml | false
jpf-regression/ExSymExe27_true.yml | true
jpf-regression/ExSymExe28_false.yml | false
jpf-regression/ExSymExe28_true.yml | true
jpf-regression/ExSymExe29_false.yml | false
jpf-regression/ExSymExe29_true.yml | true
jpf-regression/ExSymExe2_false.yml | false
jpf-regression/ExSymExe2_true.yml | true
jpf-regression/ExSymExe3_false.yml | false
jpf-regression/ExSymExe3_true.yml | true
jpf-regression/ExSymExe4_false.yml | false
jpf-regression/ExSymExe4_true.yml | true
jpf-regression/ExSymExe5_false.yml | false
jpf-regression/ExSymExe5_true.yml | true
jpf-regression/ExSymExe6_false.yml | false
jpf-regression/ExSymExe6_true.yml | true
jpf-regression/ExSymExe7_false.yml | false
jpf-regression/ExSymExe7_true.yml | true
jpf-regression/ExSymExe8_false.yml | false
jpf-regression/ExSymExe8_true.yml | true
jpf-regression/ExSymExe9_false.yml | false
jpf-regression/ExSymExe9_true.yml | true
jpf-regression/ExSymExeArrays_false.yml | false
jpf-regression/ExSymExeArrays_true.yml | true
jpf-regression/ExSymExeBool_false.yml | false
jpf-regression/ExSymExeBool_true.yml | true
jpf-regression/ExSymExeComplexMath_false.yr
jpf-regression/ExSymExeComplexMath_true.yn
jpf-regression/ExSymExeD21_false.yml | false
jpf-regression/ExSymExeD21_true.yml | true
jpf-regression/ExSymExeD2L_false.yml | false
jpf-regression/ExSymExeD2L_true.yml | true
jpf-regression/ExSymExeF2I_false.yml | false
jpf-regression/ExSymExeF21_true.yml | true
jpf-regression/ExSymExeF2L_false.yml | false
jpf-regression/ExSymExeF2L_true.yml | true
jpf-regression/ExSymExeFNEG_false.yml | false
jpf-regression/ExSymExeFNEG_true.yml | true
jpf-regression/ExSymExeGetStatic_false.yml | £
jpf-regression/ExSymExeGetStatic_true.yml |t
jpf-regression/ExSymExel2D_false.yml | false
jpf-regression/ExSymExel2D_true.yml | true
jpf-regression/ExSymExel2F_false.yml | false
jpf-regression/ExSymExel2F_true.yml | true
jpf-regression/ExSymExeLCMP_false.yml | false

jpf-regression/ExSymExeLCMP_true.yml | true

977

914
.834
975
.673
.946
715
.944
736

749

735
999
.824
.952
716

759
939
.699
901
.788
912
.706

TJ17
.954

.881
.696
2931
.694
.993
.676
.892
714

737
.988

.902

913

.956

843

962

.884

916
1.31

66

.584
.00

.546
.387
.576
.333
.559
.347
532
.388
.553
.334
.594
.345
.582
.37
.562
351
.586
.333
.554
.328
.534
.340
.522
.338
.565
.352
.547
961
.520
.333
.534
.322
.565
31
521
.360
571
.344
.547
.02

.576
.01

.533
.952
.539
.937
517
.932
.560
.369
514
.947
.502
.948
512
941

51.
51.
51.
51.
51.
51.
51.
51.
51.
51.
51.

51.
51.
50.
51.
51.
51.

false

true

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

.857
143
927
143
.832
139
928

.835
139
.805
139
935
141
877
140
943

973
139
.847
143
.829
141
.823
143
91
141
921
146
918
151
.891
143
.820
137
.866
140
.860
136
906
142
.09

.155
.823
.149
.887
143
.897
140
764
136
922
139
.845
140
929
151

494
143
496

.472
.139
.462

474
139
457
139
.498
141
461
141
483
145
495
140
487

.480
142
.469

.499
142
531
146
.508
151
.483
J143

.138
.490
141
544
137
.472
142
533
.156

149
480
143
494
140
433
136
.504
139

140
.480
.152

55.6
18.0
56.7
17.3
56.5
17.2
55.5
17.2
56.4
17.2
56.8
17.2
67.2
17.1
66.5
17.3
68.0
17.2
69.0
17.2
56.5
17.1
56.4
17.1
56.2
17.2
56.3
17.2
56.2
18.1
56.6
17.2
55.5
17.2
55.4
17.2
64.1
17.1
57.0
17.2
65.5
18.1
70.4
18.2
58.4
18.0
59.1
18.1
59.1
18.0
55.7
17.2
59.0
18.1
58.4
17.9
66.9
18.1

jpf-regression/ExSymExelLongBytecodes_false.
jpf-regression/ExSymExelLongBytecodes_true.y,
jpf-regression/ExSymExeResearch_false.yml |
jpf-regression/ExSymExeResearch_true.yml | tn)
jpf-regression/ExSymExeSimple_false.yml | false
jpf-regression/ExSymExeSimple_true.yml | true
jpf-regression/ExSymExeSuzette_false.yml | fal
jpf-regression/ExSymExeSuzette_true.yml | true
jpf-regression/ExSymExeSwitch_false.yml | false
jpf-regression/ExSymExeSwitch_true.yml | true
jpf-regression/ExSymExeTestAssignments_false
jpf-regression/ExSymExeTestAssignments_true
jpf-regression/ExSymExeTestClassFields_false.
jpf-regression/ExSymExeTestClassFields_true.y
jpf-regression/ExSymExe_false.yml | false
jpf-regression/ExSymExe_true.yml | true
jpf-regression/TestLazy_false.yml | false
jpf-regression/TestLazy_true.yml| true
java-ranger-regression/TCAS_prop1.yml | false
java-ranger-regression/TCAS_propZ.yml | true
java-ranger-regression/TCAS_prop3.yml| true
java-ranger-regression/apachecli_eqchk.yml | ¢
java-ranger-regression/schedule_eqchk.yml | tr
java-ranger-regression/WBS/WBS_prop1.yml | 7
java-ranger-regression/WBS/WBS_prop2.yml | ¢
java-ranger-regression/WBS/WBS_prop3.yml |
java-ranger-regression/WBS/WBS_prop4.yml |
java-ranger-regression/alarm/Alarm_prop1.ym|
java-ranger-regression/alarm/Alarm_prop10.y
java-ranger-regression/alarm/Alarm_prop2.ym|
java-ranger-regression/alarm/Alarm_prop3.ym|
java-ranger-regression/alarm/Alarm_prop4.ym|
java-ranger-regression/alarm/Alarm_prop5.ym|
java-ranger-regression/alarm/Alarm_prop6.ym|
java-ranger-regression/alarm/Alarm_prop8.ym|
java-ranger-regression/alarm/Alarm_prop9.ym|
java-ranger-regression/infusion/Infusion_prop’
java-ranger-regression/infusion/Infusion_prop’
java-ranger-regression/infusion/Infusion_prop’
java-ranger-regression/infusion/Infusion_prop’
java-ranger-regression/infusion/Infusion_prop’
java-ranger-regression/infusion/Infusion_prop;
java-ranger-regression/infusion/Infusion_prop!
java-ranger-regression/infusion/Infusion_prop
java-ranger-regression/infusion/Infusion_prop!|
java-ranger-regression/infusion/Infusion_propt
java-ranger-regression/infusion/Infusion_prop]
java-ranger-regression/infusion/Infusion_prop
java-ranger-regression/infusion/Infusion_prop
java-ranger-regression/siena_egchl/siena_pro
java-ranger-regression/siena_egchl/siena_pro
java-ranger-regression/replace5_eqchk/replac
java-ranger-regression/replace5_eqchk/replac
java-ranger-regression/nanoxml_eqchk/nanoxi
java-ranger-regression/nanoxml_eqchk/nanoxi
java-ranger-regression/nanoxml_eqchk/nanoxi
java-ranger-regression/printtokens_egchk/prir

java-ranger-regression/printtokens_egchk/prir

true
true
TIMEOUT
TIMEOUT

true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
true
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT
TIMEOUT

962

994

922

.885

.901

920

919
971

15.8

1.03
1.43

4.45
4.45
4.70
4.68
4.31
4.43
4.41
4.70
4.66
2.83
2.83
2.67
2.58
2.68
2.57
2.66
2.78
2.76
2.63
2.58
2.62
2.67

15.6

15.6

15.4

15.4

15.7

15.6

15.6

15.3

15.3

.30

.46
914
.547
.893
544
.946
.501
.892
.34
.949
.549
.865
979
.408
.602
926
.622
1.17
1.25
14.0
14.8
.611
1.04
.608
.647
3.33
3.40
3.45
3.46
3.39
3.39
3.44

1.90
1.91
1.85
1.80
1.87
1.80
1.85
1.88
1.88
1.85
1.87

14.4
14.4
14.7
14.7
14.2
14.3
14.3
14.8
14.8

67

51.4
52.1
51.2
51.7
51.5
52.0
51.9
51.9
51.3
51.2
51.5
51.4
51.5
51.7
52.2
58.6
51.9
52.4
53.0
53.2
53.3
141
893
52.5
52.8
52.6
53.0
105
105
105
105
105
105
106
105
105
70.3
70.0
65.8
64.7
64.0
64.9
63.4
65.9
64.5
65.0
62.9
62.9
65.3
296
293
1290
1300
1130
1140
1130
504
504

false

false

false

false

false

false

true

false

false

false

false

false

951
149
.827
143
.06

156
901
150
.846
147
901
41
920
147
945
41
893
41
.844
.148
157
142
176

.154
.958
.888
187
70
A7
72
72
70
A7
169
169
151
150
156
164
156
149
149
147
149
.148
149
150
162
136
137
135
138
.140
137
138
134
138

.509
.150
.478
144
513
136
.507
.150
.456
147
.481
141
471
147
.500
141
.469
142
.462
.148
157
142
A77
.522
.154
569
.508
187
70
A7t
72
72
70
A7t
70
70
151
.150
136
164
157
149
149
147
149
.148
149
.150
162
136
138
136
138
141
138
138
134
138

65.9
18.1
55.8
18.1
68.9
18.1
55.4
18.0
59.7
18.0
55.8
17.8
67.7
17.7
68.6
17.1
59.1
18.3
58.0
20.5
20.5
17.2
17.1
69.8
19.8
57.7
58.2
27.2
27.0
271
27.2
271
271
27.2
27.2
271
21.3
21.2
21.3
211
21.3
21.2
21.2
21.2
21.3
21.3
21.3
21.4
21.3
17.2
17.2
17.2
17.1
17.1
17.1
17.2
17.1
17.3

MinePump/spec1-5_product1.yml | false
MinePump/spec1-5_product10.yml | false
MinePump/spec1-5_product11.yml| false
MinePump/spec1-5_product12.yml | false
MinePump/spec1-5_product13.yml | false
MinePump/spec1-5_product14.yml | false
MinePump/spec1-5_product15.yml | false
MinePump/spec1-5_product16.yml | false
MinePump/spec1-5_product17.yml | false
MinePump/spec1-5_product18.yml | false
MinePump/spec1-5_product19.yml | false

MinePump/speci-5_product2.yml | false
MinePump/spec1-5_product20.yml | false
MinePump/spec1-5_product21.yml | false
MinePump/spec1-5_product22.yml | false
MinePump/spec1-5_product23.yml | false
MinePump/spec1-5_product24.yml | false
MinePump/spec1-5_product25.yml | false
MinePump/spec1-5_product26.yml | false
MinePump/spec1-5_product27.yml | false
MinePump/spec1-5_product28.yml | false
MinePump/spec1-5_product29.yml | false

MinePump/spec1-5_product3.yml | false
MinePump/spec1-5_product30.yml | false
MinePump/spec1-5_product31.yml | false
MinePump/spec1-5_product32.yml | false
MinePump/spec1-5_product33.yml | false
MinePump/spec1-5_product34.yml | false
MinePump/spec1-5_product35.yml | false
MinePump/spec1-5_product36.yml | false
MinePump/spec1-5_product37.yml | false
MinePump/spec1-5_product38.yml | false
MinePump/spec1-5_product39.yml | false

MinePump/spec1-5_productd.yml | false
MinePump/spec1-5_product40.yml | false
MinePump/spec1-5_product41.yml | false
MinePump/spec1-5_product42.yml | false
MinePump/spec1-5_product43.yml | false
MinePump/spec1-5_product44.yml | false
MinePump/spec1-5_product45.yml | false
MinePump/spec1-5_product46.yml | false
MinePump/spec1-5_product47.yml | false
MinePump/spec1-5_product48.yml | false
MinePump/spec1-5_product49.yml | false

MinePump/spec1-5_product5.yml | false
MinePump/spec1-5_product50.yml | false
MinePump/spec1-5_product51.yml | false
MinePump/spec1-5_product52.yml | false
MinePump/spec1-5_product53.yml | false
MinePump/spec1-5_product54.yml | false
MinePump/spec1-5_product55.yml | false
MinePump/spec1-5_product56.yml | false
MinePump/spec1-5_product57.yml| true
MinePump/spec1-5_product58.yml | true
MinePump/spec1-5_product59.yml| true

MinePump/spec1-5_productb.yml | false
MinePump/spec1-5_product60.yml | true

MinePump/spec1-5_producté1.yml| true

1.61
1.79
1.64
1.58
1.60
1.75
1.57
1.89
1.63
1.65
1.58
1.59
1.60
1.61
1.73
1.73
1.56
1.91
1.75
1.63
1.59
1.61
1.61
1.62
1.60
1.72
1.76
1.79
1.78
1.81
1.99
1.75
1.56

2.02

1.79
1.83
1.82
1.81

2.03

2.02

2.15
2.38
2.25
1.78
2.28
2.23

68

55.9
56.2
61.1
56.1
56.1
56.8
58.4
56.2
60.5
56.1
56.4
56.0
56.9
56.3
56.6
56.9
56.4
56.1
62.9
56.4
56.3
56.1
56.0
56.6
57.0
56.5
60.2
62.2
64.5
67.7
64.2
62.8
67.7
56.9
65.5
64.5
66.6
66.2
67.0
66.4
66.4
69.5
68.8
63.7
56.0
64.5
65.7
66.8
64.4
64.5
66.7
67.0
70.2
7.2
72.7
60.4
737
7.2

false

false

false

false

false

false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false
false

false

false
false
false
false
false
false
false
false
false
false
false
false
false
false
false

false

false

034
266
.357
527
536
.553
976
.552
993
963
.558
268
.549
.543
.553
.540
.526
064
544
533
041
523
034
.960
533
.558
041
.522
.548
.960
.582
523
.556
.543
917
.552
973
573
.582
636
.o81
623
.583
.526
268
.553
268
.553
064
.960
931
937
196
193
194
547
.206
197

63.3
63.2
78.3
63.5
79.6
63.3
63.6
64.2
63.6
76.9
63.9
63.4
77.6
63.9
80.3
76.2
62.1
64.0
64.4
63.5
64.5
64.0
62.9
64.4
79.0
64.3
62.3
62.4
63.0
66.0
64.7
63.1
65.8
64.2
63.6
78.2
67.6
79.7
82.0
82.0
65.5
66.3
65.2
61.3
63.2
63.4
61.9
79.7
62.7
62.2
64.4
63.3
324
32.6
33.2
63.8
336
328

MinePump/spec1-5_product62.yml | true
MinePump/spec1-5_product63.yml| true
MinePump/spec1-5_producté4.yml | true
MinePump/spec1-5_productZ.yml | false
MinePump/spec1-5_product8.yml | false
MinePump/spec1-5_product9.yml | false
algorithms/BellmanFord-FunSat01.yml | true
algorithms/BellmanFord-FunSat02.yml | false
algorithms/BellmanFord-FunUnsat01.yml | false
algorithms/BellmanFord-FunUnsat02.yml | false
algorithms/BellmanFord-MemSat01.yml | true
algorithms/BellmanFord-MemSat02.yml | true
algorithms/BellmanFord-MemUnsat01.yml | false
algorithms/BellmanFord-MemUnsat02.yml | false
algorithms/BinaryTreeSearch-FunSat01.yml | tr
algorithms/BinaryTreeSearch-FunUnsat01.yml |
algorithms/BinaryTreeSearch-MemSat01.yml | o
algorithms/BinaryTreeSearch-MemUnsat01.yml
algorithms/BinaryTreeSearch-MemUnsat02.yml
algorithms/InsertionSort-FunSat01.yml | true
algorithms/InsertionSort-FunSat02.yml | true
algorithms/InsertionSort-FunUnsat01.yml | false
algorithms/InsertionSort-MemSat01.yml | true
algorithms/InsertionSort-MemUnsat01.yml | fals
algorithms/MergeSortlterative-FunSat01.yml | ¢
algorithms/MergeSortlterative-FunSat02.yml | ¢
algorithms/MergeSortlterative-FunUnsat01.yml
algorithms/MergeSortlterative-MemSat01.yml |
algorithms/MergeSortlterative-MemUnsat01.yn
algorithms/RedBlackTree-FunSat01.yml | true
algorithms/RedBlackTree-FunUnsat01.yml | false
algorithms/RedBlackTree-MemSat01.yml | true
algorithms/RedBlackTree-MemUnsat01.yml | fal:
algorithms/SortedListInsert-FunSat01.yml | true
algorithms/SortedListInsert-FunSat02.yml | true
algorithms/SortedListInsert-FunUnsatO1.yml| f
algorithms/SortedListInsert-MemSat01.yml | tru
algorithms/SortedListInsert-MemUnsat01.yml |
algorithms/Trie-FunSat01.yml | true
algorithms/Trie-FunUnsat01.yml | false
algorithms/Trie-MemSat01.yml | true
algorithms/Trie-MemUnsat01.yml | false
algorithms/Tsp-FunSat01.yml | false
algorithms/Tsp-FunUnsat01.yml | false
algorithms/Tsp-MemSat01.yml | true
algorithms/Tsp-MemUnsat01.yml | false
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
juliet-java/CWE369_Divide_by_Zero__float_co|
jdart-regression/OverapproximationString01.y1
jdart-regression/URLDecoder01.yml | true

jdart-regression/URLDecoder02.yml | false

TIMEOUT
TIMEOUT

TIMEOUT
TIMEOUT

TIMEOUT
false

TIMEOUT

TIMEOUT
TIMEOUT
false
TIMEOUT
false
TIMEOUT
TIMEOUT
false
TIMEOUT
TIMEOUT
TIMEOUT
false
TIMEOUT
false
TIMEOUT
TIMEOUT
false

TIMEOUT

TIMEOUT

false
TIMEOUT
TIMEOUT

TIMEOUT
TIMEOUT

2.23
2.35
2.34
1.76
1.60
1.74
15.3
15.3
1.13
1.1
15.3
15.3
1.12
1.13
15.3
1.00
15.3
1.00
.942
15.3
15.3
7.08
15.3
3.30
15.3
15.3
5.34
15.3
15.3
15.3
1.35
15.3
1.23
15.3
15.3
2.47
15.3
1.02
2.02
1.12
2.00
1.02
15.3
2.52
15.3
15.3

1.82
1.16
1.29
1.90
1.1
1.17

15.3
15.3

1.77
1.90
1.90
1.20
1.16
1.16
14.9
14.9
.622
697
14.9
14.9
.656
718
14.9
.66
14.8
.559
562
14.8
14.8
6.69
14.8
2.90
14.8
14.8
4.85
14.8
14.9
14.8
.686
14.8
.699
14.8
14.9
2.07
14.9
572
1.57
.689
1.57
.90
14.8
2.1
14.8
14.8
.634
662

.643
798

.645
.680

598

14.9
14.8

69

72.3
73.7
74.0
59.8
56.6
56.6
148
159
52.6
54.1
145
157
52.5
53.1
578
51.6
465
51.7
51.9
1920
2270
382
1880
455
1470
1710
1490
1480
1480
531
61.2
186
53.7
530
242
173
1410
51.5
54.3
52.5
53.1
53.2
388
222
792
798
54.8
55.1
56.5
55.3
53.5
56.1
53.5
53.5
55.7
51.5
828
845

false
false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

false

196
.201
197

985

147
146
992
993

161
909
.818
.140
945
138
.852
918
136
133
.803
138
.892
149
137
924
151

174
920
137
.872
137
138
1.10
1.05
.148
983
985
.158
1.01
1.02
165
5.43
41
151

196
.201
197
.543
937
974
147
147
.506
.542

161

016
.458
140
014
139
.484
.487
137
134
.443
139
.454
.150
137
472
151

135
137
917
139
.602
137
135
.443
.148
518
.202
.552
A73
917
137
.462
137
138
.543
.552
.148
.503
544
.158
530
.357
163

4.83
141
151

331

335
339
80.8
63.3
76.9
17.0
17.2
56.7
65.8
171

171

56.8
56.6
17.2
65.9
171

57.1

65.9
17.2
171

56.5
171

56.7
17.2
171

56.9
171

17.2
17.2
62.7
17.2
80.4
17.2
17.2
57.3
171

66.1

22.9
57.9
22.7
58.2
17.2
57.0
17.2
17.2
774

61.5
19.1

63.2
61.0
19.6
62.0
62.3
19.9

2440
171
17.3

jdart-regression/addition01.yml | false TIMEOUT 15.3 14.9 405 137 .138 17.1

L
jdart-regression/array-iteration01.yml | false false .970 546 51.9 false 796 .449 55.6
jdart-regression/boundcheck100.yml | false false 5.58 5.15 61.5 false 930 .503 61.6
jdart-regression/boundcheck200.yml | false false 10.2 9.80 99.9 false 1.03 .557 63.4
jdart-regression/boundcheck30.yml | false false 3.06 2.54 52.4 false .938 .484 59.5
jdart-regression/double2long.yml | false false .908 .536 51.9 false .871 .475 55.8
jdart-regression/float.yml | false false 915 .528 51.2 false .820 .450 54.8
jdart-regression/list2.yml | true true 4.48 4.04 59.3 161 161 24.1
jdart-regression/radians.yml | false false 1.10 .669 52.9 false .897 .476 59.8
jdart-regression/shifting.yml | false false 933 575 51.4 false 946 479 68.1
jdart-regression/shifting2.yml | false false 870 .506 51.3 false .981 .484 67.4
jdart-regression/shifting3.yml | false false 960 .588 51.2 false 901 .493 58.6
jdart-regression/startswith.yml | true true 1.48 1.05 51.7 144 144 18.4

Figure 4.6: Full benchmark results

Figure 4.6 shows the complete benchmark result table. The content selected to be dis-
played is the result after modifying the JBMC script and the result of the witness veri-
fication. The left column in the figure lists all the Java benchmarks that have been
benchmarked, the middle column shows the JBMC verification results, and the right
column shows the witness validation results. In the status cell, the green font repre-
sents the correct or expected result, the red font represents the wrong result, the blue
font represents the unknown result, and the pink font represents the result of abnormal

operation.

As can be seen from the figure, JBMC did not produce an error result, and most of
them were correct results while the witness validator produced very few wrong results.
In addition, there are two situations for the results shown in blue in the witness valida-
tion. One is that the witness file is a correctness-witness, and the other is that the wit-
ness contains a counterexample of String object. Both of these witnesses are ignored

during validation.

70

4.4.2 Result analysis

Showing 6 of 473 tasks ¥
Summary Table = Quantile Plot Scatter Plot Info @

Fixed task: JBMC 2021-07-23 22:43:34 BST Tasks_JBMC.SV-COMP2... | JBMC 2021-07-23 18:40:55 BST Tasks_JBMC.SV-COMP2...
Click here to select columns Status CPU Time Wall Time Memory Status CPU Time Wall Time Memory
(s) (s) (MB) (s) (s) (MB)
false v error ~

jbmc-regression/StringBuilderAppend02.yml | fatse false 784 .395 40.8 TIMEOUT 15.4 14.9 2820
jbme-regression/TokenTest02.yml | false false 796 .369 49.2 TIMEOUT 15.3 14.9 2260
java-ranger-regression/replace5_eqchk/replace5_prop2.yml | false false 1.26 .590 57.9 TIMEOUT 15.4 14.7 1300
algorithms/MergeSortlterative-MemUnsat01.yml | false false .946 .500 51.3 TIMEOUT 15.3 14.9 1480
algorithms /Tsp-MemUnsat01.yml | false false 817 .366 49.6 TIMEOUT 15.3 14.8 798
jdart-regression/URLDecoder02.yml | fals= false 743 .340 40.4 TIMEOUT 15.3 14.8 845

Showing 7 of 473 tasks Y

Summary Table = Quantile Plot Scatter Plot Info @

Fixed task: JBMC 2021-07-23 22:43:34 BST Tasks_JBMC.SV-COMP2... | JBMC 2021-07-23 18:40:55 BST Tasks_JBMC.SV-COMP2...

Click here to select columns Status CPU Time Wall Time Memory Status CPU Time Wall Time Memory

(s) (s) (MB) (s) (s) (MB)
false v unknown v

jbme-regression /RegexSubstitution02.yml | faise false .861 437 40.7 1.02 614 52.8
1bmc-regression/stringBuilderCapLen04.yml | taise false 731 .351 40.0 887 497 51.5

Delete02.yml falsc .871 .296 50.8 2.28 1.87 221

ertDelete0? . yml | fals false 766 343 41.3 ?.32 1.84 241
jbmc-regression/StringCompare03.yml | fatse false 777 426 39.4 1.01 .525 51.5

jbmc-regression/StringValueOf09.yml | fatse false 735 .376 39.6 4.21 3.79 355
jbmc-regression/Validate02.yml | faise false .853 .396 47.3 1.08 634 51.9

Figure 4.7: Statistics of different JBMC experimental results

This Figure 4.7 shows all the 13 different results of the two JBMC benchmarks. The
green word false in the status cell in the left column indicates that the result is ex-
pected. In the status cell in the right column, the pink word TIMEOUT indicates that
the result is unexpected, and the blue word unknown indicates that the result is un-

known.

These 13 Java benchmarks all contain String objects, and as introduced in the back-
ground section, JBMC has limited verification capabilities for them. These 13 results
indicate that the first correct detection results of the violation assertions corresponding
to these Java benchmarks are output by the JVM. Therefore, after ignoring the JVM
assertion detection mechanism and directly pass the Java benchmarks to JBMC for

verification, JBMC did not find these violation assertions.

Although the modified wrapper script will not be applied to the SV-COMP, the fol-
lowing analysis still focuses on its results and the corresponding witness validation
results. Because its witness result set is large, it is more conducive to the analysis of

witness validation results for complex programs.

71

time out
12%

unknown
2%

successful
86%

Figure 4.8: Pie chart of results of JIBMC

The Figure 4.8 above shows an analysis of the results of the JBMC benchmark.
Among these results, unexpected results accounted for 12%, unknown results ac-

counted for 2%, and correct results accounted for 86%.

60
50
40
30
20

10

0 -

unknown unexpected

Erecursive EString

Figure 4.9: Bar graph of non-correct results of JBMC

72

The Figure 4.9 shows the non-correct (unexpected or unknown) results of the JBMC
benchmark. Of a total of 473 Java benchmark results, 64 were non-correct. Among
them, the orange bars in the figure indicate that 9 unknown results and 6 unexpected
results are caused by the String objects contained in the Java benchmarks, and the
blue bars show that 49 Java benchmarks with unexpected results contain recursive
functions. Due to the characteristics of bounded model checking, we need to indicate
a specific recursion depth when verifying the program, otherwise it will run out of

time or memory.

For a Java benchmark containing recursive functions, JBMC cannot prove that it must
be a safe program, because it depends on the unwind depth of recursion, which is de-

termined by the user.

wrong
1%

unknown
22%

successful
77%

Figure 4.10: Pie chart of witness validation results

The Figure 4.10 shows the result analysis of witness validation. As can be seen from
the figure, among the results of witness validation, there are 51 unknown results, ac-
counting for 22% of the total results. The reason for the unknown is that witnesses

have no available counterexamples to reproduce the errors detected by JBMC. The

73

Java benchmarks corresponding to these witnesses are mainly Java programs contain-

ing String objects. In addition, there are 2 wrong results, accounting for 1%.

However, when we manually check these wrong results, we will find that these are
not caused by witnesses producing false counterexamples. Here is an example to illus-

trate the case that the validation fails even if the counterexamples are correct.

org. 2] enchmarks.Verifier;

public class
static int
static int

public static void main(‘
ifier.nondetInt(
if (x = return;

new Main();
erifier.nondetInt();

return;

field, fie

est(int
println(

t.prIntln{'hranr'
em.out.println("

.out.println("branch B

.java::Main.main:{[Ljavaflangﬁﬁtring;}v

Figure 4.12: Witness of the complex program (part 1)

74

' target=

'=java: :Main.test: (III)V

Figure 4.13: Witness of the complex program (part 2)

org y_lab.sv_benchmarks.Verifier;
public class Main {
static int field;
static int field2;

static void main(String[] args) {

return;

@) return;
(x, field, field2);

public void test(int int z, int r)
System.out.printl
int v = 3;

e

if (r
else
else {

System.out.println{"branch
assert H

Figure 4.14: A new program from the complex program

In this example, the validator successfully uses the counterexample in witness but

75

may produce a wrong result. This program is shown in Figure 4.11. JBMC verified it
and found the violation attributes, and generated a violation-witness. Figures 4.12 and
4.13 list the counterexamples in the witness. Figure 4.14 is a new program generated
based on the counterexamples and the source program. After checking, we can see
that the new program is generated correctly. However, when the new program is com-
piled and run multiple times to detect assertion errors, the results will be different.
This is because there is still a non-deterministic variable field in the new program.
When its value is less than 0, it will end correctly. Besides, there is no counter-
example of the variable field in witness, but a counter-example of the variable z,
which is the parameter variable that the variable field is passed to the method

test as a parameter.

4.5 Threats to validity

No Benchmark JBMC WitdJBMC Counterex- Non- Comment
ample? deterministic
variables
remaining?
1 jayhorn-recursive/Ackermann01.yml false false Y N
2 jayhorn-recursive/InfiniteLoop.yml false false Y N
3 jayhorn-recursive/UnsatAckermann01.yml false false Y N
4 jayhorn-recursive/UnsatAddition01.yml false false Y N
5 jayhorn-recursive/UnsatEvenOddO01.yml false false Y N
6 jayhorn-recursive/UnsatFibonacciOl.yml false false Y N
7 jayhorn-recursive/UnsatFibonacci02.yml false false Y N
8 jayhorn-recursive/UnsatMccarthy91.yml false false Y N
9 jbme-regression/ArithmeticException1.yml false false Y N
10 jbme-regression/ArithmeticException6.yml false false Y N
11 jbme- false false Y N
regression/ArrayIndexOutOfBoundsException].yml
12 jbme- false false Y N
regression/ArrayIndexOutOfBoundsException2.yml
13 jbme- false false N Y verifer
regression/ArrayIndexOutOfBoundsException3.yml
14 jbme-regression/ClassCastExceptionl.yml false false N N non
15 jbme-regression/ClassCastException3.yml false false N N non
16 jbme-regression/NegativeArraySizeExceptionl.yml false false N N non
17 jbme-regression/NegativeArraySizeException2.yml false false N N non
18 jbme-regression/NullPointerException2.yml false false N N non
19 jbme-regression/NullPointerException3.yml false false N N non
20 jbme-regression/NullPointerException4.yml false false N N non
21 jbme-regression/StaticCharMethods04.yml false false Y N
22 jbme-regression/StringContains02.yml false false N Y verifer

76

23 jbmce-regression/StringIndexMethods05.yml false false verifer
24 jbme-regression/StringValueOf04.yml false false

25 jbmc-regression/StringValueOf06.yml false false

26 jbme-regression/StringValueOf07.yml false false

27 jbmc-regression/assert2.yml false false

28 jbme-regression/assert3.yml false false

29 jbme-regression/assert4.yml false false

30 jbme-regression/athrow1.yml false false Non
31 jbme-regression/bug-test-gen-095.yml false false verifer
32 jbme-regression/exceptions1.yml false false non
33 jbme-regression/exceptions10.yml false false non
34 jbme-regression/exceptions11.yml false false non
35 jbme-regression/exceptions12.yml false false non
36 jbme-regression/exceptions13.yml false false non
37 jbme-regression/exceptions16.yml false false non
38 jbmce-regression/exceptions2.yml false false non
39 jbme-regression/exceptions3.yml false false non
40 jbmce-regression/exceptions6.yml false false non
41 jbme-regression/exceptions7.yml false false non
42 jbme-regression/exceptions8.yml false false non
43 jbme-regression/interfacel.yml false false non
44 jbme-regression/java_append_char.yml false false

45 jbme-regression/return].yml false false

46 jbme-regression/return2.yml false false

47 jbme-regression/virtual2.yml false false non
48 jpf-regression/ExDarko_false.yml false false verifer
49 jpf-regression/ExException_false.yml false false verifer
50 Jjpf-regression/ExGenSymExe_false.yml false false verifer
51 jpf-regression/ExLazy_false.yml false false verifer
52 jpf-regression/ExSymExel0_false.yml false false verifer
53 jpf-regression/ExSymExell_false.yml false false verifer
54 jpf-regression/ExSymExel2_false.yml false false verifer
55 jpf-regression/ExSymExel3_false.yml false false verifer
56 jpf-regression/ExSymExel5_false.yml false false verifer
57 jpf-regression/ExSymExel6_false.yml false false

58 jpf-regression/ExSymExel7_false.yml false false

59 jpf-regression/ExSymExel8_false.yml false false

60 jpf-regression/ExSymExel9_false.yml false false verifer
61 jpf-regression/ExSymExel _false.yml false true verifer
62 jpf-regression/ExSymExe20_false.yml false false verifer
63 jpf-regression/ExSymExe21_false.yml false false verifer
64 jpf-regression/ExSymExe25_false.yml false false

65 jpf-regression/ExSymExe26_false.yml false false

66 jpf-regression/ExSymExe27_false.yml false false

67 jpf-regression/ExSymExe28_false.yml false false

68 jpf-regression/ExSymExe29 false.yml false false verifer
69 jpf-regression/ExSymExe2_false.yml false false

77

70 jpf-regression/ExSymExe3_false.yml false false

71 jpf-regression/ExSymExe4_false.yml false false

72 jpf-regression/ExSymExe5_false.yml false false

73 jpf-regression/ExSymExe6_false.yml false false verifer
74 jpf-regression/ExSymExe7_false.yml false false

75 jpf-regression/ExSymExe8_false.yml false false verifer
76 jpf-regression/ExSymExe9 _false.yml false false

71 jpf-regression/ExSymExeArrays_false.yml false false

78 jpf-regression/ExSymExeBool_false.yml false false

79 jpf-regression/ExSymExeComplexMath_false.yml false false

80 jpf-regression/ExSymExeD2I false.yml false false

81 jpf-regression/ExSymExeD2L _false.yml false false

82 jpf-regression/ExSymExeF2I_false.yml false false

83 jpf-regression/ExSymExeF2L_false.yml false false

84 jpf-regression/ExSymExeFNEG_false.yml false false

85 jpf-regression/ExSymExeGetStatic_false.yml false false non
86 jpf-regression/ExSymExel2D_false.yml false false

87 jpf-regression/ExSymExel2F_false.yml false false non
88 jpf-regression/ExSymExeLCMP_false.yml false false

89 jpf-regression/ExSymExeLongBytecodes_false.yml false false

90 jpf-regression/ExSymExeResearch_false.yml false false

91 jpf-regression/ExSymExeSimple_false.yml false false

92 jpf-regression/ExSymExeSuzette_false.yml false false verifer
93 jpf-regression/ExSymExeSwitch_false.yml false false

94 jpf-regression/ExSymExeTestAssignments_false.yml false false

95 jpf-regression/ExSymExeTestClassFields_false.yml false true verifer
96 jpf-regression/ExSymExe_false.yml false false

97 jpf-regression/TestLazy_false.yml false false verifer
98 java-ranger-regression/WBS/WBS_propl.yml false false

99 Jjava-ranger-regression/WBS/WBS_prop3.yml false false

100 Jjava-ranger-regression/WBS/WBS_prop4.yml false false

101 MinePump/spec1-5_productl.yml false false

102 MinePump/specl-5_productl1.yml false false

103 MinePump/specl-5_product12.yml false false

104 MinePump/specl-5_product14.yml false false

105 MinePump/specl-5_productl5.yml false false

106 MinePump/specl-5_productl7.yml false false

107 MinePump/specl-5_product18.yml false false

108 MinePump/specl-5_product19.yml false false

109 MinePump/specl-5_product2.yml false false

110 MinePump/specl-5_product20.yml false false

111 MinePump/specl-5_product21.yml false false

112 MinePump/spec1-5_product22.yml false false

113 MinePump/specl-5_product23.yml false false

114 MinePump/spec1-5_product24.yml false false

115 MinePump/specl-5_product25.yml false false

116 MinePump/specl-5_product26.yml false false

78

117 MinePump/specl-5_product27.yml false false
118 MinePump/specl-5_product28.yml false false
119 MinePump/specl-5_product29.yml false false
120 MinePump/spec1-5_product3.yml false false
121 MinePump/specl-5_product30.yml false false
122 MinePump/specl-5_product31.yml false false
123 MinePump/specl-5_product32.yml false false
124 MinePump/specl-5_product33.yml false false
125 MinePump/specl-5_product34.yml false false
126 MinePump/specl-5_product35.yml false false
127 MinePump/specl-5_product36.yml false false
128 MinePump/specl-5_product37.yml false false
129 MinePump/specl-5_product38.yml false false
130 MinePump/specl-5_product39.yml false false
131 MinePump/spec1-5_product4.yml false false
132 MinePump/specl-5_product40.yml false false
133 MinePump/specl-5_product42.yml false false
134 MinePump/specl-5_product43.yml false false
135 MinePump/specl-5_product44.yml false false
136 MinePump/specl-5_product45.yml false false
137 MinePump/specl-5_product46.yml false false
138 MinePump/specl-5_product47.yml false false
139 MinePump/spec1-5_product48.yml false false
140 MinePump/specl-5_product49.yml false false
141 MinePump/specl-5_product5.yml false false
142 MinePump/specl-5_product50.yml false false
143 MinePump/specl-5_product51.yml false false
144 MinePump/specl-5_product52.yml false false
145 MinePump/specl-5_product53.yml false false
146 MinePump/specl-5_product54.yml false false
147 MinePump/specl-5_product55.yml false false
148 MinePump/spec1-5_product56.yml false false
149 MinePump/specl-5_product6.yml false false
150 MinePump/specl-5_product7.yml false false
151 MinePump/specl-5_product8.yml false false
152 MinePump/spec1-5_product9.yml false false
153 algorithms/BellmanFord-FunUnsat02.yml false false verifer
154 algorithms/BellmanFord-MemUnsat01.yml false false verifer
155 algorithms/BellmanFord-MemUnsat02.yml false false
156 algorithms/BinaryTreeSearch-FunUnsat01.yml false false
157 algorithms/BinaryTreeSearch-MemUnsat02.yml false false verifer
158 algorithms/InsertionSort-FunUnsat01.yml false false verifer
159 algorithms/InsertionSort-MemUnsat01.yml| false false
160 algorithms/RedBlackTree-FunUnsat01.yml false false
161 algorithms/RedBlackTree-MemUnsat01.yml false false
162 algorithms/Trie-FunUnsat01.yml false false
163 algorithms/Trie-MemUnsat01.yml false false verifer

79

164 algorithms/Tsp-FunUnsat01.ym] false false Y N

165 juliet- false false N Y verifer
Ja-
va/CWE369_Divide by Zero_ float_connect_tcp_divid
e_01_bad.yml

166 juliet- false false N Y verifer
Ja-
va/CWE369_Divide by Zero_ float_connect_tcp_divid

e_01_bad_version2.yml

167 juliet- false false N Y verifer
Ja-
va/CWE369_Divide by Zero_ float_connect_tcp_divid
e_8la_bad.yml

168 juliet- false false N Y verifer
Ja-
va/CWE369_Divide_by Zero__ float_connect_tcp_divid

e_8la_bad_version2.yml

169 jdart-regression/OverapproximationString01.yml false false N Y verifer
170 jdart-regression/array-iteration01.yml false false Y Y verifer
171 jdart-regression/boundcheck100.yml false false Y N
172 jdart-regression/boundcheck200.yml false false Y N
173 jdart-regression/boundcheck30.yml false false Y N
174 jdart-regression/double2long.yml false false Y N
175 jdart-regression/float.yml false false Y N
176 jdart-regression/radians.yml false false Y N
177 jdart-regression/shifting.yml false false Y N
178 jdart-regression/shifting2.yml false false Y N
179 jdart-regression/shifting3.yml false false Y N

Table 4.1: Statistics of witness validation results

Table 4.1 shows the non-unknown (true or false) results of witness validation against
the benchmarks. There are six columns in the table: “Benchmark”, “JBMC”,
“Witd]JBMC”, “Counterexample?”, “Non-deterministic variables remaining?” and
“Comment”. The “Benchmark” column indicates the task-definition name of the Java
program. The “JBMC” column indicates the verification result of JBMC, all of which
are supposed to be “false”. The “witness validation” column indicates the witness val-
idation result. The “counterexample” column indicates if there are counterexamples in
the violation-witness file using “Y” for yes and “N” for no. The “Non-deterministic
variable remaining?” indicates if there are still non-deterministic variables in the new

generated Java programs using “Y” for yes and “N” for no.

The “Comment” section provides more detail about the result. If the column is empty,
it means that the witness validator correctly used the counterexamples in the witness
and reproduced the assertion error according to the newly generated program. If the

content of the comment is “verifier”, it means that there are still non-deterministic

80

values in the newly generated program. As a result, although some programs are not
affected by this non-deterministic value, they can still reproduce the assertion error,
for other programs, they will only randomly arrive at the statement that asserts the
error. Although there are not enough counterexamples in witnesses for these programs,
no witnesses have been found to provide wrong counterexamples. Just like the previ-
ous example, even though the witness validation failed, it was actually due to insuffi-
cient counterexamples, not counterexample errors. If the column is “non”, it means
that there is no basic variable type with non-deterministic value in the source program,
so there is no counterexample in witness. The content of the newly generated program
is the same as that of the source program. In fact, the detected assertion error can be

reproduced by directly running the source program.

4.6 Conclusion

The project implemented an appropriate extension to use JBMC to automatically veri-
fy the security of all the Java benchmarks in the SV-COMP and then validate their
results through witnesses to increase the trustworthiness of JBMC. The most im-
portant achievement is the newly designed witness verification tool for Java. From the
results of the previous subchapter, it can be seen that this witness validator can cor-
rectly validate witnesses corresponding to the most of the Java benchmarks in the SV-
COMP. At the same time, although the violation-witness generated by JBMC may be
inadequate for some complex Java benchmarks, we have not found a false counterex-

ample in the violation-witness, which means that JBMC did not generate a false alarm.

Soundness and completeness of JBMC. JBMC is complete since no false alarms
were found. And it is not sound enough because it failed to detect vulnerabilities in
some Java benchmarks, especially for those programs that contain recursions and

loops.

81

5. Further Work

This witness validator still has room for improvement. The first is the validation of
the correctness-witness, which contains the path that guides the validator to the safe
property. The trustworthiness of JBMC can be further improved by validating the cor-
rectness-witness. Secondly, there are deficiencies in the validation of violation-
witness. When the value of the non-deterministic variable in the program is not direct-
ly given in the witness, the current algorithm cannot ensure the correct validation re-
sult. However, the variable values of other counterexamples in witness may be calcu-
lated mathematically for the non-deterministic variable. Therefore, if you insist on
using this validation algorithm, you can calculate the value of the non-deterministic
variable according to the relevant mathematical formula, so as to continue to improve
the success rate of validation. Thirdly, strictly speaking, this witness validation algo-
rithm does not read and use all the edges in the violation-witness to detect the viola-
tion attributes in the program step by step. It just obtains the edge nodes with counter-
examples to generate a new program, and finally uses the JVM to detect the corre-
sponding violation assertions in the program. Therefore, a more rigorous validation
algorithm should be designed such that it can check the statement in the program cor-
responding to the current edge along each edge of the witness, and finally find the
violation attribute or no violation attribute, which also achieves both the violation-
witness and the correctness-witness validation. Finally, as mentioned in the back-
ground chapter, NitWit has the best validation performance in the C language. It in-
terprets the current statement immediately without waiting for the compilation of the
complete program, which provides a new idea for optimizing witness validation algo-
rithm for Java, that is, it does not generate and run a new Java program, but interprets

the current the corresponding source program statement in the witness.

Except for the improvements mentioned above, this algorithm does not currently sup-
port programs containing Java String objects. This is because of JBMC has re-
strictions on String manipulation. Therefore, it is a remarkable achievement to study

JBMC in depth to solve this limitation.

82

This witness validation tool can be used as the first Java witness validator to contrib-
ute to the SV-COMP. However, the technology of generating witnesses by Java verifi-
er has not been widely used. At present, among all the Java verifiers in the SV-COMP,
only JBMC provides the function of generating witnesses. Therefore, it cannot be
proved whether this tool can validate the witnesses generated by verifiers other than

JBMC.

&3

Bibliography

[6]

[7]
(8]

[9]

[10]

[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

[20]

[21]

PYPL. "PYPL PopularitY of Programming Language." https://pypl.github.io/PYPL.html
(accessed 30 April, 2021).

Computerworld. "Top software failures in recent history."
https://www.computerworld.com/article/3412197 /top-software-failures-in-recent-
history.html#slide2 (accessed 27 April, 2021).

A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, "Bounded model checking,"

2003.

L. Cordeiro, P. Kesseli, D. Kroening, P. Schrammel, and M. Trtik, "JBMC: A Bounded Model
Checking Tool for Verifying Java Bytecode," Cham, 2018: Springer International
Publishing, in Computer Aided Verification, pp. 183-190.

D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, and A. Stahlbauer, "Witness validation and
stepwise testification across software verifiers," presented at the Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering, Bergamo, Italy, 2015.
[Online]. Available: https://doi.org/10.1145/2786805.2786867.

V. L. Tan, "SECURITY ANALYSER TOOL FOR FINDING VULNERABILITIES IN JAVA

PROGRAMS," THE UNIVERSITY OF MANCHESTER, 2020. [Online]. Available:
https://ssvlab.github.io /lucasccordeiro/supervisions/msc thesis vi.pdf
D. Beyer. "BenchExec: A Framework for Reliable Benchmarking and Resource
Measurement." https://github.com/sosy-lab/benchexec (accessed 30 April, 2021).
Statista. "Internet of Things (IoT) connected devices installed base worldwide from 2015
to 2025." https://www.statista.com/statistics /471264 /iot-number-of-connected-
devices-worldwide/ (accessed 30 April, 2021).

P. Mallik and O. P. Jena, "Analysis of Security Vulnerabilities of Internet of Things and It’s
Solutions,” Singapore, 2021: Springer Singapore, in Intelligent Systems, pp. 393-402.
T.D. Diwan, "An EXPERIMENTAL ANALYSIS OF SECURITY VULNERABILITIES IN
INDUSTRIAL INTERNET OF THINGS SERVICES," INFORMATION TECHNOLOGY IN
INDUSTRY, vol. 9, no. 3, pp. 592-598, 2021.

G. Blaine, in SonicWall: Encrypted Attacks, IoT Malware Surge as Global Malware Volume
Dips, ed. SonicWall, 2019.
portswigger. "SQL injection." https://portswigger.net/web-security/sql-
injection#retrieving-hidden-data (accessed 15 March, 2021).

E. Katz. "Top 10 Most Common Java Vulnerabilities You Need to Prevent."
https://spectralops.io/blog/top-10-most-common-java-vulnerabilities-you-need-to-
prevent/ (accessed 14 April, 2021).

G. O'Regan, Concise guide to software testing. Springer (in eng), 2019.

B. Beizer, Software testing techniques, 2nd ed. ed. Van Nostrand Reinhold (in eng), 1990.
S. Nidhra and J. Dondeti, "Black box and white box testing techniques-a literature review,"
International Journal of Embedded Systems and Applications (IJESA), vol. 2, no. 2, pp. 29-
50,2012.

L. Luo, "Software Testing Techniques," Institute for software research international
Carnegie mellon university Pittsburgh, PA, vol. 15232, p. 19, 2021.

TACAS. "Results of the Competition." https://sv-comp.sosy-lab.org/2021 /results/results-
verified/ (accessed August 25, 2021).

L. Cordeiro, D. Kroening, and P. Schrammel, "JBMC: Bounded Model Checking for Java
Bytecode," Cham, 2019: Springer International Publishing, in Tools and Algorithms for
the Construction and Analysis of Systems, pp. 219-223.

S. Anand, C. S. Pasareanu, and W. Visser, "JPF-SE: A Symbolic Execution Extension to Java
PathFinder," Berlin, Heidelberg, 2007: Springer Berlin Heidelberg, in Tools and
Algorithms for the Construction and Analysis of Systems, pp. 134-138.

T. Kahsai, P. Rimmer, H. Sanchez, and M. Schif, "JayHorn: A Framework for Verifying Java
programs,” Cham, 2016: Springer International Publishing, in Computer Aided
Verification, pp. 352-358.

84

https://pypl.github.io/PYPL.html
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html#slide2
https://www.computerworld.com/article/3412197/top-software-failures-in-recent-history.html#slide2
https://doi.org/10.1145/2786805.2786867
https://ssvlab.github.io/lucasccordeiro/supervisions/msc_thesis_vi.pdf
https://github.com/sosy-lab/benchexec
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://portswigger.net/web-security/sql-injection#retrieving-hidden-data
https://portswigger.net/web-security/sql-injection#retrieving-hidden-data
https://spectralops.io/blog/top-10-most-common-java-vulnerabilities-you-need-to-prevent/
https://spectralops.io/blog/top-10-most-common-java-vulnerabilities-you-need-to-prevent/
https://sv-comp.sosy-lab.org/2021/results/results-verified/
https://sv-comp.sosy-lab.org/2021/results/results-verified/

[22]
[23]

[24]

[25]

[26]
[27]
[28]

[29]

D. Beyer. "Exchange Format for Violation Witnesses and Correctness Witnesses."
https://github.com/sosy-lab/sv-witnesses (accessed 30 May, 2021).

D. Beyer and M. Spiessl, "MetaVal: Witness Validation via Verification," Cham, 2020:
Springer International Publishing, in Computer Aided Verification, pp. 165-177.

J. Svejda, P. Berger, and J.-P. Katoen, "Interpretation-based violation witness validation for
C: NitWit," Tools and Algorithms for the Construction and Analysis of Systems, vol. 12078, p.
40, 2020.

Oracle. "Java Platform, Standard Edition Java Shell User’s Guide."
https://docs.oracle.com/javase/9/jshell/introduction-jshell. htm#]SHEL-GUID-
630F27C8-1195-4989-9F6B-2C51D46F52C8 (accessed 10 May, 2021).

Mockito. "Tasty mocking framework for unit tests in Java." https://site.mockito.org/
(accessed 2 May, 2021).

baeldung. "Introduction to PowerMock." https://www.baeldung.com/intro-to-
powermock (accessed 2 May, 2021).

D. Beyer. "BenchExec: benchexec." https://github.com/sosy-
lab/benchexec/blob/master/doc/benchexec.md (accessed 28 July, 2021).

D. Beyer. "BenchExec: Tool Integration." https://github.com/sosy-
lab/benchexec/blob/master/doc/tool-integration.md (accessed 30 July, 2021).

85

https://github.com/sosy-lab/sv-witnesses
https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm#JSHEL-GUID-630F27C8-1195-4989-9F6B-2C51D46F52C8
https://docs.oracle.com/javase/9/jshell/introduction-jshell.htm#JSHEL-GUID-630F27C8-1195-4989-9F6B-2C51D46F52C8
https://site.mockito.org/
https://www.baeldung.com/intro-to-powermock
https://www.baeldung.com/intro-to-powermock
https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md
https://github.com/sosy-lab/benchexec/blob/master/doc/benchexec.md
https://github.com/sosy-lab/benchexec/blob/master/doc/tool-integration.md
https://github.com/sosy-lab/benchexec/blob/master/doc/tool-integration.md

	Abstract
	Declaration
	Copyright
	Acknowledgements
	1. Introduction
	1.1 Problem description
	1.2 Aims and objectives
	1.3 Contribution
	1.4 Organization of dissertation

	2. Background
	2.1 Security vulnerabilities
	2.2 Software testing
	2.3 Bounded model checking
	2.3.1 Model checking
	2.3.2 Symbolic model checking
	2.3.3 Bounded model checking

	2.4 Witness validation
	2.4.1 Witness
	2.4.2 Witness validation for C
	2.4.3 Witness validation for Java

	2.5 BenchExec
	2.6 Summary of background

	3. Proposed Methodology
	3.1 System Architecture
	3.2 Algorithms
	3.2.1 Start script
	3.2.1.1 Execution of the JBMC in BenchExec
	3.2.1.2 Extraction of witness filename and path
	3.2.1.3 XML configuration of the witness validator
	3.2.1.4 Execution of the witness validator in BenchExec
	3.2.1.5 Generation of result table

	3.2.2 Witness Validator
	3.2.2.1 Extraction of Java source files
	3.2.2.2 Determination of witness file
	3.2.2.3 Counterexample extraction
	3.2.2.4 Instantiation of source code
	3.2.2.5 Execution of instantiated code

	3.2.3 Tool Integration Module
	3.2.4 Complexity of the validation algorithm

	3.3 Illustrative Example

	4. Experimental Evaluation
	4.1 Benchmarks
	4.2 Setup
	4.2.1 Environment setup
	4.2.1.1 Java environment installation
	4.2.1.2 Python environment installation
	4.2.1.3 JBMC and the wrapper script
	4.2.1.4 BenchExec installation
	4.2.1.5 Proposed extension
	4.2.1.6 Java benchmarks

	4.2.2 Environment versions
	4.2.3 Running the tests

	4.3 Objectives
	4.4 Results
	4.4.1 Result statistics
	4.4.2 Result analysis

	4.5 Threats to validity
	4.6 Conclusion

	5. Further Work
	Bibliography

