
1

Develop and Evaluate a Security
Analyzer for Finding

Vulnerabilities in Java programs

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER
FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

2021

By

Songtao Wang(10612858)

Department of Computer Science

2

content

Abstract.. 7

Acknowledgments..8

Chapter 1 Introduction... 9

1.1 ProblemDescription.. 11

1.2 Objectives...12

1.3 Contribution... 13

1.4 Organization of Dissertation.. 14

Chapter 2 Background... 15

2.1 Security Vulnerabilities..15

2.2 Software Verification and Validation.. 17

2.2.1 Dynamic Verification... 19

2.2.2 Static Verification...20

2.3 Java BoundedModel Checking... 21

2.3.1 Model Checking and BoundedModel Checking... 21

2.3.2 Java BoundedModel Checking(JBMC)...23

2.4 Software Verification Competition..25

2.5 Completed Research and Extension...27

2.5.1 Witness Validation... 27

2.5.2 Implemented Extensions...28

2.6 OtherJava verification tools.. 30

3

2.6.1 Java Ranger...30

2.6.2 JPF.. 30

2.6.3 JDart..31

Chapter 3 ProposedMethodology..33

3.1 Architecture..33

3.2 Techniques... 36

3.2.1 Mockito and PowerMock... 36

3.2.2 JUnit5..38

3.2.3 HTML and Flask.. 38

3.3 Algorithms... 39

3.3.1 Python scripts... 39

3.3.2 Witness and Validation Harness...49

3.3.3 Front-end Implementation.. 50

3.3.4 Analysis about the Algorithms... 51

3.4 Illustrative Examples..51

3.4.1 Short Example.. 52

3.4.2 Int Example...54

3.4.3 Long Example...57

3.4.4 Boolean Example..60

3.4.5 CharExample... 62

3.4.6 Float Example...64

3.4.7 Double Example... 66

4

3.4.8 Multiple Verifiers Example.. 68

3.4.9 No VerifierExample.. 71

3.4.10 Summary...73

Chapter 4 Experimental Evaluation... 74

4.1 Description of the benchmarks.. 74

4.2 Setup...76

4.2.1 Programming language...76

4.2.2 Libraries and tools.. 77

4.2.3 Running process... 78

4.3 Objectives of the evaluation...80

4.4 Results..80

4.5 Threats to validity.. 89

Chapter 5 Related work..91

Chapter 6 Conclusion...93

Bibliography...95

5

Abstract

The main goal of this dissertation is to understand the basic principles of software

verification, to understand the software verification tools and their extensions that

have been implemented, and to develop and evaluate based on the implementation.

Java Bounded Model Checking (JBMC) is a bounded model checker that allows Java

programs to be verified. As an efficient software verification tool, it aims to

accurately verify and analyze the correctness of Java software according to a given

specification. In order to verify whether the determined violation is actually a valid

error, an extension based on witness verification was designed and simply

implemented. However, there are some shortcomings in this extended tool for

software security analysis.

In this thesis, we explain in detail the algorithm structure based on JBMC and the

witness verification method, and verify the feasibility of the counterexample witness

verification in software verification by reproducing the implementation. Our focus is

on ways to improve the verification capabilities of the extension, including improving

the shortcomings in the previous implementation, expanding the scope of the

verification set, and improving the level of tool automation. We still try using

witnesses in the format of GraphML, but more other frameworks are used in this

project, including PowerMock and JUnit. In the algorithm chapter, we analyze in

detail the algorithm structure applied in the previous implementation, and analyze the

points that can be improved. We make appropriate modifications and additions to the

original algorithm to achieve better results. Finally, we verify the capabilities of our

tools through experimental evaluations, and explain the deficiencies that still exist and

the areas that can be improved.

6

Acknowledgments

First of all, I want to express my gratitude to my MSc project supervisor, Dr Lucas

Cordeiro. He provided me with a lot of help and guidance throughout the process of

completing the thesis, and at the weekly group meetings, I could get some comments

about my tasks from him, which were very helpful.

Second, I would like to thank every single person in the group at weekly meetings.

From their presentations, I learned some knowledge in related fields, which is really

interesting. I especially want to thank Tong Wu, who has a similar project to mine. He

helped me solve some confusing problems, and he also gave me very useful

suggestions when I had trouble with my project.

Finally, I also want to say thanks to my parents, because they supported me to finish

my MSc degree. Besides, I would thank the University of Manchester for offering me

the opportunity to complete a master's degree.

7

Chapter 1 Introduction

Java is a kind of modern programming language which was first designed by James

Gosling et al. at Sun Microsystems, Inc. in 1991. Then the name of this programming

language was changed into “Java” in 1995 [1]. It has been becoming more and more

popular since it developed, and wildly used in many areas, from enterprise computing

to Android apps development. In 2014, it was reported in InfoWorld that about 90

percent of Fortune 500 companies were applying Java. Moreover, as the worldwide

No.1 mobile platform, Google Android captured 62% flat panel sales in 2013 [2].

The PYPL Popularity of Programming Language Index shows how often various

languages are searched in Google, which can reflect their popularity and trend [3].

The programming language is assumed to be more popular if it is searched more often.

As illustrated in Table 1, Java is still one of the most popular languages around the

world as of August 2021, which is more than 15% of all the programming languages.

Rank Change Language Share Trend

1 Python 29.93 % -2.2 %

2 Java 17.78 % +1.2 %

3 JavaScript 8.79 % +0.6 %

4 C# 6.73 % +0.2 %

5 C/C++ 6.45 % +0.7 %

Table 1: PYPL Popularity of Programming Language [3]

There are many reasons why Java is so popular, one of which is platform

independence [4]. Programs can run on different types of devices as long as they have

a Java Runtime Environment (JRE) installed. Therefore, when you develop a Java

8

program once, you can run it almost anywhere at any time. This excellent feature of

Java is related to its software development process.

Figure 1.1: An overview of Java software development process [5]

As is shown in Figure 1.1, in a Java program, the source code is written in text files,

of which name ends with the .java extension. The .java source file is compiled by the

compiler and produce a file ending with .class. A .class file contains bytecodes, which

can be executed on the Java Virtual Machine(JVM). Then the program or application

can run on the Java launcher tool with the Java Virtual Machine [5].

Figure 1.2: Platform independence and JVM [5]

Java is platform-independent because the JVM plays an important role during the

compiling and running of the software. As a bridge to connect the javac compiler to

9

different devices, the JVM can be installed on many kinds of operating systems(OS),

and a bytecode file that ends with .class is able to run on the OS with JVM. Therefore,

various platforms and operating systems such as Microsoft Windows, Linux and Mac

OS can execute the same Java applications without any change [5].

Under normal circumstances the operation of Java software requires the support of

class libraries and other resources, and the Java Runtime Environment(JRE) plays

such a role. The JRE is a layer to provide the class libraries and some necessary

resources for Java programs to run on top of operating systems [6]. The JRE

combines Java code written using the JDK with the libraries needed to run it on a

JVM, and then generates a JVM instance to run the resultant application.

In the JRE runtime architecture, there are mainly three parts. All classes required to

run a Java application are dynamically loaded by the Java ClassLoader. The JRE uses

ClassLoaders to automate this operation on demand since Java classes are only loaded

into memory when they are needed. Before passing Java code to the interpreter, the

bytecode verifier validates its format and correctness. The class will not be loaded if

the code violates system integrity or access privileges. The Java interpreter generates

an instance of the JVM once the bytecode has loaded successfully, allowing the Java

application to run natively on the underlying system [6].

1.1 Problem Description

In the following decades, the security of Web applications is becoming more and

more important, because some of them are applied in some of the particular fields,

such as sensitive financial and medical data [7]. The Java Development Kit(JDK) is

designed with a security architecture, which includes a number of application

programming interfaces(APIs) and tools to avoid security vulnerabilities [8]. However,

there is still an increasing number of security issues about Java programs.

10

Java Bounded Model Checking tool(JBMC) is a verification tool for discovering

vulnerabilities within Java programs [9]. It is able to verify the Java bytecode based

on the CPROVER framework effectively. Nonetheless, several incorrect results,

including incorrect TRUE and FALSE, are produced in the Benchmark results of

JBMC [10]. Therefore, there is a need to verify the results after executing JBMC, and

also, we can make some improvement based on JBMC.

There is an effective verification tool based on JBMC designed by Vi, which contains

algorithms about GraphML witness produced by JBMC [11]. It is able to find some

existing security vulnerabilities. However, there are still some shortcomings in the

design of the algorithm and the choice of the implementation framework, so the

coverage and accuracy of the results are not perfect.

In this thesis, the main task we focus on is to learn and try using JBMC [9] as a

verification tool to verify Java programs. Furthermore, we can also find potential

errors or bugs during using JBMC and the tool designed by Vi, and then we will do

some extensions on top of the previous implementation to find valid vulnerabilities in

Java programs.

1.2 Objectives

This project is focused on further development based on the Java Bounded Model

Checking tool (JBMC). By learning software model checking to find security

vulnerabilities, evaluate existing verification strategies and implement suitable

extensions.

The specific aims and objectives are to:

 Figure out the principles and concepts to find vulnerabilities in Java bytecode by

11

JBMC.

 Evaluate strategies available in JBMC in finding security vulnerabilities.

 Reproduce the extension in the previous thesis, and find out existing limitations

and drawbacks.

 Implement suitable extensions on top of previous work and evaluating the results.

1.3 Contribution

The contribution of this MSc project can be roughly divided into two parts. The first

part of the implementation contains some Python scripts and a .java file that is called

a validation harness. These programs are used to extract the counterexample that may

trigger the conditions of a bug from JBMC and inject it into the validation harness.

Then an appropriate mocking framework on Java will be used to simulate the bug

found by JBMC, and in this way, we can simulate the bug and determine whether it is

valid. This part is based on the algorithm in the previous implementation, and we need

to modify and optimize some of the details to make up for its original shortcomings.

The other part of the project is to complete integration and automated testing, which is

made up of some Python scripts and .html files. In order to compare the results of the

validation tool and JBMC more efficiently, we develop a simple web application and

integrate JBMC and my tool so that we can generate a result table easily.

Witness verification based on Java language has not been paid attention to now and is

still in the initial stage, while witness verification based on C language has been

extended and implemented by many researchers and institutions. Therefore, another

contribution of this project is to explore the potential of witness verification methods

in Java programs based on JBMC and the previously implemented extensions.

Through our extended verification tool, we tried witness verification as a new method

in the verification of Java program vulnerabilities. At the same time, our research and

implementation also show that witness verification may also have application

prospects in other program verification.

12

1.4 Organization of Dissertation

The whole dissertation is mainly divided into 6 chapters. It starts with Chapter 1, a

general introduction of the total project, which contains an overview of the subject,

problem description, objectives, and my contributions. In Chapter 2, we discuss the

background knowledge of relevant research fields. The next chapter is Chapter3,

which is about the proposed methodology of the project. We discuss and analyze the

design and implementation process of the algorithm in detail, and show part of the

code for explanation. That is followed by Chapter 4, the experimental evaluation

chapter, which is used to display the results of the tests, and the advantages and

disadvantages of the implementation and possible reasons are also discussed in this

chapter. Then, in Chapter 5, we list some of the related works in this area. The final

chapter, Chapter 6, is the concluding chapter, in which we summarize the results and

outcomes of the dissertation, think and discuss them, and put forward some ideas and

suggestions for future work.

13

Chapter 2 Background

The main topic of this chapter is to provide enough and necessary background into

this thesis, which includes knowledge and concepts related to my project. The main

content comes from existing papers and websites, and it is able to introduce the

development of relative fields and explain clearly the meaning of some proper nouns,

so as to make the content afterwards easier to understand. There are 6 sections in this

chapter. Section 2.1 describes the concept of security vulnerabilities and explains the

importance and necessity of resolving them in software development. Section 2.2

introduces the concept of software verification and validation, and also introduces

common software testing methods, including software testing techniques at various

levels. Section 2.3 explains the detailed concept of software model checking and

explains its execution process. After that, it further explained the architecture and

execution process of JBMC, as well as its specific usage in the software verification

process. In section 2.4, a software verification competition(SV-COMP) is introduced.

It briefly introduces the content of the competition, and explains the performance of

JBMC in recent years. The fifth section of the background chapter is about the

previous extensions on JBMC, which is similar to my project. We explain its

implementation algorithm and implementation process, and analyze its shortcomings

and improvements. In the last section, we introduce some of the Java verification

tools including Java Ranger, JPF and JDart.

2.1 Security Vulnerabilities

With the development of internet technology and software engineering, our life is

getting more and more convenient because the digital lifestyle is gradually replacing

the traditional way. Meanwhile, it means that people are pretty dependent on the

internet, and a large number of personal data such as credit cards and phone numbers

is under the control of the internet. In addition, a large number of enterprises are also

14

generally using digital management of their data and information. Therefore, there is a

growing concern about information security and software vulnerabilities. A survey

conducted by the FBI and Computer Security Institute(CSI) shows that in 2002, at

least one vulnerability occurred in more than 50% of databases, and every single

vulnerability could cause nearly 4 million dollars in losses [7]. There is another report

from IdentityForce showing that over 7.9 billion data records were leaked by accident

because of security attacks from January to September in 2019 [12]. Generally, apart

from a few factors caused by management, the most notable reason is vulnerabilities

in software.

A security vulnerability is defined by ISO 27005 as “a weakness of an asset or group

of assets”, which can be exploited by threats [13]. Another definition from the

National Institute of Standards and Technology(NIST) says that a vulnerability is a

weak point that could be exploited or triggered, which may exist in an information

system or software application [14]. A security vulnerability could cause damage to

the stakeholders including software users and owners while applying the application

[15]. The main factors of the susceptibility could be caused by the technology or

users’ behaviors, which means an unexpected bug or a weak password may bring

problems [14]. Regardless of the cause of the vulnerability, such a potentially

catastrophic factor should be concerned by developers.

Nowadays, a lot of organizations and institutions summarize and list common

software vulnerabilities and risks, and publish the list on the website for developers to

improve code and program security. The Open Web Application Security

Project (OWASP) is one such online community. It produces articles, documentation,

tools, and so on in the field of web application security. The "Top Ten" is a standard

awareness document of OWASP, which was first published in 2003 and is regularly

updated. This document aims to raise awareness by identifying some of the most

critical risks and represent a broad consensus about application security so that

developers can produce secure code [16]. Top Ten lists ten web application security

https://en.wikipedia.org/wiki/Web_application_security

15

risks including injection, XML external entities(XEE) and cross-site scripting(XSS)

[17]. The Common Weakness Enumeration(CWE) is a list developed by the

community, which is about weakness types including software and hardware.

Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses(CWE

Top 25) also reports a yearly list of software weaknesses that frequently occur in the

projects [18]. In addition to the common risks, code-level software vulnerabilities are

also mentioned in this list. For example, out-of-bounds write and read can be found as

the top 5 in the ranking. And improper restriction of operations within the bounds of a

memory buffer is also mentioned in CWE Top 25. Besides, The Common

Vulnerabilities and Exposures (CVE) system, which dates back to 1999, serves as a

reference for publicly known information-security vulnerabilities and exposures.

Software vulnerabilities of various levels and types and their frequency are displayed

and analyzed on the website as charts and graphs by year [19].

As a type-safe programming language, the Java language is designed with some

security features, including automatic memory management and garbage collection

[8]. These features could reduce the possibility of errors to some extend and the

robustness of the program is ensured. Moreover, Java programs are compiled to

bytecodes by the compiler, and bytecodes will be checked by a verifier before

execution [8]. Java security application programming interfaces(APIs) are applied to

provide Java software developers tools to enhance the level of security. Besides, some

third-party security frameworks such as Spring Security have been designed and built

to control authentication, which also helps to avoid vulnerabilities [20]. However, in

the database of CVE, there is a total of 673 vulnerabilities on JRE and 39 of them

were reported last year(2020). Therefore, vulnerabilities in Java programs still occur

from time to time under the design of various security features of the Java language.

2.2 Software Verification and Validation

16

Software verification and validation is a critical part in the process of developing

software, it allows a group of software developers and testers to guarantee that the

product is developed correctly throughout the development life cycle [21]. Software

verification and validation operations compare the software to its specifications and

requirements to ensure that it performs as expected. The software in a project must be

validated and verified by the following aspects [22]:

 ensuring that each piece of software fulfills the specified requirements;

 checking each part of the software before using it as an input to another activity;

 ensuring that, as far as feasible, tests on each software item are performed by

someone other than the author;

 guaranteeing that the verification and validation effort is sufficient to demonstrate

that each software item is fit for operational usage.

The organization of software verification and validation activities, the establishment

of software verification and validation roles, and the assignment of people to those

roles are all responsibilities of project management [22].

Regardless of the size of the software, software verification is essential in the software

development cycle, because it greatly affects the quality and efficiency of the

software. During development, 20 to 50 mistakes per 1000 lines of code are common,

while 1.5 to 4 errors per 1000 lines of code persist after system testing [23]. Each of

these mistakes has the potential to result in an operational failure or non-compliance

with a requirement. The goal of software verification and validation is to keep

software mistakes at a minimum. Depending on the software's containment and

complexity, the effort required can range from 30 percent to 90 percent of the entire

project resources [24].

Verification, in a wide sense, is the same as software testing. There are two basic

ways to verification in this case: dynamic verification and static verification.

17

2.2.1 Dynamic Verification

Dynamic verification, often known as experimentation or just testing, is a process that

checks the behavior of software as it is being executed; it is commonly referred to as

the Test phase. The goal of software dynamic verification is to identify mistakes

caused by a single activity or by the repeated execution of one or more activities. We

can divide tests into four groups based on their scope: unit testing, integration testing,

system testing, and acceptance testing [25].

Unit testing is the most basic level of testing. It tests the smallest testable bit of

software, the basic unit of software, and is referred to as a "unit," "module," or

"component" interchangeably [25]. Unit testing is commonly referred to as a white

box test. That is, it is oriented toward examining and assessing code in its current state,

rather than assessing compliance with a set of rules [26].

Integration testing is performed when two or more tested units are merged into a

bigger structure. If the quality feature of the larger structure cannot be judged from its

components, the test is frequently performed on both the interfaces between the

components and the larger structure being produced [25]. Integration testing is a

method of building a program's structure while also testing for interfacing issues. The

goal is to use unit tested components to create a program structure that has been

dictated by design. Integration testing can be done in two ways: top down or bottom

up [26].

System testing is used to ensure that the complete system is of high quality from

beginning to end. System testing is usually focused on the system's

functional/requirement specification. Non-functional quality factors like dependability,

security, and maintainability are also scrutinized [25]. Software or hardware system

testing is testing done on a complete, integrated system to see if it complies with the

system's requirements. System testing is considered black box testing, and as such, it

18

should not necessitate any understanding of the code's or logic's inner workings. The

basic goal of system testing is to completely exercise the computer-based system.

Despite the fact that each test has a different goal, they all aim to ensure that system

pieces have been correctly integrated and are performing their assigned roles [26].

When the completed system is turned over from the developers to the customers or

users, acceptance testing is performed. Its goal is to instill trust in the system's

functionality rather than to uncover flaws [25]. User acceptance testing is a sort of

testing used to determine whether a product has been designed in accordance with

industry standards and criteria, and if it meets all of the customer's expectations [27].

When a product is developed externally by another company, this form of testing is

usually done by a user/customer. Acceptance testing is a type of black box testing in

which the user is less concerned with the system's internal workings/coding and

instead evaluates the system's general functionality and compares it to the

requirements they have given. Before the system is fully delivered or given over to

the end user, user acceptability testing is considered to be one of the most significant

tests performed by users. Validation testing, final testing, QA testing, factory

acceptance testing, and application testing are all terms used to describe acceptance

testing. Acceptance testing can be done at two levels in software engineering: one at

the system provider level and another at the end user level [26].

2.2.2 Static Verification

Static verification is the process of analyzing the code before it runs to ensure that it

fits the requirements. Static verification covers a wide range of topics, including code

conventions, bad practices (anti-pattern) detection, software metrics calculation,

formal verification, and so on. Verification via investigation, mathematical

calculations, logical evaluation, and computations using traditional textbook methods

or widely established general-purpose computer methods are all covered by the

analysis verification method. To establish conformance with requirements, analysis

19

comprises sampling and connecting measured data and observed test results with

calculated expected values [28].

Static Analysis is concerned with a variety of methods for determining or estimating

software quality without relying on actual executions [27]. Static verification is the

examination of computer code without the need to run it to check that standard coding

practices have been followed. Some versions of the source code are subjected to

analysis, which allows programmers to debug new code and uncover potential flaws

in compiled code [29].

Static verification is the examination of computer code without the need to run it to

check that standard coding practices have been followed. Some versions of the source

code are subjected to analysis, which allows programmers to debug new code and

uncover potential flaws in compiled code. Data flow analysis, model checking,

abstraction interpretation, and assertion usage are some examples of static verification

implementation methodologies [29].

2.3 Java Bounded Model Checking

Because of the increasing threat of software vulnerabilities, more powerful and formal

software verification are designed. Formal verification tools can guarantee the

absence of specified defects in a design [30]. In this chapter, model checking and

bounded model checking will be introduced as two formal verification tools. We

explore their concepts and principles and introduce the knowledge about Java

bounded model checking(JBMC), which is a new formal verification tool for Java

programs based on them.

2.3.1 Model Checking and Bounded Model Checking

20

The concept of model checking was first declared by Clarke and Emerson in 1981. In

the theory, by checking exhaustively within all reachable states, the correctness

property can be certain. A counterexample will be returned if the property does not

hold, and it is related to a violated state [31].

Model checking is an algorithmic method for verifying whether a system model meets

a set of correctness specifications [31]. A program model is made up of states,

transitions and a specification or property which is a logical formula. The program

counter, all program variable values, and stack and heap settings are all evaluated in a

state. Transitions explain the process through which a program progresses from one

state to the next. Model checking techniques check all of the possible states in a

program. If the state space is finite, this method is guaranteed to end. If a state is

discovered that violates a correctness property, a counterexample (an execution trace

indicating the error) is generated. Partially specified qualities, such as safety or

liveness, are checked using model checking techniques. Safety attributes describe the

inaccessibility of bad states, such as those in which an assertion violation, null pointer

dereference, or buffer overflow has occurred, or API usage contracts, such as the

order of function calls, have been broken. Liveness properties represent that

something good finally happens, such as the condition that requests must be served

eventually or that a program must eventually terminate [30].

Bounded model checking(BMC) builds on the concept of model checking. This

method searches the state space in a depth-bounded exhaustive manner. In the

semiconductor business, bounded model checking is one of the most widely used

formal verification tools. Propositional SAT solvers' outstanding capacity is

responsible for the technique's success. Biere et al. introduced the concept of BMC in

1999 [32]. It's named bounded because it only looks at states that can be reached in a

finite number of steps, such as k. The design under verification is unwound k times

and linked with a property to generate a propositional formula, which is then

submitted to an SAT solver. If and only if there is a trace of length k that refutes the

21

property, the formula is satisfied. Many bugs have been identified by BMC that would

otherwise have gone unnoticed [30].

2.3.2 Java Bounded Model Checking(JBMC)

Java Bounded Model Checking (JBMC) is a bounded model checker that allows Java

programs to be verified [9]. It is based on Boolean Satisfiability (SAT) and

Satisfiability Modulo Theories (SMT). JBMC inherits its sibling tool CBMC's

memory model, symbolic execution engine, and SAT/SMT backends, and it includes

a frontend for parsing Java bytecode as well as a Java operational model (JOM),

which is an accurate but verification-friendly model of the standard Java libraries. As

a result, JBMC supports Java bytecode and can use CBMC's verification engine to

test programs that use classes, inheritance, polymorphism, arrays, bit-level operations,

and floating-point arithmetic. Array bound violations, unintentional arithmetic

overflows, and other types of functional and runtime errors are all handled by JBMC

[10].

BMC is at the core of JBMC, where a program is unrolled and checked to see if a

specific state of the program can be reached in a certain number of steps, generally

referred to as the upper bound and denoted by k. We want to determine if a bad

condition, which indicates a vulnerability, may be realized during runtime within the

known upper constraint k, in JBMC [9].

As a kind of open-source verifier, it is desired to be used to find out inconspicuous

bugs in Java programs by verifying Java bytecode [9]. JBMC tool can be executed

easily by the command line, and the input can be a JAR archive file or a Java

bytecode class file. The command below can be used to run JBMC from the command

line interface [33]. If a bug is found, it will show “VERIFICATION FAILED” in the

output, or the output will be “VERIFICATION SUCCESSFUL” to indicate that there

are not any bugs in the program.

22

<some-directory>$ <path-to-jbmc>/jbmc <filename> <additional properties (optional)>

Only class files with the.class file extension and Java archive (JAR) files with the.jar

file extension are accepted by JBMC. It may also allow for the additional properties to

be further specified. The following table shows part of the common optional

properties [33]:

Option Description
--property id only check one specific property
--stop-on-fai stop analysis once a failed property is detected
--trace give a counterexample trace for failed

properties
--show-parse-tree show parse tree
--show-goto-functions show loaded goto program
--classpath dir/jar set the classpath to load additional jar files or

class files
--unwind nr unwind nr times
--graphml-witness filename write the witness in GraphML format to

filename

Table 2: Optional properties of JBMC [33]

Here is an example of using some of the properties to execute JBMC:

<some-directory>$ <path-to-jbmc>/jbmc <filename> --unwind 5 --classpath

<path-to-jbmc>/core-models.jar:.

The command line is to run in the directory <some-directory> since JBMC uses a

similar strategy as JVM when searching for class files. The core-models.jar refers to

JBMC's model of the Java runtime library. A specific upper bound k is determined in

this command line, and k is determined to be ten here.

23

Fig. 2.1: JBMC Architecture [34]

JBMC’s architecture is illustrated in Figure 2.1. There are 3 main parts in the total

process, the first of which is the input section, the gray rectangles on the left of the

picture. The white rectangles in the middle represent the steps of verification,

including bytecode parser, GOTO converter etc. On the right-hand side of the

illustration, it shows the output of the architecture.

We can set Java bytecode class files or JAR files as input in JBMC. And also JOM is

needed, which parses the Java bytecode and converts it to the CPROVER

control-flow graph representation, also known as a GOTO program. This

transformation simplifies the Java bytecode representation while also lowering

exceptional control flow. After the transformation, the program is ready for

verification, and it is passed to the GOTO Symex, which is in charge of unwinding

loops and unfolding recursive function calls in accordance with the upper bound, k.

The GOTO Symex component manages dynamic memory allocation, encoding of

virtual method dispatch, unrolling of loops, and unfolding of recursive method calls

by performing a symbolic execution of the program. The result of that operation is

then sent to a SAT or SMT solver, which will determine whether any bugs have been

discovered. As a result, it provides an output at the end of the verification lifetime [9].

2.4 Software Verification Competition

24

The software-verification tool competition (SV-COMP), which takes place at TACAS,

is a driving force for the development of innovative methods, technologies, and tools

in the field of software verification. It solves the problem of there being no widely

distributed benchmark suite of verification tasks and most concepts being proven only

in research prototypes. For comparing software verifiers, a set of verification tasks has

been constructed, and the tools are available on the SV-COMP website. The

competition is valuable for comparing numerous new and powerful

software-verification tools, presenting the most recent application of research results

in our community, and rewarding academics and students who spend significant time

building verification algorithms and software packages [35].

The goal of the competition is to [35]:

 Provide the community with a snapshot of the state-of-the-art in software

verification. That is, different verification tools are compared in terms of

precision and performance, regardless of particular paper projects and

approaches.

 Increase the visibility and credit given to tool creators. That is, to create a forum

for the presentation of tools and debate of the latest technologies, as well as to

allow students to publish about their development work.

 Create a community-wide set of software verification benchmarks. This entails

creating and maintaining a set of programs with explicit properties to verify, as

well as making those programs publicly available for academics to utilize in

performance comparisons when evaluating new techniques.

As a valuable verification tool, JBMC performed well in SV-COMP 2019 [36].

However, there are still some weaknesses in JBMC. For instance, regexes string can

not be supported by JBMC, and some features such as lambda expressions, reflection

can not be proved. Besides, similar to CBMC, JBMC can only deal with bounded

programs, which contain a known upper bound [34]. In SV-COMP 2021, JBMC got

603 points out of 693 points, and finished 423 of 473 benchmark tasks, which means

25

it is still a powerful verification tool on Java programs [37].

2.5 Completed Research and Extension

Since JBMC was designed and published, there were some research and extensions

developed on top of it. Last year, a student of the University of Manchester named Vi

Lynn Tan designed and implemented an extension based on JBMC, which used the

technique of witness validation. This is an interesting attempt, and I study related

concepts and work on it. In this section, we will introduce some key concepts used in

the extension, and explain the algorithm applied in the project.

2.5.1 Witness Validation

Model checking is a popular automated verification approach that has a wide range of

applications. It's a particularly effective bug-hunting strategy: if a property is violated,

a counterexample is presented that witnesses the violation. This is why they are

frequently referred to as witnesses. Witness validation is the process of verifying that

a witness generated by a software model checker is indeed a witness demonstrating

that the concrete program violates the property. Producers are software model

checkers such as CBMC, JBMC, and others that generate witnesses, whereas

validators are software tools that do witness validation [38].

Witness validation is a new idea in software verification and model checking that was

created to handle the problem of software verifiers occasionally producing false

alarms [39]. In 2015, the first two validators were submitted to SV-COMP, with a

total of six validators submitted by 2020 [40]. In SV-COMP 2021, six independently

developed witness-based result validators and one witness linter were used to justify

the result [37]. The goals of witness validation are to increase the reliability of

software verifiers' verification results and to use an adaptable format to express

witness data [39].

26

A violation witness or a correctness witness file can be found in a witness file. Along

with the counterexample, a violation witness comprises witness data that describes

error paths or violations found by the program verifier. A correctness witness, on the

other hand, comprises witness data that explains correctness proof in which the

software verifier has discovered no potential event in which a violation might occur.

With a common witness format in place, verification results may be independently

evaluated, allowing for the use of several verification techniques [39].

GraphML is one of the proposed formats for usage as an exchangeable format for

witness validation. GraphML is an XML-based format that was created to represent

and preserve graph structures [41]. The relative simplicity of reading from and writing

to GraphML files was one of the key reasons for its selection as the preferred

exchangeable file format. GraphML is expandable by nature, allowing for the

definition and storage of customer data. This allows for the representation and storage

of specific witness information such as error pathways. As a result, witness validation

can be done in a much more direct manner if verifiers adopt a changeable format like

GraphML [39].

2.5.2 Implemented Extensions

An extension related to witness validation on top of JBMC was implemented. The aim

of witness validation is to improve the accuracy of the results, which is produced by

software verification [39]. GraphML is one of the appropriate data formats for witness

validation, and it can be easily read or written.

27

Fig. 2.2: Extension Architecture [11]

Figure 2.2 illustrates the JBMC extension tool architecture, which contains four main

sections. In the implementation, the process is controlled through a python file. The

target Java file is compiled to bytecode class file first, and then run the JBMC tool

with the class file. In the next step, JBMC produces a GraphML file with the result of

execution. If there is any bug found in the program, a counterexample will be found in

GraphML. Then the process is to parse the GraphML, extract the counterexample and

corresponding value type, and inject them into the validation harness. The final step is

to execute the harness program, verify the counterexample by Mockito framework,

and then the result can be shown in the terminal [11].

The extension runs well, because there are not any different outputs between JBMC

and the script python program, which indicates that they both produced correct

outcomes of the test cases in benchmarks [11]. However, there are still several

obvious limitations and drawbacks in the project. First, she had to modify the verifier

code and each program code in the benchmark to meet the use of Mockito, and for

this reason, it is not available to run the benchmark in one go. Second, only the

programs which have one verify type can be proved by the method, multiple verifiers

28

and no verifier type programs can not be solved. Third, problems exist in the string

type verification, because some counterexamples of string type are unexpected.

Besides, there should be a few incorrect results for JBMC, but in Vi’s implementation,

none of them was found.

2.6 Other Java verification tools

In addition to JBMC, there are many other Java verification tools, among which the

more famous ones are Java Ranger, Java Pathfinder (JPF), Jdart, etc. These

verification tools have a good performance in the annual SV-COMP. This section

introduces the background of various Java verification tools, and briefly discusses

their working principles and performance in software verification competitions.

2.6.1 Java Ranger

Java Ranger is an extension for the popular Symbolic Pathfinder program, and

the veritesting technique for symbolic execution of Java bytecode is extended in it.

When compared to SPF, Java Ranger reduces the running time and number of

execution routes by a total of 38% and 71% in a set of nine benchmarks [52].

Java Ranger has a setup that is fairly similar to that of SPF. Because Java Ranger is

only an extension of SPF, the Java Ranger directory can be supplied as a legitimate

JPF jpf-symbc extension [53].

Java Ranger competed in a static verification competition at a top theoretical

conference, where state-of-the-art Java verifiers were among the competitors. JR took

first place in the Java verification track of the competition, scoring 630 out of 693

points and completing 427 out of 473 tasks [37].

2.6.2 JPF

29

The NASA Ames Research Center created Java PathFinder (JPF), a model checker

for Java programs that won NASA's TGIR Award for Engineering Innovation in

2003.

JPF is made up of a proprietary Java Virtual Machine (JVM) that interprets bytecode

and a search interface that allows you to investigate the whole behavior of a Java

program. JPF is written in Java, and its architecture is designed to allow for quick

prototyping of new features. JPF is an explicit-state model checker, in that it

enumerates all visited states and so suffers from the state-explosion problem that

plagues large-scale program analysis. It's best for analyzing programs with less than

10kLOC, but it's also been used to discover faults in concurrent applications with up

to 100kLOC [54].

2.6.3 JDart

Since 2010, CMU and NASA Ames Research Center have been working on JDart, a

dynamic symbolic analysis framework for Java. The primary purpose of JDart

development was to provide a dynamic symbolic analysis tool that could be used on

industrial-scale software, such as sophisticated NASA systems.

The Executor and the Explorer are the two most important parts of JDart. The

Executor runs the analyzed program and keeps track of data values' symbolic

constraints. It is currently implemented as a Java PathFinder framework plugin. The

Explorer chooses the exploring strategy that will be used. It makes use of the

JConstraints constraints library as an abstraction layer for efficiently encoding

symbolic path constraints and provides an interface for various constraint solvers [55].

In SV-COMP 2021, the score of JDart is 623 out of 693, which is second only to Java

Ranger. It completed the most task solving on the Java track, 437 out of 473 tasks,

30

which also reflects its excellent ability [37].

31

Chapter 3 Proposed Methodology

In this chapter, we introduce the proposed methodology of the implemented extension

based on JBMC and the verification tool in the previous thesis. We proposed an

improved algorithm compared to the previous one, and re-adjusted the appropriate

framework selection during the implementation process. In the first section, we

describe the overall structure of the project. We introduce the role of each part of the

system and the entire process of the project from the beginning to the result

generation by means of flowcharts and words. In section 3.2, we introduce the

framework and technology used in the project, and explain their features and role in

the project in detail. Then the main part of this chapter is section 3.3, in which we

explain the implementation details in the project, especially the implemented

algorithms. In this section, we use a lot of code to explain, and at the same time, we

also evaluated the complexity of the algorithm. In the last section, some illustrative

examples are provided to show the result of our implementation.

3.1 Architecture

Figure 3.1 briefly shows the overall architecture design and execution process of the

project. The execution of the application starts from the web front-end interface. The

user loads the file and selects the execution option on the interface, then some python

scripts control and execute the process, and finally display the input results to the user

on the web page in the form of a table. Below we describe the structure of the project

in detail, explaining the role of each part of the project and the exact process of its

execution.

32

Fig. 3.1: The architecture of the project

The first part is the entrance to the application, which is a simple interface located on

the web. The user is required to provide a file with a .set extension as input. This input

file is the test set that needs to be verified, and its content contains one or more paths

and names of benchmark files. These benchmarks can be obtained from the

SV-COMP official website, and they usually end in .java. Then the user can choose

the verification option, JBMC, my extended Witness tool, or both of them. After the

above is completed, click the execute button to start running the project.

33

The overall running logic of the project is controlled by the python script run.py. First,

the files in the .set file are processed by a loop logic, so that the benchmarks are

verified one by one. Secondly, the selected verification mode is processed by the

branch statement to determine whether to execute the corresponding code. Because

the object of bounded model checking by JBMC is bytecode file, that is, the file with

the extension of .class, we need to compile the input .java file with the javac compiler.

It is also allowed to directly input the .class type file, but this requires the user to

provide the original data type of the specific Verifier method at the same time so that

it can be called in the subsequent verification process. Now, make sure that the file

type entered in the next step is bytecode, which meets the needs of JBMC.

The method of running JBMC is very simple. The command is called directly through

the command line interface, and the parameters are the bytecode file name obtained in

the previous step and the original data type of the variable applied by the bounded

model checking. There are three results from executing the command line: if the result

is "VERIFICATION FAILED", it means that JBMC has verified that there are

vulnerabilities in the program; if the result is "VERIFICATION SUCCESSFUL", it

means that no errors in the program were detected by JBMC; the last kind of result is

the execution timeout.

In my extension tool on Witness, the main process is controlled by the python script

named exec.py. The first step executed in the script is similar to the one mentioned

earlier, using the command line to execute the JBMC validator. The difference here is

that the optional property parameter --graphml-witness provided by JBMC is used

here, and the result generated by the validator is stored in GraphML, which is an

XML-based file format used to represent graphs. As one of the features of JBMC, we

can judge whether there is an assertion violation in the program through the results

generated by GraphML, and provide a counterexample for each violation when there

is a violation.

34

If no violations are found, it means that no vulnerabilities have been detected by the

JBMC verification tool; if violations are found, one or more counterexamples in

GraphML will be injected into the designed verification tool. This verification tool is

implemented by the Java language, using a suitable mock framework (such as

Mockito, etc.) to mock the original program, and then substituting the counterexample

for execution. At the same time, we need to rely on other testing tools to identify

whether the counterexample is an effective cause wrong value, so as to determine

whether the program has vulnerabilities. In this project, we mainly verify the

counterexamples found in violations, so the main research object is the output

GraphML file obtained after "verification failed".

The last step is to integrate the results from the JBMC verification with the results

obtained by the Witness verification tool, and display the final results in the form of a

table on the web page, and display the three results of "success", "failure" and

"timeout" using different colours to distinguish them for comparison.

In Section 3.3, we will explain the implementation details more specifically through

the code in the program.

3.2 Techniques

In this section, we introduce some of the relatively new technologies applied in the

project and analyze the necessity of choosing them. The techniques includes mock

frameworks Mockito and PowerMock, Java program testing framework JUnit5 and

web page front-end common language HTML.

3.2.1 Mockito and PowerMock

Mock objects are very useful and necessary in the project, especially for the injection

35

and execution of the validation harness. In the validation harness program, we use

mock objects to simulate the behavior of the Verifier class in a controlled way, and to

provide an exact value when one of the methods of the class is called. In this way, we

can run the test program to determine whether the counterexample is valid.

Mockito is one of the common libraries dominating Java mocking. Comparing with

other frameworks it offers a simpler and intuitive approach, that is, we can verify

what we want. Furthermore, the APIs of Mockito are slim, which means it is easy to

use [43]. In Vi’s dissertation, Mockito is one of the core technologies used in the

programs, and it plays a vital role [11].

In this project, using Mockito is not a perfect choice, because some of the

shortcomings of the original Mockito framework have been exposed in the previously

implemented extension. In the code of Vi’s program, we need to modify all the static

methods in the Verifier class by removing the static modifier. And in the original

benchmark code provided by SV-COMP, we have to modify all the code that calls the

static methods in the Verifier class and change it to an instantiate Verifier object and

call its corresponding methods [11]. The root cause of this problem is that Mockito

does not support mocks for static methods. We have found an alternative mock

framework applied to solve this problem: PowerMock [42].

PowerMockito is a PowerMock's extension API to support Mockito. It enables users

to work with the Java Reflection API in a simple way, overcoming Mockito's

limitations, such as the inability to mock final, static, or private methods [44].

Mocking of static methods, final classes and methods, private methods and more is

possible with PowerMock due to a custom classloader and bytecode manipulation.

Because the entire expectation API is the same for static methods and constructors,

PowerMock is simple to use [42]. Therefore, PowerMock is a better choice for

mocking in this project.

36

3.2.2 JUnit5

JUnit is a unit testing framework for the Java programming language. JUnit 5 is made

up of three sub-projects, each with its own set of modules. The JUnit Platform is a

foundation for testing frameworks that run on the JVM. It also defines the TestEngine

API, which can be used to create a testing framework for the platform. In JUnit 5,

JUnit Jupiter combines the new programming model with the extension concept for

writing tests and extensions. A TestEngine is provided by the Jupiter sub-project for

performing Jupiter-based tests on the platform. JUnit Vintage comes with a

TestEngine that allows us to run JUnit 3 and JUnit 4 tests on the platform [45].

In the implementation of the project, Junit5 is used in conjunction with the mock

framework, and through the use of several appropriate annotations, it can achieve the

verification function together with the PowerMock framework.

3.2.3 HTML and Flask

HTML, or HyperText Markup Language, is the standard markup language for texts

that are intended to be viewed on a web browser. Web browsers receive HTML

documents from a web server or locally stored files and convert them to multimedia

web pages. HTML originally featured cues for the document's look and described the

structure of a web page logically. Images and other objects, such as interactive forms,

can be embedded in the produced page using HTML techniques. HTML allows you to

create organized documents by indicating structural semantics for text elements like

headers, paragraphs, lists, links, quotations, and other elements [46].

A front-end framework is used in the project, which is Flask. Flask is a Python

microweb framework that doesn't require any special tools or libraries. It doesn't have

a database abstraction layer, form validation, or any other components that rely on

third-party libraries to do typical tasks, and provides extensions that can be used to

https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Software_framework
https://en.wikipedia.org/wiki/Java_(programming_language)

37

extend the functionality of an application [47]. Flask is a framework for building

lightweight web applications. It's built to make getting started simple and quick, with

the flexibility to scale up to more sophisticated projects. It has grown in popularity as

one of the most widely used Python web application frameworks [48].

In order to finish a user-friendly extension tool, we use HTML and Flask framework

to implement a simple front-end interface, so that we can run the verification of

benchmarks just by selecting input file and clicking the button, instead of executing

command line one by one. In the same way, we show our result in a table on the web

page, which is also implemented by the techniques, and this can make it more

intuitive for users to get the information from the final result table.

3.3 Algorithms

We focus on explaining the algorithms designed and implemented in the project in

this section. The code part of the project is mainly divided into three sections, the

program control module composed of python scripts, the verification module where

the witness file is injected into the mock verification program, and the front-end

interface implementation module. Each part corresponds to a subsection of this

section. Besides, in subsection 3.3.4, we analysis the complexity and some other

features of our programs.

3.3.1 Python scripts

There are a total of 3 python scripts in the project, two of which control the execution

logic of the program. We describe the two scripts in detail in this subsection, and the

other is related to the front-end, which we describe in subsection 3.3.3.

run.py

38

1. with open("result.html", 'w') as r:

2. r.write("""

3. <html>

4. <table border="1">

5. <tr>

6. <th>NO</th>

7. <th>Test suite</th>

8. <th>Title name</th>

9. <th>Type</th>

10.<th>Correct output</th>""")

Listing 3.1: Result table header settings in run.py

The code in Listing 3.1 mainly uses HTML elements to construct the final result table

result.html, which contains the attribute name and border width of the header. The

header has a number, test suite name, test benchmark name, data type and expected

result, etc.

1. set_path = sys.argv[1]

2. option = sys.argv[2]

3. if(option == "JBMC" or option == "Both"):

4. with open("result.html", 'a') as r:

5. r.write("""<th>JBMC output</th>""")

6. if(option == "Witness" or option == "Both"):

7. with open("result.html", 'a') as r:

8. r.write("""<th>Witness output</th>""")

Listing 3.2: The execution option judgment logic in run.py

In Listing 3.2, the code shows how to handle the parameters from the front-end,

especially the choice of test options. There are two parameters in the input when

executing the program, as is shown in lines 1 and 2, the first of which is the path of

the .set file and the second is the option. If the option parameter is “JBMC”, we

execute the JBMC test only, or we execute the Witness tool if the option is “Witness”,

or we execute both of them.

1. with open(set_path, 'r') as sets:

39

2. for set_name in sets:

3. ymls = glob.glob('/'.join(set_path.split('/')[:-1]) + '/' + set_name.split()[0])

4. ymls.sort()

5. for yml in ymls:

6. print(yml)

7. with open(yml, 'r') as y:

8. yml_dic = yaml.load(y, Loader = yaml.FullLoader)

9. if(yml_dic['properties'][0]['expected_verdict'] == True):

10. correct_result = "True"

11. else:

12. correct_result = "False"

13. path = '/'.join(yml.split('/')[:-1]) + '/' + yml_dic['input_files'][1]

Listing 3.3: Code for processing input .set file in run.py

Fig. 3.2: The structure of sv-benhmarks folder

The code fragment in Listing 3.3 shows how to deal with the input file. The folder of

original benchmarks is called sv-benchmarks/java, which we can obtain from

https://sv-comp.sosy-lab.org/2021 [35]. The structure of the benchmarks folder is

illustrated in Fig. 3.2. The folder contains a set file and some folders of test suites

such as jbmc-regression, jayhorn-recursive and so on. In each test suites folder, there

are many YAML files and corresponding benchmark files that make up the entire test

set. Therefore, in this way, we only need to provide a modified set file to test all

benchmarks in the test set folder.

https://sv-comp.sosy-lab.org/2021

40

In Listing 3.3, in lines 1-4 of the code, first we parse the input set file. The content of

this set file contains the YAML file corresponding to the target benchmarks we want

to test. We extract the YAML file paths and names as a list and use the sort() function

to sort it alphabetically. After that, lines 5-8 indicate that the YAML files in the list

are traversed through the YAML loader. In lines 9-12, we extract the expected

verdicts of the benchmarks from the YAML files, which have two values, True and

False. The 13th line of code is used to find the path of the corresponding benchmark

files through the YAML files to prepare for the subsequent operation.

1. # Compile

2. java_list = os.listdir(path)

3. for file_name in java_list:

4. if os.path.isfile(path + file_name):

5. shutil.copy(path + file_name, os.getcwd())

6. elif os.path.isdir(path):

7. print(path+file_name)

8. shutil.copytree(path + file_name, os.getcwd() + '/' + file_name)

9. subprocess.Popen(['javac', "Main.java"]).wait()

Listing 3.4: Code for compiling .java files in run.py

Listing 3.4 is about compiling a java program into a bytecode file before using JBMC

or other tools. The key in this code is to use the following command line on the ninth

line:

javac Main.java

This command line can compile the java program Main.java into its corresponding

bytecode file Main.class through javac. The other parts are used for file path

operations.

1. # Execute JBMC

2. if(option == "JBMC" or option == "Both"):

3. timeout = False

4. fjout = open("log/" + yml.split('/')[-1].split('.')[0] + "JBMC_file_out.log", 'w')

5. fjerr = open("log/" + yml.split('/')[-1].split('.')[0] + "JBMC_err_out.log", 'w')

6. try:

41

7. subprocess.call(["jbmc", "Main", "--stop-on-fail"], stdout=fjout, stderr=fjerr, timeout
= 10)

8. except subprocess.TimeoutExpired as e:

9. print("Time out!\n")

10. timeout = True

11. with open("log/" + yml.split('/')[-1].split('.')[0] + "JBMC_file_out.log", 'r') as f:

12. lines = f.readlines()

13. if "FAIL" in lines[-1]:

14. jbmc_result = "False"

15. elif "SUCCESSFUL" in lines[-1]:

16. jbmc_result = "True"

17. else:

18. jbmc_result = "Unknown"

Listing 3.5: Code for executing JBMC tool in run.py

Listing 3.5 shows how we call the JBMC verification tool in run.py and process the

verification results. Lines 4-5 specify the location of the output file for subsequent

correctness analysis. There are two output files. One is a log file, which records the

log during execution, and it is saved as JBMC_file_out.log; the other is an error file,

which records the error log during execution, and it is saved as JBMC_err_out.log.

Line 6-10 of the code is the command line to run JBMC. The key command line to

call is:

jbmc Main --stop-on-fail

We manually set an execution timeout time. When the execution time expires, the

value of the variable timeout is set to True. Lines 11-18 are the analysis of the

generated log file, so that the execution result is saved as a string variable, and finally

displayed in the result table. There are three execution results in this step. True means

that JBMC verification has no vulnerability, False means that JBMC verification has

vulnerabilities, and Timeout indicates that JBMC execution has timed out.

1. # Check type

2. data_type = ''

3. flag = False

4. with open("Main.java", "r") as fin:

5. for line in fin:

42

6. if line.find('Verifier.') >= 0 and data_type != '':

7. flag = True

8. break

9. index = line.find('Verifier.')

10. if index != -1:

11. data_type = line[index + 15:].lower().split('(')[0]

Listing 3.6: Code for checking verifier type in run.py

Before running the Witness-based verification tool, we need to determine the data

type generated by Verifier class so that we can make mocking by modifying the

Validation Harness program. The code in Listing 3.6 shows this checking. The main

logic of this code is to find where the Verifier class calls the static method in the Java

program and determine the data type. 8 data types such as int, long, and reference type

String can be called in the Verifier class.

1. # Execute witness tool

2. if(option == "Witness" or option == "Both"):

3. fsout = open("log/" + yml.split('/')[-1].split('.')[0] + "script_file_out.log", 'w')

4. fserr = open("log/" + yml.split('/')[-1].split('.')[0] + "script_err_out.log", 'w')

5. try:

6. subprocess.call(["python3", "exec.py", "Main.java"], stdout=fsout, stderr=fserr, ti
meout=10)

7. except subprocess.TimeoutExpired as e:

8. print("Time out!")

9. with open("log/" + yml.split('/')[-1].split('.')[0] + "script_file_out.log", 'r') as f:

10. slines = f.readlines()

11. if len(slines)>3:

12. if "FAIL" in slines[-3]:

13. script_result = "False"

14. elif "OK" in slines[-2]:

15. script_result = "True"

16. else:

17. script_result = "Unknown"

18. else:

19. script_result = "Unknown"

Listing 3.7: Code for executing Witness tool in run.py

In Listing 3.7, the code shows the detailed process of executing my Witness

43

verification tool. The detailed algorithm design of the Witness tool is explained in

Listing 3.9 and later, here we just use the following command line to execute.

python3 exec.py Main.java

Similar to the structure of the code in Listing 3.5, lines 3-4 are also used to save the

log and error log generated after the program is executed. The log generated by the

Witness tool is saved in two log files, script_file_out.log and script_err_out.log. Lines

5-8 of the code is also about the execution process, using the command line to execute

exec.py. Lines 9-19 are parsing log files to output execution result information. The

Witness verification tool has three possible results. True means that vulnerabilities has

been found in the program, and False means that no vulnerabilities has been found,

and Unknown means that the tool cannot be used for verification of this benchmark.

There are many situations where the tool cannot be used to verify a certain benchmark,

such as a null pointer error in the benchmark, or the JBMC execution timeout does not

generate a Witness file. Special circumstances will be recorded in the comment

column of the result table, see Table 3.8 for details.

1. # Add comments

2. comment = ''

3. if "Null pointer" in lines[-5]:

4. comment = "Null pointer exception"

5. if data_type == '':

6. comment = "No verifier type"

7. if flag:

8. dada_type = ''

9. comment = "Multiple verifiers"

10. if timeout:

11. comment = "Execution time out"

Listing 3.8: Code for adding comments in run.py

Listing 3.8 is the code to add comment at the end. Comments are used to supplement

the test results of the benchmarks that we test. The common ones are as follows. “Null

pointer exception” indicates that there is a null pointer exception in the program, so

JBMC execution reports an error, and the witness file cannot be generated; “No

44

verifier type” and “Multiple verifiers” indicate that there are no or multiple verifier

generated variables in the benchmark; “Execution time out” indicates that the JBMC

execution times out and no witness is generated. File. These comments are displayed

in the comment column of the final result table for users to view.

exec.py

1. #Extract class name and Compile Java program

2. classArray = sys.argv[1].split('.')

3. classname = classArray[0]

4. subprocess.Popen(['javac', sys.argv[1]]).wait()

5.
6. #Run JBMC

7. cmd = 'jbmc ' + classname + ' --stop-on-fail --graphml-witness witness'

8. try:

9. result = subprocess.check_output(cmd, shell=True)

10.except subprocess.CalledProcessError as e:
11. result = e.output

12.
13.#Check for violation
14.witnessFile = nx.read_graphml("witness")
15.violation = False
16. for violationKey in witnessFile.nodes(data=True):
17. if 'isViolationNode' in violationKey[1]:

18. violation = True

Listing 3.9: Code for some steps in exec.py

Listing 3.9 describes some steps of the witness verification script exec.py, including

extracting class name and compiling Java program, executing JBMC and finding

violations. The basic algorithm of these steps refers to the implementation of Vi [11].

The first step is to extract the class name and compile the Java program. First we use

the split() function to separate its class name and extension from the input parameter

file name, and extract the class name from them. Then we compile the input Java file

with the javac compiler and call it through the command line. This step is the same as

the compilation process in Listing 3.4. The second step of executing the JBMC tool is

45

similar to the process in Listing 3.5. The difference is that an optional property is used.

The command line is as follows:

jbmc Main --stop-on-fail --graphml-witness witness

In the command line, --graphml-witness indicates that the system writes the witness in

GraphML format to the file name, and the file name is the parameter witness behind.

The third step is about the violation, which is mainly to find whether the violation

exists through the witness file generated by the above steps. We use the function

nx.read_graphml() in the special library to read the witness file and determine

whether there is a violation based on the nodes in the file.

1. #Extract counterexample

2. counterexamples = []

3. for data in witnessFile.edges(data=True):

4. if 'assumption' in data[2]:

5. str = data[2]['assumption']

6. #Get counterexample between ' = ' and ';'

7. #E.g. "anonlocal::1i = 1000;"

8. if str.startswith('anonlocal'):

9. counterexamples.append(str.split(' = ')[1][:-1])

10.
11. #Create validation harness from template

12. with open("ValidationHarnessTemplate.txt", "rt") as fin:

13. lines = []

14. if(len(counterexamples) == 0):

15. exit(1)

16. for line in fin:

17. line = line.replace('ClassName', classname)

18. lines.append(line)

19. for index in range(0, len(types)):

20. type = types[index]

21. counterexample = counterexamples[index]

Listing 3.10: Code for extracting counterexamples in exec.py

The core code in the exec.py script is explained in Listing 3.10. First we extract

counterexamples from witness, and create a program to verify the validity of them

based on the violations and their data type through the designed Validation Harness

46

template. This step is called injecting the counterexamples into the Validation

Harness.

Lines 2-9 in Listing 3.10 are the extraction of counterexamples. We mainly read the

witness file, find the keywords "assumption" and "anonlocal" describing the

counterexamples on their nodes, and split it by the split() function to get the

counterexamples. Because some benchmarks have multiple Verifier values, here we

use a list to store multiple counterexamples. The code in lines 12-21 is part of the

counterexample injection. We need to replace the ClassName variable in the

Validation Harness template with the class name extracted in Listing 3.9. Then we

inject the counterexample into the template according to the data type. An example is

shown in Listing 3.11.

1. if type == 'int':

2. for i in range(0,len(lines)):

3. if "Verifier.nondetInt()" in lines[21]:

4. lines[21] = lines[21].replace(";\n", ".thenReturn(" + counterexample + ");\n")

5. flag = 0

6. if flag:

7. lines.insert(-3, " PowerMockito.when(Verifier.nondetInt()).thenReturn(" + cou
nterexample + ");\n")

Listing 3.11: Code for checking data type in exec.py

Listing 3.11 shows an example of injecting a counterexample of a data type into the

Validation Harness. Here we use integer data. If we find the "Verifier.nondetInt()"

code segment in the benchmark code, then we need to mock the behavior of Verifier

in the template and replace it with a counterexample. There are two situations here. If

the Verifier type appears for the first time, we need to add the following Java

statement to the template:

PowerMockito.when(Verifier.nondetInt()).thenReturn(counterexample);

If the Verifier type does not appear for the first time, just add the following statement

after the above Java statement:

47

.thenReturn(counterexample)

1. #Compile validation harness

2. subprocess.Popen(['javac', 'ValidationHarness.java']).wait()

3.
4. #Execute validation harness

5. subprocess.Popen(['java', '-ea', 'org.junit.runner.JUnitCore' ,'ValidationHarness']).wait()

Listing 3.12: Code for compiling and executing validation harness in exec.py

The last part of the exec.py script is the compilation and execution of Validation

Harness. The modified Validation Harness is essentially a Java program that needs to

be run. During the execution of the program, we need to use JUnit for testing. If the

counterexample is valid, the program will report an error, so that it can be displayed

by JUnit. In this step, we use the command line interface to run the following two

commands:

javac ValidationHarness.java

Java -ea org.junit.runner.JUnitCore ValidationHarness

3.3.2 Witness and Validation Harness

1. <edge source="18.115" target="19.116">

2. <data key="originfile">Main.java</data>

3. <data key="startline">13</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1i = 1000;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

Listing 3.13: Code of the violation in witness

The witness file is stored in GraphML format, which is similar to XML. Listing 3.13

is an example that shows the important part of the witness generated after executing

the exec.py script. We can clearly see in the fifth line that a counterexample integer

data 1000 is generated in this program.

48

1. @RunWith(PowerMockRunner.class)

2. public class ValidationHarness {

3. @Test

4. @PrepareForTest(Verifier.class)

5. public void testCallStaticMethod() {

6. PowerMockito.mockStatic(Verifier.class);

7. PowerMockito.when(Verifier.nondetInt()).thenReturn(1000);

8. Main.main(new String[0]);

9. }

10. }

Listing 3.14: Code of the validation harness

Listing 3.14 is the Validation Harness program generated after executing exec.py.

Corresponding to 3.13, we replaced the placeholder ClassName with this class name,

and replaced the placeholder Counterexample with the exact counterexample 1000. In

addition, because we use the JUnit framework for verification, we use a lot of

JUnit-related annotations here. The first and fourth lines of the code use two

annotations @Runwith and @PrepareForTest, and their function is to jointly represent

mocking the method of Verifier.class using PowerMock. @Test represents JUnit's

unit test method, which is used to verify possible errors after injecting

counterexamples.

3.3.3 Front-end Implementation

1. @app.route('/index')

2. def inxdex():

3. return render_template('index.html')

4.
5. @app.route('/result', methods=['post'])

6. def result():

7. name = request.files['fileUpload'].filename

8. options = request.form.get('options')

9. subprocess.call(["python3", "run.py", "sv-benchmarks/java/" + name, options])

10. return render_template('result.html')

49

Listing 3.15: Code for setting routes in app.py

In this project, we also designed the third python program app.py, which is used to

implement the front-end using the Flask framework. Part of the code of this program

is shown in Listing 3.15, whose main function is to bind functions to routes. Our

front-end implementation is not complicated, there are only two pages for interaction

and display. The index page is used to display the home page, and is provided to the

user interface for operations such as set file selection and verification selection; the

result page is used to display the verification result table.

3.3.4 Analysis about the Algorithms

In the app.py, which is related to the front-end implementation, the complexity of the

algorithm is O(1). Because the code about the front-end implementation does not

contain any loops, the time complexity is always a constant value. In the Witness

verification tool implementation code exec.py, we have used a single for loop

multiple times, which appears multiple times in Listings 3.9 to 3.11. So the time

complexity of the program exec.py is linear, expressed as O(N). Finally, a nested for

loop appeared in the program run.py, which is responsible for the overall process of

the project, as shown in Listings 3.3 and 3.4, which are two-level loops. So the time

complexity of this program is O(N2). We can get the expected verdicts from the

YAML file in the test sets, so it is easy to determine the correctness of the programs.

Given the small size and simplicity of the Java programs in the benchmark sets, this

can also be manually checked. The completeness of the algorithms is unnecessary to

check because the Java programs are instantiated using a mock framework.

3.4 Illustrative Examples

50

This section is to show some illustrative examples of the verification. We test the

Verifier types that may be generated in each situation, and select some representative

examples for illustration. The examples contain 7 of the 8 basic data types of Java:

short, int, long, boolean, char, float and double. In addition, we also try multiple or no

Verifier types in the same benchmark program, which is also shown in this subsection.

All the benchmark programs are retrieved from SV-COMP, and we can download

them freely from https://github.com/sosy-lab/sv-benchmarks [35].

3.4.1 Short Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4. static int field;

5. static int field2;

6.
7. public static void main(String[] args) {

8. int x = 13000; /* we want to specify in an annotation that this param should be

9. symbolic */

10.
11. Main inst = new Main();

12. field = Verifier.nondetShort();

13. if (field < 0) return;

14. inst.test(x, field, field2);

15. // test(x,x);

16. }

17. /* we want to let the user specify that this method should be symbolic */

18.
19. /*

20. * test IF_ICMPGT, IADD & ISUB bytecodes

21. */

22. public void test(int x, int z, int r) {

23. System.out.println("Testing ExSymExe15");

24. int y = 3;

25. r = x + z;

26. z = x - y - 4;

27. if (r <= 99) {

28. System.out.println("branch FOO1");

29. assert false;

30. } else System.out.println("branch FOO2");

https://github.com/sosy-lab/sv-benchmarks

51

31. if (x <= z) System.out.println("branch BOO1");

32. else System.out.println("branch BOO2");

33.
34. // assert false;

35. }

36. }

Listing 3.16: Code of short example: ExSymExe15_true.java

Listing 3.16 is a benchmark that calls the Verifier class to generate short type data. Its

path in the sv-benchmarks folder is java/jpf-regression/ExSymExe15_true.java. The

source code has a very long comment part, we ignore it here, and only intercept the

program code part.

In the code, the Main class contains two member variables field and field2, and the

value of the variable x in line 8 is 13000. In lines 11-14, first we instantiate an object

inst, and then call the method of the Verifier class to assign a random short value to

the variable field. The 13th line uses an if statement to ensure that the value of the

field is greater than or equal to 0. Line 14 calls the test method, where the parameters

are x, field, and field2, and their values are the previously assigned values of 13000,

the int type value field of the automatic type conversion, and the initial value of the

member variable 0. During the execution of the test function, on line 25, we can see

that the parameter r is assigned the value x+z, so here r is 13000 plus a number not

less than 0, and the result must be greater than 99. Therefore, in the if statement on

lines 27-35, the assert statement should be true.

In the first step, we put this program path into the set file, which is located in

sv-benchmarks/java folder, run our extension tool. Here we just use the result, and the

process of using the tool will be introduced in detail in Chapter 4. The following Fig.

3.3 is the output result table of our tool on the web page.

52

Fig. 3.3: Result of the short example

In the result table, we can see that the short type benchmark

jpf-regression/ExSymExe15_true.java has been verified by JBMC and the result is

True. This shows that no vulnerability in this program has been detected, and the

result we have obtained is consistent with the expected result. In addition, we can

regard the expected verdict extracted from the YAML file as the correct answer, and

the result of our verification is the same, which shows the correctness and accuracy of

our verification tool.

Because of the limitation of the test sets, we did not find any short-type benchmarks

with vulnerabilities in some test sets, such as jpf-regression and jbmc-regression. In

this example, we verified an example without error. Therefore, the result of JBMC

execution should be “VERIFICATION SUCCESSFUL”, and there is no extraction of

counterexamples and subsequent verification operations of the Witness tool. Part of

the log produced by JBMC is shown in Fig. 3.4.

Fig. 3.4: JBMC log of the short example

3.4.2 Int Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. class Main {

4. public static void main(String[] args) {

5. int i = Verifier.nondetInt();

6.
7. if (i >= 10) assert i >= 20 : "my super assertion"; // should hold

53

8. }

9. }

Listing 3.17: Code of int example: assert4.java

Listing 3.17 is a benchmark that calls the Verifier class to generate int type data. Its

path in the sv-benchmarks folder is java/jbmc-regression/assert4.java. The source

code has a very long comment part, we ignore it here, and only intercept the program

code part.

In the code, the Verifier class is called in line 5, which provides a random int value to

the variable i. Then in line 7, there is an if statement and an assert statement in the

branch. It is clear that if the variable i is between 10 and 19, the assert statement will

fail as expected.

In the first step, we put this program path into the set file, which is located in

sv-benchmarks/java folder, and run our extension tool. The following Fig. 3.5 is the

output result table of our tool on the web page.

Fig. 3.5: Result of the int example

In the result table, we can see that the int type benchmark

jbmc-regression/assert4.java has been verified by JBMC and Witness tool, and the

results are all False. This shows that one or more vulnerabilities in this program have

been detected, and the results we have obtained are consistent with the expected

results. Since the result of the JBMC verification tool is False, the subsequent

extraction of counterexamples and Witness are all executed normally. A partial

screenshot of the JBMC log is shown in the figure below, which shows in line 323

that there is an assertion failure in the program.

54

Fig. 3.6: JBMC log of the int example

Listing 3.18 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be a counterexample whose type is int in the

witness file. In line 5 in Listing 3.18, a counterexample of the benchmark is provided,

which is int value 10. This means that if the value of the Verifier data in the

benchmark program is 10, there may be a weakness in the program.

1. <edge source="18.116" target="19.117">

2. <data key="originfile">Main.java</data>

3. <data key="startline">13</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1i = 10;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7. </edge>

Listing 3.18: Witness file of int example

After obtaining the counterexample, we inject it into the Validation Harness for

verification. We modify and run the designed Validation Harness template, and then

verify the correctness of the program through the JUnit framework. After removing

the import statement, the code of modified Validation Harness is shown in Listing

3.19. In line 7 of the code, when the nodetInt() method of the Verifier class is called,

the PowerMock framework will return an int value of 10. A screenshot of part of the

log after verification by JUnit is shown in Fig. 3.7. In the 9th line of the log, we can

see that there is an error in the 16th line of the Validation Harness.java program,

which indicates that the program has vulnerabilities and the counterexample we

obtained is effective.

1. @RunWith(PowerMockRunner.class)

55

2. public class ValidationHarness {

3. @Test

4. @PrepareForTest(Verifier.class)

5. public void testCallStaticMethod() {

6. PowerMockito.mockStatic(Verifier.class);

7. PowerMockito.when(Verifier.nondetInt()).thenReturn(10);

8. Main.main(new String[0]);

9. }

10. }

Listing 3.19: Validation Harness of int example

Fig. 3.7: Witness tool log of the int example

3.4.3 Long Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4. public static void main(String[] args) {

5. long longValue = Verifier.nondetLong();

6. System.out.printf("long = %s\n", String.valueOf(longValue));

7. String tmp = String.valueOf(longValue);

8. assert tmp.equals("100000000000");

9. }

10. }

Listing 3.20: Code of long example: StringValueOf07.java

Listing 3.19 is a benchmark that calls the Verifier class to generate long type data. Its

path in the sv-benchmarks folder is java/jbmc-regression/StringValueOf07.java.

In the code, the Verifier class is called in line 5, which provides a random long value

56

to the variable longValue. In line 7 of the code, the ValueOf() method of the String

class is called to convert the variable longValue of type long into a string tmp. Line 8

compares the converted string tmp with the string "100000000000". Obviously, when

the generated long type random number is not equal to 100000000000, an assertion

error will occur. Thus, the assert statement will fail as expected.

In the first step, we put this program path into the set file, which is located in

sv-benchmarks/java folder, and run our extension tool. The following Fig. 3.8 is the

output result table of our tool on the web page.

Fig. 3.8: Result of the long example

In the result table, we can see that the long type benchmark

jbmc-regression/StringValueOf07.java has been verified by JBMC and Witness tool,

and the results are all False. This shows that one or more vulnerabilities in this

program have been detected, and the results we have obtained are consistent with the

expected results. Since the result of the JBMC verification tool is False, the

subsequent extraction of counterexamples and Witness are all executed normally. A

partial screenshot of the JBMC log is shown in the figure below, which shows in line

775 that there is a assertion failure in the program.

Fig. 3.9: JBMC log of the long example

Listing 3.20 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be a counterexample whose type is long in

57

the witness file. In line 5 in Listing 3.20, a counterexample of the benchmark is

provided, which is long value 0. This means that if the value of the Verifier data in the

benchmark program is 0L, there may be a weakness in the program.

1. <edge source="61.257" target="65.272">

2. <data key="originfile">Main.java</data>

3. <data key="startline">13</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1l = 0L;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7. </edge>

Listing 3.21: Witness file of long example

After obtaining the counterexample, we inject it into the Validation Harness for

verification. We modify and run the designed Validation Harness template, and then

verify the correctness of the program through the JUnit framework. After removing

the import statement, the code of modified Validation Harness is shown in Listing

3.22. In line 7 of the code, when the nodetLong() method of the Verifier class is

called, the PowerMock framework will return an int value of 0L. A screenshot of part

of the log after verification by JUnit is shown in Fig. 3.10. In the 9th line of the log,

we can see that there is an error in the 16th line of the Validation Harness.java

program, which indicates that the program has vulnerabilities and the counterexample

we obtained is effective.

1. @RunWith(PowerMockRunner.class)

2. public class ValidationHarness {

3. @Test

4. @PrepareForTest(Verifier.class)

5. public void testCallStaticMethod() {

6. PowerMockito.mockStatic(Verifier.class);

7. PowerMockito.when(Verifier.nondetLong()).thenReturn(0L);

8. Main.main(new String[0]);

9. }

10. }

Listing 3.22: Validation Harness of int example

58

Fig. 3.10: Witness tool log of the long example

3.4.4 Boolean Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4. public static void main(String[] args) {

5. boolean booleanValue = Verifier.nondetBoolean();

6. String tmp = String.valueOf(booleanValue);

7. assert tmp.equals("true");

8. }

9. }

Listing 3.23: Code of boolean example: StringValueOf04.java

Listing 3.21 is a benchmark that calls the Verifier class to generate boolean type data.

Its path in the sv-benchmarks folder is java/jbmc-regression/StringValueOf04.java.

In the code, the Verifier class is called in line 5, which provides a random boolean

value to the variable booleanValue. In line 6 of the code, the ValueOf() method of the

String class is called to convert the variable booleanValue of type boolean into a

string tmp. Line 7 compares the converted string tmp with the boolean value "true".

Obviously, when the generated boolean type random value is false, an assertion error

will occur. Thus, the assert statement will fail as expected.

The first step we put this program path into the set file, which is located in

sv-benchmarks/java folder, and run our extension tool. The following Fig. 3.11 is the

59

output result table of our tool on the web page.

Fig. 3.11: Result of the boolean example

We can see that the boolean type benchmark jbmc-regression/StringValueOf04.java

has been verified by JBMC and Witness tool, and the results are all False. This shows

that one or more vulnerabilities in this program have been detected, and the results we

have obtained are consistent with the expected results. Since the result of the JBMC

verification tool is False, the subsequent extraction of counterexamples and Witness

are all executed normally. A partial screenshot of the JBMC log is shown in the figure

below, which shows in line 330 that there is a assertion failure in the program.

Fig. 3.12: JBMC log of the long example

Listing 3.22 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be a counterexample whose type is boolean

in the witness file. In line 5 in Listing 3.22, a counterexample of the benchmark is

provided, which is boolean value 0. This means that if the value of the Verifier data in

the benchmark program is false, there may be a weakness in the program.

1. <edge source="48.104" target="49.107">

2. <data key="originfile">Main.java</data>

3. <data key="startline">13</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1i = 0;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7. </edge>

60

Listing 3.24: Witness file of boolean example

After obtaining the counterexample, we inject it into the Validation Harness for

verification. The process and results of this step are similar to the above, and a similar

error was reported, which indicates that the program has vulnerabilities and the

counterexample we obtained is effective.

3.4.5 Char Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4. public static void main(String[] args) {

5. char c = Verifier.nondetChar();

6. assert Character.isLetter(c);

7. }

8. }

Listing 3.25: Code of char example: StaticCharMethods04.java

Listing 3.23 is a benchmark that calls the Verifier class to generate char type data. Its

path in the sv-benchmarks folder is java/jbmc-regression/StaticCharMethods04.java.

In the code, the Verifier class is called in line 5, which provides a random char value

to the variable c. In line 6 of the code, the isLetter() method of the Character class is

called to determine whether char c is a letter. Obviously, if the random char value is

not a letter, an assertion false will occur.

We put this program path into the set file and run our extension tool. The following

Fig. 3.13 is the output result table of our tool on the web page.

61

Fig. 3.13: Result of the char example

We can see that the char type benchmark jbmc-regression/StaticCharMethods04 has

been verified by JBMC and Witness tool, and the results are all False. Since the result

of the JBMC verification tool is False, the subsequent extraction of counterexamples

and Witness are executed. A partial screenshot of the JBMC log is shown in the figure

below, which shows in line 227 that there is a assertion failure in the program.

Fig. 3.14: JBMC log of the char example

Listing 3.24 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be a counterexample whose type is char in

the witness file. In line 5 in Listing 3.24, a counterexample of the benchmark is

provided, which is char value 60. 60 corresponds to “<” in Java, which is a symbol,

not a letter. This means that if the value of the Verifier data in the benchmark program

is 60, there may be a weakness in the program.

1. <edge source="21.93" target="51.104">

2. <data key="originfile">Main.java</data>

3. <data key="startline">13</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1i = 60;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7. </edge>

Listing 3.26: Witness file of char example

After obtaining the counterexample, we inject it into the Validation Harness for

62

verification. The process and results of this step are similar to the above, and a similar

error was reported, which indicates that the program has vulnerabilities and the

counterexample we obtained is effective.

3.4.6 Float Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4.
5. public static void main(String[] args) {

6. float x = Verifier.nondetFloat();

7. Main inst = new Main();

8. inst.test(x);

9. }

10.
11. public void test(float x) {

12. System.out.println("Testing FNEG");

13. float y = -x;

14. if (y > 0) System.out.println("branch -x > 0");

15. else {

16. assert false;

17. System.out.println("branch -x <= 0");

18. }

19. }

20. }

Listing 3.27: Code of float example: ExSymExeFNEG_false.java

Listing 3.25 is a benchmark that calls the Verifier class to generate float type data. Its

path in the sv-benchmarks folder is java/jpf-regression/ExSymExeFNEG_false.java.

In the code, the Verifier class is called in line 6, which provides a random float value

to the variable x. Line 7 instantiates an object inst, and the 8th line calls the test()

method, where the parameter is x. In the test() method, the float variable y is assigned

the value -x. There is an if statement on line 14, which asserts false when y is less

than or equal to 0. Therefore, if the random float value is not less than 0, an assertion

63

false will occur.

We put this program path into the set file and run our extension tool. The following

Fig. 3.15 is the output result table of our tool on the web page.

Fig. 3.15: Result of the float example

We can see that the float type benchmark jpf-regression/ExSymExeFNEG_false.java

has been verified by JBMC and Witness tool, and the results are all False. Since the

result of the JBMC verification tool is False, the subsequent extraction of

counterexamples and Witness are executed. A partial screenshot of the JBMC log is

shown in the figure below, which shows in line 523 that there is a assertion failure in

the program.

Fig. 3.16: JBMC log of the float example

Listing 3.26 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be a counterexample whose type is float in

the witness file. In line 5 in Listing 3.28, a counterexample of the benchmark is

provided, which is float value 0. This means that if the value of the Verifier data in

the benchmark program is 0.0f, there may be a weakness in the program.

1. <edge source="59.151" target="79.162">

2. <data key="originfile">Main.java</data>

3. <data key="startline">32</data>

4. <data key="threadId">0</data>

64

5. <data key="assumption">anonlocal::1f = 0.0f;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7. </edge>

Listing 3.28: Witness file of float example

After obtaining the counterexample, we inject it into the Validation Harness for

verification. The process and results of this step are similar to the above, and a similar

error was reported, which indicates that the program has vulnerabilities and the

counterexample we obtained is effective.

3.4.7 Double Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. public class Main {

4.
5. public static void main(String[] args) {

6. double x = Verifier.nondetDouble();

7.
8. Main inst = new Main();

9. inst.test(x);

10. }

11.
12. public void test(double x) {

13.
14. long res = (long) ++x;

15. if (res > 0) {

16. assert false;

17. System.out.println("x >0");

18. } else System.out.println("x <=0");

19. }

20. }

Listing 3.29: Code of double example: ExSymExeD2L_false.java

Listing 3.27 is a benchmark that calls the Verifier class to generate double type data.

65

Its path in the sv-benchmarks folder is java/jpf-regression/ExSymExeD2L_false.java.

In the code, the Verifier class is called in line 6, which provides a random double

value to the variable x. Line 8 instantiates an object inst, and the 9th line calls the test()

method, where the parameter is x. In the test() method, the long variable res is

assigned the value x+1. There is an if statement on line 15, which asserts false when

res is greater than 0. Therefore, if the random double value is not less than 0, an

assertion false will occur.

We put this program path into the set file and run our extension tool. The following

Fig. 3.17 is the output result table of our tool on the web page.

Fig. 3.17: Result of the double example

We can see that the double type benchmark jpf-regression/ExSymExeD2L_false.java

has been verified by JBMC and Witness tool, and the results are all False. Since the

result of the JBMC verification tool is False, the subsequent extraction of

counterexamples and Witness are executed. A partial screenshot of the JBMC log is

shown in the figure below, which shows in line 359 that there is a assertion failure in

the program.

Fig. 3.18: JBMC log of the double example

Listing 3.28 shows part of the code in witness file produced by JBMC. The result of

66

JBMC execution is false, so there should be a counterexample whose type is double in

the witness file. In line 5 in Listing 3.30, a counterexample of the benchmark is

provided, which is float value 0.0. This means that if the value of the Verifier data in

the benchmark program is 0.0, there may be a weakness in the program.

1. <edge source="60.116" target="80.127">

2. <data key="originfile">Main.java</data>

3. <data key="startline">32</data>

4. <data key="threadId">0</data>

5. <data key="assumption">anonlocal::1d = 0.0;</data>

6. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

7.</edge>

Listing 3.30: Witness file of double example

After obtaining the counterexample, we inject it into the Validation Harness for

verification. The process and results of this step are similar to the above, and a similar

error was reported, which indicates that the program has vulnerabilities and the

counterexample we obtained is effective.

3.4.8 Multiple Verifiers Example

1. import org.sosy_lab.sv_benchmarks.Verifier;

2.
3. class Main {

4. public static void main(String[] args) {

5. int v1 = Verifier.nondetInt();

6. int v2 = Verifier.nondetInt();

7. assert v1 == v2; // should be able to fail

8. }

9. }

Listing 3.31: Code of multiple verifiers example: return2.java

Listing 3.31 is a benchmark that calls the Verifier class twice to generate int type data.

Its path in the sv-benchmarks folder is java/jbmc-regression/return2.java.

67

In the code, the Verifier class is called in line 5 and line 6, which provides two

random int values to the variable v1 and the variable v2. In line 7, there is an assert

statement to compare the two variables. Therefore, if the two int variables are not

equal, an assertion false will occur.

We put this program path into the set file and run our extension tool. The following

Fig. 3.19 is the output result table of our tool on the web page.

Fig. 3.19: Result of the multiple verifiers example

We can see that the multiple verifiers benchmark jbmc-regression/return2.java has

been verified by JBMC and Witness tool, and the results are all False. Since the result

of the JBMC verification tool is False, the subsequent extraction of counterexamples

and Witness are executed. A partial screenshot of the JBMC log is shown in the figure

below, which shows in line 235 that there is a assertion failure in the program.

Fig. 3.20: JBMC log of the multiple verifiers example

Listing 3.32 shows part of the code in witness file produced by JBMC. The result of

JBMC execution is false, so there should be two counterexamples in the witness file.

In line 6 and line 14 in Listing 3.32, two counterexample of the benchmark are

provided, which are int values 1 and 0. This means that if the values of the Verifier

data in the benchmark program is 1 and 0, there may be a weakness in the program.

68

1. <node id="20.95"/>

2. <edge source="20.95" target="24.112">

3. <data key="originfile">Main.java</data>

4. <data key="startline">13</data>

5. <data key="threadId">0</data>

6. <data key="assumption">anonlocal::1i = 1;</data>

7. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

8. </edge>

9. <node id="24.112"/>

10.<edge source="24.112" target="55.123">
11. <data key="originfile">Main.java</data>

12. <data key="startline">14</data>

13. <data key="threadId">0</data>

14. <data key="assumption">anonlocal::2i = 0;</data>

15. <data key="assumption.scope">java::Main.main:([Ljava/lang/String;)V</data>

16.</edge>

Listing 3.32: Witness file of multiple verifiers example

After obtaining the two counterexamples, we inject them into the Validation Harness

for verification. We modify and run the designed Validation Harness template, and

then verify the correctness of the program through the JUnit framework. After

removing the import statement, the code of modified Validation Harness is shown in

Listing 3.33. In line 7 of the code, when the nodetInt() method of the Verifier class is

called the first time, the PowerMock framework will return an int value of 1, and

when it is called the second time it will get an int value of 0. A screenshot of part of

the log after verification by JUnit is shown in Fig. 3.21. In the 8th line of the log, we

can see that there is an error in the 16th line of the Validation Harness.java program,

which indicates that the program has vulnerabilities and the counterexamples we

obtained are effective.

1. @RunWith(PowerMockRunner.class)

2. public class ValidationHarness {

3. @Test

69

4. @PrepareForTest(Verifier.class)

5. public void testCallStaticMethod() {

6. PowerMockito.mockStatic(Verifier.class);

7. PowerMockito.when(Verifier.nondetInt()).thenReturn(1).thenReturn(0);

8. Main.main(new String[0]);

9. }

10. }

Listing 3.33: Validation Harness of multiple verifiers example

Fig. 3.21: Witness tool log of the multiple verifiers example

3.4.9 No Verifier Example

1. public class Main {

2. public static void main(String[] args) {

3. try {

4. Object x = new Integer(0);

5. String y = (String) x;

6. } catch (ClassCastException exc) {

7. assert false;

8. }

9. }

10. }

Listing 3.34: Code of no verifier example: ClassCastException1.java

Listing 3.34 is a benchmark that does not call the Verifier class. Its path in the

sv-benchmarks folder is java/jbmc-regression/ClassCastException1.java.

We can see that the Verifier class is not called in the code. In lines 3 to 8 of the code,

there is a try-catch code block. It converts the Integer class to the String class, which

70

will throw an exception. In line 7, there is an assert statement. Therefore, if a class

cast exception is caught, the assertion failure will occur.

We put this program path into the set file and run our extension tool. The following

Fig. 3.22 is the output result table of our tool on the web page.

Fig. 3.22: Result of the no verifier example

We can see that the no verifier benchmark jbmc-regression/ClassCastException1.java

has been verified by JBMC and Witness tool, and the results are all False. A partial

screenshot of the JBMC log is shown in the figure below, which shows in line 183

that there is a assertion failure in the program.

Fig. 3.23: JBMC log of the no verifier example

In this program, since the methods of the Verifier class are not called, no

counterexamples are generated. This method of verifying software vulnerabilities

through witness is meaningless. However, our tool can be used normally, because in

this case, the Validation Harness code is shown in Listing 3.35. The Mock method in

the sixth line of the code does not have any effect, so it is equivalent to verifying the

software directly through JUnit, and we can also get the expected results.

1. @RunWith(PowerMockRunner.class)

2. public class ValidationHarness {

3. @Test

4. @PrepareForTest(Verifier.class)

71

5. public void testCallStaticMethod() {

6. PowerMockito.mockStatic(Verifier.class);

7. Main.main(new String[0]);

8. }

9. }

Listing 3.35: Validation Harness of no verifier example

3.4.10 Summary

In this subsection, we give a lot of examples to verify the correctness of the algorithm

in this chapter and test whether it achieves the expected effect. The examples we use

contain 7 basic types in the Java language, including short, int, long, boolean, char,

float and double. We failed to use the short type benchmark whose verification result

was False, and did not verify the byte type. These shortcomings are all caused by the

test set. In addition, our tool supports multi-file verification. The unified verification

results of the examples in this subsection are shown in Figure 3.24.

Fig. 3.24: Result of all the examples mentioned in this subsection

72

Chapter 4 Experimental Evaluation

In this chapter, we focus on describing the experimental evaluation of the

implemented algorithms in Chapter 3. By verifying a large number of verification sets,

we can have a detailed evaluation of the effect of our algorithm. There are 5 sections

in this chapter. Section 4.1 introduces the benchmarks used in the program. Section

4.2 introduces required environment and configurations for the experimental

evaluation, including programming language, necessary libraries and so on. We

describe our objectives of the evaluation in section 4.3. We show all the verification

results in Section 4.4 to illustrate the effectiveness of our algorithm, and analyze the

results to reveal the advantages and disadvantages of our algorithm. Finally, we

explained the reasons for the limitations of the algorithm. We discuss about the threats

to validity in Section 4.5.

4.1 Description of the benchmarks

The benchmark programs used in our experimental evaluation are all derived from

SV-COMP, and we have many ways to obtain a complete verification set. One way is

to get all the benchmarks on the official website of the competition:

https://sv-comp.sosy-lab.org/2021, or in the relevant GitHub repository:

https://github.com/sosy-lab/sv-benchmarks. In this project, we only focus on

benchmarks about the Java language, so the programs we need are in the /java folder.

The files in the Java folder are shown in Figure 4.1.

73

Fig. 4.1: sv-benchmark/java

In this folder, the part we need to pay attention to in this project includes folders

containing several benchmark programs, such as jbmc-gression, the folder common

containing Verifier, and the set file ReachSafety.set. Among them, the folder where

the benchmark is located contains the program's .java file and related YAML files.

They are mentioned in Figure 3.2 in subsection 3.3.1 and explained. The following

list 4.1 is a complete benchmark code:

1. /*

2. * Origin of the benchmark:

3. * license: 4-clause BSD (see /java/jbmc-regression/LICENSE)

4. * repo: https://github.com/diffblue/cbmc.git

5. * branch: develop

6. * directory: regression/cbmc-java/assert1

7. * The benchmark was taken from the repo: 24 January 2018

8. */

9. import org.sosy_lab.sv_benchmarks.Verifier;

10.
11.class Main {
12. public static void main(String[] args) {

13. int i = Verifier.nondetInt();

74

14.
15. if (i >= 10) assert i >= 10 : "my super assertion"; // should hold

16.
17. if (i >= 20) assert i >= 10 : "my super assertion"; // should hold

18. }

19. }

Listing 4.1: assert1.java

In the benchmark program assert1.java, the first to eighth lines are the comments of

the program, indicating the version, location, and time of the program. The import

statement on line 9 is used to import the Verifier class, which is used to generate

Verifier type variables by calling static methods. The code below is the program that

needs to be verified. There is often an assert statement in the program to detect

software vulnerabilities.

4.2 Setup

This section is to describe in detail the environment in which we design and

implement the algorithm program, including the programming language, Java and

Python. In addition, we also explained some libraries and dependencies required by

the program in this section, as well as their versions.

4.2.1 Programming language

The verification object of our project is a Java program, so we must install the Java

Development Kit (JDK) before the project runs. JDK is available to download and

install at: https://www.oracle.com/java/technologies/javase-downloads.html. JDK

version used in the program is 14.0.2.

We designed and implemented several scripts by Python, and they control the process

of the verification execution. Python is available to install at the official website:

https://www.oracle.com/java/technologies/javase-downloads.html

75

https://www.python.org/downloads/. Python version used in the program is 3.8.10.

Then for this project, the following necessary Python libraries should also be

installed:

 subprocess

 sys

 networkx

 flask

 yaml

4.2.2 Libraries and tools

JBMC verification tool is the core of the program, which is based on CBMC. CBMC

is freely download on the GitHub repository: https://github.com/diffblue/cbmc. In the

CBMC project, JBMC tool is in the jbmc folder. For instructions on using JBMC,

such as compiling and running, and verifying samples, you can view the Readme file

on GitHub, or visit the website: http://www.cprover.org/jbmc/. The JBMC version in

our program is 5.27.0.

Powermock is the mock framework we used, which is introduced on the GitHub

website: https://github.com/powermock/powermock. In the implementation of the

project, we just use the relative .jar files, which we can download from

https://mvnrepository.com. The following dependencies are necessary:

 mockito-core-2.23.0.jar

 powermock-api-mockito2-2.0.2.jar

 powermock-mockito2-2.0.2-full.jar

 objenesis-3.0.1.jar

 javassist-3.24.0-GA.jar

 hamcrest-core-1.3.jar

https://www.python.org/downloads/
https://github.com/diffblue/cbmc
http://www.cprover.org/jbmc/
https://github.com/powermock/powermock
https://mvnrepository.com

76

 cglib-nodep-3.2.9.jar

 junit-4.12.jar

The version we used is shown in the list. Finally, the environment variables need to be

set using some commands. Here we added them to the file /etc/bash.bashrc (Linux

OS).

Fig. 4.2: Configure the environment variables of Powermock

4.2.3 Running process

The following list is the specification of the hardware used in this project:

 Laptop model: MacBook Pro (16-inch, 2019)

 Processor: 2.6 GHz Intel Core i7

 RAM: 16GB 2667 MHz DDR4

 Operating System: Linux Ubuntu on VMware Fusion (Version 20.04.2.0)

The whole project of the dissertation has been push to my GitHub repository. It is

available to clone the project by command line or download the zip file from:

https://github.com/SongtaoWang-98/JBMC_extension.git. There are mainly 3 Python

scripts, a Validation Harness template file and other 4 folders in the project. The

functions of these folders include saving logs, providing verification benchmarks, and

providing required Verifier class.

The complete sv-benchmarks folder can be obtained from the following website:

https://github.com/sosy-lab/sv-benchmarks. And in the sv-benchmarks folder, we

mainly focus on the benchmark programs in the Java area, that is, the Java program in

https://github.com/SongtaoWang-98/JBMC_extension.git
https://github.com/sosy-lab/sv-benchmarks

77

/java folder. In addition, my project file also contains the entire sv-benchmarks folder,

which can be used directly.

After the installations and configurations, our verification tool is ready to run. First,

we should run the tool by the command line:

python3 app.py

Now we can use the web application on http://127.0.0.1:5000/index to execute the

verification for the benchmarks. The simple interface is shown in Fig. 4.3.

Fig. 4.3: Front-end interface

Then we should make sure which program to verify, and modify the Java.set file in

sv-benchmarks/java folder. The following Fig 4.4 shows the content of the set file in

subsection 3.4.10:

Fig. 4.4: test.set file

Finally it is easy to select the options and the path of the set file, and click the execute

http://127.0.0.1:5000/index

78

button. After several seconds we can get a result table on the web page, as is shown in

Fig. 3.24.

4.3 Objectives of the evaluation

The overall goal of the experimental evaluation in this chapter is to show the results

of using the verification tool we designed and implemented, and to illustrate its

effectiveness in Java software verification. Through actual running tests, we can

better explain the function and value of our software.

The specific objectives of this chapter are as follows:

 Test my verification tool by SV-COMP benchmarks, and organize the results of

execution.

 Analyze the output results, especially compare the results between JBMC and my

tool.

 Compare with the previous related extension and illustrate the innovations and

improvements in my extension.

 Find out the deficiencies that still exist in my extension tool, and explain the

reasons.

4.4 Results

In section 4.3, we show some of the results table after testing our extension tool. Here

are three tables of the verification sets: jbmc-regression, jpf-regression and

jdart-regression. The results are shown in Table 4.1, Table 4.2 and Table 4.3.

NO Test suite Title name Type Correct output JBMC output Witness output Comment

1 jbmc-regression ArithmeticException1 int False False False

2 jbmc-regression ArithmeticException5 True True True No verifier type

79

3 jbmc-regression ArithmeticException6 int False False False

4 jbmc-regression ArrayIndexOutOfBoundsException1 int False False False

5 jbmc-regression ArrayIndexOutOfBoundsException2 int False False False

6 jbmc-regression ArrayIndexOutOfBoundsException3 int False False Unknown Array index should be <

length

7 jbmc-regression BufferedReaderReadLine string False Unknown Unknown Execution time out

8 jbmc-regression CharSequenceBug string False Unknown Unknown

9 jbmc-regression CharSequenceToString string True False True

10 jbmc-regression ClassCastException1 False False False No verifier type

11 jbmc-regression ClassCastException2 True True True No verifier type

12 jbmc-regression ClassCastException3 False False False No verifier type

13 jbmc-regression Class_method1 True True True No verifier type

14 jbmc-regression Inheritance1 True True True No verifier type

15 jbmc-regression NegativeArraySizeException1 False False False No verifier type

16 jbmc-regression NegativeArraySizeException2 False False False No verifier type

17 jbmc-regression NullPointerException1 True False True No verifier type

18 jbmc-regression NullPointerException2 False False False No verifier type

19 jbmc-regression NullPointerException3 False False False No verifier type

20 jbmc-regression NullPointerException4 False False False No verifier type

21 jbmc-regression RegexMatches01 True Unknown Unknown Execution time out

22 jbmc-regression RegexMatches02 string False Unknown Unknown Execution time out

23 jbmc-regression RegexSubstitution01 True False True No verifier type

24 jbmc-regression RegexSubstitution02 string False False False Multiple verifiers

25 jbmc-regression RegexSubstitution03 True False True No verifier type

26 jbmc-regression StaticCharMethods01 True True True No verifier type

27 jbmc-regression StaticCharMethods02 string False False False

28 jbmc-regression StaticCharMethods03 string False False False

29 jbmc-regression StaticCharMethods04 char False False False

30 jbmc-regression StaticCharMethods05 string False False False Null pointer exception

31 jbmc-regression StaticCharMethods06 string True False True Null pointer exception

32 jbmc-regression StringBuilderAppend01 True Unknown True No verifier type

33 jbmc-regression StringBuilderAppend02 string False False False Multiple verifiers

34 jbmc-regression StringBuilderCapLen01 True False True No verifier type

35 jbmc-regression StringBuilderCapLen02 string False False Unknown

36 jbmc-regression StringBuilderCapLen03 string False False Unknown

37 jbmc-regression StringBuilderCapLen04 string False False Unknown

38 jbmc-regression StringBuilderChars01 True False True No verifier type

39 jbmc-regression StringBuilderChars02 string False False Unknown

40 jbmc-regression StringBuilderChars03 string False False Unknown

41 jbmc-regression StringBuilderChars04 string False Unknown Unknown Execution time out

42 jbmc-regression StringBuilderChars05 string False False Unknown

43 jbmc-regression StringBuilderChars06 string False False Unknown

44 jbmc-regression StringBuilderConstructors01 string True True False

80

45 jbmc-regression StringBuilderConstructors02 string False False Unknown

46 jbmc-regression StringBuilderInsertDelete01 True False True No verifier type

47 jbmc-regression StringBuilderInsertDelete02 string False False False Multiple verifiers

48 jbmc-regression StringBuilderInsertDelete03 string False False False Multiple verifiers

49 jbmc-regression StringCompare01 True False True No verifier type

50 jbmc-regression StringCompare02 string False False Unknown Multiple verifiers

51 jbmc-regression StringCompare03 string False False Unknown Multiple verifiers

52 jbmc-regression StringCompare04 string False Unknown Unknown Execution time out

53 jbmc-regression StringCompare05 string False False Unknown

54 jbmc-regression StringConcatenation01 string True False Unknown Multiple verifiers

55 jbmc-regression StringConcatenation02 string False False Unknown Multiple verifiers

56 jbmc-regression StringConcatenation03 string False False Unknown Multiple verifiers

57 jbmc-regression StringConcatenation04 string False False Unknown

58 jbmc-regression StringConstructors01 True False True No verifier type

59 jbmc-regression StringConstructors02 string False False Unknown

60 jbmc-regression StringConstructors03 string False False Unknown Multiple verifiers

61 jbmc-regression StringConstructors04 string False False Unknown

62 jbmc-regression StringConstructors05 string False False Unknown

63 jbmc-regression StringContains01 string False Unknown Unknown Execution time out

64 jbmc-regression StringContains02 string False False Unknown

65 jbmc-regression StringIndexMethods01 True True Unknown No verifier type

66 jbmc-regression StringIndexMethods02 string False Unknown Unknown Execution time out

67 jbmc-regression StringIndexMethods03 string False Unknown Unknown Execution time out

68 jbmc-regression StringIndexMethods04 string False False Unknown

69 jbmc-regression StringIndexMethods05 string False Unknown Unknown

70 jbmc-regression StringMiscellaneous01 True False True No verifier type

71 jbmc-regression StringMiscellaneous02 string False False Unknown

72 jbmc-regression StringMiscellaneous03 string False Unknown Unknown Execution time out

73 jbmc-regression StringMiscellaneous04 True False True No verifier type

74 jbmc-regression StringStartEnd01 True True True No verifier type

75 jbmc-regression StringStartEnd02 string False False False Multiple verifiers

76 jbmc-regression StringStartEnd03 string False False False Multiple verifiers

77 jbmc-regression StringValueOf01 True False True No verifier type

78 jbmc-regression StringValueOf02 string False False Unknown

79 jbmc-regression StringValueOf03 string False False Unknown

80 jbmc-regression StringValueOf04 boolean False False False

81 jbmc-regression StringValueOf05 string False False False

82 jbmc-regression StringValueOf06 int False False False

83 jbmc-regression StringValueOf07 long False False False

84 jbmc-regression StringValueOf08 string False False False

85 jbmc-regression StringValueOf09 string False False False

86 jbmc-regression StringValueOf10 string False False Unknown

87 jbmc-regression SubString01 True False True No verifier type

81

88 jbmc-regression SubString02 string False False Unknown

89 jbmc-regression SubString03 string False False Unknown

90 jbmc-regression TokenTest01 True Unknown Unknown Execution time out

91 jbmc-regression TokenTest02 string False Unknown Unknown Execution time out

92 jbmc-regression Validate01 True False True No verifier type

93 jbmc-regression Validate02 string False False Unknown Multiple verifiers

94 jbmc-regression aastore_aaload1 int True Unknown Unknown Execution time out

95 jbmc-regression array1 int True Unknown Unknown Execution time out

96 jbmc-regression array2 int True True True

97 jbmc-regression arraylength1 int True True True

98 jbmc-regression arrayread1 int True True True

99 jbmc-regression assert1 int True True True

100 jbmc-regression assert2 int False False False

101 jbmc-regression assert3 int False False False

102 jbmc-regression assert4 int False False False

103 jbmc-regression assert5 int True True True

104 jbmc-regression assert6 int True True True

105 jbmc-regression astore_aload1 True True True No verifier type

106 jbmc-regression athrow1 False False False No verifier type

107 jbmc-regression basic1 True True True No verifier type

108 jbmc-regression bitwise1 int True True True

109 jbmc-regression boolean1 boolean True True True

110 jbmc-regression boolean2 boolean True True True

111 jbmc-regression bug-test-gen-095 string False False Unknown

112 jbmc-regression bug-test-gen-119-2 True False True No verifier type

113 jbmc-regression bug-test-gen-119 boolean True False True Null pointer exception

114 jbmc-regression calc int True False True Multiple verifiers

115 jbmc-regression cast1 int True True True

116 jbmc-regression catch1 True True True No verifier type

117 jbmc-regression char1 string True True False

118 jbmc-regression charArray string True False True Null pointer exception

119 jbmc-regression classtest1 True True True No verifier type

120 jbmc-regression const1 True True True No verifier type

121 jbmc-regression constructor1 True True True No verifier type

122 jbmc-regression enum1 True True True No verifier type

123 jbmc-regression exceptions1 False False False No verifier type

124 jbmc-regression exceptions10 False False False No verifier type

125 jbmc-regression exceptions11 False False False No verifier type

126 jbmc-regression exceptions12 False False False No verifier type

127 jbmc-regression exceptions13 False False False No verifier type

128 jbmc-regression exceptions14 True True True No verifier type

129 jbmc-regression exceptions15 True True True No verifier type

130 jbmc-regression exceptions16 int False False False

82

131 jbmc-regression exceptions18 True True True No verifier type

132 jbmc-regression exceptions2 False False False No verifier type

133 jbmc-regression exceptions3 False False False No verifier type

134 jbmc-regression exceptions4 True True True No verifier type

135 jbmc-regression exceptions5 True True True No verifier type

136 jbmc-regression exceptions6 False False False No verifier type

137 jbmc-regression exceptions7 False False False No verifier type

138 jbmc-regression exceptions8 False False False No verifier type

139 jbmc-regression exceptions9 True True True No verifier type

140 jbmc-regression fcmpx_dcmpx1 True True True No verifier type

141 jbmc-regression iarith1 True True True No verifier type

142 jbmc-regression iarith2 True True True No verifier type

143 jbmc-regression if_acmp1 True True True No verifier type

144 jbmc-regression if_expr1 int True True True

145 jbmc-regression if_icmp1 int True True True

146 jbmc-regression ifxx1 True True True No verifier type

147 jbmc-regression instanceof1 True True True No verifier type

148 jbmc-regression instanceof2 True False True No verifier type

149 jbmc-regression instanceof3 True True True No verifier type

150 jbmc-regression instanceof4 True True True No verifier type

151 jbmc-regression instanceof5 True True True No verifier type

152 jbmc-regression instanceof6 True True True No verifier type

153 jbmc-regression instanceof7 True True True No verifier type

154 jbmc-regression instanceof8 True True True No verifier type

155 jbmc-regression interface1 False False False No verifier type

156 jbmc-regression java_append_char boolean False False True

157 jbmc-regression lazyloading4 True True True No verifier type

158 jbmc-regression list1 int True True Unknown

159 jbmc-regression long1 True True True No verifier type

160 jbmc-regression lookupswitch1 int True True True

161 jbmc-regression multinewarray True True True No verifier type

162 jbmc-regression overloading1 True True True No verifier type

163 jbmc-regression package1 True True True No verifier type

164 jbmc-regression putfield_getfield1 True True True No verifier type

165 jbmc-regression putstatic_getstatic1 True True True No verifier type

166 jbmc-regression recursion2 True True True No verifier type

167 jbmc-regression return1 False False False No verifier type

168 jbmc-regression return2 int False False False Multiple verifiers

169 jbmc-regression store_load1 True True True No verifier type

170 jbmc-regression swap1 True True True No verifier type

171 jbmc-regression synchronized True False True No verifier type

172 jbmc-regression tableswitch1 int True True True

173 jbmc-regression uninitialised1 True True True No verifier type

83

174 jbmc-regression virtual1 True True True No verifier type

175 jbmc-regression virtual2 False False False No verifier type

176 jbmc-regression virtual4 True True True No verifier type

177 jbmc-regression virtual_function_unwinding True True True No verifier type

Table 4.1: Result of jbmc-regression

NO Test suite Title name Type Correct output JBMC output Witness output Comment

1 jpf-regression ExDarko_false int False False Unknown Multiple verifiers

2 jpf-regression ExDarko_true int True True True Multiple verifiers

3 jpf-regression ExException_false int False False False Null pointer exception

4 jpf-regression ExException_true boolean True True True

5 jpf-regression ExGenSymExe_false int False False Unknown

6 jpf-regression ExGenSymExe_true int True True True

7 jpf-regression ExLazy_false int False False Unknown

8 jpf-regression ExLazy_true int True True True Multiple verifiers

9 jpf-regression ExMIT_false int False False Unknown

10 jpf-regression ExMIT_true int True True True

11 jpf-regression ExSymExe10_false int False False True

12 jpf-regression ExSymExe10_true int True True True

13 jpf-regression ExSymExe11_false int False False False

14 jpf-regression ExSymExe11_true int True True True

15 jpf-regression ExSymExe12_false int False False False

16 jpf-regression ExSymExe12_true short True True True

17 jpf-regression ExSymExe13_false int False False False Multiple verifiers

18 jpf-regression ExSymExe13_true int True True True

19 jpf-regression ExSymExe14_false int False False True

20 jpf-regression ExSymExe14_true short True True True

21 jpf-regression ExSymExe15_false int False False False

22 jpf-regression ExSymExe15_true short True True True

23 jpf-regression ExSymExe16_false False False False No verifier type

24 jpf-regression ExSymExe16_true True True True No verifier type

25 jpf-regression ExSymExe17_false False False False No verifier type

26 jpf-regression ExSymExe17_true True True True No verifier type

27 jpf-regression ExSymExe18_false int False False False

28 jpf-regression ExSymExe18_true True True True No verifier type

29 jpf-regression ExSymExe19_false int False False False Multiple verifiers

30 jpf-regression ExSymExe19_true int True True True

31 jpf-regression ExSymExe1_false int False False False Multiple verifiers

32 jpf-regression ExSymExe1_true True True True No verifier type

33 jpf-regression ExSymExe20_false int False False False Multiple verifiers

84

34 jpf-regression ExSymExe20_true True True True No verifier type

35 jpf-regression ExSymExe21_false int False False False Multiple verifiers

36 jpf-regression ExSymExe21_true True True True No verifier type

37 jpf-regression ExSymExe25_false int False False False Multiple verifiers

38 jpf-regression ExSymExe25_true True True True No verifier type

39 jpf-regression ExSymExe26_false int False False False

40 jpf-regression ExSymExe26_true True True True No verifier type

41 jpf-regression ExSymExe27_false int False False False Multiple verifiers

42 jpf-regression ExSymExe27_true True True True No verifier type

43 jpf-regression ExSymExe28_false int False False False Multiple verifiers

44 jpf-regression ExSymExe28_true True True True No verifier type

45 jpf-regression ExSymExe29_false int False False False Multiple verifiers

46 jpf-regression ExSymExe29_true True True True No verifier type

47 jpf-regression ExSymExe2_false int False False True Multiple verifiers

48 jpf-regression ExSymExe2_true True True True No verifier type

49 jpf-regression ExSymExe3_false int False False False Multiple verifiers

50 jpf-regression ExSymExe3_true True True True No verifier type

51 jpf-regression ExSymExe4_false int False False True Multiple verifiers

52 jpf-regression ExSymExe4_true True True True No verifier type

53 jpf-regression ExSymExe5_false int False False False Multiple verifiers

54 jpf-regression ExSymExe5_true True True True No verifier type

55 jpf-regression ExSymExe6_false int False False False Multiple verifiers

56 jpf-regression ExSymExe6_true True True True No verifier type

57 jpf-regression ExSymExe7_false int False False False

58 jpf-regression ExSymExe7_true int True True True

59 jpf-regression ExSymExe8_false int False False False Multiple verifiers

60 jpf-regression ExSymExe8_true True True True No verifier type

61 jpf-regression ExSymExe9_false False False False No verifier type

62 jpf-regression ExSymExe9_true True True True No verifier type

63 jpf-regression ExSymExeArrays_false False False False No verifier type

64 jpf-regression ExSymExeArrays_true True True True No verifier type

65 jpf-regression ExSymExeBool_false False False False No verifier type

66 jpf-regression ExSymExeBool_true True True True No verifier type

67 jpf-regression ExSymExeComplexMath_false False False False No verifier type

68 jpf-regression ExSymExeComplexMath_true True False True No verifier type

69 jpf-regression ExSymExeD2I_false False False False No verifier type

70 jpf-regression ExSymExeD2I_true double True True True

71 jpf-regression ExSymExeD2L_false double False False False

72 jpf-regression ExSymExeD2L_true double True True True

73 jpf-regression ExSymExeF2I_false False False False No verifier type

74 jpf-regression ExSymExeF2I_true float True True True

75 jpf-regression ExSymExeF2L_false float False False False

76 jpf-regression ExSymExeF2L_true float True True True

85

Table 4.2: Result of jpf-regression

77 jpf-regression ExSymExeFNEG_false float False False False

78 jpf-regression ExSymExeFNEG_true float True True True

79 jpf-regression ExSymExeGetStatic_false False False False No verifier type

80 jpf-regression ExSymExeGetStatic_true True True True No verifier type

81 jpf-regression ExSymExeI2D_false int False False False

82 jpf-regression ExSymExeI2D_true int True True True

83 jpf-regression ExSymExeI2F_false False False False No verifier type

84 jpf-regression ExSymExeI2F_true boolean True True True

85 jpf-regression ExSymExeLCMP_false long False Unknown Unknown

86 jpf-regression ExSymExeLCMP_true int True True True

87 jpf-regression ExSymExeLongBytecodes_false long False False False

88 jpf-regression ExSymExeLongBytecodes_true int True True True

89 jpf-regression ExSymExeResearch_false int False False False

90 jpf-regression ExSymExeResearch_true int True True True

91 jpf-regression ExSymExeSimple_false int False False False

92 jpf-regression ExSymExeSimple_true int True True True

93 jpf-regression ExSymExeSuzette_false int False False False

94 jpf-regression ExSymExeSuzette_true int True True True

95 jpf-regression ExSymExeSwitch_false int False False False

96 jpf-regression ExSymExeSwitch_true int True True True

97 jpf-regression ExSymExeTestAssignments_false int False False False

98 jpf-regression ExSymExeTestAssignments_true int True True True

99 jpf-regression ExSymExeTestClassFields_false int False False Unknown

100 jpf-regression ExSymExeTestClassFields_true int True True True

101 jpf-regression ExSymExe_false False False False No verifier type

102 jpf-regression ExSymExe_true True True True No verifier type

103 jpf-regression TestLazy_false int False False False Null pointer exception

104 jpf-regression TestLazy_true int True False True Null pointer exception

NO Test suite Title name Type Correct output JBMC output Witness output Comment

1 jdart-regression OverapproximationString01 string False False False Null pointer exception

2 jdart-regression URLDecoder01 string True False True Null pointer exception

3 jdart-regression URLDecoder02 string False False False Null pointer exception

4 jdart-regression addition01 int False Unknown Unknown Execution time out

5 jdart-regression array-iteration01 int False False False Multiple verifiers

6 jdart-regression boundcheck100 int False Unknown Unknown Execution time out

7 jdart-regression boundcheck200 int False Unknown Unknown Execution time out

8 jdart-regression boundcheck30 int False Unknown Unknown Execution time out

9 jdart-regression double2long double False False False

86

Table 4.3: Result of jdart-regression

In the three result tables, there are 8 columns in each table. They are “NO.”, “Test

suite”, “Title name”, “Type”, “Correct result”, “JBMC result”, “Witness result” and

“Comment”. The first column "NO." is used to record the number, and each table

starts counting from 1. It can be seen from the number that the three tables contain

177, 104 and 16 benchmarks respectively. The "Test suite" column shows the name of

the test set, indicating which test set the benchmark comes from. The names of the

three test sets we verified are "jbmc-regression", "jpf-regression" and

"jdart-regression". The "Title name" column is used to display the name of each

benchmark program. The "Type" column is used to indicate the type of data generated

by the Verifier class in the program. If the Verifier class is not called, the

corresponding result should be empty; if the Verifier class is called multiple times,

then the corresponding result of the program is the data type of the first call. Among

them, due to the selected benchmarks, the result of this column is one of the following

seven types: short, int, long, boolean, char, float, double. The following three columns

are the recorded results. "Correct result" records the expected correct result extracted

from the yml file; "JBMC result" records the result verified by the JBMC tool;

"Witness result" column is the result verified by the Witness extension tool. Among

them, the result of "True" program verification is successful, "False" indicates that the

verification result in the program is a failure, and "Unknown" indicates that the result

cannot be obtained due to reasons such as verification timeout.

The last column "Command" is a supplementary description of the verification result,

10 jdart-regression float float False False False Multiple verifiers

11 jdart-regression list2 int True True True

12 jdart-regression radians double False False True

13 jdart-regression shifting int False False False

14 jdart-regression shifting2 int False False False

15 jdart-regression shifting3 int False False False

16 jdart-regression startswith string True False Unknown Multiple verifiers

87

used to illustrate the special circumstances of the verification. In this experimental

evaluation, there are several results that often appear as follows. "No verifier type"

means that the Verifier class is not called to generate variables in this program, so

Witness does not play a role in this case. We will not do much research on the

examples in this case. "Multiple verifiers" indicates that this program calls the

Verifier class multiple times to generate variables, so that the program runs normally,

and multiple counterexample values are generated in the algorithm to verify. In this

case, the "Type" column shows the type of the variable generated when the method is

called for the first time. "Execution time out" means that the program execution has

timed out. This is because the execution took too long or used too much memory, and

hence no decision on whether the verification was successful or not could be made.

"Null pointer exception" means that JBMC has detected a null pointer exception. In

this case, there is no counterexample. The occurrence of the null pointer exception is

mostly related to the String type. In addition, the rest of the results are manually

recorded, used to annotate some specific situations.

4.5 Threats to validity

Judging from the results produced, the function and efficiency of our tools are in line

with expectations. From a functional point of view, our verification tool can integrate

JBMC and Witness counter-example verification two verification methods in a very

convenient way, and verify and output a large number of benchmark programs. For

most of the benchmark programs, the output of the JBMC verification results and the

results of the Witness extension tool are the same as the expected results. Only a small

part of the results have problems, which are basically caused by the String type, and

this is also the defect of this tool. In addition, there is a shortcoming in the

experimental evaluation stage is the lack of verification of a kind of data type, that is,

the byte type. This problem is caused by the test set we use, because the benchmarks

we use do not include programs that generate byte types in the Verifier class.

88

Compared with the previous related extension tools, our program has solved many

existing problems and made great improvements on this basis. First of all, our tool is

much easier to use, because we can directly verify the verification benchmarks

provided by SV-COMP without any changes. And we support multi-file verification

and front-end operations. Only need to operate in the web browser, you can verify a

large number of benchmarks at a time and get the result table, instead of verifying one

by one through the command line and manually sorting the results. For verified

software types, we have implemented verification of No verifier and multiple verifier

type software, and basically verified all data types, including float and double types.

In addition, we also tried to verify other test sets such as jpf-regression and

jdart-regression, and achieved good results.

89

Chapter 5 Related work

Java Bounded Model Checking (JBMC) has only gradually become a mature field

since 2018, so this relatively novel direction needs to be continuously supplemented

and expanded. Compared with JBMC, C Bounded Model Checking (CBMC) is more

mature. As the basis of the JBMC algorithm, CBMC has attracted people's attention

since 2014 [49]. Therefore, witness validators for C programs have been studied and

implemented by many people, and they have shown good results. MetaVal is a

witness validator for the C program developed by the team of the University of

Munich in Germany. It was submitted to SV-COMP 2020 and showed good results

[39]. During the verification process, it confirmed 3,653 violation witnesses and

16,376 correct witnesses. Such excellent results confirmed the effectiveness of

MetaVal. In addition, NITWIT, developed by the RWTH Aachen University team in

Germany, is another witness verification tool submitted to SV-COMP 2020. Due to its

smaller memory occupation, its verification speed is faster than other competitors

[50].

For the original JBMC tool, users usually use the command line to run it. In the

process of software verification, there are often hundreds of benchmarks that need to

be verified, so it is necessary to integrate other tools into JBMC. BenchExec is such a

tool, which is used in SV-COMP for reliable benchmarking and resource

measurement, and can be easily installed to run experimental comparisons and

produce results [51]. For Java programs, we extend the framework by introducing

new assertions for specifying attributes. And we also need to implement two

necessary files to complete the integration: tool information module and benchmark

definition [10].

Last year, someone proposed an idea to realize the witness verification of Java

programs, and realized the basic extension [11]. Her thinking and main goal are

90

similar to the realization of MetaVal and NITWIT: that is, to verify counterexamples

in the form of witnesses generated by software verification tools. The extension tool

she has implemented verifies the validity of the violations identified by the software

verifier for Java programs, and serves as a proof of the feasibility of verifying the

witness of Java programs [11]. However, she only implemented a fairly simple

algorithm, and there are still many problems with the verification of Java programs. In

this thsis, we made some adjustments and optimizations based on the

above-mentioned program witness verification method, and verified with SV-COMP

benchmarks. The methods and algorithms we have implemented are still relatively

rudimentary, but they have solved the shortcomings of the previous algorithms and

have effectively verified the software. After our research, the feasibility of the Java

program witness verification method has been further proved.

91

Chapter 6 Conclusion

The main work of this paper is to develop and evaluate an extension tool based on

JBMC, which is used to find Java software vulnerabilities. This idea is about the

implementation of witness verification, and it can prove the validity of witness

verification based on GraphML for the violation witness. The related extended

algorithm has been basically implemented. Although it is relatively rough and simple,

it has been able to show the possibility of witness verification in Java software

verification. In the extension tool, there are still some shortcomings due to the

imperfection of the algorithm and the defects of the framework or the benchmark

program used. In this dissertation, our main goal is to understand and master the

implemented algorithm, and to carry out further work and improvement.

Software verification has become very important today, because software security is

related to personal property and information security. The field of software

verification has gradually become a hot topic. As the implementation of Bounded

Model Checking algorithm, CBMC can effectively verify C programs. On top of this,

JBMC develops based on CBMC, which can verify vulnerabilities in Java programs.

As a more mature field, CBMC already has many extensions and developments,

including witness verification extensions, which can perform very well in SV-COMP.

As for JBMC, the extension based on witness verification is still in its infancy, only

with the idea and basic implementation.

In the previously completed projects based on witness verification, there are

shortcomings caused by various reasons. Our main task is to discover and improve

them. The following are the improvements we have completed in this thesis. First, we

are able to validate the counterexample with the original program, instead of

modifying the benchmarks and Verifier program. Second, we support verification for

benchmarks with multiple verifiers and no verifier, and also support almost all kinds

92

of data types. Furthermore, we verified more verification sets including jpf-regression

and jdart-regression, which further proves the effectiveness of our verification tool.

Besides, we designed and implemented a simple web application for the extension

tool, which supports multiple files inputting and integration of the produced results.

However, the project I implemented is still rough, and there are still some unsolved

problems in it. One very important point is that the String type is still not supported

by our witness verification tool, which is a big flaw in the implementation process.

Secondly, the algorithm should be optimized to deal with larger-scale programs,

because for the time being, our algorithm can only deal with benchmarks with a small

amount of code. In addition, our tool can be integrated with other automated testing

tools, such as BenchExec. Using mature automation tools can complete our

verification tasks more efficiently.

Finally, in the software design and thesis writing stage, I often find myself inadequate

in various aspects. Thanks to the Internet, I can learn about many fields that have

never been involved before, and gain a lot of new knowledge from them. Regarding

the field of software verification, it is likely to get faster development in the future,

and I will continue to pay attention to it and continue to learn and understand relevant

knowledge.

93

Bibliography

[1] Schildt, H., 2006. Java The Complete Reference, Seventh Edition. McGraw-Hill

Publishing, pp.6-10.

[2] Krill, P., 2021. 4 reasons to stick with Java -- and 4 reasons to dump it. [online]

InfoWorld. Available at:

<https://www.infoworld.com/article/2687995/4-reasons-to-stick-with-java.html> .

[3] Pypl.github.io. PYPL PopularitY of Programming Language index. [online]

Available at: <https://pypl.github.io/PYPL.html> .

[4] Mercer, J., Why is Java so popular for developers and programmers?. [online]

FRG Consulting. Available at:

<https://www.frgconsulting.com/blog/why-is-java-so-popular-developers/> .

[5] Docs.oracle.com. About the Java Technology (The Java™ Tutorials > Getting

Started > The Java Technology Phenomenon). [online] Available at:

<https://docs.oracle.com/javase/tutorial/getStarted/intro/definition.html> .

[6] Education, I., What is the JRE (Java Runtime Environment)?. [online] Ibm.com.

Available at: <https://www.ibm.com/cloud/learn/jre> .

[7] Livshits, V. and Lam, M., 2005. Finding security vulnerabilities in java

applications with static analysis. SSYM'05: Proceedings of the 14th conference on

USENIX Security Symposium, 14, p.18.

[8] Docs.oracle.com. 2021. Java Security Overview. [online] Available at:

<https://docs.oracle.com/javase/9/security/java-security-overview1.htm> .

94

[9] Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P. and Trtik, M., 2018. JBMC:

A Bounded Model Checking Tool for Verifying Java Bytecode. Computer Aided

Verification - 30th International Conference, volume 10981 of Lecture Notes in

Computer Science, pp.183-190.

[10] Cordeiro, L., Kroening, D. and Schrammel, P., 2018. Benchmarking of Java

Verification Tools at the Software Verification Competition (SV-COMP). [online]

arXiv.org. Available at: <https://arxiv.org/abs/1809.03739> .

[11] Tan, V., 2020. Security analyser tool for finding vulnerabilities in Java programs.

University of Manchester.

[12] Bekker, E., 2021. 2020 Data Breaches - The Most Significant Breaches of the

Year | IdentityForce®. [online] We Aren't Just Protecting You From Identity Theft.

We Protect Who You Are. Available at:

<https://www.identityforce.com/blog/2020-data-breaches> .

[13] ISO. 2021. ISO/IEC 27005:2018. [online] Available at:

<https://www.iso.org/standard/75281.html> .

[14] Upguard.com. 2021. What is a Vulnerability? | UpGuard. [online] Available at:

<https://www.upguard.com/blog/vulnerability#causes> .

[15] Handova, D., What are the different types of security vulnerabilities? | Synopsys.

[online] Software Integrity Blog. Available at:

<https://www.synopsys.com/blogs/software-security/types-of-security-vulnerabilities/

> .

[16] En.wikipedia.org. OWASP - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/OWASP> .

95

[17] Owasp.org. OWASP Top Ten Web Application Security Risks | OWASP.

[online] Available at: <https://owasp.org/www-project-top-ten/> .

[18] Cwe.mitre.org. 2021. CWE - CWE-1350: Weaknesses in the 2020 CWE Top 25

Most Dangerous Software Weaknesses (4.5). [online] Available at:

<https://cwe.mitre.org/data/definitions/1350.html> .

[19] Cvedetails.com. n.d. Vulnerability distribution of cve security vulnerabilities by

types. [online] Available at:

<https://www.cvedetails.com/vulnerabilities-by-types.php> .

[20] Meng, N., Nagy, S., Yao, D., Zhuang, W. and Argoty, G., 2018. Secure coding

practices in Java. Proceedings of the 40th International Conference on Software

Engineering,.

[21] Professionalqa.com. n.d. Software Verification |Professionalqa.com. [online]

Available at: <https://www.professionalqa.com/software-verification> .

[22] "IEEE Guide for Software Verification and Validation Plans," in IEEE Std

1059-1993 , vol., no., pp.1-87, 28 April 1994, doi: 10.1109/IEEESTD.1994.121430.

[23] Gibson, Robin. Managing computer projects: avoiding the pitfalls. Prentice-Hall,

Inc., 1992.

[24] Software Testing Techniques, B.Beizer, Van Nostrand Reinhold, 1983.

[25] Lu Luo. Software testing techniques: Technology Maturation and Research

Strategy. Institute for Software Research International, Carnegie

Mellon University, 2001.

96

[26] Sawant, Abhijit A., Pranit H. Bari, and P. M. Chawan. "Software testing

techniques and strategies." International Journal of Engineering Research and

Applications (IJERA) 2.3 (2012): 980-986.

[27] Ajay Jangra, Gurbaj Singh, Jasbir Singh and Rajesh Verma,”EXPLORING

TESTING STRATEGIES,”International Journal of Information Technology and

Knowledge Management, Volume 4, NO.1,January-June 2011.

[28] En.wikipedia.org. n.d. Software verification - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/Software_verification> .

[29] Techopedia.com. n.d. What is Static Verification? - Definition from Techopedia.

[online] Available at:

<https://www.techopedia.com/definition/13696/static-verification> .

[30] D'silva, Vijay, Daniel Kroening, and Georg Weissenbacher. "A survey of

automated techniques for formal software verification." IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 27.7 (2008): 1165-1178.

[31] Clarke, E. and Emerson, E., 1981. Design and synthesis of synchronization

skeletons using branching time temporal logic. Logics of Programs, volume 131 of

Lecture Notes in Computer Science, pp.52-71.

[32] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking

without BDDs,” in Tools and Algorithms for the Construction and Analysis of

Systems (TACAS), vol. 1579. Berlin, Germany: SpringerVerlag, 1999, pp. 193–207.

[33] Cprover.org. n.d. JBMC – A Bounded Model Checking Tool forVerifying Java

Bytecode. [online] Available at: <http://www.cprover.org/jbmc/> .

97

[34] Cordeiro, L., Kroening, D. and Schrammel, P., 2019. JBMC: Bounded Model

Checking for Java Bytecode - (competition contribution). Tools and Algorithms for

the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, volume

11429 of Lecture Notes in Computer Science, pp.219-223.

[35] Sv-comp.sosy-lab.org. 2021. SV-COMP 2021 - 10th International Competition

on Software Verification. [online] Available at: <https://sv-comp.sosy-lab.org/2021> .

[36] Beyer D. (2019) Automatic Verification of C and Java Programs: SV-COMP

2019. In: Beyer D., Huisman M., Kordon F., Steffen B. (eds) Tools and Algorithms

for the Construction and Analysis of Systems. TACAS 2019. Lecture Notes in

Computer Science, vol 11429. Springer, Cham. pp. 133-155.

[37] Beyer D. (2021) Software Verification: 10th Comparative Evaluation

(SV-COMP 2021). In: Groote J.F., Larsen K.G. (eds) Tools and Algorithms for the

Construction and Analysis of Systems. TACAS 2021. Lecture Notes in Computer

Science, vol 12652. Springer, Cham. Pp.401-422

[38] Svejda J., Berger P., Katoen JP. (2020) Interpretation-Based Violation Witness

Validation for C: NITWIT. In: Biere A., Parker D. (eds) Tools and Algorithms for the

Construction and Analysis of Systems. TACAS 2020. Lecture Notes in Computer

Science, vol 12078. Springer, Cham. Pp40-57

[39] Beyer, D. and Spiessl, M., 2020. MetaVal: Witness Validation via

Verification. Computer Aided Verification - 32nd International Conference, volume

12225 of Lecture Notes in Computer Science, pp.165-177.

[40] Dirk Beyer, Matthias Dangl, Daniel Dietsch, Matthias Heizmann, and Andreas

Stahlbauer. 2015. Witness validation and stepwise testification across software

98

verifiers. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software

Engineering (ESEC/FSE 2015). Association for Computing Machinery, New York,

NY, USA, 721–733.

[41] Graphml.graphdrawing.org. n.d. The GraphML File Format. [online] Available

at: <http://graphml.graphdrawing.org/> .

[42] GitHub. n.d. GitHub - powermock/powermock: PowerMock is a Java framework

that allows you to unit test code normally regarded as untestable.. [online] Available

at: <https://github.com/powermock/powermock> .

[43] GitHub. n.d. Features And Motivations · mockito/mockito Wiki. [online]

Available at: <https://github.com/mockito/mockito/wiki/Features-And-Motivations> .

[44] Introduction to PowerMockito | Baeldung. n.d. Introduction to PowerMock.

[online] Available at: <https://www.baeldung.com/intro-to-powermock> .

[45] Stefan Bechtold, C., n.d. JUnit 5 User Guide. [online] Junit.org. Available at:

<https://junit.org/junit5/docs/current/user-guide/> .

[46] En.wikipedia.org. n.d. HTML - Wikipedia. [online] Available at:

<https://en.wikipedia.org/wiki/HTML> .

[47] Web.archive.org. n.d. Foreword — Flask Documentation (0.10). [online]

Available at:

<https://web.archive.org/web/20171117015927/http://flask.pocoo.org/docs/0.10/fore

word> .

[48] GitHub. n.d. GitHub - pallets/flask: The Python micro framework for building

web applications.. [online] Available at: <https://github.com/pallets/flask> .

99

[49] Kroening D., Tautschnig M. (2014) CBMC – C Bounded Model Checker. In:

Ábrahám E., Havelund K. (eds) Tools and Algorithms for the Construction and

Analysis of Systems. TACAS 2014. Lecture Notes in Computer Science, vol 8413.

Springer, Berlin, Heidelberg.

[50] Jan Svejda, Philipp Berger, and Joost-Pieter Katoen. Interpretation-based

violation witness validation for c: Nitwit. In Armin Biere and David Parker, editors,

Tools and Algorithms for the Construction and Analysis of Systems, pages 40 to 57,

Cham, 2020. Springer International Publishing.

[51] Beyer, D., Löwe, S. & Wendler, P. Reliable benchmarking: requirements and

solutions. Int J Softw Tools Technol Transfer 21, 1–29 (2019).

[52] GitHub. n.d. GitHub - vaibhavbsharma/java-ranger: Java Ranger is a

path-merging extension of Symbolic PathFinder. [online] Available at:

<https://github.com/vaibhavbsharma/java-ranger> .

[53] Sharma, V., Hussein, S., Whalen, M., McCamant, S. and Visser, W., 2020. Java

Ranger: statically summarizing regions for efficient symbolic execution of

Java. Proceedings of the 28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software Engineering,.

[54] Ti.arc.nasa.gov. n.d. Java PathFinder. [online] Available at:

<https://ti.arc.nasa.gov/tech/rse/vandv/jpf/> .

[55] Luckow K. et al. (2016) JDart: A Dynamic Symbolic Analysis Framework. In:

Chechik M., Raskin JF. (eds) Tools and Algorithms for the Construction and Analysis

of Systems. TACAS 2016. Lecture Notes in Computer Science, vol 9636. Springer,

Berlin, Heidelberg.

100

	Abstract
	Acknowledgments
	Chapter 1 Introduction
	1.1 Problem Description
	1.2 Objectives
	1.3 Contribution
	1.4 Organization of Dissertation

	Chapter 2 Background
	2.1 Security Vulnerabilities
	2.2 Software Verification and Validation
	2.2.1 Dynamic Verification
	2.2.2 Static Verification

	2.3 Java Bounded Model Checking
	2.3.1 Model Checking and Bounded Model Checking
	2.3.2 Java Bounded Model Checking(JBMC)

	2.4 Software Verification Competition
	2.5 Completed Research and Extension
	2.5.1 Witness Validation
	2.5.2 Implemented Extensions

	2.6 Other Java verification tools
	2.6.1 Java Ranger
	2.6.2 JPF
	2.6.3 JDart

	Chapter 3 Proposed Methodology
	3.1 Architecture
	3.2 Techniques
	3.2.1 Mockito and PowerMock
	3.2.2 JUnit5
	3.2.3 HTML and Flask

	3.3 Algorithms
	3.3.1 Python scripts
	3.3.2 Witness and Validation Harness
	3.3.3 Front-end Implementation
	3.3.4 Analysis about the Algorithms

	3.4 Illustrative Examples
	3.4.1 Short Example
	3.4.2 Int Example
	3.4.3 Long Example
	3.4.4 Boolean Example
	3.4.5 Char Example
	3.4.6 Float Example
	3.4.7 Double Example
	3.4.8 Multiple Verifiers Example
	3.4.9 No Verifier Example
	3.4.10 Summary

	Chapter 4 Experimental Evaluation
	4.1 Description of the benchmarks
	4.2 Setup
	4.2.1 Programming language
	4.2.2 Libraries and tools
	4.2.3 Running process

	4.3 Objectives of the evaluation
	4.4 Results
	4.5 Threats to validity

	Chapter 5 Related work
	Chapter 6 Conclusion
	Bibliography

