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ABSTRACT

As technology advances at an increasingly accelerated pace, validation programmes for
technological applications must be at the heart of new technologies. The results of these pro-
grams influence the performance and development of robust and durable technological appli-
cations in the future. With the presence of development and expansion attack strategies caused
by low-level and high-level vulnerabilities in these applications, security performs a significant
role. Sufficient software verification and testing is vital to guarantee the safety and reliability
of applications. An important characteristic of software reliability is a safety guarantee which
refers to the complete absence of low-level vulnerabilities that could cause exploitation. An
early software crash indicates possible software failures such as memory corruption or zero
division. The presence of safety or security-critical failures can be indicated by such accidents.

As verification techniques are still required to develop, expand and implement integration
techniques, this dissertation examines several of these aspects of development. This dissertation
developed the Depthk 3.2 project using a framework for integrating static and dynamic analysis
techniques for UAV software written by C++. The main objective of this project is to detect
and prevent safety vulnerabilities caused by low-level vulnerabilities. The first step of the tool
is source code analysis by abstract interpretation as a static analysis technique. The final step is
fuzz testing as a dynamic analysis technique to avoid attacks of incorrect and unwanted inputs
and to reduce false positives resulting from static analysis. Experimental results indicate the
theoretical strength of the idea however, due to time limitations, there were some practical
limitations resulting from the configuration of the Depthk 3.1.
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CHAPTER 1

INTRODUCTION

The safety and reliability of flight-control software are essential aspects of unmanned aerial ve-
hicles (UAVs) which are relevant to the UAV’s flight control system, and have become increas-
ingly important in military and civilian applications [11]. Companies such as NASA, Amazon
and even Google have commercially experimented with this technology [12]. Any problems
with the control software, affect normal the UAV system control and operation, thereby result-
ing in serious harm to operational missions, including recognition and intelligence transmis-
sion [13]. Strict flight control software testing and improved software safety and reliability are
therefore necessary to achieve UAV quality. This research is designed and dedicated to this
purpose.

Software is an increasingly critical element in aerospace systems ,and, the number of lines
of software code used in missions is a criterion of growing significance [1]. The number of code
lines used in the The National Aeronautics and Space Administration (NASA) missions has
exponentially increased in the last few decades. Today, missions are associated with millions of
code lines. In contrast, early software usage in space flight missions was traditionally associated
with , against thousands of code lines [14].

There are substantial costs related to developing software and software failure [15]. A
database of failures of the aerospace system demonstrates that to date, software defects have led
to significant launch delays and mission failures, which have resulted in considerable costs and
data loss [1]. The latest aerospace losses due to software mistakes are presented in Table 1.1.
As a result,by 2012, the military department of United States of America had increased its
investment in unmanned air vehicle research and production from roughly $2.3 billion to $4.2
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CHAPTER 1. INTRODUCTION 2

billion in 2008 [16].

Table 1.1: Recent Losses in Aerospace due to Software Error by David et al. [1]

System Cost Description
(All involved loss of data)

Ariane 5 (1996) $594M
Software error shut down redundant inertial reference
systems, resulting in loss of control and aerodynamic
breakup.

Delta III (1998) $336M
Software error did not account for normal roll
oscillation, resulting in loss of attitude control and
auto-destruction.

Titan 4B (1999) $1.5B
Misplaced decimal point in Centaur flight software
caused premature propellant depletion and deployment
of payload in incorrect low orbit.

Mars Climate
Orbiter (1999)

$524M
Failure to use metric units in ground software trajectory
models caused steeper than expected entry trajectory and
destruction while entering the Martian atmosphere.

Zenit 3SL (2000) $367M
Software error caused premature second stage shutdown
and the satellite failed to reach orbit.

Messenger (2004) $23.9M

Software testing and other factors caused launch delays
and a new launch profile requiring an additional two
years of cruise time to complete the mission –with
partial loss of data.

Through automated software verification and validation using formal methods, the risk of
software mistakes can be reduced [17]. This study proposes two formal methods approaches
for automated software verification and validation, which are model checking [18], which auto-
matically checks if the model satisfies a specification, and static analysis,which is achieved by
examining the code without running the software, [19]. The study further outlines, extensions
of these approaches for integrating fuzz testing [20],which involves providing unexpected or
random data as software inputs. These methods can be used in various phases of the software
life-cycle to reduce risks (requirements, design and implementation).

Vulnerabilities must first be identified to preserve system integrity. A Vulnerability is de-
fined by the National Institute of Standards and Technology (NIST) as a property of system
security requirements, design, implementation, or operation, which could be accidentally trig-
gered or intentionally exploited and result in a security failure [21]. In short, vulnerability is
therefore essentially the result of one or more weaknesses in requirements, design, implemen-
tation or operation [21].
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1.1 The Problem Statement

Given the many tragic and disturbing events listed in Table 1.1, which were the consequence
of the notable software acceleration, there is an urgent need to ensure software quality and
its integrity in order to reduce the costs of failures. Many tools have been created over the
latest recent decades, but such tool still strongly require the development and integration of
verification techniques in order to guarantee that the information is transmitted among them
and to be sound and complete. The problem considered in this thesis can be expressed in the
following question: can an algorithmic method reason accurately about realistic UAV software
to identify security vulnerabilities and simultaneously control the verification complexity?

1.2 Outline of the Solution

This research proposes a preliminary solution through the integration of abstract interpretation
as a static analysis technique with bounded model checker and fuzz testing as dynamic verifi-
cation, which intends to achieve. The research suggests an interaction of data between abstract
interpretation and fuzz testing, and between abstract interpretation and Bounded model check-
ing (BMC) which represented by the use of ESBMC in order to guarantee the exchange of
information.

1.3 Research Questions

This study poses the following research questions are specified to define the scope of the litera-
ture review and the project’s approach. These questions are presented below:

• RQ1: What are the most common forms of security vulnerabilities in UAV’s software, and
which forms can be discovered using bounded model checking and abstract interpretation
tools?

• RQ2: What techniques can be employed to improve the verifier’s efficiency?

• RQ3: How can RQ2 technical tools be evaluated? How can UAV benchmarks be se-
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lected?

In order to address these research questions, a survey was designed according to qualitative
research methodology [22]. The background study, literature review and practical experiment
which serve to answer the research questions can support in building a prototype for automatic
detection of software vulnerabilities in UAVs.

1.4 Aim and Objectives

The primary aim of this project is to build an automatic detection tool for software vulnerabili-
ties in UAVs. This tool will help ensure the safety and reliability of UAVs. The results can also
affirm identify the importance of integrating techniques for the detection of real-world UAV
software vulnerabilities. There are five specific objectives which fall under this broad aim:

1. Achieve high code coverage of exploration for UAV software within reasonable resource
limits (e.g. computation capacity and time).

2. Attempt to integrate two formal methods with fuzz testing in a novel manner, in order to
achieve faster and better results.

3. Scale BMC techniques for finding security vulnerabilities in real-world UAV software.

4. Evaluate and compare the established verification tool with other existing studies.

5. Improve the quality and compliance of UAVs’ embedded software with their construction
requirements.

1.5 Research Methodology

In order to achieve the dissertation aim and sub-objectives listed in the previous section, the
following research methodology eas adopted as outlined below:

1. Conduct literature review on recent software verification and testing techniques should be
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performed for the related work.

2. Identify some common security vulnerabilities for UAVs and their main characteristics.

3. Design, build and implement a tool based on the integration of three distinct software
verification and testing techniques.

4. Evaluate the proposed tool over real-world UAV software.

5. Compare the proposed tool with other tools available in the literature, which are used for
the same purpose of this work.

1.6 Project Deliverables

The following results were achieved in this project:

• A project overview and plan (POP) report providing the information related to project
implementation schedules, deadlines, objectives and measurements for carrying out the
project.

• A prototype tool developed for an automatic detection of software vulnerabilities in UAVs
software using fuzzing, BMC, and abstract interpretation.

• A dissertation report which discusses and evaluates in detail all aspects of software im-
plemented, and analyses design improvements for future development of the UAVs’ au-
tomatic detection tool for vulnerabilities..

1.7 Dissertation Structure

This research follows the methodology of design-science according to March et al. [23], which
is technology-oriented and has four types of outputs and, it consists of two main activities: build
and evaluate. Figure 1.1 illustrates the design-science methodology, which was employed to
building the remaining research chapters.
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Figure 1.1: The Design-Science Approach to Research, the Technology Research Approach,
and Dissertation’s Approach

This research is organised into seven chapters, including the introductory chapter. Each
chapter aims to address a certain aspect of the research question by separating it into tiny parts.

• Chapter Two presents the background and preliminary survey of the software verifica-
tion techniques, which would attempt to comprehend the problem of UAV’s safety. It
highlights the concepts and also provides an overview of the well-known form of vulner-
abilities.

• Chapter Three conducts a thorough analysis previously employed techniques in the re-
lated studies, which address the same subject as of this dissertation. A brief and com-
prehensive review of current safety tools were introduced in this section through static or
dynamic or both type of analyses.

• Chapter Four describes the empirical work to related to the project’s technology and
architecture. It begins by describing the suggested solution in details including the com-
prehensive safety tool architecture.

• Chapter Five covers the details of the project implementation of the safety tool described
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in this dissertation.

• Chapter Six discusses the analysis and findings of the project evaluation. The chapter
provides a detailed discussion in light of the analysis results and compares the project’s
tool related to other current safety verification tools.

• Finally, the conclusion, highlights the current project achievements and limitations and
offers insights for future work.



CHAPTER 2

PRELIMINARIES

Over the last two decades, several software verification and testing techniques have been pro-
posed and significant success has been achieved in ensuring the safety and security of soft-
ware [24]. These techniques typically, these techniques belong to three main categories. The
first category includes techniques which are industry-standards in software engineering, such as
software testing and monitoring [25]. The second category is abstract interpretation and static
analysis techniques, which are regularly used remove bugs in programs with millions of lines
of codes [19]. The third category involves formal verification, such as model checking and
theorem proving [26]. This chapter explains the second and third methods and other techniques
in detail.

2.1 Model Checking

The fundamental idea of model checking is defined by a model (system), which is generally
defined as a finite directed graph and a specification (formal properties), which is generally
defined as formula in linear-time temporal logic (LTL) [27], which are to be met by the final
system. The task of the model-checking process is to automatically monitor whether or not the
model meets its specification [18]. The result of the model checking procedure is either true
when the property holds, or false if the property not hold; and in this case, the model generates a
counterexample [24]. The idea behind the counterexample is that it can be identified, corrected,
and retried as the source of the error in the model; that is, it demonstrates how the violation
occurs [26]. Figure 2.1 illustrates the overall model checking structure. This chart is taken from

8
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the Embedded website [28] with some modifications on it.

Figure 2.1: The Model-Checking Approach

In the early 1980s, Clarke and his colleagues [27] invented the term ’model checking’.
The first model checking algorithms were used to check the system’s available state explicitly
in order to check the accuracy of a specific specification. As the number of states can grow
exponentially in terms of the number of variables, early implementation could only deal with
small designs and did not include examples of complexity.

2.2 Bounded Model Checking of Software

Instead of attempting to transform the software into a state machine to be assessed, one can
instead apply BMC as the systems become more complex, as outlined by Biere et al. [18].
BMC is a model checking method that checks the model up to a given path in the path length.
Its algorithms traverses a finite state machine for a fixed number of steps ,k, and checks whether
a violation occurs within this time step. As such, BMC is looking for a counterexample in
executions whose length is restricted by fixed number of steps, k . If no bug is found, k is
increased until either a bug is identified, the problem becomes uncompromising, or some pre-
known upper bound is reached [29]. Figure2.2 illustrates this idea.
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Figure 2.2: Bounded Model Checking Approach by [3]

Although BMC attempts to resolve the same problem as traditional BDD-based symbolic
model checks, it has two specific features. Firstly, the user must first provide a bounding basis
for the number of cycles to be investigated ,k, which means the method is incomplete when the
boundary is not sufficiently high. Secondly, rather than Binary decision diagrams (BDDs), it
uses Boolean satisfiability problem (SAT) techniques, where SAT solvers can address hundreds
of thousands of variables [29]. The fundamental concept is to find a counterexample of a certain
length and to create the propositional formula, which will satisfy such a counterexample. The
efficiency of this approach is based on the observation that only a fragment of the state space is
sufficient to identify an error if the system is defective [30].

2.3 ESBMC

ESBMC [31] [4] is the first SMT-based, context-based and open-source model checker that
allows the verification of single- and multi-threaded ANSI-C code to check both data structure
manipulation and user-defined properties (as stated in the program) automatically. ESBMC is
primarily aimed at helping software developers of software by discovering subtle bugs in their
code [4]. Although, no unique annotations in the software are required to locate these bug,
but it allows developers to add their own assertions and also to check for violations. ESBMC
has achieved significant success after being used in a number of telecommunications, control
systems and medical devices applications [32].

ESBMC [4] uses the clang 1 [33] , a state-of-the-art compiler suite for C/C++/ObjectiveC
/ObjectiveC++, as front-line in order to prevent the need to maintain a separate front-end to
instead concentrate on the main objective of software verification. It uses the floating-point,
either using the SMT theory of floating-points or using bitvectors, as back-end. Furthermore,
ESBMC uses k-induction to demonstrate the absence of property infringements.

1http://sourceforge.net/projects/ctags
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2.3.1 Features

ESBMC’s basic architecture is illustrated in Figure 2.3. The tool takes the C source code as
input. The remaining steps are as follows:

1. Front-End: As previously stated, ESBMC relies on the clang’s API as its front end,
which is used to convert clang’s AST into ESBMC’s own AST. This component makes
ESBMC dramatically different from LLBMC, which relies on LLVM bytecode. The dis-
advantage of ESMBC is that polymorphism and some other minor features are not sup-
ported because C++ elements of the clang AST are still not fully integrated with ESMBC.

2. Control-flow Graph Generator: After generating AST, clang converted it into an equiva-
lent GOTO program, which eliminates all for, while, do-while and switch statements, and
adds checks for zero division and out-of-bound access.

3. Symbolic Execution Engine: The symbolic execution engine unrolls the loops of the
source code k times and generates the Static single assignments (SSA) program form.
The SMT solver checks all safety properties derived during the symbolic execution. ES-
BMC simplifies the program aggressively, with constant folding and various arithmetic
simplifications, to create small SSA sets.

4. SMT Back-End: This Back-End supports five solvers: Boolector [34] (default), Z3 2

[35], MathSAT[36], CVC4 [37] and Yices [38]. ESBMC uses the back-end to encode a
SSA form of the program in a quantifier-free format and to check satisfiability of C∨¬P,
where C is the set of constraints and P is the set of properties. The program includes a
bug if the formula is satisfiable: ESBMC will produce a counterexample with the set of
tasks, which led to the property violation.

5. Python API: ESBMC now provides a Python API, which decreases prototyping complex-
ity and makes the internal tool more available for the general public. However, there are
also drawbacks in the Python API, which is slower than C++, and developers can perform
illegal operation, thereby causing the tool to crash.

2https://z3.codeplex.com
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Figure 2.3: ESBMC Architecture by [4]

2.4 Abstract Interpretation

Patrick Cousot and Radhia Cousot proposed abstract interpretation in 1978 [39]. The main
idea of the abstract interpretation is to define an approximation of the semantics of a program.
Formal proof can be made of the program at this different level of abstraction, where irrel-
evant details are removed to reduce the complexity of the testing process [40]. Cousot [41]
defined abstract interpretation as an abstraction and constructive approximation theory of math-
ematical structures, which are used in formal program language descriptions and inferences
or verification of undecidable program properties. Static analysis by an abstract interpretation
is a technique that attempts to demonstrate a lack of run-time error through the analysis of a
program’s source code. The types of errors typically checked include buffer overflows, invalid
pointer accesses, array boundary checks, and arithmetic underflow and overflow [42].

In systematic method construction and efficient algorithms, abstract interpretation can be
introduced for the approximation of undecided or very complicated issues of computer science
such as semantics, proofs, static analysis, inspection, safety and security of software or file
systems [43]. Its objective is to solve such problems by achieving complete program coverage,
by analysing the behaviour for all possible inputs. The value of this method is that there are only
approximately achieved outcomes. That is, a vulnerability-finding analysis with false-positive
results can be generated and all vulnerabilities are discovered. The abstract analysis findings
are regarded to be as sound as their mathematical proof [44]. Abstract interpretation is based
on a function flowchart representation, which is a Control-flow graph generator (CFG). Most
existing numerical abstract domains such as intervals [45], octagons [46], polyhedra [47], can
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only express nonlinear sets. In programs where control-flows are combined, an abstract domain
often uses a joint operation to abstract the interruption (union) of nonlinear constraints from
incoming edges into a combination of new nonlinear constraints [48]. This pattern is clarified
by an example illustrated in Figure 2.4. A control flow graph is used to minimise the absence
of dynamic execution information. This graph demonstrates the flow of system functions and
can be used to analyse constraints for different values within the system.

AI Example. CPP

1 void function()
2 {
3 int a = 1;
4 int b = 2;
5 if (b == 2)
6 { ++b; }
7 int c = 3;
8 int d = 4;
9 while (a < 5)

10 { ++a; }
11 int e = 5;
12 int f = 6;
13 }

Figure 2.4: An Example of a C++ Code and its CFG [5]
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2.5 Fuzz Testing

Fuzzy is a black-box testing technique. Fuzzy testing discovers the software issues, which are
often triggered by inputs that would have been unexpected to be constructed by a developer or
data structures through external interfaces [49]. Takanen et al. [49] claimed that fuzzing does
not attempt to verify a system but rather seeks to discover faults to detect as many vulnerabilities
as possible. By generating test cases and monitoring whether the program is in a crash, fuzzing
generates a piece of evidence for each crashing [50].

The first formal mention of fuzzing was made by the Research Project of the University
of Wisconsin-Madison, and fuzzing has since been adopted to define a whole software test-
ing methodology [20]. In 1988, Miller et al. [51] first suggested fuzzing in 1988, and since
then it has become a powerful, fast and practical technique for locating vulnerabilities in soft-
ware [52]. Fuzz was has generally been implemented effectively for web applications [53] and
compilers [54].

However, the main concept of the fuzz test is to generate semi-valid test data [51] . Sutton
et al. [20] splits fuzzing based on the input injection into two categories; mutating current, valid
data or producing data with specific regulations. Fuzzers which alter current test cases in order
to produce fresh ones are referred to as mutation-based fuzzers, while fuzzers which them-
selves generate test cases are deemed generation-based fuzzers. [51]. Table 2.1 demonstrates a
comparison of fuzzing data generate.

Table 2.1: Comparison of Fuzzer Based on Generation and Mutations by [2]

Priori knowledge Coverage Ability to pass
validation

Generation-based needed, hard to acquire high strong

Mutation-based not needed
low, affected by
initial inputs

weak

Jääskelä [6] categorised fuzzy testing as a black-box, a white-box and a grey-box , de-
pending on how much information the target program needs in run-time. The first method is
called black-box fuzzing, as there is no need for an understanding of target behaviour.In con-
trast, white-box fuzzing assumes full knowledge of application code and behaviours such as
modelling the target. Meanwhile, grey-box fuzzing, for which the target software is assumed to
be partial knowledge, is located between the two previous techniques to make use of both [55].



CHAPTER 2. PRELIMINARIES 15

The slight distinction between these types is further described in Figure 2.5.

Figure 2.5: The Multiple Sorts of Fuzzing by [6]

2.6 Vulnerabilities Overview

Common weakness enumeration (CWE) [56] is a software weakness and vulnerability category
system. It is supported by a community project to understand software defects and create auto-
mated tools for identifying, correcting and preventing such defects. The project was supported
with assistance from the US-CERT and the National Cyber-security Division of the US by the
National Cybersecurity FFRDC, which owns The MITRE Corporation. On June 2019, version
3.3 of the CWE Standard was published [57].

Vulnerabilities are defined as the properties of system security requirements, design, im-
plementation, or operation, which could be accidentally triggered or intentionally exploited and
thereby result in a security failure [21]. In most cases, vulnerabilities fall into two categories:
bugs at the implementation level and flaws at the design level [58]. Bugs can be classified as
shallow bugs and hidden bugs. The bugs that cause the target program to crash during initial
execution are considered shallow ( e.g., a possible division-by-zero operation with no precedent
branch condition). Conversely, bugs that occur very deeply in the logic of the program and
are difficult to activate are considered hidden bugs, such as bugs that are found in complicated
conditional branches [59].

In 2016, the world economy spent 1.1 trillion dollars due to software defects. Software
faults were identified in 363 enterprises, impacted 4.4 billion clients, and created a loss of
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moment over 315 years. Most of these events could have been avoided, however, without
adequate testing, the software was merely moved to manufacturing [60].

Although significant scholarly and applied research has tackled the safety concerns of
software in recent years, hundreds of fresh vulnerabilities are detected, released or utilised
monthly [61]. From 2010 to 2015, around 80,000 vulnerabilities were recently registered in
Common vulnerability enumeration (CVE), and there have been further increases in vulnera-
bilities since [62]. It is clear that, attack types, impacts and vulnerabilities are changing, rapid
as illustrated in Figure 2.6. The increasing number, type and effect of vulnerabilities over three
years can clearly be identified, where circle size estimates the relative effect of incidents in
terms of business costs.

Figure 2.6: Sampling of Security Incidents by Attack Type, Time and Impact, 2014-2016 by [7]

Because of the difficulty of defining all types of vulnerabilities, this dissertation does not
describe all feasible vulnerabilities. Instead, it focuses on certain hazardous security vulnera-
bilities, which are extremely exploitable and have a strong effect.

2.6.1 Buffer Overflow

Over the past ten years, buffer overflows have been the most prevalent type of security vulnera-
bility [63]. The most frequent reason for buffer overflow assaults is because apps fail to handle
memory allocations and validate customer or other procedures input [21]. These types of vulner-
abilities Often allow remote attackers to execute arbitrary code on the target server or to crash
the server’s software to attack the service denial (DoS). Buffer overflows represent approxi-
mately 1/3 of the serious remotely exploitable vulnerabilities in the NIST ICAT database [64].
The European Union Agency for Cybersecurity (ENISA) [65] defines buffer overflow as a vul-
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nerability bug in a computer which occurs where a program or process attempts to write or read
more data from the buffer than a buffer can hold. As a buffer is a sequential part of the memory
that is temporarily used to store data, extra data in memory rows next to the target buffer can be
overridden unless the program contains sufficient limits to control flag or drop data if an excess
amount is being sent to a memory buffer[66].

In a security context, ENISA [65] claims that a buffer overflow can allow the attacker
to access different parts of the internal memory and eventually control the execution of the
program, creating a confidentiality, integrity and accessibility risk, which represent a paradigm
for the assistance of information security policies inside an organisation also known as the CIA
triad. Confidentiality is a set of regulations limiting access to data, integrity ensures that the
data is trustable and accurate, and accessibility ensures secure access by an authorised entity to
the data [25]. Figure 2.7 provides an example of buffer overflow, where a string with a length
larger than 30 characters leads to the memory address corruption, including the return address
of the last stack function. The corrupted return value will lead to a segmentation failure when
the current function returns [67].

Buffer Overflow.C

1 int main ( )
2 {
3 char name [ 3 0 ] , ch ;
4 int i =0;
5 printf (" Enter name : " ) ;
6 while ( ch != '\n')
7 { // terminates if user hit enter
8 ch=getchar ( ) ;
9 name [ i ]= ch ; // crash !

10 i ++;
11 }
12 name [ i ]= '\0'; // inserting null character at end
13 printf ("Name : %s " , name ) ;
14 return 0 ;
15 }

Figure 2.7: A Buffer Overflow Example Code

According to the IBM X-Force Threat report in 2017 [7] thirty-two percent of the attacks
comprised data structure processing, which attempted to achieve unauthorised access by manip-
ulating system data structures. Many vulnerabilities are caused by ambiguity and assumption
in design and prescribed manipulation such as, buffer overflow vulnerabilities, and thus the ex-
ploitability of these data structures. Figure 2.8 illustrates top attack types for monitored security
from January 1st 2016 through December 31st 2016.
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Figure 2.8: Top Attack Types for Monitored Security by [7]

2.6.2 Integer Overflow

Integers3 are data types that are allocated as numerical values. An integer is allocated memory
statically at the declaration point; the amount of memory allocated to the integer is dependent
on the host hardware and operating system architecture. Integer overflow or flow indicates that
the dynamically assigned memory request is far too large or too small for the memory address
required by the software. [68]. The NIST [56] describes the integer overflow vulnerability as
it exists when calculations try to increase a higher integer value than the integer used to store
in the corresponding representation. The integer value can be converted into a negative or very
insignificant amount when this fault occurs. This vulnerability is thus crucial for safety if the
calculation results are used to handle loop controls, as well as to determine the size or offset of
behaviours (e.g. concatenation, copying, allocation of memory).

The renowned space shuttle failure, Arian 5, was due to the fact that the software in the
inertial reference system was shut down in response to an untreated number exception which
was the 64-bit floating-point conversion to a 16-bit signed integer value (integer overflow) [68].
This event cost nearly 500 million dollars [1]. Figure 2.9 provides an instance code for this
vulnerability form.

3https://www.iso.org/standard/18939.html
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Integer Overflow.C

1 int main(void)
2 {
3 int l;
4 short s;
5 l = 0xdeadbeef;
6 s = l;
7 printf("l = 0x%x (%d bits)\n", l, sizeof(l) * 8);
8 printf("s = 0x%x (%d bits)\n", s, sizeof(s) * 8);
9 }

Figure 2.9: An Example Code for Integer Overflow by [8]

2.6.3 Division By Zero

Dividing a number by zero is a mathematical error which leads to a run-time error by an unspec-
ified outcome [56]. When a code is written without exception handling, the division-by-zero
output will be demonstratedshown to be ‘plus infinity’ or ‘minus infinity’, which can not be
further processed according to the IEEE 754 standard [69]. However, the variable does not nec-
essarily have to mean zero: the variable may be called arithmetical underflow as a consequence
of value rounding. In this case, the results are assumed to be equal to 0. A division-by-zero er-
ror in the remote data base manager 4 on the USS Yorktown brought all of the devices down on
the network and caused the propulsion systems of the ship to fail. A crewman had entered in a
database a blank field in a database. The blanks were considered zero and caused a division-by-
zero exception, which can not be handled by the database programme. The exception aborted
the Microsoft Windows NT 4.0 operating system, which crashed and brought down all of the
LAN controllers and remote terminals of the ship [68]. Figure 2.10 provides this exception with
an instance.

4https://www.patriotspoint.org/explore/uss-yorktown/
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Division By Zero.CPP

1 const int DivideByZero = 10;
2 double divide(double x, double y)
3 {
4 if ( 0 == y )
5 {
6 throw DivideByZero;
7 }
8 return x/y;
9 }

Figure 2.10: A Divide By Zero Code by [9]

2.6.4 NULL Pointer Dereference

CWE [56] describes A NULL pointer dereference as it takes place where the application deref-
erences a pointer that it expects to be valid but is a NULL that typically causes an application to
crash or exit. CWE claims that the NULL pointer dereferences generally lead to a system error
unless exceptional processing (on certain systems) is accessible and implemented. It can still be
challenging to restore the software to a safe state of service even when exception processing is
utilised. Figure 2.11 provides an example for null pointer; when this code is compiled and exe-
cuted, it produces Zero address, which means that a first pointer in the memory, as the memory
is reserved this location by the operating system, the software can not access memory at it.

NULL Pointer Dereference.C

1 int main ()
2 {
3 int *ptr = NULL;
4 cout << "The value of ptr is " << ptr ;
5 return 0;
6 }

Figure 2.11: Possible NULL Pointer Dereference Vulnerability by [10]
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SYSTEMATIC LITERATURE REVIEW

This systematic literature review was conducted according to the guidelines proposed by Booth
et al. [22] and Kitchenham and Charters [70], who are among the most widely recognised
authors in the science and software engineering domains, respectively. The review starts by
identifying the need for the literature review and proposing sub-objectives, which are relevant
to the research aims. In addition, state-of-the-art tools are defined throughout this section.

3.1 Literature Review Objectives

The aim of this literature review is to (1) summarise existing studies on software testing and ver-
ification tools to gain insight into the present scenario concerning software quality in UAVs, (2)
examine the most recent methods in this field and (3) identify research gaps and inconsistencies
in previous studies.

3.2 Search Strategy

In order to produce a balanced, systematic literature review that is applicable to specific infor-
mation relevant to the research questions, it is necessary to gather all appropriate studies [70]
across searching through the search strings, which are a composite of search terms, as described
in Table 3.1. As this study concentrates on the investigation of UAVs software, the term UAV

21
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is considered to be the cornerstone of the research process. In order to strike a balance between
broad and specific searches, the Boolean operators (AND, OR) were used by combining search
terms to broaden or narrow search results. Furthermore, the Wildcard operator which is repre-
sented by a star sign ‘*’ has been used for distinct spellings such as ‘Vulnerability’ and ‘fuzz*’
terms. Table 3.1 below lists various terms that were used for the search strings.

Table 3.1: Keywords and Search Terms

Search terms

A1. Software verification tools B1. ESBMC
A1. Formal methods B1. k-induction verifier
A3. Bounded model checking B3. Vulnerabilit*
A4. Abstract interpretation B4. swarm testing
A5. Fuzz*
A6. UAV

Key search strings

• (A1 AND A6 OR B1 OR B2 OR B3 OR B4).

• (A2 AND A6 OR B1 OR B2 OR B3 OR B4).

• (A3 OR A4 OR A5 AND A6 OR B1 OR B2 OR B3 OR B4).

• (B1 OR B2 OR B3 AND A6 OR B4).

3.2.1 Data Resources

This project selected digital libraries, which contain academic literature relating to software
engineering, some of whichwere accessed through the portal of The University of Manchester.
A list of these libraries is provided below:

• IEEE Xplore http://ieeexplore.ieee.org/Xplore

• SpringerLink http://link.springer.com

• ACM DL http://dl.acm.org

http://ieeexplore.ieee.org/Xplore/guesthome.jsp
http://link.springer.com
http://dl.acm.org
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• Google Scholar https://scholar.google.co.uk

3.3 Study Selection

Following the collection of the potentially relevant primary studies, the relevance of these
should be assessed based on a set of inclusion criteria, the following criteria can be defined:

• Criteria 1: The research or resource should be in the English language and related to the
computer science field.

• Criteria 2: Software verification must be explicitly considered in the underlying research.

• Criteria 3: One or more of the following verification methods must be addressed in the
underlying research.

• Criteria 4: The research project should directly, indirectly, and highly relevantly relate to
the study or resource.

• Criteria 5: Relevant studies need to be carried out recently and after 2000.

3.4 Study Quality Assessment

A quality assessment checklist was developed to evaluate the quality of each study to measure
each individual survey based on its comprehensiveness for the subject. The Quality Assessment
Checklist for each publication is described in Table 3.2.

https://scholar.google.co.uk
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Table 3.2: Checklist for Resource Quality Assessment

Checklist Question
Does a resource cover any software verification
technique?

# YES # NO

Are any software verification issue addressed by a
resource?

# YES # NO

Does the resource give some insight or link to the
research study?

# YES # NO

Is there any subtopic linked to the study project covered
by the source selected indirectly?

# YES # NO

3.5 Search Results

Following a search of the above-mentioned databases, 21797 results were retrieved (see Ta-
ble 3.3), which were journal articles and conference papers and 18 papers were retained after
applying the criteria specified in the Study Selection and Study Quality Assessment sections
3.4 on the title and the abstract of the scientific paper,includingwith three pre-selected studies.
Each selected study satisfied all the inclusion criteria by assessing each publication throughout
the checklist of quality evaluation to prevent undesirable confusion.

Table 3.3: Digital Library Search Results Using Search Strings

Digital libraries Primary Studies

IEEE Xplore 69

SpringerLink 212

ACM DL 416

Google Scholar 21,100

3.6 Review of Software Vulnerability Detection’s Studies

Software vulnerability research can be classified into two different categories: analysis of soft-
ware vulnerability and finding of software vulnerability [71]. Moreover, software vulnerability
detection techniques can first be divided into two approaches: static analysis and dynamic anal-
ysis. Static software analysis is a debugging method which is performed in the source code or
binary compilation without executing them. Dynamic analysis includes a run-time examination
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of the software [72]. Software techniques for vulnerability detection have grown from initially
pure manual discovery through to computer-aided discovery and continue moving in a fully
automated direction [71]. The subsequent sections examine existing studies related to these
techniques.

3.6.1 Bounded Model Checking Verification

Model checking is an efficient method for discovering software bugs. Compared to testing, the
model checking can demonstrate that no bugs exist while testing can only discover the bugs not
prove their absence. Model checking provides better coverage for this comparison, but is more
computationally expensive [73].

Humphrey et al.[17] argued that formal techniques such as model checking might be help-
ful for the UAV mission planning domain. If mission objectives and limitations – for example,
tasks which have to be coordinated, areas that must be monitored in a given order and areas
which must be avoided – can be formalised into specifications, and UAV actions as finite-state
models, then model checking can be used as a tool to assist operators to track mission plans
and error reasons with counterexamples. NASA employed model checking in their project, by
developing JPF as the second generation of a Java model checker [74] after the tragic events
of its missions when systems did not perform as per specifications. The UNO tool employs
the model checking strategy, which Holzmann et al.[75] proposed as a solution for the most
prevalent defects types in C-programs using uninitialised variables, null-pointer dereferencing
and buffer overflow indexing. The UNO checking capabilities can be enhanced by defining
application-dependent properties, which are written as ANSI-C processes by the user.

However, Corbett et al. [76] argued that to utilise a verification tool in the real program,
the developer must extract an abstract mathematical model from the high-level properties of the
program and specify this model in the input language of the verification tool. It is an error-prone
and time-consuming process. The state explosion problem is further barrier in the transfer of
finite-state variation technology: the exponential increase in finite-state size as the number of
systems components increases.

Rocha et al.[77] proposed DepthK, which is a software verification tool using BMC and
k-induction based on invariants of program generated automatically by using polyhedral re-
strictions. As their primary verification engine, DepthK utilises Efficient SMT-based context-
bounded model checker (ESBMC), a context-bounded symbolic model checker to verify single-
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and multi-threaded C programs. In particular, ESBMC is used either to detect property viola-
tions up to a specified bound k or to indicate correctness using the k-induction scheme. The
experience findings indicate that 1,091 confirmed TP outcomes have been achieved and 1,056
FP confirmations have occurred, with a further 467 unconfirmed outcomes, as well as 20 TN
outcomes and 32 FN outcomes, mainly due to the constraints in the ESBMC memory model.
In addition, Mikhail et al. [78] developed a new generator for interval invariant, which pre-
processes the program, infers invariants based on intervals and introduces them as assumptions
in the program. Their findings indicate that ESBMC v6.0 can prove up to 7 percent more pro-
grams by k-induction when invariant generation is enabled. They claimed that, the k-induction
algorithm is an effective verification technique implemented in different software model check-
ers to prove partial correctness across a wide range of programs and properties.

3.6.2 Abstract Interpretation Verification

Abstract interpretation allows researchers to relate standard static analysis techniques to dy-
namic tests through verification of certain dynamic properties of the source code without run-
ning the program [44]. The difference between static analysis and dynamic analysis techniques
is that the static technique analyses the software and its source code without the need to run it.
The depth of the analysis creates control flow graphs and analyses large units in order to pro-
vide approximations of how the system operates during actual implementation [79]. Cousot [41]
claimed that abstract interpretation has a wide range of applications from the theory to practice.
Static analysis based on abstract interpretation is automatically, accurately and commercially
supported to prove abstract run-time errors, sound, scalable and industrial-size software. Bouis-
sou et al. [43] argued that in recent years, static analysis through abstract interpretation has been
very successful in automatically verifying complicated properties of safety-critical embedded
systems in real time.

VTSE [80] collects two inputs, which are the source code of the program and a user asser-
tion. Its outcome is a report on the satisfaction of the user’s assertion. Following the collection
of the source code, VTSE symbolises the symbolic execution in a sequence of steps, including
creation of the abstract syntax tree, construction of control flow graph, unwinding loops, then
indexing code variables to form a metaSMT formula, which will be transformed into a first-
order logical formula. VTSE combines the abstraction structure of the source code with the
user assertion and reaches the final form in a solver for SMT. Two SMT solvers candidates are
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Z3 1 and raSat 2. VTSE has a generally beneficial effect, as well asincluding on the number of
problems that have been solved compared to CBMC, when checking programs with big code
lines.

Static analysis is the only technique that eliminates buffer overflows and their impacts; it
can be used in open-source software for large numbers of C open-source projects. However,
the problem of static analysis techniques is that either false negatives or false positives tend to
be generated because the application is not actually running. One false alarm for every 30 to
60 lines of code in a block of 20-40k lines of code is the upper limit of the false alarm rate
obtained from the amount and type of alarms produced by Polyspace on NASA software [64].
BOON [81] has developed as standard static analysis techniques for detecting buffer overflow in
C source code in order to identify and fix vulnerabilities actively, prior to their are exploitation.
This sort of vulnerability is prevalent in C due to unsafe and string operations. Wagner et al.
resolved all standard library operations for string manipulation by models, with the quantity
of memory assigned and the number of bytes used for the analysis of the integer array. Its
formulated as an integer constraint for each declaration in the system and a warning is provided
after the resolution of the restriction system if a declaration violates the constraints.

3.6.3 Verification by Fuzz Testing

Today, the use of fuzzing is one of the most efficient ways of recognising software vulner-
abilities. In 2010, VUPEN Security is a leading vulnerability research company providing
advanced security vulnerability analysis and exploitation, which allows companies to protect
against cyber-attacks, which are any type of deliberate exploitation that targets information sys-
tems, infrastructures, networks and personal computer devices. VUPEN detected 147 critical
code execution vulnerabilities in major software programs such as Microsoft Office and Adobe
Acrobat Reader. Many of these vulnerabilities have been discovered by fuzzing [55]. For ex-
ample,Microsoft discovered and fixed over 1,800 bugs using a distributed fuzzing framework,
with more than 800 million iterations in over 400 formats [82].

In 2008, Guang−Hong et al. [50] presented ”GAFuzzing” as a vulnerability analysis ap-
proach in executable program which brings together static analysis, dynamic analysis and ge-
netic algorithm to detect buffer overflow vulnerability in C code. GAFuzz disassembles code
then, scans for vulnerabilities and calculates the path to vulnerability, which feeds inputs to the

1https://github.com/Z3Prover/z3
2https://github.com/tungvx/raSAT
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program after static analysis. The findings of their experiments indicate that for vulnerability
analysis and penetration testing, which is a practical test to detect security vulnerabilities ex-
ploited by an attacker, GAFuzzing is better than random fuzzing, which sends random data for
the target program to detect these vulnerabilities [50].

Shallow and hidden bugs can not be recognised as standard; therefore, the frequently used
evaluation criterion of the fuzzer is the code coverage ( i.e., the number and exploit ability of
bugs found) [59]. Indeed, the primary disadvantages of fuzz tests are its weak coverage, which
entails many bugs, and the quality of tests. Identically, the other disadvantage that fuzzing
attempted to solve is the blindness during a test case generation phase, which can lead to a low
level of code coverage [59]. Improving fuzzing through effective methods such as data tainting
and coverage analysis may enhance its effectiveness and make it smarter [61]. Bekrar et al.[61]
proposed a theoretical approach by integrating fuzzy and data tainting into the assembly level,
in order to improve coverage effectiveness, where data tainting improves fuzzing to identify the
most promising test sequences that can cause potential vulnerabilities and narrow the test space
using vulnerability information such as path execution. Smart fuzzing, which means generating
the format-appropriate input values by target software analysis and error generation, has the
ability to know where errors can occur via software analyses. However, there is a disadvantage
in that expertise is needed for analysis of the target software and that generating a template for
software input takes a long time [62].

3.6.4 Hybrid Verification

The combination of verification methods is an exciting strategy to overcome the disadvantages
of the aforementioned dynamic and static verification methods. The primary focus of the hybrid
verification strategy for embedded software is on combining model verification and theorem
theorems such as SMT and predicate abstraction methods [83]. Hendrik et al. [42] adapted
the original Orion idea [84] by replacing the lightweight data-flow analysis (DFA), which is a
type of static analysis technique that typically operates over a CFG, by the abstract interpreta-
tion tool Polyspace3. Instead of the solvers CVC and Simplify, which are used in Orion, the
researchers employed C-Bounded model checker (CBMC) to reduce the number of false pos-
itives. It is attractive and cost-effective to combine different verification methods. More than
20% of Polyspace’s warnings were automatically discovered by their experience.

for a value analysis of floating-point programs, Ponsini et al. [85] proposed a hybrid ap-

3https://www.mathworks.com/products/polyspace.html
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proach. In a single static and automatic analysis, use combined abstract interpretation and con-
straint programming techniques for avoiding a combination explosion in the number of paths
to be explored. Ponsini et al claimed that, the hybrid approach is slower, but more accurate.
Furthermore, a hybrid method can calculate approximations of program variable values, for
as neither the abstract interpretation nor the constrained programming technique can indeed
calculate it alone.

In order to analyse the sanitiszation process, Saner [86], based on the current tools, created
static Pixyand and dynamic analysis techniques to recognise defective sanitiszation processes,
which can be disrupted by an attacker on the web application. The concept behind its integration
is to produce a more complete and sound tool by checking whether the identified sanitiszation
is accurate and complete. Then tool was applied to a number of applications in the real-world.
Its findings indicate that Saner was able to detect several new vulnerabilities stemming from
incorrect sanitiszation processes.

The hybrid fuzzing technique combines the advantage of fuzzing to produce random input
values and concolic execution to check the program execution path. The hybrid fuzz solves the
incompleteness of fuzzer and the concolic execution path explosion problem [62]. Driller [87]
is a novel hybrid fuzzing tool, which combines a genetic input mutating fuzzer with a selective
concolic execution engine to recognise profound bugs in binaries. Stephens et al. [87] claim
that the combination of these two methods enables Driller to operate in a scalable manner and
to bypass the input test cases requirements.

3.6.5 Cutting-Edge Software Verification Tools

With respect to research carried out on recent verification tools, Digital system verifier tool
(DSVerifier) 4 which achieved the success rate exceeded by American fuzzy lop (AFL)5 as
described by Chaves et al. [88]. DSVerifier is an application of incremental bounded model
checking and a k-induction tool which is concerned with the verification of digital system im-
plementations; it was the first tool to investigate Finite word-length (FWL) effects in UAVs. By
searching for implementation errors related to FWL effects in UAV digital controllers, which
occur because these properties usually take into account the complex dynamics of the sys-
tems and require tools for the verification of hardware that are specialised in implementation.
DSVerifier achieved a significant result for investigating overflow and LCO in 10 different dig-

4https://ssvlab.github.io/dsverifier/
5http://lcamtuf.coredump.cx/afl/
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ital controllers, through 84 different implementations.

AFL [89] is a security-based fuzzer that uses a novel form of compile-time device and
genetic algorithms for the automatic discovery of test cases which are triggering fresh internal
conditions in the binary. This technique improves the functionality of the fuzzed code substan-
tially. AFL [90] performs file format mutation fuzzing, so that valid input file instances are first
seeded. It then measures the code coverage of each test case and uses genetic algorithms to de-
velop a group of test cases covering the maximum code size. This approach is quite successful
in real-life fuzzing campaigns, with AFL finding many serious vulnerabilities in many popular
applications.

Astrée developed by the École Normale Supérieure and the CNRS [91] as stands for real-
time embedded software static analyser. It is a program analyser which is static, entirely au-
tomatic, semantic-based, sound and has proven to be effective in reality. It is a static program
analyser designed to demonstrate that run-time errors are not present in programs published in
C programming language. Astrée claims any zero-division, out-of-bound array indexing, wrong
handling and dereferencing of the points, integer and floating-point arithmetic overflow. It was
successfully used for large-scale integrated control-command safety software, which was au-
tomatically produced from synchronous requirements and produced an accuracy proof without
any false alarm for complicated software within a few hours of calculation. It is very quick and
extremely accurate for floating-point computations [92].

Table 3.4 summarises all verification tools under study in terms of language support, the
target and key techniques.

Table 3.4: Summary of Cutting-Edge Software Verification Tools

V.TOOL LANG. VUL. TYPE TARGET TECHNIQUES

DSVerifier C/ C++
The first tool to
investigate finite
word-length

Digital systems
Bounded model checking
Based on SMT solver

AFL C
Desktop
application

Gray-box fuzzy testing And
genetic algorithms

Astrée C

Divisions by zero,
Buffer overflows,
Dereferences of
null or dangling
pointers, data
races, deadlocks

Defense/aerospace,
industrial control,
electronic, and
automotive
industries

A static program analyser
based on abstract
interpretation
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Chapter 6 presents a further comparison of these tools.

3.6.6 Summary and Conclusion

Table 3.5 summarises all the techniques under consideration being studied in term of the advan-
tages and disadvantages of each technique.

Table 3.5: Comparison of State-of the-Art Techniques

Techniques Pros Cons

Bounded Model
Checking

• It finds
counterexamples very
rapidly because of the
initial thoroughness of
the SAT search
procedure.
• It discovers minimal

length counterexamples.
This mechanism enables
the user to better
comprehend a
counterexample.
• It uses less space than

approaches based on
BDD.

• All possible execution
paths must be encoded
into one SMT formula,
resulting in a number of
limitations to be
checked.
• It is suffering from the

explosion issue of state
space.

Abstract
Interpretation

• An abstract tuning is not
required because an
approximation of its
semantics is given to the
program model.

• False alarms are
generally created by
overapproximating
potential executions of
the program.

Fuzzing Testing

• The test has a high
degree of automation.
• Fast and simple idea.
• It does not produce a

false positive.

• Fuzzy testing requires a
massive input space.
• The target software

requires
time-consuming
analysed that requires a
long time.
• There is weak coverage

of the testing.



CHAPTER 4

METHOD AND RESEARCH DESIGN

This chapter describes the design of a software verification tool to detect vulnerabilities in UAVs
and the methodology used during the development process. In particular, this chapter details
the design decisions taken while constructing different tool components. The chapter begins
by providing a rationale for using these techniques. This construction was implemented using
a V-methodology for software development life cycle [93]. The chapter also addresses any
assumptions in creating this solution.

4.1 Project Rationale

The rationale behind this research is precisely to develop and investigate the automatic detec-
tion of security vulnerabilities in UAV real-world software through an integration of the fuzzing
techniques and ESBMCs in k-induction as a novel technique, to overcome obstacles for indi-
vidual procedures and simultaneously guarantee that the reliability of software is improved.

4.2 Development Methodology

The skeleton of a system is the software architecture and design. It establishes how the system
conforms in terms of multiple functional and non-functional requirements [94]. In order to
attain quality in the system, this research is based on the V technique [95] used as a software

32
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development strategy and its sprints.

4.2.1 V-Model Technique

The V-model is a software development life cycle model in which processes are executed in a
sequential V form [95]. It is also known as the verification and validation model as traditional
methods were unable to keep pace with the development of software and rapid life changes and
also with the development and modification of the requirements of projects. Based on tradi-
tional techniques such as waterfall methodology, the V-model takes a long time to complete the
project, which involves enormous costs, for redesign and redevelopment in case of incompati-
bility with system requirements[96].

The first presentation was made by NASA at the NCOSE Symposium in Chattanooga,
Tennessee in 1991 [93]. The model presents the sequence stages in the life cycle of the software
development and explains the operations to be carried out and the outcomes to be obtained
during the project life cycle. The left side of the V-model demonstrates the requirements and
creates system configurations, whereas the right side relates to the integration procedure of parts
and verifies their validity and efficiency by separately checking each step before manufacturing
starts on a large scale [95], as illustrated in Figure 4.1.

Figure 4.1: Software Development Life Cycle
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4.2.1.1 V-Model’s Design Phase

1. Requirement specification: Following comprehensive research, this stage started to deter-
mine the significance of combining three techniques into one (single) tool. The tools and
libraries required for this tool were then fitted.

2. Techniques specifications: After establishing the tool’s requirements, the following tech-
niques were identified:

(a) Abstract interpretation

(b) Bounded model checking

(c) Fuzz testing.

3. High-level architecture design: In this phase, an external tool architecture was developed,
which includes the three techniques mentioned and which clarifies the data flow between
different techniques.

4. Low-level architecture design: In this phase, the complete system is divided into smaller
modules. The thorough layout of the system parts is clarified, which is can deemed the
Low-level architecture.

Regarding the coding are detailed in Chapters 5 and and testing for inspecting criteria is
been parallel to every phase.

4.3 DepthK 3.2 Architecture

The system architecture was designed according to the investigation in Chapter 3. The archi-
tecture of this research proposed agent for the vulnerabilities security detection of real-world
UAV software is based on hybrid verification techniques, each of them responsible for some
aspects of the complete verification process. A high-level DepthK 3.2 architecture diagram is
illustrated depicted in Figure 4.2 below.
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Figure 4.2: High-Level Architecture of UAV’s Vulnerability Security Verification Tool.

An abstract flow during the verification phase is outlined below:
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Algorithm 1: DepthK 3.2
1: procedure DEPTHK 3.2-FUZZ TESTING

2: Input← the UAV real-world Binary File
3: Define← pre-collected test cases
4: errorcounter = 0
5: loop:
6: Binary File execute against Define

if test cases 6= crashing then

7: goto loop.
else

8:
errorcounter← errorcounter++.

9: End loop.

return switch errorcounter do
case False do if a vulnerability has been identified ;
case True do if the software is free of vulnerabilities ;
otherwise do Unknown ;

10: end procedure

11: procedure DEPTHK 3.2
12: Input← the UAV real-world C/C++software
13: Input← User assertions

14: Compiler:
15: Parse UAV file
16: K← User define
17: depth = 0
18: errorcounter← errorcounter

while depth < K do
if Property Hold then

19: depth← depth++.
20: errorcounter← errorcounter++.

else
21:

depth← depth++.
22: End While loop

return switch errorcounter do
case False do if a property violation has been identified ;
case True do if the specification has been reached ;
otherwise do Unknown ;

23: end procedure
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4.4 Architecture Internal Details

The high-level architecture of the proposed instrument DepthK 3.2 was provided in the previous
sections 4.3. This section provides a detailed description of the low-level architecture of this
instrument, where each technique is highlighted and explained.

4.4.1 Fuzz Testing Agent

The dynamic part of the verification tool is performed through fuzz testing. Similar to other
analytic agents participating in the verification process, the Fuzz test also requires several in-
puts to check for exceptions such as collisions and memory defects. Figure 4.3 illustrates the
architect architectural diagram of fuzz testing.

Figure 4.3: Fuzz Agent Architecture

The activities conducted by the fuzz agent are outlined in the following points:

1. Identify target software: The software application, which is going to be tested is marked.
As this research focuses on UAV software, UAV software is targeted to this tool.
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2. Define inputs: Once the objective software is selected, based on these data, different
forms of fuzzers data can be used. These random inputs are generated for testing pur-
poses.

3. Produce fuzzy data: Once the random inputs have been obtained (i.e. unexpected and
invalid ), as explained in Chapter 2 in Section 2.5, these data are generated in one of two
ways:

• Mutation-based fuzzers, where valid data are collected and modified.

• Generation-based fuzzers, where data are structured from scratch depending on its
particular structure.

These random test cases are utilised for the software application as inputs.

4. Conduct the test case: The fuzzed data testing process is now performed against the
target software. In this phase, the software code is effectively performed with the previous
random input.

5. Compatibility software monitoring: Once the software application has been executed, it
will be used to crash or other exceptions such as memory disclosures. Under the random
input, the software conduct is monitored.

6. Determine whether to crash or not: Following each fuzz test, the request ends, and its
initial state is restored. Once a crash has been found, the process will determine if the
vulnerability is vulnerable to attack.

4.4.2 Abstract Interpretation Agent

Abstract interpretation agent is the static analysis technique for the present research tool. It is
mainly responsible for carrying out the static analysis component of this tool. It is already based
on many libraries, which are explained in further detail in this section . Abstract interpretation
agent takes the C++ source code as input and safety probabilities and then generates SMT
information which is expressed as the logical first-order formulas.
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Figure 4.4: Low-Level Architecture of Abstract Interpretation.

The compiler is supplied with a high-level source program, which it converts into an in-
termediate representation (IR), and then uses a sequence of optimisations, beginning with clas-
sical architecture-independent global optimisations, followed by architecture-dependent opti-
misations, such as registry allocation and instruction planning. These optimisation’s typically
occur in several passes, in which each pass is optimised in a certain way. Translation validation
presents evidence of the accuracy of each optimisation pass, where the positive validation leads
to a proof-script and a failed validation results in a counter-example [97].

Figure 4.5: Clang’s Compiler Architecture

Clang[33] is a C / C++/Objective-C open-source compiler written by STL. Clang is in-
tended to replace GCC as a drop-in replacement. It works as front-end for Low-level virtual
machine (LLVM) 1 compiler framework. The primary design objective was to provide clear
and expressive user-friendly errors messages. Clang prints the source code to where the parser
has run into a problem with a marker. It also has a high-level interface for accessing the AST,
caching it and crossing it over various indexing files.

1https://llvm.org/
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• Tokens: In the lexical analysis phase of a compiler, the task to read and divide source
code into tokens as a character file. Tokens are like words in a natural language; each of
them is a sequence of characters, which represents a unit of information such as if and
while in the source program [98].

• Abstract Syntax Tree: The parser obtains the sourcecode as tokens from the scanner
and analyses the syntax to determine the program structure. This is slimier to do a natural
language sentence grammatical analysis. Syntax analysis determines both the program
structural elements and its relationships, its results are typically displayed as a syntax
tree [98].

• AST’s Annotations: The program semantic determines its run time behaviour by its fea-
tures, which include declarations and type-checks. The additional pieces of information
such as data type, which are computed with the semantic analyser, are called attributes
that annotations have been added to the tree [98].

• LLVM IR2: The Code generation takes intermediate representation (IR) forward to the
optimisation phase and generates target machine code [98]. LLVM can provide an entire
compiler scheme center levels, by using intermediate representation code from a compiler
and generate an optimised IR. A machine-dependent assembly language code for a target
platform can then convert the resulting IR and connected it into CFG [99].

• CFG: The Control flow graph displays all paths navigation during execution. Nodes
involve basic components of all instructions performed during code execution. Cutting
edges describe control flows between the basic nodes. Predecessors are referred to as the
adjacent block that can flow to the basic node. Adjacent blocks that can flow to a certain
basic node are known as the successors of the control node. The program control will be
moved to the next block at the end of each node, usually according to a condition leading
to a move to another node [100].

PAGAI 3 [101] is a new, completely automated static analysis tool. PAGAI inputs the
LLVM intermediate representation based on the CFG. PAGAI verifies safety properties sup-
plied by users by assertions who used the C/C++ standard.

SMT Expression The Satisfaction module theory (SMT) in the bounded model checking is
an extension to the Boolean satisfiability Problem SAT. A problem is satisfiable in the SAT ap-

2https://llvm.org/
3https://pagai.gricad-pages.univ-grenoble-alpes.fr/about.html
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proach if there is an interpretation, which meets the corresponding Boolean formula. The SMT
is expressed in logical formulas of the first-order. First-order logic is a generative grammar,
which expresses a system in terms of variables (like, X , Y ), predicates (for example, x ≥ y),
connectors ( ∧, ∨ , ¬ ) and quantifiers ( ∀, ∃) [100].

4.4.3 Bounded Model Checker Agent

Once the ESBMC static analysis is completed, the bound model checker agent takes control
which is further broken down into several steps.

Figure 4.6: Low-Level Of Bounded Model Checker Architecture

1. The source code in the abstract interpretation phase is preprocessed by clang.

2. ESBMC executes the GOTO program symbolically: Loop constructs can be formulated



CHAPTER 4. METHOD AND RESEARCH DESIGN 42

by means of while statements, recursive functions by call and goto statements. GOTO
loops are unrolling by doubling loop body K times. An unrolling assertion ensures that
the program never needs any further iteration.

3. The program is then converted to a form of SSA. SSA is an IR property requiring every
variable to be allocated exactly once and every variable to be defined before being used. In
the original IR, the existing variables will be divided into versions and new variables are
typically stated by the original name with a subscription in textbooks. Each definition will
then receive its own version. Use-def chains are explicit in SSA form, each containing a
single component [100].

4. The operation generates two equations of the bit-vector: where C is the set of the con-
straints and P is the set of the property. BMC transforms C∨¬P to a quantifier-free
formula to inspect the property.

5. Checking the property needs back-end solvers: When the formula is SAT, a bug is con-
tained in the program, then ESBMC will then produce a counterexample of assignments,
which lead to the property violation.

4.4.4 Benchmark Selected

Benchmarking empirical assessment of verification tools is a popular technique in the studies
of software verification [102]. In Computer Science, benchmarks were used to compare the ef-
ficiency of computer systems, information retrieval algorithms, databases and many other tech-
niques. By using benchmarks, the tools and techniques developed are improved globally [103].
It defines as a standard of measurement or evaluation test or test set for the comparison of the
performance of alternative techniques or tools [104], [103]. These tests should be a represen-
tative sample of the tasks, which will be solved in real practice by the tool or technique. As
the whole population of the problem domain can not be included, a number of tasks serve as
substitutes. However, Lu et al. [104] claim that there exists no generally accepted benchmark
suite for evaluation of existing or newly proposed techniques in the field of software bug de-
tection. For this, they identified the following benchmark for bug detection selection criteria in
their research:

1. Representative, Benchmark should be able to display real buggy apps.
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2. Diverse, Benchmark apps should be different with some significant features, including
bug types, within the state space.

3. Portable, the Benchmark should be able to assess tools developed on various architectural
platforms.

4. Accessible, Benchmark suites are most useful if everyone can access and use them in
assessment easily.

5. Fair, which means that the benchmark should not bias toward any detection tool.

This study is based on SV-COMP, which is one of the primary projects aimed at evaluating
new software verification, techniques and tools according to Dirk Beyer [105]. The results of
the verification run are triple (answer, witness, time) to verify whether the software meets its
specification, according to the present SV-COMP regulations [102]. The answer is one of the
following results:

• TRUE, if the specification has been met.

• FALSE, if the tool fails to meet the specification.

• UNKNOWN, when the tool is unable to determine the problem or ends with a crash,
time-out, or out of memory.

Further elaboration of this benchmark is provided in chapter 6 where it has been used to
compare the research tool with similar other ones.



CHAPTER 5

IMPLEMENTATION

The empirical architecture in Chapter 4 was adopted for the implementation of DepthK 3.2
tool. The implementing is here conducted based on the guidelines proposed by Fox and Jen-
nings [106]. It begins by describing the strategies to its plan. Following are the steps are take
to set-up the development environment. This discussion includes details of implementing the
main components of the tool and highlights important execution characteristics.

5.1 Implementation Plan

The implementation was intended to combine concepts inspired by the techniques learned dur-
ing a literature review presented in Chapters 2 and 3. These include the abstract interpretation,
bounded model checking, and fuzzy testing techniques.

A roadmap for DepthK 3.2 development was established with an implementation plan.
Under this plan, the first step was to set up the developer environment on the machine for
development purposes. The main emphasis was then on recognising the DepthK 3.2 implemen-
tation architecture and identifying its features for this implementation. Finally, the progressive
V-model development described in the design stage covered by Chapter 4 was to be completed.

44
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5.1.1 Configuration Environment

The configuration of the setting was performed according to the guidelines provided by DepthK
3.11 instructions. The development environment was established by the following steps:

• Python: The choice of a suitable programming language can be of crucial significance
as it specifies the programming process efficiency and quality; it has significant impacts
on final software performance. As the system can be made using many programming
languages, the vital criteria for selecting the appropriate language can be characterised as
follows.

1. It contains a number of libraries, which can support the verification function of
research techniques.

2. It must be easy file handling and support for data structures.

Finally, Python (3.6.8) has been chosen to be the programming language for the develop-
ment, which meets all the basic requirements of this project.

• Java: The system has installed Java 8 Development Kit (JDK) with access to Java the
libraries, packages, and APIs used in the development process.

5.1.1.1 Development Environment

In order to facilitate the development of this tool, some ready-made tools and compilers were
used for flexibility. These equipment tools have been developed so that developers can use them
in their projects instead of writing them from scratch. Table 5.1 lists these utilities, user version,
and installation command.

Table 5.1: Development Environment Tools

COMPONENTS VERSION COMMAND

Pycparser v2.10 sudo apt-get install python-pycparser

Clang v3.5 sudo apt-get install clang-3.5

Ctags v5.8 sudo apt-get install exuberant-ctags

GCC compiler sudo apt-get install gcc

1Available at https://github.com/omaralhawi/depthk
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Following these steps, the environment was prepared for the implementation of DepthK
3.2. The details of this implementation are provided in the other sections of this chapter.

5.2 The Back-End Structure

The integrated analysis technique presented in this research is implemented as a prototype in
the security verification tool based on the tool architecture presented in Chapter 4. The Python
programming language is used to implement the tool in the form of independent agent-based
subsystems as illustrated previously in the tool’s architecture.

All agents of the current tool are written and developed in the Python programming lan-
guage. The tool is implemented in two phases, based on the concept used in the proposed
techniques of integrated dynamic and static analysis. Dynamic analysis based on fuzz testing
was conducted during the first implementation phase. The second phase concerns with the im-
plementation of the static analysis, which involves subsystems which communicate with each
other and use the output of one or more subsystems as its input. The result is based on the
output and its format generated during this phase.

The remainder of this chapter discusses more details on the implementation of the complete
DepthK 3.2.

5.2.1 Implementing Abstract Interpretation and Bounded Model Checker

Pre-processing (i.e. lexical analysis and parsing, is typically necessary for the implementa-
tion of any technique of static code analysis based on abstract interpretation, as mentioned in
Section 4.4.2, and the manual building of lexers and parsers is usually uncommon. Therefore,
one or more tools are employed for automatic lexer and parser construction, depending on the
technology under development.

Since the research present tool, based on version 3.1 of Depthk, then the pre-processing
processes were implemented through ESBMC. The technique of static analysis includes first
compiler phases, pycparser (v2.10) currently used to parse a C program into an AST to this
purpose. pycparser is a complete C language parsed by using PLY Library, written with Python.
It compiles C source code into a model as an AST. Figure 5.1 and Table 5.2 provide examples
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of certain modules supplied by the Python’s Pycparser, which are ready-to-use.

Parser Function.py

1 def parse(self, text, filename=' ', debuglevel=0):
2 """ Parses C code and returns an AST.
3 text:
4 A string containing the C source code
5 filename:
6 Name of the file being parsed (for meaningful
7 error messages)
8 debuglevel:
9 Debug level to yacc

10 """
11 self.clex.filename = filename
12 self.clex.reset_lineno()
13 self._scope_stack = [dict()]
14 self._last_yielded_token = None
15 return self.cparser.parse(
16 input=text,
17 lexer=self.clex,
18 debug=debuglevel)

Figure 5.1: An Example Code for pycparser Module

Table 5.2: Some Example of Pycparsers’ Modules

Pycparsers’ Modules 2 Used

sys
The sys module generally provides the Python
interpreter with information on constants, functions and
methods.

ast
Python applications can be processed in the Python
abstract syntax grammar using the ast module.

pprint
The Pprint module allows the arbitrary data structures in
Python to be "pretty-printed," in a form that can be used
as an input for the interpreter.

Depending on the present token, pycparser requires tokens generated by the ctag and pro-
duces an AST node. Implementing the pycparer takes three main phases of the preparation of an
AST: a preparation phase, generation of nodes and AST’s annotations phase. All these phases
are important to ensure that the pycparser can carry out the generated AST. Operations such
as if-else condition, goto and switch involve running to jump and ignore other instructions
depending on a given condition. These directions are used by pycparer to provide unstructured
execution, which jumps between separate nodes all through the AST translation. For example,
in CFG a loop is established by setting up if-else and goto together in a manner that allows
a set of compiled code to jump back and forwards. It produces a source code definition index,
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which is used to find the definitions immediately. Clang3 is used for compiling the C file and
convert it to LLVM bitcode. The LLVM result used to generate the program invariants which
be input to PAGAI.

ESBMC is used for k-induction verification and CPAchecker4 for validation of witnesses.where
DepthK uses the validators to check results connected to the forward situation and inductive
step. Microsoft Research Z3 is used as SMT-Solver. Z3 can be used to verify that logical for-
mulas are satisfactory through one or more theories. It is a low-level tool that is often used as
an aspect in other tools which require the solution of logical formulas. The input format of it is
an extension to the normal SMT-LIB 2.0. A Z3 script presented as a command sequence. [35].

3http://clang.llvm.org
4https://cpachecker.sosy-lab.org/
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5.2.2 Implementing Fuzz Testing Agent

The procedure outlined in Chapter 4 was implemented to construct this agent. The implemen-
tation of this agent was further divided into two sub-phase; pre-fuzz and fuzzing being phase.

In the pre-fuzz phase, the standard library Python offers good logging capabilities for the
module logging. Logging requirements depend on the application and may change in the life cy-
cle of the application. Therefore, a logging system must be flexible. Class fuzzing.LoggerFactory
launches the configuration file of YAML and triggers the logging system.

In addition it defines as a Singleton. Singleton classes are defined by the principle that no
more than one example will apply. Figure 5.2 provides fuzz Singleton’s function declaration.

logging Singleton.py

1 import logging
2 import logging.config
3 @singleton
4 class LoggerFactory(object):
5 def __init__(self, package_name='fuzzing',

config_file='resources/log_config.yaml'):↪→

6 self.package_name = package_name
7 self.config_file = config_file
8 self.config = None
9

10 def initialize(self):
11 self.config = self.__read_configuration()
12 logging.config.dictConfig(self.config)
13

14 @staticmethod
15 def get_instance(identifier):
16 logger = logging.getLogger(identifier)
17 return logger
18

19 def __read_configuration(self):
20

21 cfg = pkgutil.get_data(self.package_name, self.config_file)
22 conf_dict = yaml.load(cfg)
23 return conf_dict

Figure 5.2: Singleton’s Logging

fuzz agent receives UAV file as a binary format after the initialisation step which imple-
mented in pre-phase was completed. The next step is to generate a collection of random module
fuzzed test cases. It is a challenge to find suitable test cases to be used with UAV software, due
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to fuzz testing is a new area for UAV software. The generates random data through the fuzzer
function. This tool’s research used the generational approach to the test cases with pdfcrack
files. Figure 5.3 presents a fuzzer function, where a binary buffer can include files such as, a
PDF, an image, etc.

Random Generation Function.py

1 def fuzzer(buffer, fuzz_factor=101):
2

3 buf = deepcopy(buffer)
4 num_writes = random.randrange(math.ceil((float(len(buf)) / fuzz_factor))) +

1↪→

5 for _ in range(num_writes):
6 random_byte = random.randrange(256)
7 random_position = random.randrange(len(buf))
8 buf[random_position] = random_byte
9 return buf

Figure 5.3: Test Random Data Generation

The most significant model used in FuzzingLib is shown in Table 5.3.

Table 5.3: Fuzz’ Modules by FuzzingLib

Fuzz’ Modules Used

random
This module installs pseudo-random number generators
for different datasets.

time This module provides several features related to time.

math
This module provides access to the C standard defined
mathematical functions.

The FuzzExecutor.stat is a TestStatCounter instance. It provides for each imple-
mentation the number of successful and unsuccessful runs. In order to combine several test
statistics, TestStatCounter implements:
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Execution Class in FuzzingLib.py

1 class FuzzExecutor(object):
2

3

4 def setNotActive(self):
5 self.isActive = False
6

7 def __init__(self, app_list, file_list):
8

9 self.logger = logging.getLogger('fuzzing.fuzzer.FuzzExecutor')
10 self.logger.info('Initializing FuzzExecutor ...')
11 self.apps, self.args = FuzzExecutor.__parse_app_list(app_list)
12 self.file_list = file_list
13 self.fuzz_factor = 251
14 keys = [os.path.basename(app) for app in self.apps]
15 self.stats_ = TestStatCounter(keys)
16 self.isActive = True
17

18 def run_test(self, runs):
19

20 startingTime = time.time()
21 self.logger.info('Start fuzzing ...')
22 for _ in range(runs):
23 if not self.isActive:
24 break
25 app = random.choice(self.apps)
26 data_file = random.choice(self.file_list)
27 fuzzed_file = self._fuzz_data_file(data_file)
28 self._execute(app, fuzzed_file)
29 self.logger.info('Fuzzing completed.')
30 return startingTime

Figure 5.4: Execution Class and its Function

Status is an enum class that provides backed test status values:

Status values.py

1 @enum.unique
2 class Status(enum.Enum):
3 FAILED = 0
4 SUCCESS = 1

Figure 5.5: Run Status Values
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5.3 Display output

Once the verification process has been completed, and the three agents have done its tasks,
the tool generates the verification result for the user. It includes the validation result in one of
these forms (True/False/Unknown), the cycles’ number that user-defined it and time consumed
to perform the verification process, where the time unit calculated by the CPU unit.

5.3.1 Graphical User Interface

A user-friendly and simple interface has been created for the user. The graphical user interface
(GUI) was built using PyQt 5, which is double-licensed under both a commercial as well as
GPL license, depending on Qt6 library. The prototype was visualised on a one-page screen and
the screen was created according to a typical screen layout as illustrated in Figures 5.6 and 5.7.
The principal requirement is that the user can use the prototype activities in the least possible
procedures and provide feedback on the results for the verification process.

Figure 5.6: User-Interface for the Prototype

5https://riverbankcomputing.com/software/pyqt/intro
6https://www.qt.io/
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Figure 5.7: User-Message Information

5.4 Implementation Challenges

There were some challenges that we faced during the implementation phase. Initially, it was
an attempt to produce a tool that incorporates the three techniques mentioned in the studies
purpose 1.4. It has been constructed in C++ based on three libraries: Ikos libraries7 were used
for an abstract interpretation, BMC and AFL libraries were used to implement a fuzz testing. It
was also given an initial name as UAVerifier 1.0.0. The challenge was the difference in libraries
construction and different compile of the C file for each library.

As a result of the first attempt, a new solution was adopted, which was to construct a tool
based on the development of the Dsverifier 2.0.3 tool. Dsverifier 2.0.3 combines the two tech-
nologies abstract interpretation and BMC. The new tool was developed to integrate Dsverifier
2.0.3 with AFL libraries. During implementation phase, the research proposal was adopted,
which the supervisor Dr Cordeiro had already suggested, because of the problems of the re-
search interface. The study tried to combine Depthk 3.1 with ESBMC v5.0 as in the proposal.
However, this attempt did not produce the outcomes intended for in the research.

Figure 5.8: The GUI Of the Tools,We Have been Trying to Construct Already

7https://github.com/NASA-SW-VnV/ikos



CHAPTER 6

EVALUATION AND ANALYSIS OF
DIFFERENT VERIFICATION TOOL

This chapter is meant by several assessment metrics to answer research questions R2 and R3
by assessing the efficiency of cutting-edge verification techniques. Evaluation and analysis
are conducted based on the method undertaken by Prause et al.[13] and Liang et al. [59],
which are published in IEEE 11th International Conference on Software Testing, Verification
and Validation. This assessment starts by identifying the evaluation Metrics, which are relevant
to the research aims. Additionally, state-of-art tools targeting this security problem evaluated,
which are already defined in chapter three.

6.1 Comparing the accuracy and performance of verification
tools

The purpose of this section is to evaluate several open-source verification tools in order to assess
our tool’s efficiency and characteristics than other one. The study has selected three well known
publicly available vulnerability detection tools for this assessment. List of tools evaluated, their
versions and locations for downloading, are presented in table 6.1.
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Table 6.1: Open-Source verification Tools

V.Tool VERSION LOCATION

DSverifer 2.0.3 http://dsverifier.org/

AFL 2.52b http://lcamtuf.coredump.cx/afl/

IKOS 1.3
https://github.com/NASA-
SW-VnV/ikos

The current experiments have been conducted on a computer configured as follows: Intel
Core i5-8250U 1.60 GHz processor, 8 GB of RAM, and Ubuntu 18.04 64-bits OS. All execution
times submitted are CPU times.

6.1.1 Evaluation Metrics

This research has identified metrics based on the cumulative True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) score. To identify these metrics in terms of
vulnerability detection, the following is further described:
True Positive which means that there is a vulnerability, and this vulnerability is reported in the
source code by the tool.
True Negative , which means that there is no vulnerability in the source code, and the tool does
not report about any vulnerability.
False Positive , which means that there is no vulnerability in the source code, and vulnerability
is reported by the tool.
False Negative , which means that there is a vulnerability in the source code, and that vulnera-
bility is not reported by the tool.

With the resulting two to two-cell confusion matrix, quality criteria for each tool can be
determined as sensitivity (S) and precision (P) as the following:

S =
T P

T P+FN
(6.1)
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P =
T P

T P+FP
(6.2)

Where sensitivity is the actual fault ratio identified, while the correct reports are precision
[13]. Precision is essential measures to know how well the tool is able to exclude false-positive
ratios. The precision measurement seeks to assess how much trust can be placed in the tool. The
higher the precision value indicates that more confidence can be provided when the tool reports
vulnerabilities [107]. However, In this case, the Jaccard coefficient (J), which is a measure of
overlap between actual and reported defects, is a more appropriate qualitative measure because
it is irrespective of true negatives [13] :

J =
T P

FP+FN +T P
(6.3)

The balance between these false positives and false negatives specified the tools to be sound
or complete. These tools are deemed to be sound when they do not produce false negatives, and
when the tools do not produce false positives, they are called complete tools [107].

6.1.2 Evaluation Result

Table 6.2: Time and Warnings Generated by Each Tool
Metrics TIME (min:sec.csec) WARNING COUNT

DSVerifier AFL IKOS DepthK DSVerifier AFL IKOS DepthK

True Positive (TP) V1 V2 V3 V4 V1 V2 V3 V4
True Negative (TN) V1 V2 V3 V4 V1 V2 V3 V4
False Positive (FP) V1 V2 V3 V4 V1 V2 V3 V4
False Negative (FN) V1 V2 V3 V4 V1 V2 V3 V4
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Table 6.3: Warning Counts for the Software Verification Tools

V.Tool SENSITIVITY PRECISION J.COEFFICIENT

DSverifer

AFL

IKOS

DepthK

Figure 6.1: Histogram of percentage of each tool’s warnings

6.1.3 Security Vulnerability coverage

Table 6.4: Coverage Comparison of DepthK 3.2 With Other Tools

BENCHMARKS TYPE DSverifer AFL IKOS DepthK

MemSafety X

Overflows

ReachSafety

ConcurrencySafety

6.2 Performance Evaluation and Discussion

Table 6.5: Performance Evaluation for Open-Source Verification Tools

V.Tool ADVANTAGE DISADVANTAGE DETECT
LEVEL

DSverifer

AFL

IKOS

DepthK
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You should also describe your benchmarks here. Where did you collect them? Which
UAV models are they? please provide as much information as you can about the employed
benchmarks.

Rutar et al.[108] compare tools



CHAPTER 7

CONCLUSIONS

7.1 Conclusions Summary

The demand for the development of specialised applications, including UAV applications [12],
has significantly increased . However, these applications are highly vulnerable if they are not
validated before publication. Different techniques and tools for software validation have been
effectively constructed and developed for this purpose. However, the safety inspection process
still requires a necessary level of automation.

This study, implemented a technique of static analyses centred on abstract interpretation
and bounded model checker that was designed in order to incorporate such techniques with the
dynamic analysis technique based on fuzz testing. These guidelines allow for static analysis
to detect prospective causes of deficiencies. A dynamic analytical technique for working with
static analytical technique was also created and enhanced through this study. Dynamic ana-
lytical technology provides a double checker and helps to avoid possible application attacks
due to unexpected inputs. In order to demonstrate our this technique as robustly and effective,
the researchers tested the tool with other current tools and found that the tool performs quite
well in comparison. The tool improves the coverage of the number and types of vulnerabilities
compared to other tools.
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7.2 Limitations

This project’s work is restricted by a number of constraints, despite its mainly focus on the
method and its effectiveness in identifying multiple type of vulnerabilities detected in the UAV
software. The limitations of this research includee the following things:

1. Many software verification tools are already accessible on the market, some of which are
a business products which require payment to use. This research is, therefore focused on
open source tools, which may be used and modified by the general public.

2. Some of software verification tools support numerous languages, while others are language-
specific. This research focuses primarily on open-source tools related to C, C++ and/or
Python. While the research includes a theoretical assessment of tools that support these
languages, it only conducts a practical assessment of C, C++ analysis tools due to the
restricted time of the study.

3. Since the tool presented in this research is based on defined k as depth length , the ef-
fectiveness of the tool relies entirely on the k length. If the length is large, then the tool
significantly enhances efficiency, and the converse is true for tiny lengths.

7.3 Future Work

Although the integrated technique employing fuzzing, bounded model checking, and abstract
interpretation, has enhanced the system’s reliability over other closely related projects, future
evaluations of this tool should focus more efficiently on detecting further vulnerabilities and
should support other languages. This research proposed that artificial neural networks be used
rather than bounded model checking in order to bring the value of unrestricted system verifica-
tion to a predefined k-length, and thereby improves verification effectiveness in large systems.

Artificial neural networks (ANNs) can be defined as structures consisting of densely con-
nected, simple adaptive processing elements (known as artificial neurons or nodes) which can
be used to conduct massive parallel for data processing and data representation computations
[109]. The attraction of ANNs is based on the extraordinary characteristics of the biological
system data processing such as non-linearity, high Parallel capability, robustness, fault and fail-
ure tolerance, learning, ability to of working with incomplete knowledge and fuzz data and
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capacity to generalise data [109].

Systems verification typically involves computing either the number of states reachable
from the initial states or specific fixed points related to logical formulae. Instead of calculating
these states by using the transition relationship iteratively, it will view as a target to be learned
by responding to specific questions.The primary concept of use ANNs, it are supported by a
description of the system model that must be evaluated in terms of its variable declarations,
initial state and the property that are to be verified. The result is whether or not the system
meets the property. In addition, a false response will be applied to provide a counterexample of
the property violation.

This proposal is expected to be appropriate for extremely large systems, decreasing the
time needed to calculate reach states and their capacity to detect fuzz data without the need for
verifying data generation techniques. In addition, more than one programming language will
be supported.
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