
ESBMC BASED ETHEREUM SMART
CONTRACT SECURITY

VERIFICATION

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Student id: 10206402

Department of Computer Science

Contents

Abstract 8

Declaration 9

Copyright 10

Acknowledgements 11

1 Introduction 12
1.1 Motivation . 12

1.2 Aim & Objectives . 13

1.2.1 Aims . 13

1.2.2 Objectives . 13

2 Background 14
2.1 Blockchain & Smart Contracts . 14

2.1.1 Blockchain and Bitcoin . 14

2.1.2 Ethereum and Smart contracts 15

2.2 Smart contract vulnerabilities . 17

2.2.1 Integer arithmetic . 19

2.2.2 Reentrancy . 20

2.2.3 Authorization through tx.origin 25

2.3 SMT Based bound model checking 27

2.3.1 Bounded Model Checking 27

2.3.2 Satisfiability Modulo Theories 28

2.4 ESBMC . 29

2.5 Programming Language Theory and AST 30

2.6 Related work . 31

2

2.6.1 Remix IDE . 32
2.6.2 Mythril . 32
2.6.3 Smartcheck . 32
2.6.4 Slither . 32
2.6.5 ESBMC-Solidity . 33

3 Methodology & Implementation 34
3.1 Opcode Implementation . 34
3.2 Expanding supported grammar . 37

3.2.1 Integer types . 37
3.2.2 Structs . 41
3.2.3 Solidity globals . 44
3.2.4 Constructors . 45

3.3 Detecting Vulnerabilities . 48
3.3.1 Fixed bit integer arithmetic 48
3.3.2 Reentrancy . 51
3.3.3 Authorization through tx.origin 56

4 Evaluation 58
4.1 Test Contracts . 58

4.1.1 Grammar extension tests . 60
4.1.2 Vulnerability tests . 62

4.2 Comparison to other works . 67
4.3 Limitations . 68

5 Conclusion & Further work 69
5.1 Conclusion . 69
5.2 Limitations & Further work . 69

Bibliography 71

Word Count: 13552

3

List of Tables

2.1 List of differences between send, transfer and call to send ether to an
address from a smart contract . 21

3.1 Table of advantages and disadvantages of implementing verification by
opcode . 36

3.2 Table with values for assertions for a binary arithmetic operation, a

b . 49

4.1 Table of tests designed to evaluate the implementations 59
4.2 Table of run time values for grammar expansion tests, green time val-

ues represent correct outcome and red indicated incorrect outcome . . 62
4.3 Table of run time values (in secs) for vulnerability detection tests,

green time values represent correct outcome and red indicated incor-
rect outcome, the bolded time in each row represents the fastest correct
verification . 67

4

List of Figures

2.1 Graphical depiction of the Bitcoin blockchain taken from the bitcoin
developers documentation[1] . 15

2.2 Flowchart that illustrates function calls on receiving ether 22
2.3 Flow for the reentrancy attack as performed by Listing 2.4 24
2.4 LTL semantics defining when f holds on π 28
2.5 Pipeline for C program verification in ESBMC 31

3.1 Flowchart illustrating the implementation of type coercion for expres-
sions . 41

3.2 Figure 60 from [39] that illustrates the benchmark for testing overflow 48
3.3 Figure 62 from [39] that illustrates the benchmark for testing underflow 49

5

Listings

2.1 An example crowd funding contract written in Solidity 18

2.2 A Token Sale contract with an overflow vulnerability 21

2.3 A Simple dao contract with a reentrancy vulnerability 22

2.4 An attack contract that exploits the reentrancy vulnerability in Listing
2.3 . 23

2.5 Victim contract for the tx.origin vulnerability 26

2.6 Attack contract for the tx.origin vulnerability 26

3.1 Example of a type descriptions object 38

3.2 Summarized AST for uint32 i = a - (b + 1); in json 39

3.3 Summarized AST for uint32 i = a - (b + 1); in json with metadata . 40

3.4 An example of struct usage in solidity 42

3.5 Pseudo code for generating the IR conversion of a struct initialization 43

3.6 Listing 2.6 with the operational model prefixed to the contract decla-
rations . 45

3.7 GOTO generation from ESBMC for an empty function body 46

3.8 GOTO source code excerpt for overflow 50

3.9 An example contract with overflow vulnerability on multiple runs of
the add function . 51

3.10 A very simple reentrancy vulnerable contract contract 52

3.11 Pseudo code for constructing the path to the external call that is a po-
tential reentry point . 53

3.12 SMT formulae for the verification of contract in Listing 3.10 55

3.13 Fixed version of Listing 3.10 . 55

3.14 SMT formulae for the verification of contract in Listing 3.13 56

4.1 Valid contract with constructor . 60

4.2 Invalid contract with constructor . 60

4.3 Valid contract with signed integers 60

6

4.4 Invalid contract with signed integers 61
4.5 Valid contract with structs . 61
4.6 Invalid contract with structs . 61
4.7 Contract with external call and reentrancy vulnerability 62
4.8 Contract with external call and no reentrancy vulnerability 62
4.9 Contract with signed integer overflow 63
4.10 Contract with signed integer overflow over multiple runs 63
4.11 Contract with int and uint operations with- out any overflows or under-

flows . 63
4.12 Contract with signed integer underflow 63
4.13 Contract with signed integer overflow over multiple runs 64
4.14 Contract with tx.origin in the body of a function invocation 64
4.15 Contract with tx.origin in the body of a loop 64
4.16 Contract with tx.origin outside a require call 65
4.17 Contract with unsigned integer overflow 65
4.18 Contract with unsigned integer overflow over multiple runs 65
4.19 Contract with unsigned integer underflow 65
4.20 Contract with unsigned integer overflow over multiple runs 65

7

Abstract

ESBMC BASED ETHEREUM SMART CONTRACT SECURITY

VERIFICATION

Burhanuddin Salim
A dissertation submitted to The University of Manchester

for the degree of Master of Science, 2022

The aim of the thesis is to investigate and extend the smart contract vulnerability
detection capabilities of ESBMC Solidity, an SMT based bound model checker. The
project extends the current supported grammar to structs, constructors, built in globals,
and extend the integer types supported. Moerver, the project also aims to and delivers
to implement the ability for ESBMC Solididity to detect well known smart contract
vulnerabilities, namely, Reentrancy, authorization through tx.origin, and integer over-
flows and underflows. The implementations are compared against well establish indus-
try tools, namely, Mythril, Slither, Smartcheck, and Remix IDE. A benchmark of tests
is designed and evaluated with to depict comparisions between the work of this thesis
and industry standard tools. It is observed that the implementations allow for ESBMC
Solidity to prove more performant and better cover detection of vulnerabilities that this
is thesis is concerned with.

8

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

10

http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/
http://www.library.manchester.ac.uk/about/regulations/

Acknowledgements

I would like to thank my supervisor Dr. Cordeiro for his support and guidance both aca-
demically and in terms of project management. Also, I would like to extends aspecial
thank you the ESBMC team who were alwasys available to support my development
journey with ESBMC.

11

Chapter 1

Introduction

1.1 Motivation

Blockchain technology has amassed a great following in today’s world both among
financial and technological enthusiasts. It serves as the primary technology upon which
cryptocurrencies like Bitcoin are based upon. It has also opened up an avenue for the
likes of Ethereum to be able to leverage the decentralised nature of the blockchain
technology and create protocols to enable decentralised computing by the use of smart
contracts.

Solidity is a popular choice[32] among Ethereum[43] smart contract developers as
a programming language to write smart contracts in which has domain specific features
like sending ether to addresses which make the development of the contract much
easier. This contract is then compiled to an EVM[43] (Ethereum Virtual Machine)
bytecode representation, which then then evaluated by the validators on the network
when the contract is published to the Ethereum mainnet.

The immutability of these contracts is absolute, they cannot be amended by any
entity be it the user, developer of the contract or some admin entity for the network
which makes the presence of vulnerabilities much more difficult to mitigate. The im-
mutability of the contract begs the need for tools that can analyse smart contracts and
detect vulnerabilities in the contract before it is published to the blockchain.

A well known hack within the blockchain community is one called the DAO attack[31],
which incurred a loss of about $60 million forcing the ethereum network to rollback
the blocks to a point before the attack. As of the writing of the paper organizations

12

1.2. AIM & OBJECTIVES 13

are paying hefty sums to those who are able to find vulnerabilities in their smart con-
tracts, this includes the likes of Ethereum paying upto $250,0001, 0xProject paying
upto $1,000,0002 for critical contract bugs.

1.2 Aim & Objectives

1.2.1 Aims

This project aims to further the attempt of ESBMC-Solidity to verify smart contracts
by expanding the grammar support and also adding utilities to detect common vulner-
abilities found in smart contracts. It aims to do so in a performant manner such that it
measures well against current industry tools.

1.2.2 Objectives

1. Assess the ESBMC codebase to understand the current scope of the tool

2. Investigate the grammar and syntax of solidity and enable ESBMC-Solidity to
verify through contracts that possess complex grammar features, namely structs,
more primitive types, constructors, and solidity built in globals.

3. Investigate common smart contract vulnerabilities and design a method using
ESBMC to detect those vulnerabilities, namely, Reentrancy, authorization through
tx.origin, and Integer overflows and underflows.

1https://ethereum.org/en/bug-bounty
2https://docs.0x.org/developer-resources/bounties#bounties

https://ethereum.org/en/bug-bounty
https://docs.0x.org/developer-resources/bounties##bounties

Chapter 2

Background

2.1 Blockchain & Smart Contracts

2.1.1 Blockchain and Bitcoin

The blockchain technology today is described as a decentralised distributed ledger[28].
The means to achieve this technology are grounded in ideas that date back to 1991,
when [25] outline a time stamping service which aims to timestamp digital documents.
The service described, would allow the preservation of the order of digital documents
by issuing a certificate signed by the service which includes a timestamp and a pointer
to the digital document that precedes the document that is to be certified. The nature of
the pointer is such that it is sensitive to the data that it points to, if the data is invalidated
then so is the pointer itself which can be achieved by leveraging cryptographic hash
functions[41] on the data stored at the pointer[25]. This allows any verifier to ensure
that the order of the documents is correct.

Bitcoin[36] used this timestamping of documents along with a consensus protocol
to create a digital currency where the wealth of a user is not recorded with any physical
token but by a decentralised ledger. This idea of a set of documents being linked
and by a certificate to the previous documents issued forms the basis of the idea of a
(virtually) tamper-proof ledger that is used by Bitcoin . The transactions on the Bitcoin
blockchain imitate the documents above but instead of being linked one transaction
after the next transactions are grouped together in blocks in order which are then linked
to each other. Each block possesses the hash of the data of the block before, the
timestamp of the block, the ordered transaction data, and other meta data like version
and difficulty index. Each block also has a nonce that is a part of the computationally

14

2.1. BLOCKCHAIN & SMART CONTRACTS 15

Figure 2.1: Graphical depiction of the Bitcoin blockchain taken from the bitcoin de-
velopers documentation[1]

intensive task that is a part of the Proof of Work system. (Figure 2.1).

The timestamping allowed it to maintain a correct order of transactions but to make
it decentralised a consensus protocol[36] has to be designed for a peer-to-peer network.
This protocol would dictate valid transactions and valid blocks that can be added by
anyone onto the chain along with the proof of the solution of a computationally inten-
sive puzzle (Proof of Work). Those that would make the computational effort to do
so are known are miners as by doing so they collect a certain amount of bitcoin for
themselves for a successfully constructed block.

By having each block to be backed by significant computational effort this lowered
the chances of malicious miners putting in illegitimate transactions as they would have
to have a significantly larger amount of computational power[44] to keep adding blocks
after the malicious block so it will be accepted by the network as they are racing against
other miners to validate transactions.

2.1.2 Ethereum and Smart contracts

This idea of the blockchain was then taken further to achieve a programmable blockchain
by Ethereum[43]. Ethereum leveraged the blockchain technology that Bitcoin utilised
to develop a programmable blockchain where the blockchain transactions would not
only be transactions of currency between users but could also be function calls by users
to user authored programs that would execute procedures from the program manipu-
lating the state of a program. The currency used on the Ethereum blockchain is known

16 CHAPTER 2. BACKGROUND

as ether[6].

These programs are stored on the blockchain too and are dubbed smart contracts by
Ethereum. These contracts can be called by users but also by other smart contracts by
simply referring to their address on the blockchain. As the smart contract lives on the
blockchain, it inherits the absolute immutability of the blockchain which is that once a
smart contract is published it can no longer be amended or deleted by any party as this
would invalidate the chain of blocks that succeed the block with the smart contract. A
contract is able to perform a multitude of actions, including but not limited to: sending
and receiving ether, calling functions on other contracts, storing and updating state.
Each operation in a smart contract is deterministic and this is necessary as the state
of the contract is not stored but rather can be retrieved from the transaction history of
function calls made to the contract which need to make the same state changes every
time otherwise the state can be different for different viewers of the chain.

As the computing is decentralised there needs to be a consistent execution environ-
ment that is unaffected by the architecture of the node that it is running on this is to
ensure the determinism of the code. In efforts to achieve that Ethereum has developed a
virtual machine named Ethereum Virtual Machine[43] which forms a framework that
can be followed when executing smart contract code. All Ethereum smart contracts
are compiled down to EVM bytecode and stored on the chain as EVM bytecode. This,
however, is too low level for development and smart contracts are written in higher
level languages the most popular of which is Solidity[32].

An example use of a smart contract is that of a crowd funding contract shown in
Listing 2.1. The contract body, which is accessible publicly, outlines the terms of the
crowd funding detailing how funds are pledged how they are collected at the end of the
fundraiser. It contains 3 functions pledge, finish and the constructor. To begin
with the beneficiary of the fundraiser publishes the contract which sets the beneficiary
as the owner of the contract and sets the value they give as the goal and end for the
fundraiser by the execution of the constructor.

The values for goal, raised and end are publicly available and can be queried by any
user indicated by public on the variable definitions. The process for a pledge is also
dictated it checks if the pledge is made before the end and then both the total raised
value and the supporter pledge amount is updated in a hashmap of sorts. Once the
fundraiser is over then the owner can call the finish method and if the goal has been
reached then they can take the funds (selfdestruct sends all the funds of the contract to
the argument address). Also note, there is no refund method which means that there

2.2. SMART CONTRACT VULNERABILITIES 17

is no way to recall your funds if you have a change of heart once pledged, but this is
transparently outline by the absence of any such procedure.

The beauty of this is, firstly, the entire terms and procedure of the sale are transpar-
ent and no implementation details are hidden from the user. Secondly, the exchange
requires no trusted third party, when a transaction for any of the functions is called
both parties, the beneficiary and the benefactor, will be credited or debited according
to the procedure transparently outlined in the contract and the trust on the transaction is
provided by the consensus protocol without any trust between the parties themselves.
Lastly, the terms of the exchange will never change, regardless of when the finish

function is run it will behave exactly as it is outlined at the publishing of the contract.

To further elaborate, each transaction on the the Ethereum block chain has a few
builtin values when it is constructed like the value of ether that is being sent with the
call, the amount of gas being sent with the call, the address of the caller, parameters of
the function call, contract address where the function lives and additional meta data.
For every transaction the gas sent is an amount of ether sent for the miner who veri-
fies the transaction, it is intended to incentivise miners and compensate them for the
computational effort that goes to run the function call.

2.2 Smart contract vulnerabilities

As mentioned before Ethereum smart contracts are immutable objects and cannot be
amended once publish. This heightens the severity of bugs that would otherwise be
less severe due to easy remediation. Moreover, smart contracts are often responsible
for large amounts of ether[16] which further elevates likelihood of malicious actors
targeting smart contracts and raising the severity of bugs even more. Failure to suc-
cessfully audit the security of smart contracts has often caused large financial losses in
the millions, like that of the infamous DAO attack[31] which leveraged a reentrancy at-
tack to siphon off funds in the neighbourhood of $60 million, Parity’s Multi-signature
Wallet Hack[37] which also succumbed to a reentrancy attack and suffered losses of
about $30 million.

In recent years many reviews[8, 37, 38] have been conducted to assess the state
of security of Ethereum smart contracts which highlight common vulnerabilities and
attacks that are employed against smart contracts. Security vulnerabilities are so com-
mon that a study[27] during 2016 estimates that of all the published contracts about
45% of them are affected by known security vulnerabilities. This project focuses on

18 CHAPTER 2. BACKGROUND

1 pragma solidity 0.8.13;
2 contract CrowdFund {
3 mapping(address => uint) supporters;
4

5 uint public goal;
6 uint public raised;
7 uint public end;
8

9 address payable owner;
10

11 constructor(uint _goal , uint _end) {
12 owner = msg.sender;
13 goal = _goal;
14 end = _end;
15 }
16

17 function pledge() payable public {
18 require(now < end);
19 supporters[msg.sender] += msg.value;
20 raised += msg.value;
21 }
22

23 function finish() public {
24 require(now > end);
25 require(goal <= raised);
26 require(msg.sender == owner);
27 selfdestruct(owner);
28 }
29 }

Listing 2.1: An example crowd funding contract written in Solidity

2.2. SMART CONTRACT VULNERABILITIES 19

bugs that arise when programming smart contracts in Solidity.

The developer community has also put in efforts to collate a database1 of vulnerable
contracts and known vulnerabilities to further help enhance the security of the smart
contract ecosystem. One of such efforts is know as the SWC Registry[3] which stands
for Smart Contract Weakness Classification and Test Cases Registry, it collects a set
of of known vulnerabilities, remediations and example vulnerable contracts to prove
as a reference for block chain developers. Below, some of the most popular and most
discussed vulnerabilities are defined and explained.

2.2.1 Integer arithmetic

With everyday mathematical integer arithmetic one is safe to assume that given two
positive integers the sum of those integers will be positive and an even stronger im-
plication is the sum will be greater than either of the two integers. This logic can be
implemented given that integers are stored with an infinite bit width, however, as mod-
ern computing has a finite memory it chooses to represent integers with finite bit width
types. Along with the finite bit width representation for integers comes many caveats,
the logic that the addition of two positive integers is positive no longer is guaranteed
and is implementation specific based on the machine, the compiler and various other
execution details. Let x be represented by a 4 bit integer, now suppose, x = 15 then
in a general case it is ambiguous what is to happen if you add 1 to x either the oper-
ation can be leave the value unchanged or the addition can cause the value to go to a
fixed value. Different languages define or choose to mark as undefined when addition
is performed beyond the maximum value of the type. For C the standard[26] defines
that for unsigned integer types a wrap around is performed where addition would be
performed modulo the maximum value + 1, but for signed integer it is notes that it
causes undefined behaviour.

Integer arithmetic beyond the maximum value is known as integer overflow. Anal-
ogously, when integer arithmetic proceeds in the other direction an integer underflow
can occur and the values can wrap around the other way. In Solidity, a lot of different
signed and unsigned integer types are made available each have a fixed with ranging
from 8 to 256 in increments of 8[5]. As the execution of any contract is deterministic
the cases for overflow and underflow are both defined to be wrap around where the
value simply wraps over to the smallest value when overflowed and the largest value

1https://github.com/crytic/not-so-smart-contracts

https://github.com/crytic/not-so-smart-contracts

20 CHAPTER 2. BACKGROUND

when underflowed.

A definition of the state change with underflow or overflow is very helpful in
thwarting bugs as the state change is well defined and the developer can predict the
execution of the program. However, the bug arises when a developer fails to recognize
and causes logic to be dependant on the fact that addition or arithmetic in general works
the same as infinite bit width arithmetic. Listing 2.2 depicts a contract vulnerable to an
attack due to integer overflow.

Listing 2.2 is a TokenSale contract with allows the buying and selling of tokens
with a fixed exchange rate, it has been adapted from the Token Sale challenge[30]. On
first glance, the contract allows a user to buy and sell the contract defined token at a
constant exchange rate of 1 ether. To buy a token the caller must send across the value
of ether corresponding to the number of tokens they would like to buy and then the
balanceOf the callers address for this contract is increased by the amount of tokens.
Furthermore, to be able to sell a token the caller must have the number of tokens in
the balance stored on the contract and then the balance is amended and the funds are
released to the caller.

To see where the vulnerability might occur, consider what happens when the fol-
lowing function is called buy{value: 0}(2**255), where the buy function is called
with numTokens of 2255 and no ether is sent to the function. The buy will pass and
amend the balanceOf for the caller to 2255 without them having sent any ether to the
contract. They will now be able to call the sell function and be able to withdraw ether
without having ever sent ether.

Common Weakness Enumeration[2] which is a registry of common weaknesses
present in software ranks the likelihood of exploiting this weakness as a medium.

2.2.2 Reentrancy

Along with vulnerabilities that are shared among most programming environments like
integer overflow, Ethereum smart contracts also come with domain specific vulnerabil-
ities that occur as a result of the programming and execution interface. Many security
vulnerability reviews and papers[37, 38, 8] on tools that detect security vulnerabilities
have all chosen to note the reentrancy attack, and rightfully so as it allows the attacker
to siphon off the entire balance of the contract.

To explain the reentrancy attack one must be made aware of the API for smart
contracts. Smart contracts are able to send and recieve ether from or to other ad-
dresses may they be user wallets or other smart contracts. Smart contracts are able

2.2. SMART CONTRACT VULNERABILITIES 21

1 pragma solidity ˆ0.4.21;
2 contract TokenSale {
3 mapping(address => uint256) public balanceOf;
4 uint256 constant PRICE_PER_TOKEN = 1 ether;
5

6 function buy(uint256 numTokens) public payable {
7 require(msg.value == numTokens * PRICE_PER_TOKEN);
8

9 balanceOf[msg.sender] += numTokens;
10 }
11

12 function sell(uint256 numTokens) public {
13 require(balanceOf[msg.sender] >= numTokens);
14

15 balanceOf[msg.sender] -= numTokens;
16 msg.sender.transfer(numTokens * PRICE_PER_TOKEN);
17 }
18 }

Listing 2.2: A Token Sale contract with an overflow vulnerability

send transfer call
Gas Cost 2300 wei 2300 wei all gas or specified amount
Return type bool throws error bool

Table 2.1: List of differences between send, transfer and call to send ether to an
address from a smart contract

to send ether in multiple ways, either by using the reciever.send(amount) call,
reciever.transfer(amount) or the reciever.call{value: amount}("") where
reciever is of the address type and the amount is in wei with 1 ether is 1018 wei2. Table
2.1 illustrates the differences between the different methods. It it no longer recom-
mended to use send or transfer due to the fixed gas cost of the function call because
it makes the contract vulnerable to gas cost changes, the recommended way to send
ether to other addresses.

When a call has been made to send ether to a contract then the EVM looks for a
receive method on the receiving contract if there is no data (parameters) sent along
with the call or then it looks for a fallback method[43]. The full flow chart for what
the EVM calls can be found in Figure 2.2. Once the execution has reached the fallback
or the receive function the statements in the function body are executed and then the
control is passed backed to the caller function.

2https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html#
ether-units

https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html##ether-units
https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html##ether-units

22 CHAPTER 2. BACKGROUND

Figure 2.2: Flowchart that illustrates function calls on receiving ether

1 pragma solidity 0.4.24;
2 contract SimpleDAO {
3 mapping (address => uint) public credit;
4

5 function donate(address to) payable public{
6 credit[to] += msg.value;
7 }
8

9 function withdraw(uint amount) public{
10 if (credit[msg.sender]>= amount) {
11 require(msg.sender.call.value(amount)(""));
12 credit[msg.sender]-=amount;
13 }
14 }
15

16 function queryCredit(address to) view public returns(uint){
17 return credit[to];
18 }
19 }

Listing 2.3: A Simple dao contract with a reentrancy vulnerability

2.2. SMART CONTRACT VULNERABILITIES 23

1 pragma solidity 0.4.24;
2 contract SimpleDAOAttack {
3 SimpleDAO public victim;
4

5 function SimpleDAOAttack(address payable victim_addr) public {
6 victim = SimpleDAO(victim_addr);
7 }
8

9 function attack() payable {
10 require(msg.value >= 1 ether)
11 victim.donate{value: 1 ether}(address(this));
12 victim.withdraw{value: 0}(1 ether);
13 }
14

15 fallback() payable {
16 if (address(victim).balance >= 1 ether) {
17 victim.withdraw{value: 0}(1 ether);
18 }
19 }
20 }

Listing 2.4: An attack contract that exploits the reentrancy vulnerability in Listing 2.3

However, let us consider the contract in Listing 2.3(SWC-107). It is a simple con-
tract that allows users to donate to the contract to increase their credit, withdraw from
the contract to reclaim their donated amount. This contract contains a reentrancy vul-
nerability and an attack contract can be found in Listing 2.4 which illustrates an exploit
constructed for that vulnerability.

Let’s consider the attack contract and how it exploits the reentrancy vulnerability.
To begin with, the attack contract initialises by calling the constructor and setting
the victim address then the attack function has two successive function calls to the
victim contract, donate with value of the call and the address of the attack contract and
withdraw with a 0 value and the function parameter of the value that was donated in
the previous call. The call to withdraw triggers the withdraw function on the original
(victim) contract which in turn checks if the withdrawal amount is valid and then send
the the amount to the caller contract which here is the attack contract. Now, recall what
happens when ether is sent to a contract it goes through the flow shown in Figure 2.2
which states that in this case the fallback function is called on the ether receiving
contract. However, looking through the fallback function on the receiving (attack)
contract, it calls the withdraw on the victim contract and this causes a recursive loop
that keeps taking funds from the victim contract until it no longer has any funds left.
This flow is illustrated in the Figure 2.3.

24 CHAPTER 2. BACKGROUND

Figure 2.3: Flow for the reentrancy attack as performed by Listing 2.4

2.2. SMART CONTRACT VULNERABILITIES 25

2.2.3 Authorization through tx.origin

Solidity as well as other Ethereum smart contract languages come with a list of pre-
populated global variables3 that that can be used in the body of functions in the smart
contract. These globals provide an interface to the programmer to access transaction
specific values like the value of ether sent in the contract, the address of the caller of
the function, the number of the block that this transaction has been put in and so on.
These globals have already been made use of in Listing 2.2, namely the msg global
which stores the value of ether sent to the transaction as well as the direct caller of the
transaction.

To illustrate the vulnerability one must understand the difference in values stored
in the tx.origin and msg.sender variables. As mentioned in the Solidity documentation
tx.origin stores the address for ”sender of the transaction (full call chain)”4 where
as msg.sender stores the address for ”sender of the message (current call)”4. Each
transaction is a series of calls that start from a user on the system that makes the
initial call to a smart contract function then that function is free to call whatever other
functions it may call. This means that to unambiguously fetch the caller of the function
one must mention if they want the caller that started the chain of function calls or
simply the caller of the function in question, which is represented by tx.origin and
msg.sender, respectively.

This vulnerability arises when these values are interchanged or it is not detected
that the values have been interchanged. A phishing exploit is used to illustrate this
vulnerability in Listing 2.6 and Listing 2.5, both listings have been adapted from the
Sigma Prime security blog[29]. To exploit the vulnerability, the attacker will convince
the owner of the contract in Listing 2.6 to send some ether to the address that hosts
the attackers contract in Listing 2.5, this may be achieved either by various social
engineering methods like imitating an authorized entity.

Once the owner of the victim contract has been convinced to send ether to the attack
contract then the fallback on the attack contract will be triggered which will attempt
to run the withdrawAll method on the victim contract which is only intended to be run
by the owner of victim contract, however, as the contract uses tx.origin to check for
who is calling the function it will allow the attacking contract to be authorized and will
allow the attacker to withdraw all the funds to an address of their choosing.

3https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html#
special-variables-and-functions

4https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html#
special-variables-and-functions

https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html##special-variables-and-functions
https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html##special-variables-and-functions
https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html##special-variables-and-functions
https://docs.soliditylang.org/en/v0.8.16/units-and-global-variables.html##special-variables-and-functions

26 CHAPTER 2. BACKGROUND

1 contract AttackContract {
2

3 Victim victimContract;
4 address attacker; // The attackers address to receive funds.
5

6 constructor (Victim _victimContract , address _attackerAddress) {
7 victimContract = _victimContract;
8 attacker = _attackerAddress;
9 }

10

11 function () payable {
12 victimContract.withdrawAll(attacker);
13 }
14 }

Listing 2.5: Victim contract for the tx.origin vulnerability

1 contract Victim {
2 address public owner;
3

4 constructor (address _owner) {
5 owner = _owner;
6 }
7

8 function () public payable {} // collect ether
9

10 function withdrawAll(address _recipient) public {
11 require(tx.origin == owner);
12 _recipient.transfer(this.balance);
13 }
14 }

Listing 2.6: Attack contract for the tx.origin vulnerability

2.3. SMT BASED BOUND MODEL CHECKING 27

2.3 SMT Based bound model checking

2.3.1 Bounded Model Checking

Model checking[9] is an automatic formal verification method that allows for the
checking of the correctness of a system with respect to a given specification where
the system has been modelled as a finite state machine. A model can be represented as
a directed graph where the vertices act as states of the system and edges represent the
possible transitions between the states. Model checking is a verification method where
the state space is explored to look for possible paths (or lack of) that would violate
properties outlined by a specification.

Model checking often makes use of two very useful components Kripke structure
and Linear temporal logic[15]. The first defines a abstract structure that allows for the
models to be represented as finite state machines and the latter is a logic that aids the
definition of the specification and the properties within. A Kripke structure, M, is a
4-tuple M = (S, I,T,L) where S is a set of states, I is the set of initial states, T is a set
of transitions from a state in S to another state in S which are represented as a 2-tuple,
and lastly L is a function that takes a state in S to a set of atomic propositions. One
can note that M is simply a more algebraic representation of the graph representation
of a model. A path π in M is defined as a sequence of states s0,s1, . . . such that each
successive state in the path has a valid transition in T .

LTL is an extension of classical logic that deals with paths in terms of the fact that
it carries over the boolean operators from classical logic and it also add multiple opera-
tors that allow the semantics to be extended to paths and into the temporal domain. We
will for the sake of simplicity consider a fragment of this logic that is PLTL (proposi-
tional linear temporal logic) which deals with only propositional formulas. To aid the
semantics in Figure 2.4, here is some notation, Let π be a path:

• π(i) is the i-th state in the path

• πi is the path π starting at the i-th state in the path

Basic model checking, however, suffered from the problem of state explosion[9]
for real systems where lots of variables are in play and the number of states expand
exponentially. This lead to advances in the field and discovery of many other tech-
niques like symbolic model checking and bounded model checking. Bounded model
checking worked by checking finite paths upto some length k for a path that incurred
a property violation and if no violation is found then the value of k is incremented by

28 CHAPTER 2. BACKGROUND

Figure 2.4: LTL semantics defining when f holds on π

1 and rechecks for property violations. This repeats until either a violation is found,
some intractibility bound is surpassed (eg. timeout) or a pre-known upper bound is
reached[15, 17].

Given a Kripke structure M and a formula f which encodes a property for which
the correctness is to be checked and a bound k, bound model checking on the triple
(M, f ,k) can be reduced to a propositional formula for which the satistfiability/validity
can be checked for by making use of SAT solvers. This is achieved by first constraining
the path to be a valid path, then defining a loop condition for paths with loops and then
finally transforming to the propositional formula, details of the reduction can be found
in [15].

As programs and procedures can also be represented as a finite state machine,
bounded model checking techniques has been leveraged to validate and verify pro-
grams for properties like deadlock, integer overflow and such giving certainty to the
author of the program that the code is safe from the vulnerabilities it has been checked
for (upto a certain bound of loop unrolling).

2.3.2 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of finding if a first order formula
is satisfiable or not relative to axioms defined from a set of theories like the theory of
arrays and equality. The advent of SMT solvers allow for a large variety of first order
formulas now that they are aided by other theories. Some important theories in this case
is LIA (Linear integer arithmetic) which allows for linear arithmetic in integers and

2.4. ESBMC 29

contraint solving on integer decision variables, UF (Uninterpreted functions), Theory
of arrays which defines axioms on how infinite length arrays will behave. SMT allows
for using more than boolean variables which further enables its utility in solving a
plethora of problems.

SMT allows us to extend the Bound model checking into the world of first order
formulae. This extension cements it utility when it comes to verifying programs which
often have arithmetic and array operations. The theories and reasiong methods along
those theories make SMT solvers a formidible force when it comes to finding property
violations in models.

SMT solver employ complex and locally optimised techniques one of which is
known as the lazy approach[10] and is implemented in a majority of the cases. This
approach utilises a hybrid approach and the efficiency that SAT solvers have been able
to achieve to prune out the possible values for a satisfiable decision by the SMT. The
approach is as follows with an input quantifier free formula F :

1. Abstract atoms from F to propositional variables to construct a propositional
formula F ′

2. Use SAT solver to find model for F ′

3. If unsat then return unsatisfiable

4. Using the abstraction and the propositional model construct a clause g with the
atoms corresponding to the model in the abstraction

5. Check sat of g in SMT (wrt the given theories)

6. If satisfiable then return satisfiable

7. Assign F := F ∧¬g

8. Goto 1

9. END

2.4 ESBMC

ESBMC[19] is an SMT based bounded model checker that as of writing has complete
support for C programs including concurrency and partial support for other languages

30 CHAPTER 2. BACKGROUND

like Kotlin[24], C++ and Solidity[39, 40]. ESBMC is amongst the more popular bound
model checkers winning awards numerous times in multiple SV-COMP categories[11,
12, 13]. It is a fork of CBMC[18] which was amongst the early bound model checkers
utilizing SAT solvers to verify properties in software.

The current pipeline of ESBMC is split up into three main parts the frontend, mid-
dle end and the backend. The front end is a language specific collection of programs
which developed for different languages that ESBMC aims to verify. It is responsible
for performing lexical analysis and parsing the source file as well as performing type
checking to ensure the program is correctly typed and also converting the source code
into an internal representation that represents the semantics of the code in the source
file.

The middle end is a part of the software which is language independent and is re-
sponsible for producing the safety properties as well the model encoding of the code
into a logical formula. It does so by converting the internal representation to a SSA
form without any loops where loops are replaced with conditionals and goto statements
and then converting that to logical formulae that are in the form C∧¬P where C repre-
sents the encoding of the source code and P represents the encoding of the specification
properties that are being checked for.

Finally, the backend is the powerhouse of the software which is responsible for the
actual reasoning part of the software where the logical formulae are checked for satis-
fiability with the aid of SMT solver, of which ESBMC supports quite a few, and then
if the formula is unsatisfiable then return back to to the user that no property violations
were found upto a bound (user provided) k or if a model is found for the formula then
ESBMC interprets the model and returns back to the user a counterexample state in
the source program that would yeild in a property violation. Figure 2.5 illustrates the
pipeline for ESBMC for C programs[19].

2.5 Programming Language Theory and AST

This project revolves around static analysis which is analysing programs and reasoning
about property violations without running the program. This requires an understanding
of how programming languages are defined and how their flow can be extracted from
what is simply string of source code. This understanding is a partial fragment of the
knowledge of how compilers convert a string of source code to an executable, namely,
the front end of a compiler.

2.6. RELATED WORK 31

Figure 2.5: Pipeline for C program verification in ESBMC

All programming languages are defined on the basis of a grammar[22], it is a set of
rules that defines in clear terms what is a valid string of source code and what is not a
valid string of source code. A grammar can be though of as a tuple, (N,S,T,P), of non
terminal symbols N, an initial symbol S, terminal symbol T and a set of production
rules P that take non terminal symbols to an ordered pair of non terminal and terminal
symbols.

By using these production rules, one can push the source code through them and
obtain what is known as an Abstract Syntax Tree which is a tree data structure that de-
picts the parsing of the string and what production rules were applied to get a complete
parsing of the source code. Each node stores either a terminal or non terminal symbol
and the children are the elements of the tuple in the production rule that was applied.
All leaves of the tree are terminal symbols. The advantage to having the source code in
this format is that this allows a structured traversal through the code while preserving
the semantic information in the code.

2.6 Related work

Verification and the use of automated verification methods is not novel to smart con-
tracts as there are a multitude of already existing works that claim to be able to detect
smart contract vulnerabilities of which we will consider 6: Remix IDE[4], Mythril[35],
Smartcheck[42], Slither[23], and ESBMC Solidity[39, 40].

32 CHAPTER 2. BACKGROUND

2.6.1 Remix IDE

Remix is one of the most popular IDEs out there to develop smart contracts. It is a
browser based IDE an comes with a plethora of features that aid blockchain develop-
ers like deploying to the blockchain and compilling with diferent compiler version of
solidity. This deep integration with the blockchain operations has made block chain
developers flock to Remix when choosing an IDE to develop smart contracts. More-
over, it is also equipped with a static analysis tool that is capable of detecting many
well known bugs as well as security vulnerabilities, it also highlights bad practices and
can be configured to look for only specific vulnerabilities. It operates directly on the
source code and consists mostly of pattern matching techniques.

2.6.2 Mythril

Mythril is a static analysis tool hosted by ConsenSys and available open sourced. It
operates on the EVM bytecode that is produced after compilation of a smart contract.
This makes it much more robust as it is language independant and can also verify
programs that exist on other chains that also use EVM as its runtime environment. It
makes use of much more sophisticated techniques than Remix like symbolic execution,
SMT based taint analysis.

2.6.3 Smartcheck

Smartcheck is another static analysis tool but its methods are simpler and more straight
forward. It converts Solidity source code into XML based intermediate representation
and the performs XPath queries on the intermediate representation to detect vulnerabil-
ities. In essence it employs pattern matching to detect vulnerabilities in smart contracts.
It maintains a list of XPath queries which are matching criteria and iterative matches
the IR to each of the queries, if a match is found then reports the match.

2.6.4 Slither

Slither is a static analysis framework that works on solidity source files. Contrary to
the other tools on the list it doesn’t only look for security vulnerabilities but attempts to
detect automatically areas of optimization in the code. It does so by using dataflow and
taint tracking which are both commonly used program analisys methods. It operates
on the SOlidity source code and converts it to its own internal representation SlithIR

2.6. RELATED WORK 33

which is a SSA form with a reduced instruction set to aid decreasing the complexity of
analysis

2.6.5 ESBMC-Solidity

Amongst the most recent additions to the ESBMC family is ESBMC-Solidity[39, 40]
which extends the verification prowess of ESBMC to the realm of smart contracts. This
implementation for the verification of Ethereum smart contracts written in Solidity
is a proof of concept and an exploratory endeavour to judge if it is worthwhile to
verify Solidity contracts with ESBMC. The literature that provides the details on its
implementation as well as the evaluation data against other players in the same field
of smart contract verification show that ESBMC is a force to be reckoned with as it
is able to detect and provide counter examples for property violations that some of
the most popular tools in the industry are unable to do[39]. It operates on the AST
JSON produced by the Solidity compiler and converts that to the ESBMC internal
representation which is then passed to the middle end of ESBMC where the IR is
converted to assertions and the property violations are checked for.

Currently, before the start of this project, ESBMC Solidity only works on single
runs of functions with support for only one type of variable (uint8) and has no support
for structs, constructors, or any of the solidity globals. These missing feature do not
severely limit the expressibility of the partial grammar that is implemented by much
but do make it difficult to be used to verify actual smart contracts.

Moreover, the current implementation of ESBMC Solidity has a very basic pattern
matching check for the tx.origin vulnerability discussed in Section 2.2.3 which simply
scans the first level of statements and checks if it contains the identifier tx.origin. As
for the integer overflows, it is able to detect the overflows but not with the developer
annotating the operations with assert statements to check for overflow. Lastly, it has no
detection ability to detect Reentrancy bugs which have been the cause of lots of pain
with the smart contract community.

Chapter 3

Methodology & Implementation

This chapter outlines the details of the implementation of the project as well as the
design considerations and their respective analyses. The project aims to achieve two
main objectives, expand the supported grammar for ESBMC Solidity and enable ES-
BMC Solidity to detect vulnerabilities in smart contracts. We will discuss the design
challenges and decisions that were made in the process of achieving the objectives.
First we will discuss the current implementation of ESBMC Solidity and the path for-
ward to extending or improving that implementation.

3.1 Opcode Implementation

Currently, ESBMC Solidity performs validation once on a single function within a
single contract. It employs a grammar based technique where it traverses through the
AST of the Solidity source file and then populates the internal representation objects
with data from the AST like the declaration of variables and structs, and the semantic
flow of the program. It does so by drawing likeness to C based constructs and imtating
the conversion of the C grammar construct to the ESBMC IR.

The trouble here is, that the Solidity grammar and feature set doesn’t completely
align with the C grammar and feature set which means that for certain grammar con-
structs the implementation may not have the semantics in the IR to be able to handle
the grammar construct. Some examples of this include, associative arrays, classes and
exceptions. The lack of these constructs in the IR mean that instead of being able
to extend simply the front end for solidity in ESBMC, one would have to add types,
semantics, and even modify the current GOTO language to be able to represent these
constructs.

34

3.1. OPCODE IMPLEMENTATION 35

In the interest of efficiency and a more complete verification of the language with-
out having to modify the middle end of ESBMC and dealing with the breaking changes
that that might bring for other front ends, we chose to explore an opcode based imple-
mentation for verification. Every smart contract is compiled to down to bytecode to
be executed in the run-time environment of the EVM. The EVM is a stack based ma-
chine which means it maintains an internal stack data structure which is somewhat
analogous to registers in register based machines, also, each value put on the stack is
32 bytes. The run-time also houses a notion of storage and memory variables where
the storage variables are a persistent store and the memory variables are an ephemeral
store, both the storage and memory are random access data structures. They would be
used to store the addresses or values of local variables as well as state variables. The
bytecode is made up of a string of values which is a string of bytes where each byte is
an opcode or a parameter to an opcode. These opcodes are hard coded into the EVM
and each one has a operation definition as to what is done when that particular opcode
is encountered by the EVM. For example when the ADD opcode is encountered two
values are popped of the stack added together and then pushed back onto the stack.

This stack based architecture for the EVM is quite similar to the implementation
of JVM which also works as a stack based machine and operates on opcodes. This
lead to the exploration of a verification tool that was an extension to CBMC to ver-
ify Java programs known as JBMC. It operated on the Java opcode produced by the
compiler and performed static analysis on the Java opcodes to produce verification of
the source code. A similar approach to JBMC was considered here for Solidity based
smart contracts which compiles the smart contract into EVM byte-code and then builds
a front-end around the byte-codes.

However, this method raises another challenge which is that EVM bytecode strips
away all notions of type, which means that checking for operations like overflow are
no longer possible as we do not know the size of the integer value to begin with as all
values on the stack are 32 bytes. This could however be mitigated by adding metadata
to the values on the stack based on the opcode that is used to push the value on the
stack, like PUSH1 indicates the value is a single byte, PUSH2 indicates that the value
is 2 bytes.

This technique although, cannot be guaranteed to work as the compiler is always
looking to perform optimizations to lower the gas cost to run a function as well as
improve the run time for the function. There are two in particular that may cause issues,
namely, constant folding and storage call optimization. Constant folding propagates a

36 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

Advantages Disadvantages
Independence from implementa-
tion language of smart contract

Lack of debugging metadata line
variable names and source loca-
tions.

Structured and short list of op-
codes

Compiler optimizations make it
very difficult to perform coun-
terexample generation
Rebuilding the current Solidity
verification on ESBMC from
scratch

Table 3.1: Table of advantages and disadvantages of implementing verification by op-
code

non changing variable through all its references and eliminates the declaration of the
variable altogether. This poses as issue as this will abstract away any integer overflows
in the case that the overflow has happened on a constant value.

To explain storage call optimization, one must understand that every opcode comes
with an associated gas cost which is a fee (paid by the caller) that compensates the
miner for executing the function and updating the state. Calls to update the values
stored in storage are made by the SSTORE opcode and can costs a hefty gas fee of
22100 compared to a write is memory which costs about 3 gas plus the gas to expand
the memory (low). This makes it worthwhile to limit the amount of writes to storage
by combining different write values, for example if we wanted to write 0x01 to po-
sition 0 on the storage and 0x05 at position 1, it would be much cheaper to make a
single write of the value 0x0105 to storage. This optimization causes a change in how
the variables are declared and maintained which means when property violations are
found on storage values we cannot keep track of storage values for individual variables
as we cannot differentiate between a combined write of 0x0105 representing two sep-
arate updates and an uncombined write of 0x0105 to update a single variable. One
may ask the property violations should be found regardless as the compiler will also
encode this combined writing and reading for other references of the variable like in
assert statements which is true but without the additional data for what variable has
been updated we will be unable to construct the counter example for the user when a
violation is found.

Based on the limitations of the opcode approach to verification, we find it more
acceptable to have a smaller coverage over the grammar but allow for the full power
of ESBMC to be utilised on fragment of grammar that is supported which delivers

3.2. EXPANDING SUPPORTED GRAMMAR 37

counter example generation.

3.2 Expanding supported grammar

To be able to extend the currently implemented it is important to understand the current
implementation in detail. The objective of the ESBMC solidity module is to convert
from the AST json nodes that are provided by the Solidity compiler to the internal rep-
resentation which is known across the repository as irept. The objective is to construct
a symbol table which will then be used to construct a CFG later for generating a first
order formulas.

irept is the super class for more specific internal classes like exprt which stores the
semantics of an expression, symbolt which stores the data required for a symbol in a
symbol table and so on. The entry point for this conversion is the convert function
under the solidity convertert class. It looks for the top level ContractDefinition node
and then performs a pattern based verification on the node to check for tx.origin occur-
rences, thereafter, it iterates through the children of the contract definition which are
assumed to be declarations of some sort and construct and add the symbol correspond-
ing to the declaration to the context/symbol table.

3.2.1 Integer types

The first natural extension was to increase the scope of variable types that ESBMC
Solidity supports. Solidity has two main types of integers, signed and unsigned that
range in their bit widths from 8 to 256 bits. The current implementation only has
support for the unsigned 8 bit integer and this implementation is leveraging helper
classes from the C frontend to be able to create the appropriate types.

As most of the code base assumes only one possible elementary type there are
multiple items to consider when expanding the number of types for variables. Firstly,
as there is only one expected type this means that all integer literals are assumed to
be of that type as well. Secondly, once variables can have multiple types we need to
consider promotion of variables to higher bit types or demotion to lower bit types when
arithmetic is performed between two variables of the same signed-ness but different bit
widths. Thirdly, we need to consider casting of one type to another and obeying the
semantics of these casts.

Firstly, we must add the recognition of all these new integer types in the AST

38 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 {
2 "typeDescriptions": {
3 "typeIdentifier": "t_int8",
4 "typeString": "int8"
5 }
6 }

Listing 3.1: Example of a type descriptions object

traversal. The point of interest is when the traversal has reached a declaration node
for a variable, this is the point when the type of the variable is queried to figure out
what internal type must be constructed for the variable in focus. Type information for a
variable in the AST json lives in the value of a key known as ”typeDescriptions” which
contains a ”typeIdentifier” and ”typeString” key, the latter contains a human friendly
readable string and the latter contains a more explicit string that details out further
type information like the size of an array or if the value is in storage or memory. In
our case, the type string key corresponds exactly to the type of the declaration. Listing
3.1 demonstrates an example type descriptions object. As there is a clear pattern in the
type string where unsigned and signed integer types start with uint and in respectively,
we can pattern match the unsigned types with ”uint(\d+)” and the signed types with
”int(\d+)” and use the matching groups to be able to recognize the bitwidth of the
type.

Next, the type for the integer variable must be created which holds both its signed-
ness and its bitwidth. To construct the uint8 type for a variable the unsigned char
type that is also used in the C frontend is used but this misses out on the granular-
ity that Solidity provides. We instead opt to make use of the more granular types
signedbv typet and unsignedbv typet which simply represent the types as a bitvector
of the same length.

Lets address the first challenge, which is the parsing of literals. This is a problem
due to the AST in the json format as the json format doesn’t allow to traverse up the
tree from a specific node but only downwards. This is an issue because by the type we
get to a node on the tree that represents a literal we have no way of finding out what
the type of that literal should be. This is necessary because literals are expressed as
constant expressions in ESBMC and also arithmetic is not allowed between values of
different bitwidth. This means we need to pass on more information on the type of the
literal when a literal expression is processed.

Take the expression uint32 i = a - (b + 1); where a and b are of type uint8, the

3.2. EXPANDING SUPPORTED GRAMMAR 39

1 {
2 "declarations": [
3 {
4 "name": "a",
5 "nodeType": "VariableDeclaration",
6 "typeDescriptions": {
7 "typeIdentifier": "t_uint8",
8 "typeString": "uint8"
9 }

10 }
11],
12 "initialValue": {
13 "commonType": {
14 "typeIdentifier": "t_uint8",
15 "typeString": "uint8"
16 },
17 "leftExpression": {
18 "name": "b",
19 "nodeType": "Identifier",
20 "typeDescriptions": {
21 "typeIdentifier": "t_uint8",
22 "typeString": "uint8"
23 }
24 },
25 "nodeType": "BinaryOperation",
26 "operator": "+",
27 "rightExpression": {
28 "kind": "number",
29 "nodeType": "Literal",
30 "typeDescriptions": {
31 "typeIdentifier": "t_rational_1_by_1",
32 "typeString": "int_const 1"
33 },
34 "value": "1"
35 },
36 "typeDescriptions": {
37 "typeIdentifier": "t_uint8",
38 "typeString": "uint8"
39 }
40 },
41 "nodeType": "VariableDeclarationStatement"
42 }

Listing 3.2: Summarized AST for uint32 i = a - (b + 1); in json

40 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 {
2 "initialValue": {
3 "leftExpression": {
4 "name": "b",
5 "nodeType": "Identifier",
6 "typeDescriptions": {
7 "typeIdentifier": "t_uint8",
8 "typeString": "uint8"
9 }

10 },
11 "nodeType": "BinaryOperation",
12 "operator": "+",
13 "rightExpression": {
14 "nodeType": "Literal",
15 "typeDescriptions": {
16 "typeIdentifier": "t_rational_1_by_1",
17 "typeString": "int_const 1"
18 },
19 "metadata_esbmc": {
20 "typeDescriptions": {
21 "typeIdentifier": "t_uint8",
22 "typeString": "uint8"
23 }
24 },
25 "value": "1"
26 }
27 },
28 "nodeType": "VariableDeclarationStatement"
29 }

Listing 3.3: Summarized AST for uint32 i = a - (b + 1); in json with metadata

summarized AST json nodes can be seen in Listing 3.2. We can see that the Literal
node in the right expression of the + binary operator has no additional type information
regarding the expression that it is used in and simply has the type string of ”int const”.
This means during compilation the compiler does additional work to coerce the type of
literals based on their usage. So anytime either side of the operator is a literal we pass
the common type of the expression to the literal which in this case means we would
add metadata to the Literal node that contains the type descriptions information from
the parent expression of the Literal node. Listing 3.3 is what the AST json looks after
the amendment of the metadata.

Solidity also allows statements where arithmetic operators as well as assignments
can happen between different types of certain variety by implicitly converting the types
once the operation is performed. Taken from the solidity documentation, ”If an oper-
ator is applied to different types, the compiler tries to implicitly convert one of the

3.2. EXPANDING SUPPORTED GRAMMAR 41

Figure 3.1: Flowchart illustrating the implementation of type coercion for expressions

operands to the type of the other (the same is true for assignments). This means that
operations are always performed in the type of one of the operands.”1. This means
when deciding the types of expressions it is not enough to consider the type of the
expression itself but also the type of the parent. The implementation follows the flow
illustrated in Figure 3.1. We inspect on an assignment statement the expression type
of its right hand side and then coerce that into type (if possible) of the left hand side of
the assignment. This logic also carries over to when we evaluate binary expression for
other reasons like index values and function parameters.

3.2.2 Structs

To implement the grammar construct of stucts one must explore the lifetime and usage
of structs. Structs are different to other grammar constructs as they are not accompa-
nied by in built types but rather depend on a user defined type. This would require
us to dive into the typet class which stores the types of symbols in the IR of ESBMC.
First let us look at the usage of a struct in a sample Solidity smart contract in Listing

1https://docs.soliditylang.org/en/v0.8.16/types.html#implicit-conversions

https://docs.soliditylang.org/en/v0.8.16/types.html##implicit-conversions

42 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 pragma solidity ˆ0.5.0;
2

3 contract test {
4 struct Foo {
5 uint8 a;
6 uint16 b;
7 }
8 function bar() public {
9 Foo memory foo1;

10 foo1.a = 1;
11 foo1.b = 2;
12 Foo memory foo2 = Foo(1,2);
13 Foo memory foo3 = Foo({b:3, a:4});
14

15 }
16 }

Listing 3.4: An example of struct usage in solidity

3.4. This listing shows the definition of a struct, declaration and initialization of struct
variables, assignment of struct values, and member access.

The process of converting a struct into the IR included of the following operations:

• Convert the struct definition

• Convert a struct declaration

• Convert a struct initialization

• Convert member access

• Convert member assignment

First, we convert the struct definition, this requires editing some defaults of ES-
BMC which assumes that in a ContractDefinition node there can only be either variable
declarations of function declarations. An amendment would have to be made to also
check for the StructDefinition node. Then to construct the symbol that would hold the
type for the struct, first, we construct a unique id based on the name of the struct for
the type so we can fetch it back later when a variable is declared of the struct type and
create a default symbol that acts as a placeholder for this type with the id constructed
above and flag the symbol as being a container for a type. Then, we iterate through the
members of the struct in-order of their declaration and construct component objects
that hold type information for the members and push them onto the component vector

3.2. EXPANDING SUPPORTED GRAMMAR 43

1 INPUT: init_ast - AST in JSON format
2 OUTPUT: out - IR expression
3

4 struct_type_name = get_struct_name(init_ast.typeDescriptions)
5 struct_type_id = construct_struct_type_id(struct_type_name)
6 struct_type_symbol = get_symbol(struct_type_id)
7

8 internal_struct_init = get_default_init(struct_type_symbol)
9

10 FOR EACH member_value_expr INDEX i IN init_ast.member_values:
11 internal_expression = convert(member_value_expr);
12 member_type = struct_type_symbol.component_at(i).type
13 internal_expression = typecast(internal_expression , member_type)
14 internal_struct_init.component_at(i) = internal_expression
15

16 out = internal_struct_init

Listing 3.5: Pseudo code for generating the IR conversion of a struct initialization

on the type. Components are an abstraction made by the IR to store nested types in
type declarations like members in structs or unions.

During declaration, we peek once again at the type string of declaration type and
pattern match to look for if it it begins with the word struct which is true for all struct
variable declaration nodes. Once we recognize that the type is a struct we then split the
type string by spaces and take the second token which is the name of the struct type.
We can now use the name of the struct to recreate the id of struct type that was created
before and use it to search for the struct type symbol in the IR symbol table. The type
from that symbol is then assigned to the variable.

Listing 3.4 depicts multiple ways a struct can be initialized, in both ways it is done
by making a function call with the identifier of the struct and passing the member initial
values in order or by a named object. The process for converting both of them is quite
similar. A high level pseudo code for the conversion is provided in Listing 3.5

Member access is a much easier story, a member access expression is made up of
(mainly) 3 things the IR of the base expression, the id of the component on the struct
type that corresponds to the member being accessed, and the type of the component
that corresponds to the member being accessed. The AST node that represents member
access is known as the MemberAccess node in the AST, it contains the name of the
member being accessed and expression node that represents the base value ie. the
expression on which the member access is performed. We can perform a conversion
on the expression to construct the base for the member access IR object. The id can be
constructed from the name of the struct which is found on the AST node for the base

44 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

and the name of the member by the same process that we constructed ids for when
the member definitions were populated into the struct type in the symbol table. Lastly,
the type of the member comes from the AST as well as the member access comes
annotated with a type descriptions key which can be converted to the corresponding
type IR object.

3.2.3 Solidity globals

Ethereum smart contract calls contain some metadata regarding the value of ether in
the call the gas sent and other out of contract values. This is why Solidity comes with
some global variables, namely, block, msg, and tx. They store information regarding
the block that the transaction is in, current call metadata like the signature or caller or
the value of ether, and details pertaining to the whole transaction like the initiator of
the transaction and the gas price of the transaction2.

These global variables are not an additional feature of the grammar but rather be-
have like prepopulated variables. This problem is often tackled by verifiers by making
use of operational models[33]. To summarize, operational models provide implemen-
tations of methods and global variables of usually the standard library but in some
cases the run-time environment when the code to be analysed runs some framework.
The simplest and most naive way is to append code onto the source file that has imple-
mentations of the runtime dependencies of your code. This tactic is most useful when
the supported grammar is almost or exactly the same as the language grammar, as the
implementations are written in the source language itself the verifier simply considers
them as another function or variable declaration and reasons across them as so.

ESBMC also makes use of this technique and before the verification of C programs
adds in declarations for a few functions that allow for extra types (like arrays with in-
finite size) to be available when programs are written as well as verified. In the same
spirit we implement a basic operational model that covers some of the globals, before
any of the declarations are populated we add symbols to the symbol table for declara-
tion of these globals and leave them uninitialized. ESBMC assumes that uninitialized
values can take on any values in the range of its type and treats them as nondetermin-
istic values and reasons about them as taking up any possible value in the range. This
behaviour of ESBMC is to our advantage because the globals are not determined by
the contract and can take any value in the range of their type.

2https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html#
block-and-transaction-properties

https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html##block-and-transaction-properties
https://docs.soliditylang.org/en/v0.8.15/units-and-global-variables.html##block-and-transaction-properties

3.2. EXPANDING SUPPORTED GRAMMAR 45

1 contract Victim {
2 struct __ESBMC_MSG {
3 bytes20 sender;
4 uint256 value;
5 }
6 __ESBMC_MSG msg;
7 struct __ESBMC_TX {
8 bytes20 origin;
9 uint256 gasprice;

10 }
11 __ESBMC_TX tx;
12 ...
13 }

Listing 3.6: Listing 2.6 with the operational model prefixed to the contract declarations

One approach as mentioned before is to append the declaration of the globals to
the contract under inspection. An example of this can be seen in Listing 3.6. Another
approach would be to instead simply add the symbols to symbol table directly without
going through the amendment of the declarations to the source file before processing it.
ESBMC Solidity operates on the input of a solidity AST, currently it does so by running
the compiler on the source file with flags that have the compiler output an AST instead
of a binary. Due to having run through the compiler, warning and errors are produced
when the code is either not valid according to the grammar or has incorrect semantics
or has unrecommended usage. The former approach produces warnings as we are
shadowing global variables but as we do not intend to run the contract this warning is
acceptable to us. The latter approach adds an obstruction to the maintainability of the
code as the operational model information is separate from the AST conversion of the
source code. This is why the former approach was preferred.

3.2.4 Constructors

Smart contracts are programs that live on the block chain and can be called upon by
users of the chain. On Ethereum when a user has developed their contract ans wishes
to publish it to the chain, the EVM runs the constructor on publishing. For contracts
that do not have constructors a default constructor is run which is an empty constructor.

ESBMC Solidity has its own start up procedure that defines a flow for the CFG
(control flow graph) that is generated from the symbol table. This CFG is represented
by the GOTO language which is an internal language that transforms the IR of the
code to a semantically equivalent code in the GOTO language with only assignments,

46 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 pthread_start_main_hook (c:@F@pthread_start_main_hook):
2 ...
3 // 5 file pthread_lib.c line 126 function

pthread_start_main_hook
4 END_FUNCTION // pthread_start_main_hook
5

6 pthread_end_main_hook (c:@F@pthread_end_main_hook):
7 ...
8 // 9 file pthread_lib.c line 136 function

pthread_end_main_hook
9 END_FUNCTION // pthread_end_main_hook

10

11 __ESBMC_sync_fetch_and_add (c:@F@__ESBMC_sync_fetch_and_add):
12 ...
13 // 17 file builtin_libs.c line 8 function

__ESBMC_sync_fetch_and_add
14 END_FUNCTION // __ESBMC_sync_fetch_and_add
15

16 main (c:@F@main):
17 // 18 file temp_sol.c line 1 function main
18 RETURN: 0
19 // 19 file temp_sol.c line 1 function main
20 END_FUNCTION // main
21

22 foo (foo):
23 // 20 file test.sol line 9 function foo
24 END_FUNCTION // foo
25

26 __ESBMC_main (__ESBMC_main):
27 // 21 file esbmc_intrinsics.h line 19
28 __ESBMC_alloc=ARRAY_OF(0);
29 // 22 file esbmc_intrinsics.h line 22
30 __ESBMC_is_dynamic=ARRAY_OF(0);
31 // 23 file esbmc_intrinsics.h line 25
32 __ESBMC_alloc_size=ARRAY_OF(0);
33 // 24 file esbmc_intrinsics.h line 34
34 __ESBMC_rounding_mode =0;
35 // 25 file pthread_lib.c line 52
36 __ESBMC_num_threads_running =0;
37 // 26 file pthread_lib.c line 51
38 __ESBMC_num_total_threads =0;
39 // 27 no location
40 FUNCTION_CALL: pthread_start_main_hook()
41 // 28 no location
42 FUNCTION_CALL: foo()
43 // 29 no location
44 FUNCTION_CALL: pthread_end_main_hook()
45 // 30 file test.sol line 9 function foo
46 END_FUNCTION // foo

Listing 3.7: GOTO generation from ESBMC for an empty function body

3.2. EXPANDING SUPPORTED GRAMMAR 47

conditionals, and GOTO statements. Listing 3.7 shows the GOTO representation of a
contract where the function under analysis is empty. ESBMC main is the entry point
for the GOTO language. We notice that it has a bunch of variable initializations and
then makes 3 function calls. The first and third call is a remnant of the support ESBMC
has for concurrency which is implemented in the C frontend.

The function of importance is the second call which is the function call to our test
function. One can also notice there a main function which is not called anywhere this
is because to populate the intrinsics/builtin functions for ESBMC verifier, a conversion
is carried out on the C file int main() { return 0; this populates the ESBMC intrinsic
function and also adds a main function declaration in there. Now it is hard coded into
the C frontend that a single function is called between the two pthread function calls,
any changes to this would like cause breaking changes in the C frontend verification.
Three approaches can be identified here to add the constructor call:

1. Edit the C frontend and add a constructor call to the C frontend between the two
pthread calls

2. Wrap the constructor call and the call to the function under inspection in a func-
tion call and have the wrapper function be the function called in ESBMC main

3. Once the symbol table has been built by the C frontend, iterate the table and
find the ESBMC main symbol then iterate through its statements and find the
statement just before the call to the function in inspection and add the constructor
call there

For option 1, the advantage is that it will be the quickest to implement but it brings
along stronger coupling between the C frontend and Solidity frontend which is gener-
ally frowned upon as these modules should be independent to each other as the two
frontends in theory have nothing to do with each other. Option 3 takes away the
coupling from the C frontend to the Solidity frontend but does increase the runtime
complexity as it performs two linear searches to look for symbols and then performs
an insert in the middle of the statements vector which further introduces complexity.
Option 2 is a happy compromise between implementation time and maintainability
but has the issue that additional guards need to be added so that the wrapper name is
not used anywhere in the contract which is an easy fix as we can pick a non-popular
identifier and also prevent function names as being that identifier which makes it the
preferable option.

48 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

Figure 3.2: Figure 60 from [39] that illustrates the benchmark for testing overflow

3.3 Detecting Vulnerabilities

The second objective of the this project is to equip ESBMC with better detection abil-
ities for vulnerabilities. The following sections explain the methodology and imple-
mentation of detecting complex vulnerabilities within smart contracts.

3.3.1 Fixed bit integer arithmetic

Without any further work done, ESBMC able to detect integer overflow but only
with user provided assertions to check for integer overflow. This is made evident
by the evaluation criteria presented in the literature for the last work done on ES-
BMC Solidity[39], on test cases 2 and 3 which are provided in in Figures 3.2 and 3.3.
If those test cases are run without the assertions ESBMC returns a VERIFICATION
SUCCESSFUL result. This means that implemented feature is not integer overflow
detection but rather assertion failure detection. The need for users to add assertions
to check for overflow takes away from the automated nature of the vulnerability and
rather requires the user to be aware of possible overflows and underflows in the code.

To be able to generate automated assertions for when arithmetic is performed on
bit vectors on every arithmetic operation we must add a check for both overflow and
underflow. This can be done in a few ways. First, we can look out for binary expres-
sions when traversing the AST and if the binary expression is an arithmetic operation

3.3. DETECTING VULNERABILITIES 49

Figure 3.3: Figure 62 from [39] that illustrates the benchmark for testing underflow

a >= 0
b >= 0

a <0
b <0

a >= 0
b <0

a <0
b >= 0

+
a+b >a
a+b >b

a+b <a
a+b <b

no overflow
no underflow

no overflow
no underflow

- a-b <= a
no overflow

no underflow a-b >a
no overflow

no underflow

Table 3.2: Table with values for assertions for a binary arithmetic operation, a # b

we can add an assertion that checks that an overflow does not occur. For example if
we encounter a unsigned integer arithmetic expression a + b we can add the assertion
assert(a+b >= a && a+b >= b) for overflow and underflow does not need to be checked
for when both values are positive. A flow diagram for the assertions to be added can
be found in Table 3.2.

However, as we consider different variations of the grammar we notice that binary
expression can have sub expressions and event function calls that return integer values.
For sub-expressions, they can have post or pre-increment expressions which means we
cannot simply put the same sub-expression in the assert as it is not free of side effects
and same goes for function calls. This means we need to extract out sub-expression
in an binary expression to some intermediate local variables and replace the values in
the binary expression with those local variables and then make our assertions on those
local variables.

A keen observation here is that this is the start of converting source code to SSA
(single static assignment) form where each variable is assigned to exactly once and
each assignment is a simple assignment with no nested expressions. It is possible for

50 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 ...
2 main (c:@F@main):
3 // 19 file test.c line 1 function main
4 signed char x;
5 // 20 file test.c line 1 function main
6 x=127;
7 // 21 file test.c line 1 function main
8 ASSERT !overflow("+", x, 1) // arithmetic overflow on add
9 // 22 file test.c line 1 function main

10 x=x + 1;
11 // 23 file test.c line 1 function main
12 dead x;
13 // 24 file test.c line 1 function main
14 RETURN: NONDET(signed int)
15 // 25 file test.c line 1 function main
16 END_FUNCTION // main
17 ...

Listing 3.8: GOTO source code excerpt for overflow

us to implement this bug if we refer back to Figure 2.5 we see that this is already being
done once the GOTO program is generated from the conversion of the source code to
a symbol table with IR objects. Hence it makes more sense to add these assertions
during the conversion of the GOTO program to the SMT formulae.

We scour through the different conversions and notice that the SMT has a definition
for an overflow guard which means that the GOTO grammar allows for the assertion
of an overflow on a value. This is confirmed when we inspect the GOTO conversion
for a simple C program that has overflow (Listing 3.8). On further, inspection it seems
that the logic for when an overflow assertion is added is dependant on the definition of
which overflows are considered undefined by the C standard[26]. This coupling does
impact the maintainability of the GOTO converter as the overflow assertion is added
not only to on every possible instance of an overflow but rather on every instance
of overflow that is undefined by the C standard. The C standard does not define the
overflow or underflow of unsigned integer types as undefined which is reflected in the
amendment of the overflow assertions for arithmetic operations in the GOTO program.

In the interest of preserving backwards compatibility, no changes were made on
the operation of the overflow check on programs but rather an additional check was
added that allowed solidity programs to have overflow assertions on both signed and
unsigned integer types.

Another matter of discussion, when it comes to overflow detection in ESBMC for
smart contracts is the assumption of a single running. We saw in Listing 3.7 that the

3.3. DETECTING VULNERABILITIES 51

1 pragma solidity 0.7.0;
2 contract MultipleRunOverflow {
3 uint8 i = 250;
4 function add() public {
5 i++;
6 }
7 }

Listing 3.9: An example contract with overflow vulnerability on multiple runs of the
add function

verification follows the path of calling ESBMC main and then calling the function
under inspection once. This is okay for C programs because it is correct to assume
that the running of the program will begin with the call to main function and no other
processes are run before this call. However, in terms of a smart contract we can have
functions which do not overflow on their first call but can overflow on a subsequent
call. Listing 3.9 illustrates this. A single run of the add function will not overflow but
if it is run 10 times then the state variable will overflow.

We already have a wrapper around the main call which calls the constructor and
then the function under inspection. We must amend the structure of this function to
be able to detect overflows that occur over multiple calls by putting the function call
for the function under inspection inside a loop. Reasoning over a loop is one of the
key advantages when using a bound model checker, it works by unrolling the loop for
each iteration of the loop until a violation is found, the loop is completely unrolled or
a threshold of unrolling (user provided) is reached. We will leverage this feature of
ESBMC to help us reason that the contract function is safe from overflow even under
multiple runs of the function.

3.3.2 Reentrancy

To aid the understanding of automatically detecting a reentrancy vulnerability, we will
first discuss how a human verifier would go about verifying a contract to detect a reen-
trancy vulnerability. Listing 3.10 depicts a simple contract that is vulnerable to the
reentracy attack. The function under test is the function withdraw which makes a sim-
ple check to a state variable and then makes an external call to the sender’s address
with some ether. The starting point for the detection is establishing if the function even
has an external call which is the starting point for the attack. Once the external call has
been detected, the verifier must then ask if this call instantly made a recursive call to

52 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 pragma solidity 0.7.0;
2 contract ReentrancySimple {
3 bool hasSent = false;
4 function withdraw(uint8 i) public {
5 require(i < 100 && !hasSent);
6 msg.sender.call.value(i)("");
7 hasSent = true;
8 }
9 }

Listing 3.10: A very simple reentrancy vulnerable contract contract

this function again would execution reach the external call again. This is checked by
carefully inspecting the code and walking through the execution to find if the guards
and conditionals encountered can be bypassed and make the execution arrive at the
external call statement. If another external call can be made then this function is vul-
nerable to a reentrancy attack.

To emulate similar behaviour to a human verifier we will implement an algorithm
that will perform static analysis on the function body and determine if a reentrancy call
is possible. The algorithm will be three part:

1. Construct the path to the external call

2. Construct the path condition formula from the path

3. Check if the path condition is always true

This algorithm does draw inspiration from a popular static analysis method called
symbolic execution where the execution of a program is statically stepped through
and the at each statement the state is updated symbolically instead of having concrete
values and stored as a boolean formula. Then with the power of modern tools like
SMT and SAT solvers the boolean formula is evaluated to find if the program has any
executions that may result in failed assertions.

Listing 3.11 expresses the pseudo code to perform the first part of the algorithm
which is to construct the execution path to the external call. We step through each
statement in the function body and check the children of the statement for the external
call if it is not found in the statement then we add the statement to the path and then
move onto the next statement otherwise we terminate the path construction and return
the path.

After we have constructed the path to the external call we then iterate though the
path to locate all the conditions that hold for the execution to reach the external call. In

3.3. DETECTING VULNERABILITIES 53

1 INPUT: ast_node , path = []
2 OUTPUT: path , bool
3 construct_path(ast_node , path):
4 IF ast_node IS external call:
5 path = path.append(ast_node)
6 EXIT
7 IF ast_node IS declaration OR ast_node IS assignment:
8 RETURN path.append(ast_node)
9 IF ast_node IS conditional_branch:

10 then_path = [conditional_branch.condition]
11 then_path = construct_path(conditional_branch.then ,

then_path)
12

13 else_path = [!conditional_branch.condition]
14 else_path = construct_path(conditional_branch.else ,

else_path)
15

16 RETURN path.append([then_path , else_path])
17 IF ast_node IS loop:
18 loop_path = [loop.condition]
19 loop_path = construct_path(loop.body , loop_path)
20 RETURN path.append([loop_path , !loop.condition])
21 IF ast_node IS block:
22 FOR EACH child_node IN ast_node:
23 path = construct_path(child_node , path)
24 RETURN path
25 RETURN path

Listing 3.11: Pseudo code for constructing the path to the external call that is a
potential reentry point

54 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

the interest of efficiency this is also where we generate the formulae that will be used to
check if the path condition can be a false value. To do so we implement a SSA (static
single assignment) type of format for the variables in the formulae. To do so every time
a variable i is declared with value v we represent it in the formulae as i_0 = v and
for every assignment to the variable thereafter we increment the value in the suffix of
the variable by 1 and mark that as the current live variable. This is because in boolean
formulae the = stands for equality and not assignment therefore to track assignments
and refer to the correct values we must index each assignment.

Another thing to notice is, that at branches that do not have a singular path through
them the execution state branches into two separate states. Either one of these states
can have our reentrancy vulnerability so we run through both branches and calculate
the path condition on both one by one also as the branches will share the same state
upto the branch we can leverage backtracking the state to the point of the branch and
then calculating the path condition there onward for the other branch.

Similarly, loops also require branching as if the condition of the loop is true then
it is run otherwise it exits the loop, similar to a branch where the else condition is the
rest of path. To manage the path condition generation with loops we will set an upper
limit to which we will expand or unroll the loop and then for each unrolling we will
add the condition then the body of the loop and then the negation of the loop condition
to the list of assertions for checking the path condition.

Lastly once we have arrived at a completed path condition upto the external call,
we now want to repeat the same path and check if a second run can occur or not. We
can make use of Z3[21], a SMT solver, to do the reasoning for us on solving if the path
condition is satisfiable or not. This will be achieved by making use of Z3 C++ API, the
SSA like form of state representation will be a list of declarations of variables based
on their type. The path condition will a conjunction of all the conditions that need to
hold true for execution to reach the state right before the execution of the external call.
Let us use Listing 3.10 to show how a run of this algorithm would look like.

First we will generate the path up to the external call which in this case is on
line 6. The path will look something like [StateDeclarationNode (bool hasSent),

DeclarationNode (uint8 i), [[Condition(i < 100 && !hasSent), ExternalCallNode], []]]

when we iterate through these nodes to construct our state and path conditions, we will
keep a store of the declared variables their types and their current index, this will be
used to create the path condition on the first run. In the example the state formulae will
come out to be the following,

3.3. DETECTING VULNERABILITIES 55

1 (declare -const state!hasSent0 Bool)
2 (declare -const local!0!i0 (_ BitVec 8))
3 (declare -const local!1!i0 (_ BitVec 8))
4 % ST
5 (assert (= state!hasSent0 false))
6 % PC0
7 (assert (and (bvule local!0!i0 #x64) (not state!hasSent0)))
8 % PC1
9 (assert (not (not (and (bvule local!1!i0 #x64) (not state!hasSent0))

)))
10 (check -sat)

Listing 3.12: SMT formulae for the verification of contract in Listing 3.10

1 pragma solidity 0.7.0;
2 contract ReentrancySimpleFixed {
3 bool hasSent = false;
4 function withdraw(uint8 i) public {
5 require(i < 100 && !hasSent);
6 hasSent = true;
7 msg.sender.call.value(i)("");
8 }
9 }

Listing 3.13: Fixed version of Listing 3.10

1 ST := state!hasSent!0 = false

2 PC0 := local!0!i!0 < 100 && NOT state!hasSent!0

3 PC1 := local!1!i!0 < 100 && NOT state!hasSent!0

Where ST is the state of the variables right before the execution, PC0 is the path
condition upto the external call for the first run of the function and PC1 is the path
condition where the local variables are renewed with a new set of local variables and
the state variables are persisted. The SMT formulae that are constrcuted from this look
like Listing 3.12.

A value of unsat would confirm that there is no reentrancy vulnerability as it would
confirm that the negation of the last assertion is valid (always true). The last assertion,
in plain English translates to checking that for a second run of the function the path
condition can never be true and hence the external call cannot be made. A value of sat
would tell us that there is a reentrancy vulnerability present and we can also use the
model for the satisfiability to parse values for which this vulnerability can be exploited.

Listing 3.13 shows a fixed version of the reentracy vulnerable contract along with
Listing 3.14 which yields an unsat result correctly.

56 CHAPTER 3. METHODOLOGY & IMPLEMENTATION

1 (declare -const state!hasSent0 Bool)
2 (declare -const local!0!i0 (_ BitVec 8))
3 (declare -const local!1!i0 (_ BitVec 8))
4 (declare -const state!hasSent1 Bool)
5 % ST
6 (assert (= state!hasSent0 false))
7 (assert (= state!hasSent1 true))
8 % PC0
9 (assert (and (bvule local!0!i0 #x64) (not state!hasSent0)))

10 % PC1
11 (assert (not (not (and (bvule local!1!i0 #x64) (not state!hasSent1))

)))
12 (check -sat)

Listing 3.14: SMT formulae for the verification of contract in Listing 3.13

3.3.3 Authorization through tx.origin

This detection is the most straight forward of all the detection as it consists only of
pattern matching. Currently, ESBMC Solidity only looks at the top level statements
and matches for a require statement that has a binary expression with the comparison
operator == and the left hand side of this expression is a tx.origin node. This is mostly
the crux of the detection for this vulnerability. This is, however, quite a naive imple-
mentation as it ignores some key things, like the require call being in the body of an
invoked function within the function body or that the require call having more than one
boolean condition.

To amend this we will implement three things, a proper traversal through all nodes,
a more robust matching criteria, and checking for the vulnerability in function invo-
cations. To improve the traversal we will traverse the entire body of the function and
visit all statements where the require function can appear, this can be within loop bod-
ies, conditional branch bodies, and as sub expressions in statements like declaration
and assignment. To update the matching criteria we do not simply stop if the require
argument is a binary expression that doesn’t have an equality comparison operator but
rather we traverse the right and left hand side of the expression looking for an equality
comparison and then checking both sides of the expression to look for a tx.origin node.

Lastly, to make the check even more robust we will traverse through function bod-
ies of invoked functions. To fetch a function body based on the function invocation
requires multiple steps, where the id of the function must be constructed and then it
must be searched for AST and then the body needs to be traversed. The search is also

3.3. DETECTING VULNERABILITIES 57

not efficient is it Solidity doesn’t require that functions are declared before their invo-
cations which means the entire body of the contract definition must be searched for the
function declaration. Also, the function can be invoked more than once with the same
parameters which will prompt the same body to be inspected through more than once
which is again inefficient. A more efficient manner to deal with this would be to sim-
ply, search through the bodies of all functions for a pattern match ignoring the function
invocations. If any of the functions contain a match we declare the vulnerability as it
still makes the contract vulnerable for a call to that function. If no match is found in
any function and every individual function is safe from the vulnerability then we can
reason that any function invocation will also be safe from the vulnerability.

Chapter 4

Evaluation

This section contains details on how the project implementations were evaluated, against
a previous version of the project and also against related work. All executions were
carried out on a Dell Inspiron 17 5748 Core i5 8GB 1TB via a remote connection.
The test cases serve two objectives, to showcase the expansion of the grammar an that
reasoning is working on the extension of the grammar in comparison to the previous
version of the project and to showcase the detection capabilities of the project in com-
parison to both the older version of the project and other smart contract static analysis
tools.

4.1 Test Contracts

The following test cases are designed to be able to verify the implementations in the
project. For each test case we run the ESBMC binary with the added changes from
this project and then use the unix time command[7] to measure how long it too to run
the verification. We use the user time on returned from the time command to dull out
any noise that occurs due to other system processes. Each test is run 5 times and a
median of those values is taken to further eliminate noise from the reading and not
skew the times to outliers. Table 4.1 lists out the tests and their descriptions along with
the expected verification output for each test.

58

4.1. TEST CONTRACTS 59

Category Listing ID Description Expected

Grammar
extension

4.1 Valid contract with constructor Verification Successful
4.2 Invalid contract with constructor Verification Failed
4.3 Valid contract with signed integers Verification Successful
4.4 Invalid contract with signed integers Verification Failed
4.5 Valid contract with structs Verification Successful
4.6 Invalid contract with structs Verification Failed

Vulnerability
detection

4.7 Contract with external call and reentrancy
vulnerability

Verification Failed

4.8 Contract with external call and no reen-
trancy vulnerability

Verification Successful

4.9 Contract with signed integer overflow Verification Failed
4.10 Contract with signed integer overflow over

multiple runs
Verification Failed

4.11 Contract with int and uint operations with-
out any overflows or underflows

Verification Successful

4.12 Contract with signed integer underflow Verification Failed
4.13 Contract with signed integer overflow over

multiple runs
Verification Failed

4.14 Contract with tx.origin in the body of a
function invocation

Verification Failed

4.15 Contract with tx.origin in the body of a
loop

Verification Failed

4.16 Contract with tx.origin outside a require
call

Verification Successful

4.17 Contract with unsigned integer overflow Verification Failed
4.18 Contract with unsigned integer overflow

over multiple runs
Verification Failed

4.19 Contract with unsigned integer underflow Verification Failed
4.20 Contract with unsigned integer overflow

over multiple runs
Verification Failed

Table 4.1: Table of tests designed to evaluate the implementations

60 CHAPTER 4. EVALUATION

4.1.1 Grammar extension tests

The design of these tests follow a simple pattern each grammar construct implemented
has two tests with assertion statements that have to be verified. One test has a fail-
ing assertion and one test has a passing assertion this is to ensure that the grammar
construct behaves in both cases and is not a trivial verifier that says all contracts are
valid.

1 pragma solidity 0.6.0;

2 contract MyContract {

3 uint8 i = 0;

4 constructor() public {

5 i = 5;

6 }

7 function test() public {

8 assert(i == 5);

9 }

10 }

Listing 4.1: Valid contract with constructor

1 pragma solidity 0.6.0;

2 contract MyContract {

3 uint8 i;

4 constructor() public {

5 i = 5;

6 }

7 function test() public {

8 assert(i == 0);

9 }

10 }

Listing 4.2: Invalid contract with constructor

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 int8 i = 2;

5 i = 2 * i - 10;

6 assert(i == -6);

7 }

8 }

Listing 4.3: Valid contract with signed integers

4.1. TEST CONTRACTS 61

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 int8 i = 2;

5 i = 2 * i - 10;

6 assert(i == 2);

7 }

8 }

Listing 4.4: Invalid contract with signed integers

1 pragma solidity 0.6.0;

2 contract MyContract {

3 struct a {uint8 i;}

4 function test() public {

5 a memory s = a(1);

6 assert(s.i == 1);

7 }

8 }

Listing 4.5: Valid contract with structs

1 pragma solidity 0.6.0;

2 contract MyContract {

3 struct a {uint8 i;}

4 function test() public {

5 a memory s = a(1);

6 assert(s.i == 2);

7 }

8 }

Listing 4.6: Invalid contract with structs

62 CHAPTER 4. EVALUATION

Listing ID Time to run (s)
4.1 0.25
4.2 0.22
4.3 0.23
4.4 0.23
4.5 0.24
4.6 0.24

Table 4.2: Table of run time values for grammar expansion tests, green time values
represent correct outcome and red indicated incorrect outcome

Table 4.2 shows the results of running these tests on the binary generated by ES-
BMC after the implementation from this project have been made. Note, the imple-
mentations correctly identify the correct verification for the contracts and do it within
reasonable time as well. Implementations also seem efficient from the data as more
complex grammar constructs do not significantly increase the run time.

4.1.2 Vulnerability tests

1 pragma solidity 0.6.0;

2 contract MyContract {

3 bool b = false;

4 function test() public {

5 require(!b);

6 msg.sender.call.value(100)("");

7 b = true;

8 }

9 }

Listing 4.7: Contract with external call and reentrancy vulnerability

1 pragma solidity 0.6.0;

2 contract MyContract {

3 bool b = false;

4 function test() public {

5 require(!b);

6 b = true;

7 msg.sender.call.value(100)("");

8 }

9 }

Listing 4.8: Contract with external call and no reentrancy vulnerability

4.1. TEST CONTRACTS 63

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 int8 i = 127;

5 i++;

6 }

7 }

Listing 4.9: Contract with signed integer overflow

1 pragma solidity 0.6.0;

2 contract MyContract {

3 int8 i = 120;

4 function test() public {

5 i++;

6 }

7 }

Listing 4.10: Contract with signed integer overflow over multiple runs

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test(uint8 i, int8 j) public {

4 if (i < 255) {

5 i++;

6 }

7 if (i > 0) {

8 i--;

9 }

10 if (j < 127) {

11 j++;

12 }

13 if (j > -128) {

14 j--;

15 }

16 }

17 }

Listing 4.11: Contract with int and uint operations with- out any overflows or
underflows

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

64 CHAPTER 4. EVALUATION

4 uint8 i = 0;

5 i--;

6 }

7 }

Listing 4.12: Contract with signed integer underflow

1 pragma solidity 0.6.0;

2 contract MyContract {

3 int8 i = -120;

4 function test() public {

5 i--;

6 }

7 }

Listing 4.13: Contract with signed integer overflow over multiple runs

1 pragma solidity 0.6.0;

2 contract MyContract {

3 address owner;

4 function test() public {

5 other();

6 }

7

8 function other() public {

9 require(tx.origin == owner);

10 }

11 }

Listing 4.14: Contract with tx.origin in the body of a function invocation

1 pragma solidity 0.6.0;

2 contract MyContract {

3 address owner;

4 function test() public {

5 uint8 i = 0;

6 while (i++ == 0) {

7 require(tx.origin == owner);

8 }

9 }

10 }

Listing 4.15: Contract with tx.origin in the body of a loop

4.1. TEST CONTRACTS 65

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 tx.origin;

5 }

6 }

Listing 4.16: Contract with tx.origin outside a require call

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 uint8 i = 255;

5 i++;

6 }

7 }

Listing 4.17: Contract with unsigned integer overflow

1 pragma solidity 0.6.0;

2 contract MyContract {

3 uint8 i = 250;

4 function test() public {

5 i++;

6 }

7 }

Listing 4.18: Contract with unsigned integer overflow over multiple runs

1 pragma solidity 0.6.0;

2 contract MyContract {

3 function test() public {

4 int8 i = -128;

5 i--;

6 }

7 }

Listing 4.19: Contract with unsigned integer underflow

1 pragma solidity 0.6.0;

2 contract MyContract {

3 uint8 i = 5;

4 function test() public {

5 i--;

6 }

66 CHAPTER 4. EVALUATION

7 }

Listing 4.20: Contract with unsigned integer overflow over multiple runs

4.2. COMPARISON TO OTHER WORKS 67

Test Listing ID Slither Mythril Smartcheck Remix IDE ESBMC Solidity
4.7 0.47 3.75 3.68 N/A 0.49
4.8 0.46 3.76 3.61 N/A 0.31
4.9 0.46 3.25 3.19 N/A 0.22
4.10 0.45 4.25 3.61 N/A 0.28
4.11 0.45 6.1 3.31 N/A 0.24
4.12 0.44 3.13 3.25 N/A 0.25
4.13 0.45 4.19 3.34 N/A 0.22
4.14 0.45 3.58 3.56 N/A 0.22
4.15 0.47 3.42 3.48 N/A 0.24
4.16 0.46 3.03 3.47 N/A 0.24
4.17 0.45 3.08 3.18 N/A 0.22
4.18 0.45 4.21 3.35 N/A 0.23
4.19 0.44 3.11 3.14 N/A 0.22
4.20 0.45 4.25 3.28 N/A 0.24

Table 4.3: Table of run time values (in secs) for vulnerability detection tests, green
time values represent correct outcome and red indicated incorrect outcome, the bolded
time in each row represents the fastest correct verification

4.2 Comparison to other works

Table 4.3 outlines the run times for each of the tools for the vulnerability detection
times. We can see from the data that ESBMC solidity outperforms the other tools in
all but one test which is the reentrancy detection, however, as the implementation for
reentrancy detection is a naive proof of concept implementation without any optimiza-
tions there is potential to squeeze out more performance from ESBMC Solidity for that
test. We also notice that current market tools do not perform well when it comes to
detecting integer overflows and underflows for single or multiple runs. Another noter-
worthy mention is, that tools like slither and mythril detected many vulnerabilities in
the contracts that ESBMC did not recognize, namely, default visibility for state vari-
ables, unchecked return value for call function, sending ether to arbitrary users. Also,
when the tools were able to detect the vulnerabilities information and detail about the
vulnerability was presented and a severity was presented for each detected vulnerabil-
ity where as ESBMC displays the same level of failure on all vulnerabilities detected.

From the data we can see that Mythril was the worst perming tool on the bench-
marks. It was only able to detect vulnerabilities (or lack there of) 3 out of the 14 tests
which is the lowest success rate in the tools tested. It also ran the longest on average
making it the least performant of the bunch. Next higher up was smartchecker which

68 CHAPTER 4. EVALUATION

detected 4 out of 14 vulnerabilities, followed by a tie for 2nd place between slither and
remix.

Note, the Remix IDE has no run time values as the IDE lives in the browser and
run the checks in the browser, any timing would be plagued by network latency and
rendering latency of the browser which would make the times very unreliable and not
of much use. Therefore, we have only depicted the outcome of the verification and
omitted the runtimes for the verification.

To great pleasure and relief, we see that ESBMC out performs all the tools for the
laid out tests (all but one) by quite a margin cementing the ability for ESBMC to serve
is a viable tool in smart contracts for security property verification.

4.3 Limitations

The tests designed to benchmark the implementations are not the most representative
of real contracts. They make use of a limited grammar of Solidity and are geared
towards depicting the difference in performance for different tools while still staying
within the supported grammar of ESBMC Solidity. These benchmarks also do not test
scalability of contracts all tests span only one file and often no more than 20 lines in
total.

All test cases were also designed to be focused around a single vulnerability and the
detection of that vulnerability. It is not representative of how the tools would perform
given a contract with multiple vulnerabilities present simultaneously.

Chapter 5

Conclusion & Further work

5.1 Conclusion

In conclusion, the project set out to explore and further develop the current abilities of
ESBMC to verify smart contracts in the scope of various security vulnerabilities. By
the results of the evealuation one can claim that this was achieves as development on
the tool enhanced its ability to verify smart contracts and gave it the ability to verify
well known security vulnerabilities in smart contracts. Moreover, the developments
were on par and even exceeded the performance as well as detection capability of well
established tool on the market.

5.2 Limitations & Further work

The project discusses in detail of the challenges and the design decisions that helped
overcome the challenges along with specific implementation details that allowed ES-
BMC to detect the vulnerabilities. Even though the project seems to result in a deliv-
erable that is performant, it is still very far from complete. The following are some
limitation of ESBMC Solidity and should be considered for further work:

• Missing essential types like mapping which is an associative array in Solidity.
Can take inspiration from C++ operational model for maps for ESBMC[33]

• No support for polymorphism or even a second contract

• Cannot detect transaction order dependence, where the function can be run after
any number of other function runs. ESBMC Solidity assumes the function under

69

70 CHAPTER 5. CONCLUSION & FURTHER WORK

test is the first and only function run.

• Dynamic array without fixed length are not reasoned about. Inspiration can be
taken from C++ operational model for vectors for ESBMC[33].

• Extend the builtin globals operational model to builtin functions that allow hash-
ing and performing arithmetic without bounds

Bibliography

[1] Block chain. URL: https://developer.bitcoin.org/devguide/block_

chain.html#introduction.

[2] Common weakness enumeration. URL: https://cwe.mitre.org/.

[3] Overview · smart contract weakness classification and test cases. URL: https:
//swcregistry.io/.

[4] Solidity static analysis. URL: https://remix-ide.readthedocs.io/en/

latest/static_analysis.html.

[5] Types. URL: https://docs.soliditylang.org/en/v0.8.16/types.html#
integers.

[6] What is ether (eth)? URL: https://ethereum.org/en/eth/.

[7] time(1) Linux User’s Manual, July 2013.

[8] Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. A survey of attacks on
ethereum smart contracts (sok). In Matteo Maffei and Mark Ryan, editors, Prin-

ciples of Security and Trust, pages 164–186, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

[9] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

[10] Clark Barrett and Cesare Tinelli. Satisfiability Modulo Theories, pages
305–343. Springer International Publishing, Cham, 2018. doi:10.1007/

978-3-319-10575-8_11.

[11] Dirk Beyer. Software verification with validation of results. pages 331–349, 03
2017. doi:10.1007/978-3-662-54580-5_20.

71

https://developer.bitcoin.org/devguide/block_chain.html#introduction
https://developer.bitcoin.org/devguide/block_chain.html#introduction
https://cwe.mitre.org/
https://swcregistry.io/
https://swcregistry.io/
https://remix-ide.readthedocs.io/en/latest/static_analysis.html
https://remix-ide.readthedocs.io/en/latest/static_analysis.html
https://docs.soliditylang.org/en/v0.8.16/types.html#integers
https://docs.soliditylang.org/en/v0.8.16/types.html#integers
https://ethereum.org/en/eth/
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-662-54580-5_20

72 BIBLIOGRAPHY

[12] Dirk Beyer. Automatic verification of c and java programs: Sv-comp 2019. In
Dirk Beyer, Marieke Huisman, Fabrice Kordon, and Bernhard Steffen, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 133–
155, Cham, 2019. Springer International Publishing.

[13] Dirk Beyer. Advances in automatic software verification: Sv-comp 2020. In
Armin Biere and David Parker, editors, Tools and Algorithms for the Construction

and Analysis of Systems, pages 347–367, Cham, 2020. Springer International
Publishing.

[14] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In International conference on tools and algo-

rithms for the construction and analysis of systems, pages 193–207. Springer,
1999.

[15] Armin Biere, Alessandro Cimatti, Edmund M Clarke, Ofer Strichman, and Yun-
shan Zhu. Bounded model checking. Handbook of satisfiability, 185(99):457–
481, 2009.

[16] Checkmate. The week on-chain (week 18, 2021), May 2021. URL: https:
//insights.glassnode.com/the-week-on-chain-week-18-2021/.

[17] Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model
checking using satisfiability solving. Formal Methods in System Design, 19(1):7–
34, Jul 2001. doi:10.1023/A:1011276507260.

[18] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-
C programs. In Kurt Jensen and Andreas Podelski, editors, Tools and Algorithms

for the Construction and Analysis of Systems (TACAS 2004), volume 2988 of
Lecture Notes in Computer Science, pages 168–176. Springer, 2004.

[19] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Smt-based bounded
model checking for embedded ansi-c software. IEEE Transactions on Software

Engineering, 38(4):957–974, 2011.

[20] Lucas Cordeiro, Daniel Kroening, and Peter Schrammel. Jbmc: Bounded model
checking for java bytecode. In International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 219–223. Springer, 2019.

https://insights.glassnode.com/the-week-on-chain-week-18-2021/
https://insights.glassnode.com/the-week-on-chain-week-18-2021/
https://doi.org/10.1023/A:1011276507260

BIBLIOGRAPHY 73

[21] Leonardo de Moura and Nikolaj Bjørner. Z3: an efficient smt solver. volume
4963, pages 337–340, 04 2008. doi:10.1007/978-3-540-78800-3_24.

[22] Thain Douglas. Introduction to compilers and language design second edition.
pages 35–69, 85–98. Independently published, 2020.

[23] Josselin Feist, Gustavo Grieco, and Alex Groce. Slither: A static analysis
framework for smart contracts. CoRR, abs/1908.09878, 2019. URL: http:
//arxiv.org/abs/1908.09878, arXiv:1908.09878.

[24] Mikhail R. Gadelha, Felipe R. Monteiro, Jeremy Morse, Lucas C. Cordeiro,
Bernd Fischer, and Denis A. Nicole. ESBMC 5.0: An industrial-strength C
model checker. In 33rd ACM/IEEE Int. Conf. on Automated Software Engi-

neering (ASE’18), pages 888–891, New York, NY, USA, 2018. ACM. doi:

10.1145/3238147.3240481.

[25] Stuart Haber and W Scott Stornetta. How to time-stamp a digital document.
In Conference on the Theory and Application of Cryptography, pages 437–455.
Springer, 1990.

[26] ISO. C11 Standard, 2011. ISO/IEC 9899:2011.

[27] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC con-

ference on computer and communications security, pages 254–269, 2016.

[28] Spyros Makridakis and Klitos Christodoulou. Blockchain: Current challenges
and future prospects/applications. Future Internet, 11(12):258, 2019.

[29] Adrian Manning. Solidity security: Comprehensive list of known attack vectors
and common anti-patterns, Oct 2018. URL: https://blog.sigmaprime.io/
solidity-security.html#tx-origin-vuln.

[30] Steve Marx. Capture the ether - token sale. URL: https://capturetheether.
com/challenges/math/token-sale/.

[31] Muhammad Izhar Mehar, Charles Louis Shier, Alana Giambattista, Elgar Gong,
Gabrielle Fletcher, Ryan Sanayhie, Henry M Kim, and Marek Laskowski. Un-
derstanding a revolutionary and flawed grand experiment in blockchain: the dao
attack. Journal of Cases on Information Technology (JCIT), 21(1):19–32, 2019.

https://doi.org/10.1007/978-3-540-78800-3_24
http://arxiv.org/abs/1908.09878
http://arxiv.org/abs/1908.09878
http://arxiv.org/abs/1908.09878
https://doi.org/10.1145/3238147.3240481
https://doi.org/10.1145/3238147.3240481
https://blog.sigmaprime.io/solidity-security.html#tx-origin-vuln
https://blog.sigmaprime.io/solidity-security.html#tx-origin-vuln
https://capturetheether.com/challenges/math/token-sale/
https://capturetheether.com/challenges/math/token-sale/

74 BIBLIOGRAPHY

[32] Mix. These are the top 10 programming languages in
blockchain, May 2019. URL: https://thenextweb.com/news/

javascript-programming-java-cryptocurrency.

[33] Felipe R. Monteiro, Mikhail R. Gadelha, and Lucas C. Cordeiro. Model checking
c++ programs. Software Testing, Verification and Reliability, 32(1):e1793, 2022.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1793,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.

1793, doi:https://doi.org/10.1002/stvr.1793.

[34] Felipe R Monteiro, Mikhail R Gadelha, and Lucas C Cordeiro. Model checking
c++ programs. Software Testing, Verification and Reliability, 32(1):e1793, 2022.

[35] Bernhard Mueller. Smashing ethereum smart contracts for fun and real profit.
HITB SECCONF Amsterdam, 9:54, 2018.

[36] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentralized

Business Review, page 21260, 2008.

[37] Purathani Praitheeshan, Lei Pan, Jiangshan Yu, Joseph Liu, and Robin Doss.
Security analysis methods on ethereum smart contract vulnerabilities: a survey.
arXiv preprint arXiv:1908.08605, 2019.

[38] Sarwar Sayeed, Hector Marco-Gisbert, and Tom Caira. Smart contract: Attacks
and protections. IEEE Access, 8:24416–24427, 2020.

[39] Kunjian Song. Smt-based bounded model checking for solidity smart contracts.
Master’s thesis, The University of Manchester, 2021.

[40] Kunjian Song, Nedas Matulevicius, Eddie B de Lima Filho, and Lucas C
Cordeiro. Esbmc-solidity: An smt-based model checker for solidity smart con-
tracts. In 2022 IEEE/ACM 44th International Conference on Software Engineer-

ing: Companion Proceedings (ICSE-Companion), pages 65–69. IEEE, 2022.

[41] William Stallings and William Stallings. Cryptographic Hash Function, page
339–365. Pearson, 2017.

[42] Sergei Tikhomirov, Ekaterina Voskresenskaya, Ivan Ivanitskiy, Ramil Takhaviev,
Evgeny Marchenko, and Yaroslav Alexandrov. Smartcheck: Static analysis of
ethereum smart contracts. In Proceedings of the 1st International Workshop on

https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://thenextweb.com/news/javascript-programming-java-cryptocurrency
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.1793
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1793
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1793
https://doi.org/https://doi.org/10.1002/stvr.1793

BIBLIOGRAPHY 75

Emerging Trends in Software Engineering for Blockchain, WETSEB ’18, page
9–16, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3194113.3194115.

[43] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[44] Congcong Ye, Guoqiang Li, Hongming Cai, Yonggen Gu, and Akira Fukuda.
Analysis of security in blockchain: Case study in 51%-attack detecting. In
2018 5th International conference on dependable systems and their applications

(DSA), pages 15–24. IEEE, 2018.

https://doi.org/10.1145/3194113.3194115
https://doi.org/10.1145/3194113.3194115

	Abstract
	Declaration
	Copyright
	Acknowledgements
	Introduction
	Motivation
	Aim & Objectives
	Aims
	Objectives

	Background
	Blockchain & Smart Contracts
	Blockchain and Bitcoin
	Ethereum and Smart contracts

	Smart contract vulnerabilities
	Integer arithmetic
	Reentrancy
	Authorization through tx.origin

	SMT Based bound model checking
	Bounded Model Checking
	Satisfiability Modulo Theories

	ESBMC
	Programming Language Theory and AST
	Related work
	Remix IDE
	Mythril
	Smartcheck
	Slither
	ESBMC-Solidity

	Methodology & Implementation
	Opcode Implementation
	Expanding supported grammar
	Integer types
	Structs
	Solidity globals
	Constructors

	Detecting Vulnerabilities
	Fixed bit integer arithmetic
	Reentrancy
	Authorization through tx.origin

	Evaluation
	Test Contracts
	Grammar extension tests
	Vulnerability tests

	Comparison to other works
	Limitations

	Conclusion & Further work
	Conclusion
	Limitations & Further work

	Bibliography

