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Abstract

In a modern world, aspects of cybersecurity become more of a requirement to
software, systems, applications etc. than just a nice feature implemented by
programmers in their spare time. Blockchain, on the other hand, still stays as
a pastime to people interested in digital currencies or decentralised, anonymous
environments such as auctions or voting. However, cyberattacks are also not an
exception to the blockchain community, and most of those attacks were made
through smart contracts - pieces of code through which blockchain users interact
with the actual blockchain. This project analyses the background of blockchain
technology, implementation of smart contracts and the cybersecurity aspect in
the field of blockchain. The project presents an in-depth analysis of five static
analysis tools (simply put - code verifiers), their capabilities and drawbacks and
these are tested out with test smart contracts with vulnerabilities deliberately
included in their source code. The vulnerabilities are tailored so that they fit
into the cybersecurity properties. After the implementation process, analysis is
presented, and it is found out which static analysis tool is the best in order to
secure the smart contract code from future cyberattacks on the blockchain.
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Chapter 1

Introduction

Blockchain technology nowadays tends to become more and more popular [4],
with more people finding various interesting approaches and applications of
blockchain, starting from decentralised forms of cryptocurrencies, such as Bit-
coin [5] or Ethereum [6], ending with secure sensitive patient data transfer in
healthcare institutions, Internet of Things (IoT) device management systems,
and even voting systems [7]. To implement these ideas, one has to create a
smart contract, which is a piece of code, written in some of the programming
languages such as Solidity [§], also called a “block”, which is then appended to
the end of the whole system of other blocks chained together, thus the name
“blockchain”lﬂ [9, 110]. These blocks may contain any code written by a pro-
grammer, and anyone who has access to the blockchain can execute the code in
the block. As the blocks cannot be altered or deleted from the blockchain under
normal circumstances, the blocks act as a ledger for users to track interactions
with blocks [11], named transactions. This provides some important security
aspects to the technology, such as integrity and transparency, but blockchain
technology is not immune to all kinds of cyberattacks. The main concern is the
verification of the code in the blocks before they are appended to the blockchain
so that they cannot be exploited with malicious intent by adversaries, and most
of the attacks performed on blockchain were caused by abusing simple things
that a programmer might have forgotten to implement, such as logical errors,
uncaught exceptions and buffer overflow [12]|13]|14]. However, smart contract
programmers are not left alone, as there are several verifiers created to tackle
the problem.

1.1 Aims and objectives

The main aim of this project is to perform an overview of existing smart contract
verifiers written in Solidity language and used for Ethereum smart contracts,
finding out the most efficient as well as accurate static analysis tool for Ethereum
smart contracts. The objectives for this project are as follows:

o Writing various smart contracts as tests for verifiers to check accuracy
and efficiency. This is the main aspect of the technical project imple-

IThe original bitcoin white paper creator, Satoshi Nakamoto, mentions “chains of blocks”,
but not exactly “blockchain” [5|.
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mentation part, as the analysis and statistics would be derived later from
the smart contracts which deliberately have vulnerabilities in them. It has
to be noted that there are lots of different vulnerabilities existing in smart
contracts, but here only the ones which can cause a real cybersecurity
threat to the user and/or system are analysed.

e Finding, using and adapting tests where applicable to various ezisting
smart contract verifiers. In order to perform analysis, several verifiers
have to be used and tested out. It could be the case that a uniform smart
contract vulnerability test might not fit all verifiers, therefore, the tests
have to be tweaked a little bit for the verifiers to work while preserving
the properties of the test.

e Performing benchmarking tests on verifiers. In this project, not only the
accuracy of the verifier matters but also its technical performance, such as
verification speed, memory and CPU consumption rates and other para-
meters which are important for users.

e Performing analysis and statistics given benchmarks and verifier accuracy
to derive conclusions.

1.2 Motivation

This project was designed and undertaken with several outcomes in mind.
Firstly, the project allows learning about the state-of-the-art static analysis
tools which could or are already being used in the industry as efficient and
trustworthy tools for verifying smart contract code. By performing an in-depth
analysis of the tools it is possible to derive some conclusions about their effi-
ciency, accuracy and reliability, therefore, one can objectively choose one static
analysis tool over another in order to detect some exact or all possible vulner-
abilities in the code before the deployment on the blockchain. Moreover, as
cybersecurity becomes more and more important in today’s industry, the ana-
lysis performed in this project and its results would greatly help other people
in determining what currently available tools are the best for particular vulner-
abilities as well as deciding where and what improvements have to be made in
the field of verifying smart contract code.

1.3 Contributions

The main contribution of this project is the creation of Solidity smart contract
tests containing vulnerabilities and their verification with various static analysis
tools designed for Solidity smart contracts. It is crucial to point out that the
tests are written with cybersecurity properties in mind, thus the vulnerabilities
in tests and their risk were assessed and prioritised with established cyberse-
curity risk assessment methods. However, these methods are created for other
programming languages or systems, programs, frameworks etc. but the general
concepts inside the methods can be transferred to any programming language
or a program or a system - this was done in this project.

11



1.4 Structure and organisation

This project is divided into five distinct parts. The first part is the introductory
one, explaining the aims and objectives of this project. The second part cov-
ers the background theory needed for the project, while the third part delves
into the technical part of this project - how the project was implemented. The
fourth part discusses the data gathered from the research and shows the ana-
lysis of results. Finally, the last part summarises the project with notes about
achievements, reflection and possible future work.
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Chapter 2

Background

In this chapter, the core background theory is covered in several sections in order
to obtain a better understanding of the concepts used throughout the project.
The main concepts include blockchain technology, its usage, advantages and
flaws, smart contracts, code verification via static analysis and the cybersecurity
aspect of this project.

2.1 Blockchain technology

A blockchain is a write-only list of data structures, called “blocks”, chained
together [15]. Effectively, blocks can contain any information inside as the
technology is not bound to specific applications, for example, cryptocurrency.
Each block contains cryptographic hashing functions and a timestamp, which
provide the user required Confidentiality, Integrity and Availability (CIA) [16]
properties needed to ensure that a block has not been altered [17]. Therefore,
one can be certain that the interaction with the blocks in the blockchain is secure
in terms of data management. In order to submit a block to a blockchain, it has
to be approved first by the (majority, most of the time) blockchain community,
and this concept is called a consensus mechanism [18]. As Tim Swanson explains
in his report on distributed ledger systems, “it is a set of rules and procedures
that allows maintaining coherent set of facts between multiple participating
nodes” [19]. This shows that block appending to the blockchain is not a fully
automatic process - it needs to be approved first.

There are two popular and widely used blockchain platforms in the public -
Bitcoin and Ethereum. While both employ similar technological solutions |20],
we are mainly going to discuss Ethereum, its smart contracts and verification
methods. Ethereum blockchain contains:

1. states, which are mappings between addresses and account states [21],
which in turn can be either externally owned or contract accounts [20],

2. transactions, which are cryptographically signed instructions, containing a
nonce (a value, usually a number, which ensures the user that the received
signature is fresh), gas price and value (discussed later in this chapter),
the address of the instruction recipient and the value to be sent in Wei
[21], which is a unit of value measurement - a good analogy would be a

13



real-life currency: an equivalent of pounds and pence would be Ether and
Wei,

3. blocks, which contain encrypted information about the parent block, the
current block, timestamp acquired when the block was created and other
required information. The information about other blocks stored in the
current block is encrypted with the 256-bit Keccak hash [21].

Each transaction performed requires some computational power, and it does
not come for free. Therefore, the concept of gas and gas consumption is intro-
duced in the blockchain technology. Each computational operation in Ethereum
blockchain consumes gas, which is generally 1 gas per 1 computational opera-
tion |20], although prices vary and transactors can define their gas price per
transaction [21]. The concept of gas is useful for miners, who verify the trans-
actions, as they receive monetary incentives depending on computational power
[22]. Also, gas consumption partially prevents Denial-of-Service (DoS) attacks
[22]. However, gas can run out during the computation process, and improper
handling of these exceptions can lead to vulnerabilities, which can be exploited
by adversaries [23].

Ethereum blockchain, like Bitcoin, is well-suited for building digital eco-
nomies [24], but one can build any systems they like. These systems are called
decentralised applications (DApps). Most of the DApps are built as mobile
applications, as in this example [25], but they can be web-based as well.

2.2 Smart contracts

A smart contract is a closely related term to the technology of blockchain, as the
transactions occurring in the blockchain need to be formalised so that people can
establish trust not only in the system but also between parties participating in
the system. Therefore, a smart contract is a set of rules and protocols, which are
deployed in the blockchain to verify and validate the transactions between users
[26]. The users do not interact directly with the blockchain and the blocks inside
it, but with the smart contracts, which are deployed and Veriﬁecﬂ However,
the code in the smart contracts needs to be verified, so that users may not be
able to exploit the contracts and, in turn, cause financial and/or other damage
to users of the blockchain. Unfortunately, this is not strictly enforced by the
blockchain, as it does not have any implementations which would protect the
blockchain from adding malicious smart contracts. One survey showed that
through exploiting vulnerabilities in the smart contracts, adversaries managed
to incur large financial losses, with one DoS managing to create 280 million US
Dollars of financial damage [27]. The famous DAO attack was based on a logical
error of implicit fallback function calling |28| created by the programmer, which
could have been easily avoided by a code verifier - a static analysis tool.
Ethereum smart contracts written in Solidity programming language can be
analysed and verified with static analysis tools, just like other programming
languages, such as C/C++ [29] or Java [30]. Several static analysis tools exist
for Ethereum smart contracts with varying degrees of capability and scope [31].
Some are general-purpose static analysis tools, such as Vandal [32], Slither [33]

1See figure
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and Zeus , while others are more specific, for example, MadMax and
GASPER for out-of-gas vulnerabilities, Ethainter for composite informa-
tion flow vulnerabilities or VerX for satisfying functional specifications .
Some of these tools will be used in the project to test their capabilities as well
as test their speed and resource consumption rates.
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Figure 2.1: General operation of the smart contract in a blockchain

2.3 Static analysis and verification of programs

In order to have a viable and fully functional product, say a system or a program,
it needs to be bug-free, robust and available at all times. To achieve this, various
manual and automated testing methods are used:

e manual methods, also called informal methods, such as desk checking,
walkthrough, code reviews, inspections and audits ;

o automated methods, which could be further categorised into the following
subcategories:

— Static analysis - e.g. lexical and dataflow analysis, symbolic execu-
tion (can be shortened to symex) and model checking [39);
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— Dynamic analysis - e.g. top-down and bottom-up testing strategies,
white-box and black-box (mutation-based, grammar-based or ran-
dom) fuzzing techniques, automatic debugging, stress testing [38].

While manual testing methods can be used to detect vulnerabilities in code,
automatic testing is faster and can cover more code, detect more vulnerabilities
than a human doing this manually. Although static analysis tends to be less
accurate (but faster) than dynamic analysis due to the fact that static analysis
relies on the source code and abstractions [40][41], while dynamic analysis uses
test suites to find vulnerabilities in programs [41], we will be primarily interested
in the static analysis part in the area of code verification. This is mainly because
of the time constraints - static analysis works faster and produces sufficiently
good results without the actual need of running the source code, while dynamic
analysis introduces runtime overheads [42], which is not a very suitable outcome
in this project. It must be noted, however, that for the best results the hybrid
approach of static and dynamic analysis can be considered as an option, as in
this way it is tried to combine the advantages of both types of code analysis
[43].

2.4 Cybersecurity

Cybersecurity is a broad term, which is quite abstract and encompasses plenty
of areas not only related to computer science, but also engineering, politics,
management and social sciences [44]. However, there is no exact established
definition of “cybersecurity”, as one can look from many different perspectives
- for example, it can be looked as similar to information security [45], which is
defined by the ISO/IEC 27000 standard, last updated in 2018 (as of 2021) [46]
and the concept is defined as “preservation of confidentiality, integrity and avail-
ability of information” [47]. The International Telecommunication Union (ITU)
defines cybersecurity as “the collection of tools, policies, security concepts, se-
curity safeguards, guidelines, risk management approaches, actions, training,
best practices, assurance and technologies that can be used to protect the cy-
ber environment and organization and user’s assets.” [48]. The United States
Cybersecurity and Infrastructure Security Agency (CISA) is less abstract about
cybersecurity - it says that “cybersecurity is the art of protecting networks,
devices, and data from unauthorized access or criminal use and the practice
of ensuring confidentiality, integrity, and availability of information” [49]. The
National Institute of Standards and Technology Computer Security Resource
Center (NIST CSRC) in the US gives a similar definition to cybersecurity: it is a
“prevention of damage to, protection of, and restoration of computers, electronic
communications systems, electronic communications services, wire communic-
ation, and electronic communication, including information contained therein,
to ensure its availability, integrity, authentication, confidentiality, and nonrepu-
diation.” [50]. As it can be seen from the citations, it can be derived - at least
from the computer science point of view - that cybersecurity revolves mainly
around the same idea: keeping electronic products secure by ensuring that they
adhere to the CIA principleﬂ

2See figures and for the visual representation of the CIA principle.
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Once we can establish the fact that one of the cores of cybersecurity is the
CIA principle, it is possible to go further into analysing actual source code and
determine where cybersecurity threats can occur if the adversaries would try
to exploit the vulnerabilities existing in the code. Luckily, the most common
vulnerabilities in any programming language or software, system, framework
etc. are well-documented and can be easily accessed on the Internet. For ex-
ample, the Common Weakness Enumeration (CWE) [51] list or the Common
Vulnerability Enumeration (CVE) [52] list are good databases of documented
cybersecurity threats of various levels, where programmers can find detailed
descriptions about a specific vulnerability, such as type of threat, method(s)
of reproducing the vulnerability, affected languages, systems, frameworks, pro-
grams etc. as well as CVSS score, which shows the level of severity of the threat
[53]. In Solidity programming language, however, the documentation of vul-
nerabilities is scarce and not well standardised, leading to the problem where
programmers may have heard about a specific vulnerability, but they tend to
have a hard time finding the accurate description and possible ways of fixing
the vulnerable code. Not everything is lost, though. The NCC Group pub-
lished a Decentralized Application Security Project (DASP) Top 10 Solidity
smart contract vulnerabilities in 2018 [54], where the most commonly occurring
cybersecurity threats in smart contracts were documented and explained with
plenty of examples. Also, the Smart Contract Weakness Classification Registry
(SWC) was created as an attempt to standardise the documentation of vulner-
abilities in Solidity. [55]. Currently, at the time of writing, there are thirty-six
distinct vulnerabilities, each with their unique identifiers, description examples
and relations to the CWE vulnerability list.

To improve the evaluation of vulnerabilities, some standards provide risk
assessments, so that in a large software system or framework programmers could
prioritise their workload, starting with the most dangerous cybersecurity threats
and leaving the low priority threats for later. The Software Engineering Institute
at Carnegie Mellon University in the US developed a risk assessment framework
for C programming language SEI CERT C Coding Standard, which shows what
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the consequences can be if the rules of the standard would be ignored [56]. As
the methodology for determining the priority levels is quite universal and does
not depend on a specific programming language (although this particular risk
assessment method is developed for C), in this project, in chapter 3| the tests
with vulnerabilities have the priority levels assigned according to the method
developed by SEI CERT C Coding Standard. The levels are from level 1 (L1
- the most dangerous) to level 3 (L3 - the least dangerous), with priorities
ranging from 1 (lowest priority) to 27 (highest priority), as shown in figure
The priority of the vulnerability is calculated by multiplying the values from
each rule - severity, likelihood and remediation cost [56].

L1: P12 — P27

High severity, likely,
inexpensive to
repair flaws

Medium severity, L2: P6 - P9
probable, medium
cost to repair flaws

LEB [ Low severity, unlikely,

expensive to repair flaws

Figure 2.3: Radial diagram of priorities and levels of the risk assessment de-
veloped for SEI CERT C Coding Standard [56)

2.5 Related work

The problem of vulnerabilities in smart contracts deployed on the blockchain
have been observed and discussed by other members of the scientific community.
Atzei et al. in 2017 performed a vulnerability survey on Ethereum smart con-
tracts with indications of the most common types of vulnerabilities in the con-
tracts [28]. Chen et al. in 2020 explored various types of vulnerabilities existing
on the Ethereum blockchain, with some of the examples including re-entrancy,
DoS and contract locking [27]. Liu et al. in the same year delved more into the
specific types of vulnerabilities, in their case - out-of-gas vulnerabilities [35].
However, these articles mentioned tend to lack key cybersecurity properties
evaluated in the surveys and they discuss more about the technicalities of vul-
nerabilities themselves. Praitheeshan et al. gives more information about not
only the vulnerabilities themselves but also the security issues related to them
[31]. For example, it is mentioned in the survey that unrestricted cryptocur-
rency transfers lead to failure to store and protect data |31] - in other words,
this means that the data integrity cybersecurity property is violated from the
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CIA triad. A more detailed example of this particular vulnerability is explained
into detail in section B.2.5

Wang et al. in the article about Ethereum smart contracts mention a bit
about the possible outcomes related to vulnerabilities, and because these at-
tacks can be classified as cyberattacks, the paper gives some insight about the
criminal intent in exploiting smart contract vulnerabilities [57]. While the art-
icle explains some methods adversaries can take in order to obtain an unfair
advantage or even cause malicious acts such as digital currency theft, it does
not go further into assigning cybersecurity-related concepts to vulnerable smart
contracts in question. Li et al. in the survey published in 2020 perform a sys-
tematic analysis of vulnerable contracts with detailed explanations and possible
security risks and ways of enhancing existing security methods [58]. The survey
also includes attack vectors - an important factor in identifying possible ad-
versary exploitation avenues and applicable remedies. The generalised versions,
the Cyber Kill Chain by Lockheed Martin [59] and MITRE’s ATT&CK know-
ledge base of tactics and techniques used by cyber attackers [60] can be possibly
applied to the survey, thus expanding it into the direction of cybersecurity.

Dasgupta, Shrein and Gupta go one step further into standardising vulner-
ability evaluations from the cybersecurity perspective by providing references to
CVE bug reports for Bitcoin but the survey lacks exact evaluations of individual
vulnerabilities in the light of cybersecurity [61].

2.6 Summary

In this chapter, the theory required for this project has been explained in a
level of detail needed for this project. The concepts of the blockchain, smart
contracts, cryptocurrencies were briefly explained. The methods of verification
of programs were also described briefly - the methods and applications. Cy-
bersecurity concepts were also included in the chapter in order to give a better
understanding of applications of cybersecurity to this project. Lastly, a short
section on related work done by other people in the academic community showed
us what has been done already in the area of smart contract verification and
cybersecurity application.
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Chapter 3

Research methodology and
implementation

In this chapter, the practical part of the project is discussed, and the chapter
is divided into several smaller parts. In the first part, the methods on how the
tests were selected and written are explained, as well as the testing strategies
and tools used to test against. Also, it is shown what parameters in testing are
taken into account and their results are going to be discussed in the following
chapter (chapter . The hypotheses are given as well in order to show whether
the data gathered is going to prove those theories later or, otherwise, disprove
them. Lastly, all smart contracts as tests are explained in detail in this chapter,
so that it would be possible to gain an in-depth understanding on why these
particular contracts were written in a way that most of them would contain
some kind of a security vulnerability, while others do not have vulnerabilities at
all or are irrelevant to the testing strategy altogether.

3.1 Testing approach

This section is divided into five smaller parts in order to explain the testing
approach more into detail. In part a hypothesis is presented, which is going
to be used throughout the implementation process and checked against in the
evaluation part in chapter |4l In part various static analysis tools used for
the project are discussed, their advertised capabilities, technical implementation
and a short comparison between all tools. Part gives a reader a bit more
detail about the auxiliary tools and equipment used in the project, which helped
to gather data and derives conclusions from the performance of static analysis
tools. In part it is explained what technical parameters were measured
in order to gather information and perform analysis on them. Lastly, in part
the rules of eligibility for testing smart contracts are presented, so that it
is easier to understand why some smart contract tests were considered as viable
tests while others did not fit the required categories.

The overall testing strategy and research methodology follows a cyclic pat-
tern, as it involves testing each of the tests, described more in detail in section
In order to describe one cycle of this pattern, the following methodology
was used:
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1. Find out a vulnerability that can be exploited through the Solidity smart
contract code.

2. Write an example test containing the previously mentioned vulnerability.

3. Test out the example with various static analysis tools and write down
the results under normal conditions. Write down the outcome of the tool
(vulnerability found/not found).

4. Repeat the test by reducing the number of threads or programs running
on the system, write down the results under ideal conditions.

5. Repeat the test by introducing stress tests: 100% CPU consumption, 77%
of memory consumption, 90% of memory consumption, full test: 100%
CPU consumption and 90% of memory consumption. For each of the
stress tests, write down the results under each of the stress conditions.

This cycle is repeated for each of the vulnerabilities found, and for each of the
static analysis tools used. Figure visually summarises the overall testing
strategy and research methodology of this project.

Run tests with
various options:
full CPU load,
memory load,
full stress test

Write down the
verdict and
obtain results

Write down the

verdict and
obtain results

* Lifecycle of a Solidity o 4
smart contract Find out

Test out the vulnerability
smart contract which can be
with static exploited
analysis tools through smart

contracts

Check if the
vulnerability
satisfies the
cybersecurity
properties

Write a smart
contract test
containing the
vulnerability

Figure 3.1: The lifecycle of a Solidity smart contract vulnerability

21



3.1.1 Hypothesis

While the project did not have a required hypothesis per se, it was interesting
to find out whether commonly held beliefs from the field of computer science
hold in practice or not. As explained in section[I.I] one of the main aims of this
project is to find out the best publicly available static analysis tool for verifying
Solidity smart contract source code w.r.t. cybersecurity properties. However,
this approach does not prove or disprove some of the generally convincing ar-
guments derived from educated guesses, that is, guessing that one property or
another might hold because of the previous expertise in similar areas of research.
One of the arguments fitting the category is the following: “The more complex
and technically powerful system or tool or program tends to work slower, con-
sumes more available resources at the expense of producing better results needed
forits intended use”. While it seems that this type of trade-off between accuracy
and resource management or speed is common sense, and especially in computer
hardware, where accuracy-efficiency trade-off is pronounced and researchers try
to overcome this hindrance by creating new methods and/or hardware to im-
prove both speed, energy consumption and accuracy of hardware devices [62]
[63]. As in this project, both hardware and software devices will be used, and
several of the performance metrics will include accuracy and resource consump-
tioﬂ it was thought that it would be a good idea to check if the trade-off holds
in the area of smart contract verification. Therefore, the hypothesis is as follows:

e H1: The more complexr and technically powerful system or tool or pro-
gram is slower and consumes more resources available to the system, i.e.
CPU power, memory and/or disk capacity etc. at the expense of system
accuracy.

This hypothesis will be checked against in the analysis part of the project, where
it will be possible to derive if the hypothesis holds given the data gathered from
the testing.

3.1.2 Static analysis tools

In this project, various static analysis tools were considered for testing, but there
was a small problem - some of the tools were not maintained for a long time
|64, 65], others did not work with newer Solidity compiler versions [66]ﬂ Some
of the tools require a complex setup process, which may not be a viable option
in commercial and industrial environments, therefore, they were discarded from
the testing process as well. Another important factor was availability - some
tools are not publicly available, and one has to buy them in order to be able
to use the tool. Although this can be acceptable in the industry, for research
purposes in this project these types of Solidity static analysis tools were not used.
Therefore, we are left with five Solidity static analysis tools, which satisfy the
requirements of availability, usability and preferably maintainability. The tools
are as follows: Remix IDE static analysis plug-in, Slither, Oyente, Mythril and
SmartCheck. These tools are written in different programming languages with
different verification approaches - most of them employ already existing solvers,

1More about the performance metrics is discussed in section
2 A new Solidity major compiler version is a “breaking” one - e.g. a smart contract compiled
with compiler version 0.6.0 might not work with compiler version 0.7.0 and vice versa.
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such as Z3 SMT solver [67]. Each of the tools, their methods of approach and
capabilities are explained in detail in the following paragraphs of this section.

Remix IDE plug-in

Remiz IDE is an integrated development environment (IDE) developed by a
team of seven people from various parts of the world [68]. As per their docu-
mentation website [69], the IDE is written in JavaScript, a popular Web-based
programming language. The IDE contains plug-ins, additional functionalit-
ies which can be added manually by the programmer and used accordingly to
his/her needs. One of those plug-ins is the Solidity static analysis plug-in, which
checks for the most common security vulnerabilities in Solidity code. The static
analysis is performed after the compilation process, and the vast majority of
static analysis tools work in this way. It is worth noting that one does not
need to run the actual source code so that the verifier can perform its analysis.
This is crucial, especially in the blockchain, where a deployed smart contract
cannot be revoked except for extraordinary circumstances (cf. section for
DAO attack).

o a ethereum.org,

SOLIDITY STATIC ANALYSIS -] AN
> Security
» Gas &Economy

» ERC

»  Miscellaneous

Figure 3.2: Remix IDE with some Solidity smart contract code

Underneath the plug-in there is the analyser, called Remix Analyzer [70],
which is the static analysis tool performing the vulnerability checks. Although
not publicised on the Github repository page, from the file types it can be
derived that the Remix Analyzer is written in TypeScript, which is essentially
JavaScript with enforced error checking. In the implementation source code, the
vulnerability checking algorithms seem to be quite simple - a detect-and-report
approach, which is not very complicated nor it requires background Maths know-
ledge (especially first-order logic) in order to write that particular type of al-
gorithm. An example can be seen in listing [3.I] It can be seen from the code
snippet that the function _report traverses all nodes of the Abstract Syntax Tree
(AST) of the source code and searches for nodes containing self-destruct calls.
If any of those nodes are found, the user is informed with the warning message.
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1

export default class selfdestruct implements AnalyzerModule {

}

name = 'Selfdestruct: '
description = 'Contracts using destructed contract can be broken'
category: ModuleCategory = category.SECURITY
algorithm: ModuleAlgorithm = algorithm.HEURISTIC
version: SupportedVersion = {
start: '0.4.12"'
}

abstractAst: AbstractAst = new AbstractAst()

visit: VisitFunction = this.abstractAst.build_visit(
(node: any) => isStatement(node) || (node.nodeType === '
FunctionCall' && isSelfdestructCall (node))

report: ReportFunction = this.abstractAst.build_report(this.
_report.bind(this))

// eslint-disable-next-line Q@typescript-eslint/no-unused-vars

private _report (contracts: ContractHLAstI[],
multipleContractsWithSameName: boolean, version: string):
Report0bj [1 {
const warnings: ReportObj[] = []

contracts.forEach((contract) => {
contract.functions.forEach ((func) => {
let hasSelf = false
func.relevantNodes.forEach((node) => {
if (isSelfdestructCall (node)) {
warnings .push ({
warning: 'Use of selfdestruct: Can block calling
contracts unexpectedly. Be especially careful if this contract
is planned to be used by other contracts (i.e. library
contracts, interactions). Selfdestruction of the callee
contract can leave callers in an inoperable state.',
location: node.src,
more: 'https://paritytech.io/blog/security-alert.html

B
hasSelf = true
}
if (isStatement (node) && hasSelf) {
warnings . push ({
warning: 'Use of selfdestruct: No code after
selfdestruct is executed. Selfdestruct is a terminal.',
location: node.src,
more: " https://solidity.readthedocs.io/en/${version}/
introduction-to-smart-contracts.html#deactivate-and-self -
destruct
B
hasSelf = false
¥
i)
B
b
return warnings

}

Listing 3.1: Example algorithm: detection of calling low-level function

“selfdestruct” [1]

Another example is the vulnerability check for re-entrancy bugs - it follows
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10

a similar fashion to the example in listing but in this case, it is not so
straightforward to decide whether the code has a possible re-entrancy bug or
not. Therefore, the checker tests if there are any variable or function state
changes within the calculation process in the AST of the source code. The full
code of the re-entrancy vulnerability checker can be found in listing [3:2]

export checksEffectsInteraction
AnalyzerModule {
name = 'Check-effects-interaction:
description = 'Potential re-entrancy bugs'
category: ModuleCategory = category.SECURITY
algorithm: ModuleAlgorithm = algorithm.HEURISTIC
version: SupportedVersion = {
start: '0.4.12"'

}
abstractAst: AbstractAst = AbstractAst ()

visit: VisitFunction = .abstractAst.build_visit ((node:
FunctionCallAstNode | AssignmentAstNode | UnaryOperationAstNode
| InlineAssemblyAstNode) => (
node .nodeType === 'FunctionCall' && (isInteraction(node) ||
isLocalCallGraphRelevantNode (node))) ||
((node .nodeType === 'Assignment' || node.nodeType === '
UnaryOperation' || node.nodeType === 'InlineAssembly') &&
isEffect (node)))

report: ReportFunction = .abstractAst.build_report(
_report.bind( ))

_report (contracts: ContractHLAst[],

multipleContractsWithSameName: , version: string):
Report0bj []1 {
warnings: ReportObj[] = []

hasModifiers: contracts.some((item) => item.
modifiers.length > 0)
callGraph: Record<string, ContractCallGraph> =
buildGlobalFuncCallGraph (contracts)
contracts.forEach((contract) => {
contract.functions.forEach((func) => {
func['changesState'] = .checkIfChangesState (
getFullQuallyfiedFuncDefinitionIdent (
contract.node,
func.node,
func.parameters

),
.getContext (
callGraph,
contract,
func)
)
»
contract.functions.forEach((func: FunctionHLAst) => {
( .isPotentialVulnerableFunction (func,

getContext (callGraph, contract, func))) {
funcName: string =

getFullQuallyfiedFuncDefinitionIdent (contract.node, func.node,
func.parameters)

let comments: string = (hasModifiers) ? 'Note: Modifiers
are currently not considered by this static analysis.' : ''

comments += (multipleContractsWithSameName) ? 'Note:
Import aliases are currently not supported by this static
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analysis.' : ''

warnings . push ({
warning: “Potential violation of Checks-Effects-
Interaction pattern in ${funcNamel}: Could potentially lead to
re-entrancy vulnerability. ${comments}’,
location: func.node.src,
more: “https://solidity.readthedocs.io/en/${versionl}/
security-considerations.html#re-entrancy”
b
}
b
b

warnings

getContext (callGraph: Record<string, ContractCallGraph>,

currentContract: ContractHLAst, func: FunctionHLAst): Context
{

{ callGraph: callGraph, currentContract: currentContract

, stateVariables: .getStateVariables (currentContract, func)

}

getStateVariables (contract: ContractHLAst, func:
FunctionHLAst): VariableDeclarationAstNodel[] {
contract.stateVariables.concat (func.localVariables.
filter (isStorageVariableDeclaration))

isPotentialVulnerableFunction (func: FunctionHLAst,
context: Context): {
let isPotentialVulnerable =
let interaction =
func.relevantNodes.forEach((node) => {
(isInteraction(node)) {
interaction =
} (interaction && (isWriteOnStateVariable (node,
context.stateVariables) || .isLocalCallWithStateChange (node
, context))) {
isPotentialVulnerable =

3
b
isPotentialVulnerable
isLocalCallWithStateChange (node: FunctionCallAstNode,
context: Context): {
(isLocalCallGraphRelevantNode (node)) {

func: FunctionCallGraph | undefined =
resolveCallGraphSymbol (context.callGraph,
getFullQualifiedFunctionCallIdent (context.currentContract.node,
node))
'func || (func && func.node['changesState'])

checkIfChangesState (startFuncName: string, context:
Context): {

analyseCallGraph(context.callGraph, startFuncName,
context, (node: any, context: Context) =>
isWriteOnStateVariable (node, context.stateVariables))
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83

}

84 }

Listing 3.2: Example algorithm: detection of re-entrancy vulnerabilities [2]

The Remix IDE static analysis documentation states that the analyser can de-
tect various security vulnerabilities such as usage of tx.origin, re-entrancy, inline
assembly code, block timestamp usage, value truncation and possible out-of-gas
vulnerabilities [71]. All of these vulnerabilities are tested out in the smart con-
tract tests, which are discussed in section (3.2

The example of Remix IDE and its static analysis plug-in can be seen in
figure It has a good User Interface (UT), while the results from the analyser
are clearly seen on the left side of the IDE. Each vulnerability is classified into
four main categories, and vulnerabilities have well-documented descriptions as
well as suggestions on how to fix the vulnerabilities in question.

Slither

Slither is a static analysis tool for Solidity programming language, developed by
Josselin Feist, Gustavo Grieco and Alex Groce [33] and written in Python version
3. Slither has a similar high-level architecture to other SAT or SMT-based
bounded model checking (BMC) tools, such as ESBMC, where the compiled
source code is converted to an AST, from that a control-flow graph (CFG) is
produced, which basically shows all possible execution paths of a given program
in the graph notation. After the symbolic execution stage in ESBMC case,
it is possible to get the single static assignment (SSA) form of the program,
which is then fed into a SMT solver [29]. Unlike in ESBMC, where the user can
choose already existing SMT solvers such as Z3 [67], Boolector [72], MathSAT
[73], CVC4 |74] and others [29], Slither employs its own vulnerability detection
system, where three main code analysis parts are performed - read and write
of variables, controlled access (in the original paper it is named “controlled
functions”) and data dependency of variables [33]. Then, bug detectors are
attached to the whole system in order to detect required vulnerabilities.

In the Slither bug detector documentation, there are 75 different vulnerabil-
ity detectors for Solidity smart contracts, ranging from the classical re-entrancy
or tx.origin for validation vulnerabilities to dead code, double constructor us-
age or existence of tautologies types of vulnerabilities |75]. Figure shows
an example output trace of Slither static analysis tool. It is well-documented
and colour-coded to identify which vulnerabilities are critical and which ones
are only advisory.

For comparison, there are two figures - figure depicting the internal
structure of Slither static analysis tool and figure depicting the structure
of ESBMC. It can be clearly seen that the overall structure of both tools are
similar, although they are used for different programming languages. As the
authors of Slither claim that their tool was the most robust, the most accurate
and the fastest out of four tools tested [33], it will be interesting to see if the
results in chapter [4] correspond to the ones in the original Slither paper.

Oyente

Oyente is yet another static analysis tool developed in 2016 written in Python
version 2 [76]. Oyente originally (and currently) uses Z3 as their SMT solver,
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Figure 3.3: Slither static analysis tool in action

Slither core

.................................... i Vulnerability Detection
__________ e memmmmmmemg reEoooooosloocooooo--
' . [
Contract IR code ' data reentracy shadowing -
inherance transfomer : dependency :
: Optimization Detection
T Qﬂ Control flow : readfwrite external constant :
Code
o graph ' variables functions variables T
' e
smart Solidity . — meEmEEmEmsssE e e .- ]
contract  compiler Solidity SSA ! protected e rintErs e
w | expressions transformer ' functions . . '
L1} : . inheritance owner ]
:'...-.....- e graph accesses :
' Information SlithiR, Code ' WS Too----t--oooo=-- '
L) i analysis
1 recovery conversion ¥ Thir’d-Par[y Tools

Figure 3.4: The operational schematic of Slither static analysis tool [33]

and the internal structure of this static analysis tool is very similar to Slither
compared to ESMBC, discussed earlier in this subsection. Oyente tends to be
more restrictive in terms of what kind of vulnerabilities it is able to catch given
Solidity source code. In particular, Oyente detects possible re-entrancies, mis-
handled exceptions, timestamp dependencies and transaction-ordering depend-
encies (TOD). TOD contracts are dangerous in a similar fashion to programs
using concurrency - concurrent programs might use common variables or con-
stants, and if there are no critical sections enforced with mutual exclusion locks
(mutexes), then we can have a race condition, where one may not be sure what
the final result may be. Here, in TOD contracts, if different transactions invoke
the same contract (an allusion to shared variables in concurrent programs) at
the same time, the users will not know which transaction will be executed first
and if order matters, then this state can lead to lost transactions, and con-
sequently, materials used in the transaction, e.g. cryptocurrency. The example
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Figure 3.5: The operational schematic of ESBMC [29]

output trace of Oyente can be seen in figure The output from Oyente is
quite concise and clear, but as it can be seen from the figure, it is only capable
of catching four types of vulnerabilities. A nice feature is the code coverage
percentage - an important metric in testing to check how much code is covered
by the testing tool, in this case, the analyser.

8 S oyente -s test6_cpy.sol

WARNING:root:You are using an untested version of z3. 4.5.8 is the officially tested version
WARNING:root:You are using evm version 1.7.3. The supported version is 1.6.6
INFO:root:Contract testé6_cpy.sol:outOfGas:

:oyente.symExec:Running, please walt...

:oyente.symExec: Results =

:oyente.symExec: EVM code coverage:

:oyente.symExec: Callstack bug:
test6_cpy.sol:out0fGas:26:13
dest.send(msg.value)
n

INFO:oyente.symExec: Money concurrency bug:
Flow 1:

test6_cpy.sol:out0fGas:26:13
dest.send(msg.value)

A

Flow 2:
test6_cpy.sol:outOfGas:
.send(msg.value)

:oyente.symExec: Time dependency bug: False
:oyente.symExec: Reentrancy bug: False
:oyente.symExec: == Analysis Completed =

Figure 3.6: Example output trace of Oyente static analysis tool

Although Oyente is an outdated tool at the time of writing, as its majority of
source code was not updated for 4-5 years, and the last update was in November
2020[77], it was generally thought that it would be nice to include this tool in
the project, as it seems that Oyente is a popular Solidity static analysis tool in
the related areas of researchfl

Mythril

Mythril is a static analysis tool developed by the company named ConsenSys
in 2018 and presented at the 9th Annual HITB Security Conference (HITB-
SecConf) in Amsterdam, Netherlands [78]. Mythril uses LASER-ethereum as
its symbolic execution backend [79], and that software uses the same concepts
mentioned with Oyente and Slither - taking program states and putting them
into CFGs, which can act as visual helpers in backtracking the vulnerability,

3In Google Scholar, searching for “oyente solidity static analysis tool” in August 2021 will
give about 380 results.
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and using some kind of intermediate representation (IR) of the original source

code or converting to plain assembly code, which is then used with existing
SAT/SMT solvers. LASER-ethereum uses Z3 SMT solver [78], and by the fact
that Mythril uses LASER-ethereum, it is possible to deduct that the internal
structure of the whole analysis tool is similar to Oyente. However, Mythril is
capable of finding way more vulnerabilities than Oyente is, including but not
limited to suicidal contracts, unchecked return values and DoS through external
calls [80]. Also, it is worth noting that Mythril’s vulnerability detection list
is closely related to the SWC registry, which, as mentioned in section is

b

a good attempt at standardising and documenting existing vulnerabilities in
Solidity smart contracts. The example output trace can be seen in figure [3.7]
Mythril produces a clear and well-documented output trace of a vulnerability
caught with counterexamples.

f $ myth analyze test2.sol
==== External Call To User-Supplied Address
C ID: 1687
Severity: Low
Contract: Booking
Function name: withdrawBalance()
PC address: 1208
Estimated Gas Usage: 6986 - 61647
A call to a user-supplied address is executed.
An external message call to an address specified by the caller is executed. Note th
at the callee account might contain arbitrary code and could re-enter any function
within this contract. Reentering the contract in an intermediate state may lead to
unexpected behaviour. Make sure that no state modifications are executed after this
call and/or reentrancy guards are in place.

In file: test2.sol:48

require(success);
balance[msg.send

Account: [CREATOR], balance: ©0x12021248306b888, nonce:®, storage:{}
Account: [ATTACKER], balance: 0x2cbopeeenze01000, nonce:0, storage:{}
Account: [SOMEGUY], balance: ©@x®, nonce:@8, storage:{}

Transaction Sequence:

Caller: [CREATOR], calldata: , value: 8x8
Caller: [ATTACKER], function: book(), txdata: 8x®5a8da72, value: 8x29a2241af62c0808
Caller: [ATTACKER], function: withdrawBalance(), txdata: ©@x5fd8c710, value: 0x0

State access after external call ====
SWC ID: 187
Severity: Medium
Contract: Booking
Function name: withdrawBalance()
PC address: 1343
Estimated Gas Usage: 6986 - 61647
Write to persistent state following external call
The contract account state is accessed after an external call to a user defined add
ress. To prevent reentrancy issues, consider accessing the state only before the ca
11, especially if the callee is untrusted. Alternatively, a reentrancy lock can be
used to prevent untrusted callees from re-entering the contract in an intermediate
state.

Figure 3.7: Example output trace of Mythril static analysis tool
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SmartCheck

SmartCheck is the last of the five static analysis tools discussed, introduced
in 2018 and written in Java programming language. [81] This fact stands out
from other tools, as they are written in languages that generally require fewer
resources to be consumed - e.g. Python is a scripting language, so it does not
need a compiler in order to run its code, and therefore it saves the number of
files needed to run the program. The same goes with Web-based programming
languages. Furthermore, SmartCheck uses ANTLR parser generator [82] and a
custom Solidity grammar to build an AST, which, combined together, generate
an XML parse tree acting as an IR [81]. This is an interesting approach not seen
in other static analysis tools, but XML tends to be convenient when it comes
to producing various tree-type structures. The original paper also mentions
that vulnerabilities are detected through XPath queries, which effectively means
that there is a list of vulnerabilities hard-coded somewhere in the analyser and
it tries to compare the list with the given XPath pattern. This is a similar,
find-and-report approach used by Remix IDE static analysis plug-in. However,
this approach is simple, although it can be ineffective against snippets of code
that have the same type of vulnerability the tool should find, but the source
code is not an exact match with the ones the analysers have inside them. The
authors of SmartCheck admit that more sophisticated patterns may produce
false positives [81]. An example output of SmartCheck can be seen in figure
One of the drawbacks of SmartCheck’s output trace is that the results are
a little bit cryptic, and sometimes it can be difficult to understand what kind
of vulnerability is actually caught by the analyser.

3.1.3 Tools and equipment

For this project, one laptop was used with mediocre technical parameters to
simulate average working conditions and tools available in a commercial/indus-
trial setting. The laptop has Intel i7-3667U type CPU with four cores running
at 2 GHz. The laptop has 8 GB of total available memory, however, 7.32 GB
of RAM can be used for any purpose - the remaining part is consumed by the
system. The laptop has Linux operating system (OS) with Ubuntu distribution,
version 20.04 . The disk capacity of the laptop is 180 GB. There was another PC
with Windows OS in consideration for usage in this project, but, as it turned
out, most static analysis tools and other testing or benchmarking tools are not
very friendly with Windows, therefore, the idea of having several computers had
to be scrapped.

For benchmarking, several publicly available tools were used. In order to
track resource consumption rates better, htop was used [83]. It is similar to
in-built top Linux command and is easily installable. While top already shows
how much CPU or memory each thread or program uses, htop also produces
graphs and gives better visual feedback to the user. The example image of htop
can be seen in figure 3.9] For benchmarking and average script running time
tracking, hyperfine command-line benchmarking tool was installed in the laptop
and used throughout the project [84]. One of the main advantages of hyperfine
is that it allows benchmarking commands as well as running several benchmarks
at the same time, thus saving time running a static analysis tool on each of the
tests manually. An example running several Solidity smart contracts with the
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./test9.sol
jar:file:fusr/local/lib/node_modules/@smartdec/smartcheck/jdeploy-bundle/smartcheck
-2.0-jar-with-dependencies. jar!/solidity-rules.xmlruleId: SOLIDITY_LOCKED_MONEY
patternId: 30281d

severity: 3

line: 16

column: @

content: contractLockContract{functionwithdraw()publicpayable{uinta;uintb;uintc;c=a

-bs 1}

rulelId: SOLIDITY_PRAGMAS_VERSION
patternId: 23fc32

severity: 1

line: 2

column: 16

content: =

ruleId: SOLIDITY_PRAGMAS_VERSION
patternId: 23fc32

severity: 1

line: 2

column: 24

content: <=

ruleld: SOLIDITY_UNCHECKED_CALL
patternId: f39eed

severity: 3

line: 12

column: 13

content: send( _data)

ruleId: SOLIDITY VISIBILITY
patternId: bS51ce®

severity: 1

line: 5

column: 1

content: uintstoredData;

SOLIDITY_VISIBILITY :1
SOLIDITY_PRAGMAS_VERSION :2
SOLIDITY_LOCKED_MONEY :1
SOLIDITY_UNCHECKED_CALL :1

Figure 3.8: SmartCheck producing output trace for a given Solidity smart con-
tract

static analysis tool can be seen in figure [3.10

3.1.4 Performance metrics

In order to gather data for this project and derive results, it was necessary
to establish what qualities of the verification process will be measured. As
mentioned in section it is important to find the most efficient as well as

accurate static analysis tool, therefore, the following performance metrics were
chosen for this project:

e Accuracy. One of the most crucial requirements for any static analysis
tool is its ability to accurately report the number of vulnerabilities in the
Solidity smart contract code. A poor accuracy score means that either
the static analysis tool is very simple and not fit for real-life use or it
does not have to detect some types of vulnerabilities, as there are static
analysis tools that specialise in some types of vulnerabilities, for example,
out-of-gas-vulnerabilities [22][23]. A good accuracy score shows that the

32



nedasma@nedasma-Thinkpad-Xt-Carbon: ~

Ignoring non-zero exit code.

Benchmark #2: slither testi1@-1.sol
Time ( F -

):

Ignoring non-zero exit code.

ran
times faster than '

Figure 3.10: Hyperfine benchmarking tool performing tests on commands

static analysis tool is competent in reporting different types of bugs and
can be used in business environments.

e Speed. Everyone hates slow systems, and very often, time is money, there-
fore, if verification of a single smart contract takes ages, then it might not
be usable under stress, where hundreds of smart contracts could be de-
ployed every day and all of these contracts have to be checked for possible
security flaws. On the other hand, a fast static analysis tool increases
the overall cybersecurity level of the blockchain, as people would be more
compelled to use tools that take only a fraction of their time.

e CPU consumption. Efficient tools are important so that their operations
would not block other processes happening at the same time. It is very
likely that a user would run a static analysis tool, while at the same time
browse the Internet, have several programs and/or applications open or
running in the background.
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e Memory consumption. The same argument mentioned about the CPU
consumption applies here, although a high memory consumption rate for
a prolonged period of time can have unwanted consequences, e.g. other
programs or threads (or even the static analyser itself) might be killed
by the kernel due to insufficient memory, and in the extreme cases, the
computer might crash. Therefore, it is desired that the static analysis tools
would have low memory consumption rates in order to prevent errors and
crashes from happening.

3.1.5 Smart contract eligibility for testing

Solidity smart contracts, its code, as in other programming languages, can have
various security flaws in them, but some vulnerabilities can be minor and even
if they can be exploited, the damage caused will be minuscule. This is why in
this project the smart contracts are carefully written so that they would contain
bugs that can cause severe damage and violate at least one of the CIA triad
properties explained in section Of course, some smart contracts might not
contain any vulnerabilities at all, but these types of smart contracts are used to
check for possible false positives.

3.2 Smart contract tests

In this section, twelve different Solidity smart contracts are going to be de-
scribed in detail, with vulnerabilities (or the lack of them) in each of the smart
contracts. Each test is evaluated in terms of several cybersecurity concepts,
that is, whether the particular vulnerability violates one or more of CIA prop-
erties - confidentiality, integrity and availability. Also, each smart contract is
given a priority level discussed in section [2:4] about the SEI CERT C Coding
Standard risk assessment. The tests are prioritised in severity levels: source
code containing Level 1 (L1) security vulnerabilities are the most severe and
require fixes and repairs as soon as possible, while Level 3 (L3) bugs can wait
for their patching and they have a low severity rating.

3.2.1 Test 1 - no vulnerabilities (canary test)

The first test in the series of Solidity smart contract vulnerability tests, it is
mainly used for plainly testing out if the static analysis tool in question is work-
ing properly and does not produce false positives. Trivially, the source code of
this test is too small in order to produce meaningful false positives but some-
times simplicity is key in finding possible errors produced by the program. The
source code of this smart contract test can be seen in listing It contains
a single contract called SimpleStorage, which in turn contains two functions -
set() and get(). The set() function allows setting any given unsigned integer
value to variable storedData, whose type is an unsigned integer as well. The
get() function, on the other hand, allows getting the set value of storedData,
and if this variable was not set previously, then the function would return zero.
It is important to note that in Solidity there are undefined values or variables,
therefore, it is not required to give a starting value to variables, although it is
recommended.
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// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.9.0;

contract {
uint storedData;

function set(uint x) public {
storedData = x;

}

function get() public view returns (uint) {
return storedData;

}

Listing 3.2.1: Test No. 1 - a “canary” test for finding possible false positives
and checking if the tools work as intended

Because this contract is very simple in its nature, it would be hard to ob-
fuscate this contract to the static analysis tool so that it would report as the
contract having a vulnerability - a false positive - and indeed, there are no
security bugs in this code.

As for cybersecurity properties, none of the following was violated: confid-
entiality, integrity or availability. The risk assessment does not apply to this
test as there are no security vulnerabilities in this smart contract.

3.2.2 Test 2 - re-entrancy vulnerability

This is the second smart contract to be used as a test in the project. It is
a bit more expansive than the first test described in section contains
more functions and other concepts in Solidity programming language, such as
constructors, modifiers, events and the like. The source code can be seen in
listing It is important to note that this contract has a more restrictive
compiler version, written in line 3 - the “pragma” argument in Solidity denotes
which compiler versions are compatible with the smart contract code. In this
case, only Solidity compiler versions from 0.7.0 to 0.7.6 can be used to compile
this contract. In the first test, any compiler version starting with 0.4.16 and
ending with 0.9.0 can be used. It is worth noting that new compiler versions
include bugfixes, security patches, deprecations of old functions and introducing
new restrictions or relaxations on how programmers should work with Solidity.
Therefore, there are many tests, including test 10, which are entirely dependent
on Solidity compiler versions. This shows that it is crucial to have up-to-date
code which can be compiled with the newest Solidity compiler version.

This smart contract has a constructor, which sets the contract owner of
type “address payable”. Technically speaking, all identifiers used in Solidity,
for example contract ownership, setup of payers and payees in the transaction
and identification of users are through addresses, which are 20-byte Ethereum
address values. The “payable” option allows the particular variable to send and
receive Ether - a monetary-type resource used to perform transactions between
parties. Also, this contract has two modifiers - these are similar to guard state-
ments in other programming languages. Modifiers have one or more require
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statements, which contain a logical statement and a message field if that state-
ment cannot be satisfied. One may not include the message, but then the error
message would be a plain transaction error from the blockchain instead of a
user-friendly message.

The real vulnerability of this smart contract hides in lines 45 to 52. However,
the first problem is the double-spend security bug, which can be tried and
simulated in this contract, although the end result would not be quite the correct
one. In the double-spend attack, an adversary can use the same digital currency
(cryptocurrency), such as Ether, to make more than one payment to different
transactions at the same time with the same funds in the wallet. A real-life
analogy would be paying the same £5 note in two different shops at the same
time. While this is not possible physically in reality, in blockchain technology,
if this is done, then several blocks are put onto the blockchain and they have
to be validated, but due to the race condition happening in this case in which
it is not known whether Transaction One or Transaction Two would succeed
in being confirmed first, therefore, only one out of several recipients of the
malicious transaction will be able to receive cryptocurrency the adversary paid
from his/her digital wallet. This can be simulated in this contract by calling
both functions book() and receive() at the same time, as they essentially do the
same thing - transfer currency from the payer’s wallet to the contract owner’s
wallet. As both functions masquerade themselves as able to book a, say, hotel
room, the owner of this contract becomes the malicious user by tricking the
payer to click both functions and instead of paying 3 Ether, the payer would
pay 6 Ether - twice the price of the room. It is also worth noting that the
function receive() does not have a guard modifier for checking if the room is
vacant or occupied. Therefore, it is possible that the user can book the already
booked room, which is essentially cheating from the owner’s side.

The original security vulnerability in this test contract is the re-entrancy
bug, where an attacker can abuse the call.value low-level Solidity call function
by employing the fallback function on his/her side. Knowing that call.value
changes the state of the variable, in this case, msg.sender (also a specific Solid-
ity variable to denote payer’s address), the adversary can repeatedly call the
function withdrawBalance() and get the digital currency he/she does not have
it stored in the balances. This is a dangerous bug because exploiting this is
relatively easy, fast and can drain the money held by the contract very quickly.
Therefore, in the risk assessment, this vulnerability would have the severity
rating of “Medium”, as the integrity of data is violated, but it is not severe
enough to be able to inject arbitrary code, for example. The likelihood rating is
“Likely”, as these types of vulnerabilities are well-documented and happen quite
often. The remediation cost level is “Medium”, as the detection is automatic by
static analysis tools, but repairs have to be done manually. By multiplying the
priorities (Severity: 2, Likelihood: 3, Remediation: 2) we get the priority level
of P12 and the overall risk level of L.1. In terms of CIA properties, the integrity
property is violated as constraints for checking re-entrancy are non-existent or
are implemented incorrectly.

3.2.3 Test 3 - dead code vulnerability

This is the third test of the Solidity smart contract vulnerability series. This
smart contract is tricky, as it can be seen from the first glance that it does not
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// SPDX-License-Identifier: GPL-3.0

pragma solidity ~0.7.0;

contract Booking {

—

enum State {Vacant, Occupied}
State public state;

address payable public owner;
mapping (address => uint) private balance;

event Booked(address _occupant, uint _amount);

constructor() public {
owner = msg.sender;
state = State.Vacant;

}

modifier onlyIfVacant {
require(state == State.Vacant, "The room is occupied!");

-

3

modifier costs(uint _amount) {
require(msg.value >= _amount, "Insufficient funds!");

-

}

// Simulated double-spend vulnerability due to two functions doing the same

thing without protection

// Also, the second function does not check if the room is already occupied

function book() public payable onlyIfVacant costs(3 ether) {
owner.transfer(msg.value);
state = State.Occupied;
emit Booked(msg.sender, msg.value);

}

receive() external payable costs(3 ether) {
owner.transfer (msg.value);
state = State.Occupied;
emit Booked(msg.sender, msg.value);

}

// Re-entrancy: function can be called repeatedly until the balance is set

to 0, the attacker can withdraw
// money he/she does not have

function withdrawBalance() public {

Listing 3.2.2: Test No. 2 - a smart contract test containing a re-entrancy security

bug

uint withdrawalAmount = balance[msg.sender];

(bool success, ) = msg.sender.call.value(withdrawalAmount) ("");

require(success);
balance[msg.sender] = 0;
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Table 3.1: Risk assessment calculation table for test 2

| Risk assessment type Value
Severity 2
Likelihood 3
Remediation cost 2
Priority level 22322 = 12 (P12)
Overall risk level L1

contain any security bugs in itself, but the adversary can exploit the fact that
there are functions in the code which do not contribute to the final answer given
on lines 26-27. The code snippet can be seen in listing [3.2:3] While function
doSomething() does something, the following functions doSomethingElse() and
doUselessCalculations() perform some operations, but their given results do not
go anywhere. The variable answer stores the value returned by the two functions
in question, but that value does not go to the money transfer function call or the
event call. Therefore, the code from line 30 to line 63 can be considered as dead
code. It is also true that unreachable statements in the code can be called dead,
but that would not probably impact the overall running speed of the contract, let
alone the static analysis tools. Functions without their meaningful applications,
on the other hand, can cause a DoS type of cyberattack, as invoking the function
doSomething() multiple times can exhaust the available system resources, thus
crashing the Ethereum Virtual Machine (EVM) used on the node the contract
is deployed. Thus, the contract might be unreachable for some time, violating
one of the important CIA cybersecurity properties - availability.

As for the risk assessment of this test smart contract, the severity is low due
to the fact that the adversary can initiate a DoS attack, but nothing more. The
likelihood value would be 2 (probable) because while programmers tend to know
what they write and which part of code is responsible for, it is not uncommon
that some functionalities are updated, re-written while the old functions are
kept in the source code, although they do not contribute to the final result.
The remediation cost is “Low” - these types of vulnerabilities can be detected
automatically and refactored automatically with the help of IDEs as well. By
multiplying the priorities (Severity: 1, Likelihood: 2, Remediation: 1) we get
the priority level of P2 and the overall risk level of L3.

Table 3.2: Risk assessment calculation table for test 3

Risk assessment type Value
Severity 1
Likelihood 2
Remediation cost 1
Priority level 1z221 =2 (P2)
Overall risk level L3
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// SPDX-License-Identifier: GPL-3.0

pragma solidity ~0.7.0;

contract Test {

—

address payable public owner;
uint amount = 0; uint answer = 0;

event Success(address _from, uint _amount);
constructor() public {
owner = msg.sender;

}

// Dead code wvulnerability as functions are nmot checked by the static
analysis tool if they contribute to the final answer

function doSomething() public payable {

amount = msg.value;
uint val = 2;

answer = doSomethingElse(amount, val);

owner.transfer (amount) ;
emit Success(msg.sender, amount);

}

function doSomethingElse(uint a, uint b) private returns (uint value) {
uint ¢ = 0; uint res = 0;
for(uint i = 0; i < b; i++) {

if(i == 0) {
@=rg
res += doUselessCalculations(a, b, c);
}
else if(a < b) {
c += a;
res += doUselessCalculations(b, a, c);
}
else {
ct++;
res += doUselessCalculations(c, b, a);
}

return res;

3

function doUselessCalculations(uint a, uint b, uint ¢) private returns
(uint res) {
uint someAnswer = 1;
for(uint i = 1; i <= 1000; i++) {
someAnswer += mulmod(a, b, addmod(c, c, a));
¥
for(uint j = 1; j <= 1000; j++) {
someAnswer += mulmod(a, b, addmod(c, 5, a));
¥
for(uint k = 1; k <= 1000; k++) {
someAnswer += mulmod(a, b, addmod(c, 10, a));
¥

return someAnswer;
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3.2.4 Test 4 - weak PRNG and timestamp dependency
vulnerabilities

Test 4 is the fourth smart contract used in the project, as its numerical title sug-
gests. This contract is mainly concerned with the weak pseudo-random number
generation (PRNG) and timestamp dependencies, that is, calculations based on
block timestamps, block hashes or even current server time. The problem lies
in the technology of blockchain itself - it does not provide anything which can
be both pseudorandom and cryptographically secure. The block hashing func-
tion retains the properties of producing pseudo-random numbers, but miners
can tamper with the block properties and thus, influence the outcome of the
hashing function. The same goes for timestamps, but, in this case, it is even
more pronounced - if the adversary knows when the block with the contract was
deployed on the blockchain (or the current time the block is deployed), he/she
can make a calculated guess and correctly identify numbers which should be
random in theory. Also, it should be stressed that everything in the contract,
all source code is visible to everyone, therefore, if the number for guessing is
generated from a small pool of numbers, as in this example case seen in listing
function takeAGuess(), malicious users can calculate all numbers before-
hand and use a brute-force approach in order to guess the number correctly and
profit from that.

// SPDX-License-Identifier: GPL-3.0
pragma solidity ~0.6.0;
contract {

uint public rng;

// Weak RNG functions
function takeAGuess() external{

rng = uint256(blockhash(10000)) E 10;
}

function takeAnotherGuess() external{
rng = uint256(block.timestamp) E 50;
}

function takeAGuessNow() external{
rng = uint256 (now) E 99;
}

Listing 3.2.4: Test No. 4 - code example of timestamp and unsafe pseudo-
randomness dependencies

Two out of three CIA triad’s cybersecurity properties are violated in this
smart contract - confidentiality and integrity. Confidentiality is violated be-
cause malicious miners can obtain information about the deployed block in the
blockchain, e.g. the hash of the block, the timestamp, current Unix time etc.
The integrity property is also violated. Although the functionality of the smart
contract is not interrupted, however, due to its vulnerable properties the miners
can exploit those properties and affect the outcome of the whole program. For
example, if the smart contract deployed is a lottery, the adversary miner can
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influence the lottery results for his/her own advantage. The risk assessment of
this smart contract is as follows:

e Severity - medium, data integrity can be violated by tampering with op-
erations inside the block.

e Likelihood - unlikely, the vulnerability is documented, it has its own SWC
registry entry [85] and the use of timestamps and block hashes are greatly
discouraged.

e Remediation cost - medium, the detection is automatic through static
analysis tools but fixing requires manual labour of programmers.

Table 3.3: Risk assessment calculation table for test 4

‘ Risk assessment type ‘ Value ‘
Severity 2
Likelihood 1
Remediation cost 2
Priority level 2xlz2 =4 (P4)
Overall risk level L3

3.2.5 Test 5 - lost contracts and unprotected self-destruction
vulnerabilities

This is the fifth Solidity smart contract test in the series. It contains several
vulnerabilities, although one of them will not be included in the analysis as it
does not satisfy the requirement of being a cybersecurity problem. The source
code of the contract can be seen in listing[3.2.5] As it can be seen from the code,
there are three main types of vulnerabilities: poor code quality, lost contracts
(sending Ether to uninitialised addresses) and unreserved use of selfdestruct()
function. The poor code quality, such as using tautologies or not giving initial
values to variables that have address types is a bad coding practice but it cannot
be considered as a security vulnerability in this project. However, some static
analysis tools detect the places where the code quality could be improved, and
this will be explained more in detail in chapter [4]

The arbitrary data send vulnerability can be seen in lines 31 and 38. The
problem here is that both variables dest and somewhere do not have initial val-
ues, therefore, their addresses are 0x0, or NULL in C language terms. Solidity,
unlike in C, does not have undefined behaviour, that is why the contract will
not crash if these functions will be called. However, function calls like “trans-
fer” or “send”, capable of transferring Ether to other addresses, can remove the
cryptocurrency from the victim’s wallet without the ability to recover the losses.
The more severe version of data structures being uninitialised is the “contract
suicide”, or calling low-level functions such as suicide() or selfdestruct() without
proper authorisation. Calling these functions will terminate the contract and all
transactions in action with the contract would be terminated as well. This can
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have severe consequences if someone called those functions when they should
not have access to those functions in the first place. The Parity multi-sig wallet
exploit is a prime example of an adversary obtaining the rights of an owner of
the contract and then he/she killed the whole multi-sig wallet system .

1 // SPDX-License-Identifier: GPL-3.0

2

3 pragma solidity ~0.7.0;

4

5 contract {

6

7 address payable public owner;

8 address payable dest;

9 address payable somewhere;

10 uint amount = 0; uint answer = 15;
11

12 constructor() public {

13 owner = msg.sender;

14 }

15

16 function setDest() public {

17 dest = msg.sender;

18 }

19

20 // Code quality vulnerabilities

21

22 function doSomething() public payable {
23

24 // Tautologies

25 if (true) {

26 amount = msg.value;

27 owner.transfer (amount) ;

28 }

29 if (answer < 25) {

30 // Arbitrary destinations
31 dest.transfer(address(this) .balance);
32 ¥

33

34 }

35

36 // Lost contracts

37 function transferNowhere() public payable {
38 somewhere.transfer (msg.value) ;
39 }

40

41 // Unprotected self-destruct

42 function kill() public{

43 selfdestruct (msg.sender) ;

44 }

45 }

Listing 3.2.5: Test No. 5 - unprotected self-destruction and arbitrary data send
vulnerabilities

Hypothetically speaking, the adversary could inject arbitrary code or com-
mands into uninitialised memory addresses, therefore, all three CIA properties
would be violated. The confidentiality property would be violated if the ad-
versary can abuse the fact that the memory address is not given explicitly and
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the data can be transferred to the memory address the attacker can extract and
use. Due to the same fact, the data integrity can be damaged and the availab-
ility of the contract can be affected as well. If the self-destruction functions are
called, then the contract is rendered inaccessible.

The risk assessment for this smart contract is as follows:

e Severity - high, a possibility of running arbitrary code.

e Likelihood - probable, especially in large scale contracts, where one can get
lost of the fact that an address somewhere is not initialised or a function
can be called to undefined addresses.

e Remediation cost - medium, the detection is automatic through static
analysis tools but bugfixes need to be done manually.

Table 3.4: Risk assessment calculation table for test 5

Risk assessment type Value
Severity 3
Likelihood 2
Remediation cost 2
Priority level 3x3z2 = 18 (P18)
Overall risk level L1

3.2.6 Test 6 - out-of-gas vulnerability

The sixth Solidity smart contract test contains out-of-gas vulnerabilities. Gas,
as mentioned in section [2.1] is a tool to effectively “tax” the users of the block-
chain in order to prevent excessive computation power usage. Also, the Eth-
ereum network has a gas limit for a block and its computations cannot exceed
that limit, and if the limit is exceeded, the contract automatically reverts to its
previous state, thus creating DoS conditions. Dynamic array modifications and
actions involving low-level calls inside loops are the most susceptible to possible
DoS attacks. The example in the smart contract can be seen in listing [3.2.6]
line 24 - the vulnerability here is that there is a low-level call send, and because
each operation costs some amount of gas, this function call will eventually run
out of gas because the loop is infinite.

Due to the nature of the DoS types of attacks, this security bug contains
the availability property violation, as DoS attacks crash the systems on their
targets and the systems become unavailable for some time. As for the risk
assessment, the severity is low, as nothing more besides DoS can be done by
the adversary. The likelihood type is “likely” because loops are very common
programming constructs, therefore it is almost unavoidable that there will be
no low-level calls in loops. However, these calls need to be protected adequately
and fallback cases provided in case the contract runs out of gas. The remediation
cost is medium, as out-of-gas vulnerabilities can be detected with static analysis
tools. However, fixing would require programmers to patch vulnerable parts of
the source code manually.
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// SPDX-License-Identifier: GPL-3.0
pragma solidity ~0.7.0;
contract out0fGas {

address payable public owner;
address payable public dest;

uint counter = 0;

constructor() public {
owner = msg.sender;

}

function setDest() public {
dest = msg.sender;

}
// Out of gas vulnerability due to infinite loop
function run() public payable {

for(uint i = 0; i >= 0; i++) {

dest.send(msg.value);
counter++;

Listing 3.2.6: Test No. 6 - possible DoS conditions in loops create out-of-gas
vulnerabilities
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Table 3.5: Risk assessment calculation table for test 6

| Risk assessment type Value |
Severity 1
Likelihood 3
Remediation cost 2
Priority level 12322 = 6 (P6)
Overall risk level L2

3.2.7 Test 7 - gas griefing vulnerability

Test 7, like test 6 mentioned previously in section [3.2.6] is also related to gas-
type security vulnerabilities. The source code of this test can be seen in listing
which was modified by Kaden Zipfel from ConsenSys Diligence company
[3]. It was decided to include this example to show a bit more advanced types of
vulnerabilities. The subtlety of this program lies in using sub-calls of contracts
other than the original one. It is possible that one contract might have just
enough gas to execute the whole transaction, while the sub-call might invoke
an out-of-gas exception. The problem arises when the user is left with two
options when no gas is left for the sub-call - either the transaction is reverted
to its original state or it continues working as usual. This leads to a security
vulnerability where a malicious user (a griefer) can supply the right amount of
gas to complete the transaction, but the sub-call will fail. This action is not
profitable for the attacker per se, but it causes damage to the victim of this
attack - thus the action of griefing. This bug can be easily avoided by adding a
guard statement to the target contract, checking if there is a sufficient amount
of gas left for execution.

From the CIA triad perspective, the availability property is violated by the
security bug in the code because the attacker can make the contract inaccess-
ible to the victim using the contract, as the adversary can permanently send
low amounts of gas to execute the transaction, but the sub-call will not have
enough gas to complete successfully. The risk assessment’s severity metric can
be determined as “low”, as only abnormal terminations of transactions can oc-
cur by abusing the security vulnerability in this test. The likelihood level is
“probable” | as it is difficult to take out-of-gas vulnerabilities into account, be-
cause technically they can happen anywhere in the contract provided that there
is an insufficient amount of gas. However, programmers should pay more at-
tention to sub-calls to other contracts and include guard statements checking
for out-of-gas exceptions. The remediation cost is high, as static analysis tools
have a hard time detecting this type of vulnerabilityﬂ therefore programmers
must rely on manual code reviewing methods.

3.2.8 Test 8 - usage of tx.origin for validation vulnerability

This is the eighth test in the series of Solidity smart contract vulnerability
tests. This test contains a well-documented vulnerability of using tx.origin

4This is explained further in section m
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* @source:

< https://consensys.github.i0/smart-contract-best-practices/knoun_attacks/#insufficient-gas—-griefing

* Qauthor: ConsenSys Diligence
* Modified by Kaden Zipfel (adapted Solidity versions by Nedas Matulevicius)
*/

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.4.24 <0.9.0;

contract Relayer {
uint transactionld;

struct Tx {
bytes data;
bool executed;

}
mapping (uint => Tx) transactions;

function relay(Target target, bytes memory _data) public returns(bool) {
// replay protection; do not call the same transaction twice

require(transactions[transactionld].executed == false, 'same
< transaction twice');
transactions[transactionId] .data = _data;

transactions[transactionId] .executed = true;
transactionld += 1;

(bool success, ) =
— address(target).call(abi.encodeWithSignature("execute(bytes)", _data));
return success;
}
}

// Contract called by Relayer
contract Target {
function execute(bytes memory _data) public {
// Ezecute contract code

}

Listing 3.2.7: Test No. 7 - gas griefing vulnerability

Table 3.6: Risk assessment calculation table for test 7

‘ Risk assessment type ‘ Value ‘
Severity 1
Likelihood 2
Remediation cost 1
Priority level 12223 = 6 (P6)
Overall risk level L2

(transaction origin address) as a value for validating if the owner of the contract
is the same who initiated the transaction. This vulnerability is described in
Solidity official documentation . The problem of tx.origin is that it gets the
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original transaction creator address, not the address of the person interacting
with the contract. The constructor sets the owner of this contract to the caller
address (msg.sender) on line 10 (the source code can be seen in listing [3.2.8)
and because on line 14 the code checks if the owner variable is the same as
tx.origin, the adversary can set the destination address to his/her own address
by creating a fallback function with this line of code:

TestContract (msg.sender) . transferTo(owner, msg.sender.balance);

In this way, the contract, whose owner is set to the caller address, takes
its address and sends all the caller funds to the adversary’s wallet because the
variable owner would be set to the adversary address, and tx.origin would take
this address and compare with the address the adversary gave to the function,
thus completing the transaction and leaving the victim with no cryptocurrency
in the digital wallet.

// SPDX-License-Identifier: GPL-3.0

pragma solidity ;

// tz.origin for authorisation - a vulnerability

contract {
address owner;

constructor() public {
owner = msg.sender;

}

function transferTo(address payable _destination, uint _amount) payable
— public {
require(tx.origin == owner) ;
_destination.transfer (_amount);

Listing 3.2.8: Test No. 8 - tx.origin gives a false sense of validation of the sender
address, while it takes the original initiator address instead

In terms of the cybersecurity properties, the confidentiality property might
be violated as it is probably unintended that one verifies the transaction creator
address, not the payee address. The integrity property is violated as well due
to the fact that the money transferred does not reach the intended destination,
instead, it goes to the adversary’s wallet, tampering with the data integrity
of the contract. The severity from the risk assessment is medium, as data
(digital currency) is transferred to the attacker address and the victim is left
with nothing. The likelihood level is “unlikely”, as there is plenty of examples of
this type of vulnerability as well as the Solidity documentation mentions about
the usage of tx.origin, alongside re-entrancy security vulnerability [87]. The
remediation cost is medium, as the tx.origin validation can be detected easily
with static analysis tools, although fixing might require manual patching by
Solidity smart contract programmers.
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Table 3.7: Risk assessment calculation table for test 8

| Risk assessment type Value |
Severity 2
Likelihood 1
Remediation cost 2
Priority level 2x122 =4 (P4)
Overall risk level L3

3.2.9 Test 9 - unchecked value transfer and contract lock-
ing vulnerabilities

The ninth test used in this project is mainly concerned with contract lock-
ing and unchecked send statements, which can be considered as vulnerabilities.
The source code of this test can be found in listing[3.2.9] The first vulnerability,
the unchecked transfer of data, is similar to data send to arbitrary addresses
described in test 5 in section[3.2.5] but the crucial difference here is that the con-
tract can become locked if the send() function fails for various reasons. Locking
means that the data transferred, in most cases cryptocurrency such as Ether, is
rendered unusable and cannot be retrieved back, thus incurring financial losses
for the user. The same problem occurs in LockContract contract, where the
withdrow function claims to be capable of having payable functions, such as
send() or transfer(), but it does not have any of them. Therefore, if the vic-
tim calls this function in the transaction, all Ether sent to this contract will be
locked and lost as a consequence.

The integrity cybersecurity property from the CIA triad is violated, as the
data at the victim’s disposal is lost when interacting with functions that can
lock cryptocurrency. Other properties, such as confidentiality or availability, are
not violated. For the risk assessment, the severity level of this test is medium
due to integrity property violation. The likelihood level is “probable”, as it is
easy to overlook functions without return or in this case, payable, statements
inside the functions. The remediation cost is also medium - the contract locking
properties can be detected by static analysis tools, but fixing requires manual
effort from the programmers. All in all, the overall risk level of this security
vulnerability is L2 - medium severity, probable, and has a medium cost to repair.

Table 3.8: Risk assessment calculation table for test 9

‘ Risk assessment type ‘ Value ‘
Severity 2
Likelihood 2
Remediation cost 2
Priority level 22222 = 8 (P8)
Overall risk level L2
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// SPDX-License-Identifier: GPL-3.0

pragma solidity ;

contract {
uint storedData;

function set(uint x) public {
storedData = x;

}

function get(uint _data) public payable {
msg.sender.send(_data) ;

}
}
contract {
function withdraw() public payable {
uint a; uint b; uint c;
c =a - b;
// No withdrawal capacity to payable function - wvulnerability
}
}

Listing 3.2.9: Test No. 9 - unchecked send() function and missing withdrawal
capabilities to payable functions are considered as vulnerabilities

3.2.10 Test 10 - double constructor vulnerability

This is the tenth test used in the project for testing out static analysis tools
for Solidity smart contracts. This particular test is specific - it can be replic-
ated only with Solidity compiler version 0.4.22. During the Solidity history,
the special function constructor() did not exist prior to version 0.4.22 and the
constructors were defined as functions with the same name as the contract [88].
This method was deprecated with Solidity version 0.5.0, but between versions
0.4.22 and 0.5.0 it was possible to have two constructors - one with the old
method, and one with the new method. As constructors in object-oriented pro-
gramming (OOP) languages are the very first functions to be called to initialise
objects in a given class (in Solidity’s case, the class is named as “contract”),
and having several functions being incorrectly overloaded can lead to the race
condition, especially if both constructors are involved in initialising the same
variables. This is exactly what is happening on lines 10-15 in listing[3.2.10] Had
one of the constructors taken different arguments, the constructors could work
perfectly well, as they can be chosen accordingly given different arguments to
constructors. However, in this code snippet, it can be seen that both construct-
ors take the same number and type of arguments (zero), therefore it cannot be
determined at runtime what the value of the variable minter will be. It can
either be the sender address, or it can be a hard-coded address Oxdeadbeef.
Since Solidity 0.5.0 multiple constructors are not allowed, and smart con-
tracts can have only one type of constructor - the special function constructor().
In a refined version of test 10, test 10.1, seen in listing [3.2.11] it can happen
during refactoring process that a programmer mistyped the old constructor
name and it suddenly becomes a publicly available function with the capabil-
ities of a constructor. This is especially dangerous, as an adversary could call
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// SPDX-

License-Identifier: GPL-3.0

pragma solidity ;

contract Coin {

— can

address public minter;
mapping (address => uint) public balances;

event Sent(address from, address to, uint amount);

// Two constructors - old version (pre 0.5) and new version.
lead to some unexpected results. Works only with Solidity v.

function Coin() public {
minter = msg.sender;
}
constructor() public {
minter = address(Oxdeadbeef) ;

}

function mint(address receiver, uint amount) public {
require(msg.sender == minter);
require(amount < [{e60) ;
balances[receiver] += amount;

}

function send(address receiver, uint amount) public {
if (amount > balances[msg.sender])
revert ("Insufficient balance");
balances[msg.sender] -= amount;
balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);

Using both
0.4.22.

Listing 3.2.10: Test No. 10 - double constructors lead to non-deterministic
variable initialisation and race conditions occur
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the constructor and then the constructor-like function, thus establishing himsel-
f/herself as the owner of the contract. This contract hijacking, combined with
single-signature self-destruction functions mentioned in section [3.2.5 can cause
havoc in even the most sophisticated systems deployed on the blockchain. The
Parity wallet cyberattack happened due to a similar reason - the attacker could
make himself/herself the owner of the contract and then, he/she abused the
unprotected self-destruct function to kill the contract and all the transactions
interacting with the contract lost all of their digital currency .

// SPDX-License-Identifier: GPL-3.0
pragma solidity <0.9.0;

contract {
address public minter;
mapping (address => uint) public balances;

event Sent(address from, address to, uint amount);

// Two constructors - old version (pre 0.5) and new version. Using both
< can lead to some unexpected results

// Same as test10.sol, but the old type constructor contains a typo,

— meaning that the compiler would not recognise it as a candidate to a
— constructor.
function coin() public {
minter = msg.sender;
}
constructor() public {
minter = address(Oxdeadbeef);
}
function mint(address receiver, uint amount) public {
require(msg.sender == minter);
require(amount < [e60) ;
balances[receiver] += amount;
¥
function send(address receiver, uint amount) public {
if (amount > balances[msg.sender])
revert ("Insufficient balance");
balances[msg.sender] -= amount;
balances[receiver] += amount;
emit Sent(msg.sender, receiver, amount);
¥
}

Listing 3.2.11: Test No. 10.1 - accidental typo on line 11 exposes the function
with constructor features to the users, allowing the contract to be hijacked

In terms of cybersecurity properties, the integrity of the contract is affected
because of the race condition between constructors — one might not know what
the value of the variable can be. The availability property is also violated as the
values of initialised variables would not be constant and users cannot rely on the
same values with the same execution paths when the specific data is requested
by users. The risk assessment of Test 10 and Test 10.1 is as follows:

e Severity - medium, due to data integrity violations.

e Likelihood - unlikely, as only very old contracts can be affected with the
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multiple constructor problem, although constructor-like functions can oc-
cur in all types of smart contracts.

e Remediation cost - high, while explicit multiple constructors can be de-
tected, typos are extremely difficult to detect by static analysis tools, as
they would think that the constructor-like function is an ordinary function
with the capability of data assignment to variables.

Table 3.9: Risk assessment calculation table for test 10 and test 10.1

‘ Risk assessment type ‘ Value
Severity 2
Likelihood 1
Remediation cost 3
Priority level 2x123 = 6 (P6)
Overall risk level L2

3.2.11 Test 11 - inline assembly code usage vulnerability

This is the penultimate test in the series of Solidity smart contract vulnerabilit-
ies. The source code of this test in listing [3.2.12] contains some inline assembly
code, which is one of the more interesting and powerful Solidity features avail-
able. Inline assembly code allows better control of operations done inside con-
tracts, as it allows accessing directly the EVM. However, this is a double-edged
sword - while programmers using inline assembly can write faster contracts or
libraries, assembly bypasses some Solidity compiler security checks and if the
assembly code contains vulnerabilities, it can have severe consequences to the
contract. This particular smart contract does not have any vulnerabilities in its
code, but the fact that it contains inline assembly can be treated as a possible
security vulnerability and the programmer is responsible for having correct in-
line assembly code. The Solidity compiler nor static analysis tools will tell if
there are bugs inside inline assembly code snippets.

In the case of an exploited security bug in inline assembly, it can be treated
that all three of CIA triad’s cybersecurity properties would be violated, as the
adversary would be able to execute arbitrary code and inject it directly to the
EVM. For the risk assessment, the severity level is high due to the reasoning,
while the likelihood type is “unlikely” because

a. it is strongly discouraged to use inline assembly code in Solidity smart
contracts,

b. the applications of inline assembly are mainly limited to libraries and their
functionalities.

The remediation cost is medium because the inline assembly usage can be detec-
ted by static analysis tools, but converting assembly code to high-level Solidity
code can be a task requiring a substantial amount of manual refactoring by the
programmers.
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// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.16 <0.9.0;

library VectorSum {
function sumSolidity(uint[] memory _data) public pure returns (uint sum) {
for(uint i = 0; i < _data.length; i++)
sum += _datali];
}
function sumAsm(uint[] memory _data) public pure returns (uint sum) {
for(uint i = 0; i < _data.length; i++) {

assembly {
sum := add(sum, mload(add(add(_data, 0x20), mul(i, 0x20))))
}
}
}
function sumPureAsm(uint[] memory _data) public pure returns (uint sum) {
assembly {
let len := mload(_data)
let data := add(_data, 0x20)
for
{ let end := add(data, mul(len, 0x20)) }
1t(data, end)
{ data := add(data, 0x20) }
{
sum := add(sum, mload(data))
}
}
¥

Listing 3.2.12: Test No. 11 - inline assembly usage in Solidity is discouraged
due to security bypasses

Table 3.10: Risk assessment calculation table for test 11

Risk assessment type Value ‘
Severity 3
Likelihood 1
Remediation cost 2
Priority level 3zlz2 =6 (P6)
Overall risk level L2

3.2.12 Test 12 - no vulnerabilities (code size test)

The last test in the project used is a combination of all tests amalgamated
into one large Solidity file with lots of contracts and functions. Of course, the
test does contain vulnerabilities as its code is taken from previous tests, the
main objective of this test is to check whether static analysis tools are prone to
“code explosion”, that is, the time taken for the static analysis tool to verify
the Solidity file increases proportionally to the amount of code written in the
file. This can expose problems some static analysers might face, for example,
one of the surveys [89] show that by obfuscating code including data location
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and usage emulation one can trick the analyser into thinking that some pieces of
code are relevant to the contract and need to be checked for, thus slowing down
the overall verification process. If the static analysis tool is implemented using
BMC method, then the control-flow graph (CFG) is pruned to a given bound,
either set by the user or by default, therefore the analyser maintains speed and
accuracy regardless of the code size.

As the test is not concerned with any cybersecurity properties or vulner-
abilities, therefore the CIA triad and the risk assessment based on the SEI C
Coding Standard does not apply for this Solidity smart contract.

3.3 Summary

This chapter explained the methodology used in this project, raised the hypo-
thesis and gave more in-depth knowledge about each of the static analysis tools
and benchmarking tools used in the testing process. Also, each test was de-
scribed in great detail with code examples, cybersecurity property evaluations
and risk assessments.
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Chapter 4

Project evaluation and
analysis

This chapter gives more detail about the testing results from running static
analysis tools mentioned in section with tests described in section (3.2
The first section explains what kinds of data were measured and collected for
analysis with descriptions of each of the metrics. The second section shows
the setup and the performance of all static analysis tools with regards to their
accuracy rate and resource consumption rate in a graphical form. The third
section briefly explains the objectives of the testing. The fourth section analyses
the obtained results and presents evaluations and recommendations according
to the analysis. The last section determines if the hypothesis given in section
holds and finds out the best static analysis tool in terms of all the metrics
observed and evaluated.

4.1 Description of benchmarks

Overall, all five static analysis tools were measured with all 13 testd]] Each test
was run 10 times with each static analysis tool, therefore each static analysis
tool was run 130 times. In total, 650 test runs were done to obtain the data
represented in tables [.1] to Table [£.1] shows the running times of each test
for static analysis tools. As the verifiers do not run perfectly at a constant time,
each static analysis tool running time is represented in lower and upper bounds,
determined from repeated test runs. It is also worth noting that the time given
for a static analysis tool to run is 10 minutes - if the tool exceeds this threshold,
the test run is considered to be a timeout, and the threshold time of 10 minutes
is written in the table. The timeout runs are marked in red to improve the
visibility of the table. The average time for lower and upper bounds is also
calculated and displayed separately in the last row of the table.
The benchmarks were divided into several parts:

e Normal conditions (time and accuracy test) - all 13 tests were run un-
der the ordinary operation of the laptop without any extra processor or

ITwo tests are marked Test 10 and Test 10.1, indicating the similar properties of the source
code, but are counted as different tests.
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memory load. The primary objective was to obtain average running times
of code verification of each of the smart contract analysers and to check
the outcomes of static analysis tools as well.

e Normal conditions (resource management test) - all 13 tests were run
under the ordinary operation of the laptop without any extra processor or
memory load. This time, the objective was to observe and document the
CPU and memory consumption rates for each static analysis tool and for
each smart contract test.

e Stress test 1 (maximum CPU load) - again, all 13 tests were run, but
under the full load of the CPU cores. The objective was to observe and
document the average running times for all smart contracts used for code
verification. Every static analysis tool used all tests in order to get results
represented in table

e Stress test 2 (77% memory load) - all tests were run under the 77% of
RAM usage by executing several commands in order to artificially increase
the memory load. The objective was similar to other tests - observe the
behaviour of analysers and record running times.

e Stress test 3 (90% memory load) - 13 tests were run under the 90% of
RAM usage. The objective is the same as for the stress test 2.

e Stress test 4 (maximum CPU load and 90% memory load) - all tests were
run under combined CPU and memory load, while still keeping the com-
puter alive, as having 100% of memory load can cause crashes. The ob-
jective was to observe the static analysis tools, check for any abnormal
behaviour and get the average running times for each static analysis tool
used with all source code of test smart contracts verified.

4.1.1 Normal conditions (time and accuracy test)

As it can be seen from the data in the table, only Oyente and Mythril managed
to produce timeouts for test runs. Oyente timed out on the sixth test about
gas griefing by supplying less gas for sub-call execution, explained in detail in
section [3.2.7] while Mythril timed out on the 11th test about the inline assembly
code, explained in detail in section[3.2.11] As the source code for Test 7 contains
several contracts, it is possible that Oyente produced a very large CFG during
the code verification process and that is why it ran over ten minutes. It is
worth noting that compared to other Oyente runs, it is an outlier, although
Tests 3 and 11 also ran significantly slower compared to other tests. Mythril,
on the other hand, tended to run slower on average compared to the remaining
static analysis tools, but Test 11 is a significant outlier here. Therefore, it
can be safely assumed that Mythril’s code verification method does not handle
well inline assembly code written in Solidity, as it probably has a hard time
abstracting the assembly code.

Overall, looking at the averages in table no static analysis tool took
over 2 minutes on average to verify Solidity smart contract code. However, the
averages might have been better if Oyente’s and Mythril’s outliers would have
been discarded from the evaluation. The fastest static analysis tool on average is
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Slither, with the average varying from 592 to 629 milliseconds, while the slowest
is Oyente with the average varying from 1 min 58 seconds to 2 min 7 seconds.
If we discard the timeouts from Oyente and Mythril, the averages improve to
lmin 18s - 1min 27s and 59s - 1min 8s respectively, as it can be seen in table
4.2

Table shows the accuracy of each Solidity smart contract static ana-
lysis tool. The table shows if the vulnerability (or the lack of it) was detected
correctly, and is denoted by the capital letter Y (Yes). If the verifier did not
accurately detect the vulnerability, it is shown as a capital letter N (No) in the
table. For better readability and visual comprehension, the results in the table
are colour-coded, with green standing for a hit and red standing for a miss. The
last row of the table shows the total accuracy percentage of each static analysis
tool tested.

Table 4.3: Static analysis accuracy table under normal conditions (Y - vulner-
ability caught, N - vulnerability not caught)

Test No. ‘ Remix | Slither ‘ Oyente ‘ Mythril ‘ SmartCheck

T1
T2
T3
T
T5
T6
T7
T
T9
T10
T10.1
T11

| Accuracy % | 66.67% | 75.00% | 25.00% | 41.67% 25.00%

~

Qo

Looking strictly from the accuracy perspective, it can be clearly derived that
Slither is the winner here with three-quarters of all tests being correctly verified
and vulnerabilities found (or the lack of it, see Test 1 in section[3.2.1]). However,
the data shows that some static analysis tools are better defined to test some
specific vulnerabilities. For example, Oyente performed poorly on nearly all
tests but it managed to correctly find the out-of-gas vulnerability inside the
source code of Test 6. Mythril also did not show excellent results, but it coped
well with lost contract and unprotected self-destruction finding as well as using
tx.origin for validation. SmartCheck found the contract locking vulnerabilities
in Test 9 and correctly identified inline assembly code in Test 11.

There were some tests, which were not classified correctly by any of the static
analysis tools, though. Tests 3 (dead code, section3.2.3)), 7 (gas griefing, section
and 10.1 (constructor-like functions, section i3.2. 0) were the trickiest for
the verifiers tested out. It can be found to be interesting that Slither advertises
in its documentation that it is able to detect dead code , but the results
show that it was not able to do so. It should be noted, however, that the
example given in the documentation is very simple, and it can be the case that
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Slither flags unimplemented code as dead, which is true, but the unreachable or
meaningless but functional parts of the code can also be classified as dead code.

Furthermore, there were cases where static analysis tools should, at least
in theory, detect a particular vulnerability in Solidity smart contract code, but
it did not detect anything related to the vulnerability searched. For example,
SmartCheck did not find any re-entrancy bugs, although the printout tells us
that it is capable of detecting re-entrancies in smart contractﬂ

4.1.2 Normal conditions (resource management test)

As mentioned in the aims of this project in section accuracy is not the
only metric that was measured in order to find out the best static analysis tool.
Resource consumption rates were tracked as well, specifically CPU and memory
usage rates, and the results are shown in tables and respectively. Tt
can be seen in the CPU consumption table that some static analysis tools
tend to have fluctuating rates of consumption, while others take the greedy
approach and use all available power the CPU can give. The most efficient static
analysis tool is the Remix IDE plug-in, with CPU lows of 4.031% on average.
However, it has a large margin between the lowest point of consumption and
the highest, indicating that if the Remix IDE plug-in would run longer, then it
would consume more CPU power. But, as it can be seen in table Remix
IDE static analysis plug-in verified the tests in a bit more than half a second
on average, therefore, one can forgive the analyser for consuming a bit more
CPU power at the expense of speed. Some tools, such as Mythril, are CPU-
hungry and took all of its power for verification purposes. It must be noted,
however, that Mythril uses only one core and does not utilise parallel computing
capabilities, thus, the numbers can look a bit misleading. Overall, a standard
run would take about 25% of CPU power from a computer for a second or two,
although Mythril is an exception, as it is one of the slowest static analysers
observed.

In terms of memory consumption, all static analysis tools showed good res-
ults, and table displays that only Oyente tended to sometimes use more
significantly more memory. It can also be noticed that there is a correlation
between high CPU and memory consumption in verifying troublesome tests for
Oyente - Tests 7 and 11 were the ones where Oyente timed out by exceeding
the 10-minute threshold, and both CPU and memory usage tables show that
for these tests the upper bound is close to 100% of resource usage. Mythril
used more memory for these tests where there was more source code, as Test 3
contains a lot of useless code, while Test 12 has around 300 lines of source code
waiting to be verified.

4.1.3 Stress test 1: maximum CPU load

Another interesting way of checking the robustness of static analysis tools is
to put them under pressure. The following tables and contain
results obtained when static analysis tools were run under unusual CPU and/or
memory usage. Obviously, all of the tests were checked for vulnerabilities slower
than under normal operating conditions, but some showed a significant increase

2For the printout example, see figure for details.
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in time compared to their counterparts. For example, SmartCheck’s average
running time more than doubled compared to the ordinary resource CPU usage
rate - the same applies to Remix IDE static analysis plug-in. Oyente and Myth-
ril, generally running slower under normal conditions, showed some robustness
under 100% of CPU load - their running times increased for 30 seconds but com-
pared to the results seen in table the increase in operating time is marginal.
On the other hand, Oyente timed out thrice, reducing its overall performance
rate by one test, while Mythril timed out on the same test with inline assembly
code.

4.1.4 Stress tests 2 and 3: 77% and 90% of memory loads

The memory stress tests, together with static analysis tools, were run and res-
ults are compiled into tables and It was not possible to get 100% of
memory load because even if locking the analyser kernel killing priority to -1000
might have helped for several seconds, there was a good chance of crashing
the computer, therefore, the safer option of 90% memory load was chosen. The
data shows that Remix IDE static analysis plug-in and Slither were only slightly
impacted by the increased memory usage, while Oyente and Mythril struggled
with the fact that they could use less memory for code verification. SmartCheck
showed consistent results regardless of the memory load, meaning that it was
well-optimised in terms of memory usage. The timeouts were the same as in
the CPU stress test - 3 timeouts from Oyente and 1 timeout from Mythril.

4.1.5 Stress test 4: maximum CPU load and 90% memory
load

A full stress test was conducted on the testing laptop, with full CPU load and
90% memory load. The results can be found in table The best performance
was shown by Remix IDE static analysis plug-in and Slither, while the worst
performance excluding timeouts was shown by SmartCheck. Oyente timed out
three times, the same amount as in previous stress tests, while Mythril managed
to time-out twice - in Tests 11 and 12. One fact can be found interesting - while
Test 12 had a significantly larger codebase and included code snippets from Test
3, Oyente has verified it in the given bounds. On the other hand, as it has now
become customary, Test 3 was not verified in the threshold of 10 minutes.

4.1.6 Summary of tests

Overall, from the resource consumption perspective, Remix IDE plug-in leads
in the best CPU usage rates while Slither is the best in managing memory us-
age. Therefore, lower-end computers will be able to handle both tools pretty
well. The worst result in CPU rating was displayed by Mythril and Smart-
Check consumes the most memory on average. On the other hand, Oyente
has shown the most inconsistent results, meaning that it is prone to specific
types of codebases, such as those containing lots of loops or contract sub-calls.
In terms of robustness under stress conditions, again Remix IDE plug-in and
Slither showed the best results while having zero timeouts. The third place goes
to SmartCheck because it had no timeouts, although stress conditions are not
the ones SmartCheck can deal with smoothly. The worst performance is shown
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by Oyente with three timeouts and the longest running times on average for
both CPU and memory stress tests.

4.2 Setup

The setup and execution process is very simple in order to run the tests men-
tioned in chapter |3} To start off, the equipment and tools used are explained in
section To run a test with all static analysis tools, in the general case, one
has to make four command statements in the Linux terminal and one statement
online in the Remix IDE case. As for the example, we will take Test 2 as a
placeholder value for static analysers, and the source file of Test 2 code is called
test2.sol. Note, that Oyente accepts only Solidity compiler versions 0.4.17 and
lower, although it tends to work well with version 0.4.22 as well, while other
tools and tests are written for mostly the newest compiler version (0.8.6 is the
newest, but there are tests for compiler versions 0.7.0). Therefore, one has to
change the Solidity compiler version in order to run Oyente properly. To do this,
a tool called solc-select [91] is used to install and switch to other installed Solid-
ity compiler versions. To switch to the required version supported by Oyente,
run

solc-select use 0.4.17

where “0.4.17” is the Solidity compiler version. Also, the code has to be
slightly modified in order to compile well with old Solidity versions, there-
fore, the test source code for Oyente are usually denoted with the name test-
Name_cpy.sol, where testName is the name of the test, e.g. “test2”.

The following list explains what commands should be run in order to verify
the source code of Test 2 with each of the static analysis tools:

e Remix IDE static analysis plug-in: click “compile” on test2.sol when in the
“Solidity compiler” section, then click “run” after selecting the “Solidity
static analysis” section. Uncheck the “autorun” property if it was selected
in the first place to run the compiler and the analyser separately or keep
it checked if both compilation and analysis are wanted to be done in a
single “compile” click.

Slither: slither test2.sol

Oyente: oyente -s test2_cpy.sol

Mythril: myth analyze test2.sol
e SmartCheck: smartcheck -p ./test2.sol

However, doing this is time-consuming, especially when there are 13 tests to be
done. Therefore, hyperfine comes to help by automating the runs and perform-
ing time benchmarks on each of them. Unfortunately, some tests are written
for specific compiler versions, so by changing the versions one might not be able
to verify the tests correctly. Therefore, table shows the groupings of tests
by Solidity compiler versions. Note that this table does not apply to Oyente in
most cases because its tests were slightly adapted to comply with the newest
acceptable version by Oyente. Neither the overall existence of the vulnerability
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Table 4.10: Test groupings by Solidity compiler version

| Solidity compiler version | Test numbers |

0.8.6 1,7, 10.1, 11
0.7.0 2,3,5,6,8,9
0.6.0 4
0.4.22 10

nor the logic in the code changes in these modified files, which can be recognised
by having a _cpy in the file name at the end. To run hyperfine in the Linux
terminal, write:

hyperfine -L version 1,7,10.1,11 'slither test{version}.sol' -i

Here the tests would be run for the Solidity compiler version 0.8.6, the
analysis of tests would be done by Slither, and any output by the analysers is
suppressed by the -i flag in order to have hyperfine working properly. To adjust
the command, use different version numbers explained in table and other
static analysis tools. For stress testing, the stress package is used, and it allows
filling up the memory or consume a lot of processing power. To obtain 100% of
CPU usage, run

stress —--cpu 4 -t 60

This will keep the CPU at 100% of usage for 60 seconds on all CPU cores,
which are four of them in the testing laptop. For obtaining around 77% of
memory consumption, run

stress --vm-bytes $(awk '/MemAvailable/{printf ''%d\n'', $2 * 0.99;}'
< /proc/meminfo)k --vm-keep -m 1 -t 60

This will keep the memory busy at around 77% of its capacity for 60 seconds.
In order to get 90% or more of RAM usage, one can use the following command
on the terminal:

sudo </dev/zero head -c 7000m | pv -L 500m | tail

This will use around 7 GB of memoryEL with each tick increasing the usage by
500 MB. The pv command gives a nice visualisation to the programmer only.
However, one must be aware that using very large amounts of memory might
trigger the kernel’s out-of-memory killer (OOM), therefore, in order to keep
the stress test command alive and not killed by the kernel, use the following
command:

sudo echo -1000 > /proc/procNo/oom_score_adj

where procNo is the process ID of the stress command. The ID, along with
the benchmarks for resource management of static analysis tools can be found
in the htop interactive process viewer.

36.83 GB to be more exact in the binary base.
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4.3 Objectives

The objectives of this testing are as follows:

e Test out all five static analysis tools in question - namely: Remix IDE
static analysis plug-in, Slither, Oyente, Mythril and SmartCheck and see
if they work properly;

e If point one is satisfied, then run all designed tests with vulnerabilities
and find out the accuracy rating of each of the static analysis tools;

e Find out if there are any tests whose vulnerabilities cannot be caught by
any of the static analysis tools;

e Observe the performance of the analysers under normal conditions and
stress conditions.

From these main objectives described, it is possible to derive which static
analysis tool is the best in terms of accuracy and performance when finding
security bugs in Solidity smart contracts. The summary section of this chapter
in section gives an overview of the results and achieves the main goals laid
out in section [T}

4.4 Results

The analysis of the results presented in section can be seen in three different
perspectives: from the accuracy point of view, from the resource usage point of
view and combined. However, remembering the hypothesis given in section|3.1.1
requires us to look at a combined approach - whether there is a possibility to
find a correlation between accuracy, complexity and efficiency of static analysis
tools. First of all, it is crucial to look at the accuracy table and compare it
to the results obtained in tables 4] and A5

As an example, consider figures [4.1] [£:2] and [£.3] showing how CPU and
memory consumption as well as running time changes from Test 1 to Test 12
for Remix IDE static analysis plug-in. It can be seen that in figure the
upper bound for CPU usage increases almost linearly for each test, while the
lower bounds stay pretty much the same at 3-5% of CPU consumption. Figure
[4:2] shows that the memory usage for all tests stays quite consistent, although
the upper bound for Test 10 is an outlier. Comparing that to the accuracy table
in section it is impossible to determine any patterns between accuracy and
consumption, as Test 3 requires less computing power than, say, Test 10, but
both are marked that the analyser could not find any vulnerabilities in both of
them. The reverse argument is also valid by comparing Tests 4 and 5. What
can be determined, though, is the relation between inline assembly code in Test
11 - the CPU consumption rises up to 28% while the upper bound for test
verification time seen in figure has also increased significantly compared to
other tests.

As for the accuracy rating, Remix IDE static analysis plug-in finds 8 out
of 12 vulnerabilities in Solidity smart contracts correctly, therefore getting the
accuracy rating of 66.67%. The low memory usage and mediocre processing
power consumption, as well as fast verification process, put the plug-in in a
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high place for the competition in finding the best static analysis tool for Solidity

smart contracts.

Remix IDE plug-in CPU consumption graph
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Figure 4.1: Remix IDE static analysis plug-in CPU consumption lower and

higher rates for each test

Remix IDE plug-in memory consumption graph
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Figure 4.2: Remix IDE static analysis plug-in memory consumption lower and

higher rates for each test
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Remix IDE plug-in verification times per test
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Figure 4.3: Remix IDE static analysis plug-in running times for each test with
lower and upper bounds

As a slight jump back to the performance analysis, it has been established
that Test 11 was verified incorrectly by the Remix IDE static analysis plug-in,
therefore it would be interesting to look at Slither, which correctly identified
inline assembly code in the source code of the test in question. Compared
to Remix IDE plug-in’s CPU consumption patterns, Slither seems to have a
completely different graph, as seen in figure [£:4] Here, the largest upper bound
was observed in Test 3 with the CPU usage nearing 30 per cent. The memory
usage, seen in figure 4.5} is consistent, similarly to Remix plug-in. Figure
shows that Slither runs in a consistent fashion regardless of the test - the only
exception being Test 12, which is effectively a code size test. However, this
shows that inline assembly does not have any effect on resource consumption
or speed of the static analysis tool because, for Slither, Test 11 is verified as
consistently in terms of metrics discussed as other tests. It is also worth noting
that Slither managed to correctly identify inline assembly usage in the source
code of Test 11. Overall, Slither tends to consume less memory than Remix IDE
static analysis plug-in, while the CPU usage is quite similar. However, Slither
is way more consistent in terms of average running times, as the gap between
the upper and lower bounds can hardly be seen in figure 4.3

Slither’s accuracy rating is the best of all static analysis tools tested in this
project, with a rating of 75% achieved by the analyser. Combined with robust
performance, constant running times and average resource management, it aims
to be one of the best static analysis tools to date.
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Slither CPU usage
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Figure 4.4: Slither CPU consumption lower and upper bounds for each test

Slither memory usage

o
N
&

== Slither Low

o
o

==@—Slither High

RAM usage, %

o
o =
= @

o
o
@

T1 T2 T3 T4 5 T6 7 T8 9 T10 T10-1 T11 T12

Test No.

Figure 4.5: Slither memory consumption lower and upper bounds for each test
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Slither running times per test
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Figure 4.6: Slither running times for each test with lower and upper bounds

Let us look at Oyente. As it can be seen from the CPU consumption graph
in figure the problematic tests (Test 3, 7 and 11) stand out in the graph
as having the upper bound at 100% CPU usage. As one of these tests (Test 7)
did not finish successfully and it timed out after exceeding the threshold limit
of 10 minutes, it can be assumed that longer running times can correlate with
higher CPU usage for Oyente static analysis tool. For comparison, the code of
Test 3 was verified for about 8 minutes, while the code for Test 11 took about
5:30 minutes. This can be seen both in the performance table in section 4.1
as well as in figure showing the visual “spikes” for Tests 3, 7 and 11. The
red horizontal line in the corresponding graph shows the time threshold set for
all static analysis tools, which Oyente managed to exceed it once under normal
operating conditions. The memory consumption graph, seen in figure [1.9] also
indicates the problematic tests as visual “spikes” in the graph. Therefore, in
Oyente’s case, one can derive the conclusion that a longer verification process
leads to abnormal resource usage by the static analysis tool. If let to run for a
prolonged period of time, it is very likely that the kernel would kill the process of
the analyser, therefore, making the verification process useless. It also needs to
be emphasised that Oyente is an old static analysis tool, with its first incarnation
released to the public over 5 years ago , where blockchain technology and
Solidity programming language were still in their infancy. Therefore, it is only
natural that currently there are better optimised, faster and more accurate static
analysis tools than Oyente. Oyente’s accuracy rating is the lowest of all 5 static
analysis tools tested - only 3 out of 12 vulnerabilities were identified correctly
by Oyente, giving the accuracy percentage of 25%.
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Oyente CPU consumption
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Figure 4.7: Oyente CPU consumption lower and upper bounds for each test
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Figure 4.8: Oyente memory consumption lower and upper bounds for each test
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Oyente running times per test
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Figure 4.9: Oyente running times for each test with lower and upper bounds

Mythril, on the other hand, is a bit newer static analysis tool than Oyente,
thus it is expected that it will outperform Oyente on several metrics, and this
statement is correct with regards to running time. However, as it can be seen
from figures [£.10] and Mythril takes a greedy approach to computer’s re-
sources, especially the computing power of the processor. Almost in all cases,
Mythril verifies the tests by using 100% of CPU power, which is not the best
outcome if, for example, a user has other CPU-intensive processes running. In
that case, the computer would slow down and all processes, including Myth-
ril’s static analysis. In terms of memory usage, it is sustainable, although both
Slither and Remix IDE plug-in use considerably less memory than Mythril coun-
terpart. It is also important to note that Mythril on average takes more time
to verify Solidity smart contracts, a perk not seen in other static analysis tools
including SmartCheck, which results will be explained later in this section. For
example, Test 5, concerned with unprotected self-destructs and arbitrary data
sends and the running time bounds can be seen in figure [£.12] described in sec-
tion [3.2.5] takes about two-and-a-half minutes for Mythril to verify the source
code, while all other tools take at maximum 2 seconds in order to complete the
static analysis. Furthermore, it seems that Mythril does not handle well inline
assembly code in Solidity smart contracts - the static analysis of Test 11, a test
related to the security vulnerability in question, timed out after running for 10
minutes.

Mythril’s accuracy is below average, with a 41.67% accuracy rating (5 out
of 12 vulnerabilities identified correctly). The tool tries to compete with Remix
IDE plug-in and Slither but is underperforming both in resource management
and accuracy. The largest drawback is probably speed - on average it runs the
longest compared to all other tested static analysis tools.
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Mythril CPU consumption
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Figure 4.10: Mythril CPU consumption lower and upper bounds for each test
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Figure 4.11: Mythril memory consumption lower and upper bounds for each
test
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Mythril running times per test
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Figure 4.12: Mythril running times for each test with lower and upper bounds

The performance of SmartCheck, in terms of resource management, is satis-
factory considering that the analyser is written in Java, which means that code
compilation, translation processes and garbage collection take more memory
resources in general. However, SmartCheck handles the memory consumption
very well - figure [4.14] shows that the static analysis tool does not reach 10%
of available RAM for use. On the other hand, figure shows large averages
between CPU consumption rates, sometimes the range reaches 60 per cent. This
tells us that during the execution process the CPU usage increases at a very
large rate until it reaches 100% of consumed processing power. The running
times for SmartCheck, seen in figure [4.15] are quite consistent and the graph
resembles Slither’s graph, figure Unfortunately, the tool is not very accur-
ate - the accuracy of SmartCheck is only 25 per cent, and it does not show any
signs of being different to other tools in terms of vulnerability catching process,
that is, if other analysers do not catch a particular vulnerability, it is very likely
that SmartCheck will not catch it as well, therefore the tool is not very suitable
for cross-checking the source code for additional vulnerabilities.
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SmartCheck CPU consumption
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Figure 4.13: SmartCheck CPU consumption lower and upper bounds for each

test
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Figure 4.14: SmartCheck memory consumption lower and upper bounds for
each test
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SmartCheck running times per test
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Figure 4.15: SmartCheck running times for each test with lower and upper
bounds

4.5 Threat to validity

The experiments done with the static analysis tools for Solidity smart contracts
are accurate and done in a consistent fashion in order to prevent any bias in
the results gathered. However, the experiments and evaluations are not perfect
and there is always room for improvement. Firstly, there are 13 tests written in
total, 11 of them have security vulnerabilities. While the aim was to create the
tests that contain the most common security vulnerabilities w.r.t. cybersecurity
properties, the list of vulnerabilities is by no means exhaustive. The SWC
registry also contains 36 different vulnerabilities but not all of those weaknesses
can cause cyberattacks or attacks which can cause actual damage - one of the
examples would be the floating pragma (Solidity compiler version) - it is advisory
that the compiler version should be strict for the contract, on the other hand,
the smart contract loses flexibility once there is a new Solidity compiler version
and the contract needs patching, which might be unnecessary. Also, there is
the case of “known unknowns” - we know that security vulnerabilities exist, but
we do not know how many of them exist on the live blockchain, for example.
Therefore, the limit of tests to be included in the experimentation is not bound
to a specific number - if there are any new vulnerabilities discovered, it is likely
that the static analysis tools will not catch them. Moreover, one should not
discard the possibility of false positives as well.

Continuing the narrative of the tests used for the experiment, the accuracy
rating can change if there are more or fewer tests are included in the testing
phase. It can be also be perceived that the inclusion of more tests can drop
the accuracy rating for all analysers, although the rating will be more correct as
there would be more cases included in the evaluation process. The reverse action
also has consequences - having fewer tests might distort the accuracy rating,
disproportionally inflating or reducing the rating in question. The improvement
here can be twofold:

e Include more tests with different vulnerabilities, especially if the tests
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have code that deviates from the standards given by the documentation
of static analysers. This will probably reduce the overall accuracy rating
but better conclusions can be derived on which tool is more versatile and
can catch different types of security bugs.

e Reduce the number of tests but make them more specialised. For example,
if one is particularly interested in re-entrancy vulnerabilities, one can cre-
ate ten different tests having re-entrancy vulnerabilities with different code
snippets and various code obfuscation methods applied. Including canary
tests (the tests without vulnerabilities) with code snippets which can look
like the ones having the re-entrancy bug but in fact, there are no vulner-
abilities there would improve the testing strategy as well. The specialised
tests would allow determining if the tool is truly capable of detecting the
security bug in question as well as check for any false positives which might
occur during the code verification process.

The last issue is resource management monitoring. Even if the experiment is
replicated identically to the one presented in this project, there is a margin
of inconsistent running times or CPU or memory consumption. However, this
problem should fall into the category of allowed deviations from the given results.
The real issue can arise if the experiment is done on other computers with
different technical parameters, OS types and/or versions. Broadly speaking, it
should be thought that having a more powerful machine than the one used in
this project will show better results for static analysis tools in the benchmarks
and vice versa. However, the verdict given by a static analysis tool (verified code
contains vulnerabilities or not) should be consistent regardless of the computer
technical parameters.

4.6 Summary

As a summary, firstly let us get back to the hypothesis established for the first
time in section As seen in the analysis, compared with the knowledge
about the static analysis tools from section|3.1.2] it can be concluded that while
Slither is one of the most sophisticated tools tested, with the level of complexity
and the capabilities of the analysers the only comparable ones are Oyente and
Mythril, Slither does not consume significantly more resources or runs slower on
average than other, simpler static analysis tools such as the plug-in for Remix
IDE. The hypothesis, therefore, does not hold. However, it should be noted that
if one discards Slither from the analysis and substitutes it with the other Solidity
static analysis tool, the hypothesis could hold because Oyente and Mythril were
by far the most resource-hungry and slowest static analysis tools. Thus, the
statement that more sophisticated and generally larger tools are inefficient is
simply incorrect because as the technology moves forward, better methods of
static analysis are created, achieving faster verification rates while retaining low
resource consumption rates. If this project was conducted several years ago,
one could argue that the technology of the present day has reached its limits,
but now, we can see that there are static analysers that are sophisticated, yet
powerful, accurate and efficient. This moves to the main aim of the project -
what is the best static analysis tool for Solidity smart contracts, which can find
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the most with cybersecurity-related vulnerabilities? Well, the answer is pretty
straightforward, if we are looking at the data presented in this chapter.

Slither is by far gets the title of being the best out of five tools tested, as its
accuracy rating is the highest and the resource management rating is also one
of the best. Also, it is quick and robust - even under a full stress test, Slither
managed to not exceed 4 seconds of verification time.

The second place would go to Remix IDE static analysis plug-in, which can
be unexpected due to the fact that its implementation is quite simple compared
to other tools, but it manages to detect quite a lot of cybersecurity-related
vulnerabilities, which is a good sign for Solidity programmers using Remix IDE.
Also, the resource management is in good standing, as well as the execution
times. It is by far the fastest static analysis tool available out of all tools tested
in this project, but it gets behind Slither only because it is less accurate.

The third place should go to Mythril, shared with SmartCheck - although
being very greedy for resources, its accuracy rating is somewhat good, although
it falls behind Remix plug-in by 20 percentile points. The resource management
can always be remedied by putting more resources into a machine, but this
is a Turing-completeness problem - theoretically speaking, all programs will
terminate if the computer would have infinite amounts of memory, which is
physically impossible. While being bound to finite amounts of computing power
and memory, it is important to have a look at the resource management of a
program, and Mythril, unfortunately, is not the best in this field. However, if the
resources are abundant, the mediocre accuracy rating can be a reasonable choice
for finding security bugs in Solidity smart contracts. Also, another drawback is
timeouts - a property no one would really enjoy having.

SmartCheck receives the third place as well, sharing with Mythril due to
its low accuracy rating - one of the main factors for a static analyser to be
considered as a “good” tool. SmartCheck does not consume a lot of resources
and does not time out, this is why SmartCheck is on par with Mythril. Had the
accuracy rating been better for SmartCheck, then it would have a guaranteed
third place, moving Mythril to the solid fourth place. Overall, SmartCheck is a
good choice for lightweight smart contract checking, but it must be noted that
it is not a very strong tool and might need cross-verifying in order to catch all
possible vulnerabilities in code.

The last place goes to Oyente due to several factors. First of all, the accuracy
rating is one of the lowest, comparable to SmartCheck. Secondly, it is prone to
code explosion, meaning that it is not suitable for smart contracts which have
a large codebase or contain many loops. Lastly, because it is affected by the
disadvantage mentioned previously, the resource management suffers as well,
thus distorting the overall performance results. If Oyente would be updated
and more efficient methods of traversing CFGs were implemented, from which
logical statements are fed into Z3 SMT solver, then Oyente can once again
become a powerful static analysis tool for Solidity smart contracts as it was 5
or 6 years ago.

79



Chapter 5

Conclusion

In this chapter, the concluding statements are given about this project. The
chapter is divided into three smaller parts. The first part discusses the achieve-
ments of this project, whether it was a success or not. The second part reflects
the project itself and if there are any valuable lessons taken from undertaking
the project. Lastly, the last section gives some indications about the possibil-
ities of future work, which can be conducted by relying on the work completed
for this project.

5.1 Achievements

In summary, the author of this project thinks that the project is a success.
It was possible to achieve the main aims, that is, find out publicly available
static analysis tools for Solidity smart contracts, write tests w.r.t. cybersecurity
properties, run the tests on analysers, observe the behaviour, obtain data and
decide which tool is the best currently available for Solidity programmers. Also,
a widely perceived belief of heavyweight software being slow or resource-hungry
has been proven to be incorrect, and Slither shows that there exist tools that
are powerful yet are fully capable of not reserving whole computer resources to
their own needs.

One of the main achievements of this project is the successful compilation of
Solidity smart contract tests which fit into the cybersecurity properties - it is the
main contributory point explained in section[I.3] As there are not many surveys
or analyses done, at least to the author’s knowledge, where smart contracts with
vulnerabilities had risk assessments or comparisons to the CIA triad, this is a
significant achievement that may be unique to this project. The results obtained
in chapter [4| by running the custom smart contracts developed and explained
in detail in chapter [3| give some important insights about the static analysers,
their accuracy ratings and their performance under various conditions. From
that data, it is possible to derive which static analysis tools are more competent
in specific types of security vulnerabilities and which ones are more universal.
Also, the data obtained is valuable in determining the priorities of the user
wanting to use the analyser - whether the accuracy or the speed is the primary
requirement.
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5.2 Reflection

As a reflection of this project, the author thinks that there was a steep learning
curve in many fields of Computer Science, which allowed the author to learn
a lot while working on this project. Firstly, the concepts of blockchain and
smart contracts were virtually unknown before undertaking the project, and at
the end of the research project not only it is well-known how blockchain works,
for example, but also the purpose of smart contracts, their interaction with
the blockchain and its users, known and (possibly) unknown vulnerabilities and
outcomes when they are exploited by adversaries. Lots of technical insight was
gained in the field of cryptocurrency and blockchain technology. Also, a new
programming language, Solidity, was learned from scratch and currently the
smart contracts in Solidity can be written as fast as more traditional program-
ming languages learned before the project, such as Java, C/C++ or Python.

Secondly, a lot was learned about the static analysis tools themselves, and
in-depth knowledge of the internal operations of analysers were learned during
the time the project was undertaken. Also, courses on formal methods and
static and dynamic analysis of programs were very helpful in understanding
how static analysis tools work, irrespective of the programming language. Some
concepts, such as bounded model checking (BMC), abstract syntax trees (AST)
were unknown before the project but currently, they are well-understood and it
can be seen that these concepts are implemented in many code analysers.

Lastly, the concepts of cybersecurity were also a good refresher to the au-
thor, and valuable analyses performed on tests were proven to firmly solidify
the knowledge about risk assessments, for example. It has also proven that
the information theory concepts, such as the CIA triad were crucial in determ-
ining which Solidity smart contracts are eligible for cybersecurity analysis and
which smart contracts can be discarded, even though lots of the contracts might
have been classified as having vulnerabilities in their source code by the static
analysis tools. It was important to establish that not all vulnerabilities are im-
portant from the cybersecurity perspective, and the severity rating differs from
vulnerability to vulnerability.

5.3 Future work

What lies ahead of this project is open-ended. This project lays the groundwork
for performing analysis on Solidity smart contracts in more specialised fields -
cybersecurity is one of them. There are some surveys that discuss the cyberse-
curity behind the attacks on smart contract vulnerabilities [27] [28] [31] [57], but
they either are quite abstract in terms of the cybersecurity properties provided,
or only the popular examples are given to the reader, or the vulnerabilities are
discussed in detail, but they lack exact properties such as risk assessment or
CIA triad property evaluation. Therefore, there is more in-depth analysis to be
done for Solidity smart contracts from the cybersecurity perspective.

As mentioned earlier in this section, cybersecurity is only one of the special-
isation fields for Solidity smart contracts. Resource monitoring and consump-
tion analysis delves more into the field of more efficient software writing, which
includes SAT/SMT solvers, AST and CFG generation, efficient and fast conver-
sion of code to bytecode or other IR used in the analysers. While general solvers
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are fast, the bottleneck can occur at the CFG level - large codebases will def-
initely have huge control-flow graphs, and traversing the whole graph, visiting
all nodes can take an unacceptable amount of time for the whole verification
process, creating the state space explosion problem. Therefore, the concept
of BMC comes into play - by determining the bound until which the graph is
traversed, one is sure to have or not to have a vulnerability given some bound.

All in all, the pathways for future work are diverse and future research can
rely, for example, on the cybersecurity properties in the smart contracts - espe-
cially interesting would be large-scale Decentralised Autonomous Organisations
(DAO), as an example given in the official Ethereum webpage [92]. The other
pathway can be static analyser accuracy and efficiency - establishing better heur-
istics or formal methods of detecting more subtle vulnerabilities in contracts or
trying to find the bottlenecks in the verification process and trying to remedy
them by improving the overall verification flow.
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