
UNIVERSIDADE FEDERAL DO AMAZONAS-UFAM
FACULDADE DE TECNOLOGIA-FT

PROGRAMA DE PÓS GRADUAÇÃO EM ENGENHARIA
ELÉTRICA-PPGEE

Automated Verification and Refutation
of Quantized Neural Networks

Luiz Henrique Coelho Sena

MANAUS-AM
2021

Luiz Henrique Coelho Sena

Automated Verification and Refutation
of Quantized Neural Networks

Qualification document presented to the
Postgraduate Program of Electrical Engi-
neering (PPGE) of the Federal University of
Amazonas (UFAM) as one of the prerequi-
sites for Msc title obtention.

Mentor: Lucas Carvalho Cordeiro

MANAUS-AM
2021

Abstract

Artificial Neural Networks (ANNs) are being deployed for an increasing number of safety-
critical applications, including autonomous cars and medical diagnosis. However, con-
cerns about their reliability have been raised due to their black-box nature and apparent
fragility to adversarial attacks. These concerns are amplified when ANNs are deployed
on restricted system, which limit the precision of mathematical operations and thus in-
troduce additional quantization errors. Here, we develop and evaluate a novel symbolic
verification framework using software model checking (SMC) and satisfiability modulo
theories (SMT) to check for vulnerabilities in ANNs and mainly in Multilayer Perceptron
(MLP). More specifically, here is proposed several ANN-related optimizations for SMC,
including invariant inference via interval analysis, slicing, expression simplifications, and
discretization of non-linear activation functions. With this verification framework, we can
provide formal guarantees on the safe behavior of ANNs implemented both in floating-
and fixed-point arithmetic. In this regard, the current verification approach was able
to verify and produce adversarial examples for 52 test cases spanning image classifica-
tion and general machine learning applications. Furthermore, for small- to medium-sized
ANN, this approach completes most of its verification runs in minutes. Moreover, in con-
trast to most state-of-the-art methods, the presented approach is not restricted to specific
choices regarding activation functions and non-quantized representations. Experiments
show that this approach can analyze larger ANN implementations and substantially re-
duce the verification time compared to state-of-the-art techniques that use SMT solving.

Keywords: Model Checking, Neural Networks, Quantized Neural Networks.

Contents

1 Introduction 1
1.1 Problem Description . 1
1.2 Objectives . 2
1.3 Contributions . 3
1.4 Dissertation Organization . 3

2 Preliminaries 4
2.1 Artificial Neural Networks (ANNs) . 4
2.2 Quantized Neural Networks (QNNs) . 5
2.3 Safety properties for ANNs and QNNs . 6
2.4 Satisfiability Modulo Theories (SMT) . 7
2.5 Existing SMT approaches for ANNs and QNNs 7

3 Methodology 9
3.1 ANN code generation . 9
3.2 Models for fixed-point ANN implementations 10
3.3 Discretization of non-linear activation functions 12
3.4 Introducing safety properties in ANN code 14
3.5 Invariant inference via interval analysis . 15
3.6 Model checking ANN implementations . 16
3.7 Incremental verification using lemma learning via SMT 17
3.8 Constant folding, slicing and expression balancing for search-space reduction 18
3.9 Illustrative example: robustness to adversarial images 20

4 Experimental Evaluation 24
4.1 Quantization aspects and data adaptation 25
4.2 Description of the benchmarks . 25
4.3 Ablation study . 27
4.4 Verification of quantized ANNs . 34
4.5 Comparison with state-of-the-art verification tools 39
4.6 Limitations . 42

5 Related Work 44

6 Conclusion 46
6.1 Future Works . 47

Bibliography 48

3

Chapter 1

Introduction

1.1 Problem Description

Artificial neural networks (ANNs) are soft computing models usually employed for re-
gression, machine learning, decision-making, and pattern recognition problems [1], which
have been recently used to perform various safety-critical tasks. For instance, ANNs are
employed for Covid-19 diagnosis [2], and for performing steering commands in self-driving
cars [3]. Unfortunately, in such contexts, incorrect classifications can cause serious prob-
lems. Indeed, adversarial disturbances can make ANNs misclassify objects, thus causing
severe damage to users of safety-critical systems. For instance, Eykholt et al. [4] showed
that noise and disturbances, such as graffiti on traffic signals, could result in target misclas-
sification during the operation of computer vision systems. Moreover, given that ANNs
are notorious for being difficult to interpret and debug, the whole scenario becomes even
more problematic [5], which then claims for techniques able to assess their structures
and verify results and behaviors. For this reason, there is a growing interest in verifi-
cation methods for ensuring safety, accuracy, and robustness for neural networks. The
approaches for ANN verification may be divided into three groups: optimization [6, 7, 8, 9],
reachability [10, 11, 12, 13, 14, 11, 15], and satisfiability [16, 17, 18, 19].

On the one hand, optimization-based algorithms pose the safety verification problem
as an optimization one, in which safety properties are usually treated as constraints, as
described by Tjeng et al. [20]. The main difficulty of optimization methods, such as
mixed-integer linear programming [21, 20, 8], branch and bound [7], and semi-definite
programming [6], is to deal with constraints that are non-linear and non-convex due to
a network’s complex structure and its activation functions. Indeed, it is still possible to
employ dual optimization for simplifying those constraints and then obtaining a convex
problem [22]; however, completeness tends to be lost due to relaxations. On the other
hand, reachability-based approaches aim at computing the reachable set of an ANN by
propagating input sets through it, layer-by-layer, while checking whether some unsafe
state (violation) belongs or not to that same reachable set. The main advantage of those
methods is that they are usually sound, i.e., if the algorithm indicates that a network
is unsafe, its safety property is violated. However, the computational cost to compute
exact reachable sets becomes unreasonable for more complex ANNs and more extensive
input spaces. In order to avoid such a problem, a reachable set is over-approximated by
using symbolic [14, 18, 15] and/or set-theoretic methods [11, 12]. Although those tools
effectively reduce the computational cost of reachability sets, it is still challenging to over-
approximate ANN’s non-linear elements, particularly their activation functions. There

1

CHAPTER 1. INTRODUCTION 2

are some symbolic techniques suitable for dealing with over-approximation of activation
functions [13, 10]; however, most of the approaches available in literature are only able to
approximate piecewise-linear and rectified linear unit (ReLU) activation functions.

Finally, satisfiability modulo theories (SMT) encode both ANN and desired safety
property into a single logic formula using a decidable fragment of first-order logic, and then
check whether a counterexample exists. In this regard, only binarized neural networks [23,
24] can be encoded into boolean logic and verified with existing SAT solvers [25, 16]. More
complex ANNs, whether implemented in floating- or fixed-point [26, 27], the latter aiming
at efficiency and simplicity, require the use of first-order logic instead of propositional
logic to exploit more abstract and less expensive techniques to solve the problem at
hand. For example, SMT solvers often integrate a simplifier, which applies standard
algebraic reduction rules and contextual simplification to simplify the logical formula.
Regarding these, several SMT-based approaches have been proposed [28, 17, 18, 14, 29,
30, 19]. While SMT background theories allow those approaches to model the semantic of
neural operations exactly using word-level theories, the resulting verification problem is
challenging to solve [28]. In this respect, quantization, i.e., a representation with a lower
number of bits, has been proven to make this problem even computationally harder [19].
As a consequence, most existing approaches specialize in simple piecewise-linear activation
functions [18, 29, 30], focus on the floating-point scenario only [14], or require domain-
specific abstractions [17].

1.2 Objectives

This work aims to design a tool capable of efficiently verifying any desirable safety property
in quantized and nonquantized ANNs. Our overall objective can be achieved by fulfilling
the following specific objectives:

• Train ANNs with consolidated training algorithms, e.g., backpropagation along
cross-validation.

• Model ANNs, e.g., vocalic recognition and iris recognition ANNs are some of the
ANNs that are modeled here. Basically, ANNs must be converted to linear equations
and activation functions model that ESBMC supports.

• Model quantized ANNs. Quantized ANN models will be obtained from converting
floating point ANN models into fixed point models.

• Model safety properties. These properties are based in how safe a classification
can be regarding range errors and then they are modeled as assume and assert

statements.

• Find the best parameters in ESBMC that provide the best verification performance
to our models. An ablation study is further presented in order to reach the best
ESBMC parameters for each ANN verification.

• Analyze counterexamples and adversarial examples. This objective relies on com-
paring our approach with some of the state of the art techniques and analyzing the
impact of our models and techniques on the verification process.

CHAPTER 1. INTRODUCTION 3

1.3 Contributions

We propose a novel approach to verify both fixed- and floating-point ANN implementa-
tions. Our main idea is to look at the source code of an ANN rather than the abstract
mathematical model behind it. By doing so, we can then leverage many recent advances
in software verification that can dramatically increase the computational efficiency of ver-
ification processes, as observed in our experimental evaluation. More specifically, in this
research, we make the following original contributions:

• We cast the ANN verification problem into a software verification one dealing with
real ANNs code implementation. On the one hand, we propose a method to rep-
resent ANN safety properties as pairs of assume and assert instructions. On the
other hand, we explain how to represent fixed- and floating-point operations in a
quantized ANN, using direct implementations of their behavior, i.e., representations
that consider a target precision.

• We introduce several pre-processing steps to increase the efficiency of downstream
software verification tools. Namely, we give a principled method to discretize non-
linear activation functions and replace them with lookup tables. Furthermore, we
show how to bound the feasible range of each variable with interval analysis and
how to represent those bounds with additional assume instructions.

• We detail which existing techniques for search-space reduction can be borrowed from
the software verification literature, and we empirically evaluate their individual and
cumulative effects.

• We evaluate our approach on fixed- and floating-point ANNs and give empirical
evidence on its computational efficiency. In particular, we show that we can verify
ANNs with hundreds of neurons in less than an hour.

• We compare our approach with state-of-the-art (SOTA) techniques, including quan-
tized and floating-point tools. According to the comparison, since our method ap-
plies various optimization techniques before invoking the SMT solver, we have better
performance than other SMT-based verification tools.

1.4 Dissertation Organization

. In Chapter 2, we introduce the ANN verification problem and present existing satisfi-
ability modulo theories. In Chapter 3, we detail all the steps involved in our code-level
verification approach for ANNs. In Chapter 4, we empirically test our approach on ANN
classifiers trained on the classic Iris dataset and an image recognition dataset. In Chap-
ter 5, we give a broader review of the recent trends in verifying ANNs. In Chapter 6, we
conclude and outline possible future work.

Chapter 2

Preliminaries

Before introducing the details of our verification approach, let us review some important
concepts related to the verification of artificial neural networks.

2.1 Artificial Neural Networks (ANNs)

Modern ANNs are universal function approximators built by composing multiple copies
of the same basic building block, called neuron [1]. In other words, they provide a way
of constructing system models with a set of sample observations, in such a way that the
joint behavior of existing neurons is correctly adjusted. In their most common form, each
neuron k is itself the composition of two functions, as illustrated in Fig. 2.1. The first one
is an affine projection of the m local inputs, often referred to as the activation potential
uk. The second one is a non-linear transformation of the resulting potential, often referred
to as activation function Nk. Together, they define the following mapping nk : R

m → R:

yk = Nk(uk), (2.1)

where

uk (x) =
m∑
j=1

wj,kxj + bk. (2.2)

Finally, bk provides a way of directly shifting a given activation function.

xj Σ Nk(uk)

Activation
function

yk

Output

x1

xm

Bias
bk

...

...

w1,k

wj,k

wm,k

uk

Weights

Inputs

Figure 2.1: The detailed view of a single neuron nk.

4

CHAPTER 2. PRELIMINARIES 5

The behavior of the basic neuron in Fig. 2.1 depends on the values of its weights wk and
also on the chosen activation function Nk. In this regard, researchers have experimented
with a wide range of functions, including non-monotonic [31, 32], non-continuous [1], and
unbounded ones [33, 34]. In our experiments, which are available in Chapter 4, we cover
the most popular activation functions: namely, ReLU, sigmoid (Sigm), and the re-scaled
version of the latter known as hyperbolic tangent (TanH):

NReLU(uk) = max(0, uk) (2.3)

NSigm(uk) =
(
1 + e−uk

)−1
(2.4)

NTanH(uk) = 2NSigm(2uk)− 1. (2.5)

At the same time, one may notice that many state-of-the-art verification tools for
ANNs are only compatible with ReLU and similar piece-wise linear activation func-
tions [18, 29, 30]. Moreover, those that do support more activation functions [13, 10, 14]
often incur a significant performance hit, when solving the resulting non-linear verification
problem. In contrast, the discretization technique we propose in Section 3.3 allows us to
efficiently verify ANNs with any form of activation function.

Besides, our verification methodology is general enough to be applied to a large variety
of ANN architectures. Specifically, we support any feedforward, feedforward DNN and
feedforward MLP that are built from the composition of the basic neuron model in Fig. 2.1.
Similar to what has been reported in existing ANN verification studies [35, 17, 18], the
primary factor influencing our verification time is the number of non-linearities, in a neural
network, rather than its architecture (see Section 4).

2.2 Quantized Neural Networks (QNNs)

As the deployment of ANNs in software applications becomes widespread, concerns about
power consumption and complexity of large models increase. In this light, one of the main
techniques to reduce energy requirements related to ANN inference is quantization [26],
which further restrict operations required to compute the output of each neuron (see (2.1)
and (2.2)) to integer [27] or even binary representations [23, 24]. State-of-the-art methods
to perform such a transformation significantly improve the low-power feature of ANNs
while retaining the original predictive accuracy [36].

At the same time, the discretized nature of quantized neural networks (QNNs) gener-
ates unique challenges regarding their verification [19]. More specifically, the output and
intermediate computations performed by a network may differ from their floating-point
counterparts. Thus, verification tools that operate on non-quantized ANN may return
incorrect results.

We demonstrate this with the following motivating example. Assume that we want to
verify the neural network in Fig. 2.2, which relies on the activation function ReLU and
whose output can be directly computed as:

f(x1, x2) = A+B = ReLU(2x1 − 3x2) + ReLU(x1 + 4x2). (2.6)

Furthermore, assume that, in our example application, the output of this ANN must never
fall below f(x1, x2) ≥ 2.7, and that we want to verify whether this is true for the input
(x1, x2) = (0.749, 0.498).

Now, if we run an experiment with real numbers R (from the mathematical domain),
the result is f(0.749, 0.498) = 2.745, which satisfies our safety property f(x1, x2) ≥ 2.7.

CHAPTER 2. PRELIMINARIES 6

Input #1
x1

Input #2
x2

A

B

f Output

2

-3

1

4

1

1

Figure 2.2: A simple fully-connected neural network with ReLU activations and biases
set to zero (not shown).

However, if the same ANN is quantized to a lower precision, this is not the case anymore.
Indeed, for a QNN with 4-bit integer and 6-bit fractional precision, its output becomes
f̂(0.749, 0.498) = 2.6867, which violates our property. It is worth mentioning that such
discrepancies can be even worse when larger ANNs are employed, due to cumulative error
in long computation chains. Thus, in our verification approach, we make sure the actual
implementation model used in an ANN implementation is captured (see Section 3.2).

Besides, we could formulate another research question of interest: what is the deepest
quantization that can be applied to a given ANN so that it makes correct decisions?
This way, for instance, we would be able to target heavily restricted devices while still
keeping the implementation correctness based on formal guarantees. Although that is not
the focus of the present work, it provides the first step towards that goal. Moreover, it
paves the way for a complete verification framework suitable to ANN implementations in
embedded devices.

2.3 Safety properties for ANNs and QNNs

Let us now formalize the concept of safety property we briefly mentioned in the previous
Section 2.2. In general, a safety property defines the set of states that a system is designed
to reach safely. In software verification, such properties are usually defined according to a
user’s domain knowledge, which allows him to state which program behaviors are safe [37].
In ANN verification, the black-box nature of their associated computation means that
safety properties are usually defined on the inputs and outputs alone [38, 39]. In this
research, we often refer to safety properties in the following form:

x ∈ H =⇒ f(x) ∈ G, (2.7)

where x is an input vector, H is an input region, f(x) is their corresponding output, and
G is an output region. However, one may notice that our verification method supports
any safety property that can be expressed in first-order logic (see Section 3.4).

A powerful and general way to define an input region H is choosing a center point
x ∈ D in the input domain D, and letting the set H(x, din) cover the whole neighborhood
of points around it that are within a given distance din(x,x

′) ≤ 1 [38, 39]. As an example,
in the field of image classification, robustness properties are defined in this way [40]. For
continuous input domains D ≡ Rm, such a distance is often defined in terms of the family
of p-norms as follows:

dp(x,x
′) = ||x,x′||p =

(m∑
i=1

|xi − x′
i|p
) 1

p
, with p ∈ [1,∞), (2.8)

where p = 1 is the Manhattan distance and p = 2 is the Euclidean distance. Furthermore,
this definition can be extended to p = ∞ by introducing the so-called infinity or maximum

CHAPTER 2. PRELIMINARIES 7

norm d∞(x, x′) = maxi(|xi − x′
i|). Note that input regions defined through p∞ can be

described by a set of linear constraints, a fact that makes them attractive to the verification
community for efficiency reasons [18, 15, 41]. Also, input vectors can be re-scaled using a
diagonal matrix Z, allowing us to define hyper-ellipsoids (if p = 2) and hyper-rectangles
(if p = ∞) in the input space:

d̂p(x,x
′, Z) = dp(Zx, Zx

′). (2.9)

Moreover, further attention is required if the input domain M is discrete in nature, for
instance, in natural language processing (NLP) applications. However, a mapping to a
continuous space is often available [42].

Once we establish a definition for the input set H in (2.7), we can complete the
definition of our safety property by choosing the corresponding output set G [39]. For
regression tasks, we can again define a safe neighborhood around an output point f(x)
within a given distance dout(f(x), f(x

′)) ≤ 1,∀x′ ∈ H(x, din). For classification tasks, the
output set G often comprises all points that assign the highest score to the desired class,
e.g., G ≡ {y|(y = f(x),∀x ∈ D)∧ (yi > yj, ∀j ̸= i)} for output class i. In Section 3.4, we
show how to define this kind of safety properties inside our verification tool.

2.4 Satisfiability Modulo Theories (SMT)

Once we have defined a safety property P , according to (2.7), we need to verify that it
always holds for our (quantized) neural network. As we mentioned in Chapter 1, there
exist many approximate techniques to do so. However, in this research, we focus on
bit-precise verification via satisfiability modulo theories (SMT) solvers [43].

Similar to Boolean Satisfiability (SAT) solving [44], the SMT approach to verification
works by converting a verification problem at hand into a logic formula and then checking
whether it is satisfiable. However, SMT extends SAT beyond boolean logic and allows us
to model a verification problem as a decidable subset of first-order logic. At the same time,
the interpretation of these models is restricted to a combination of background theories,
which are written in first-order logic with equality. More formally, given a first-order
formula F , encoding a verification problem, and a background theory T , we say that F
is T -satisfiable if and only if there exists an assignment such that the union F ∪ {T} is
satisfiable.

The modeling power of SMT comes from the variety of background theories T that we
can use. Those theories model the semantic of common mathematical objects like real,
floating-point, and integer numbers, arrays, lists, bit vectors, and the operations defined
on them for computational problems [45]. While modeling capabilities of SMT are still
being extended to new domains (e.g., the work of de Salvo Braz [46]), mainstream SMT
solvers (e.g., Z3 [47], CVC4 [48], and Boolector [49]) already offer native support for all
theories above.

2.5 Existing SMT approaches for ANNs and QNNs

SMT approaches have been applied to an extensive range of verification problems [43]. In
this section, we review existing approaches for ANNs and QNNs. One may notice that
due to the SMT paradigm flexibility, such approaches vary in the abstraction level at
which they tackle a verification problem.

CHAPTER 2. PRELIMINARIES 8

Early research applied existing SMT solvers to the verification of real-valued ANNs
and showed some difficulties in scaling beyond toy examples [28]. More recently, Katz
et al. proposed to extend the background theory of real numbers and include an extra
predicate for the ReLU activation function [18]. Since each ReLU doubles the number
of verification formulas, they introduced a dedicated lazy solver, called Reluplex, which
only visits a relevant subset of formulas. Their algorithm was subsequently extended to
arbitrary piecewise-linear activation functions [14]. An alternative approach by Huang
et al. asks a user to define a problem-dependent set of micro-manipulations that the
SMT solver chains to search a state space [17]. Thus, they can scale to medium-sized
ANNs for image classification. Furthermore, verification methods based on real number
computation can be extended to cover floating-point implementations of ANNs [18, 41].

In contrast, SMT methods to verify QNNs have to contend with a more challenging
computational problem, from the theoretical perspective [19]. In this respect, Giacobbe
et al. chose to represent QNN operations with the bit-vector background theory and
showed that the associated verification results can be very different from their real and
floating-point counterparts [30]. Similarly, Baranowski et al. proposed a new fixed-point
background theory and tested it on some small QNNs [29]. In general, low-level optimiza-
tions in SMT encoding of QNNs are shown to speed up verification processes consider-
ably [30, 19]. In the extreme case of binarized neural networks, where quantization only
allows two binary states for each variable, a verification problem can be reduced to SAT
solving [16]. In addition, hardware-level optimizations are crucial for efficiency too [25].

In summary, our methodology is a generalization of Sena et al. focused on SMT
verification of CUDA implementations of ANNs [50]. As we expound in Chapter 3, we
take advantage of existing techniques in software verification to model both ANNs and
QNNs as SMT formulas. Our novelty lies in the encoding of fixed-point operations and the
efficient treatment of non-linear activation functions, which allows us to verify networks
beyond the simple ReLU function.

Chapter 3

A methodology for Verifying
Quantized Neural Networks

While we usually think of neural networks as mathematical models, their implementation
is actually written in source code, in a given language. Thus, in this respect, neural
networks can be treated like any other piece of software. The advantage of this strategy
is twofold. First, we can readily adapt many existing software verification techniques to
ANNs and QNNs. Second, we give a user access to these highly technical verification
tools in a familiar coding framework.

This section lists the sequence of steps required to verify ANNs in such a way. To this
end, we assume that an ANN is given as input in the form of a piece of single-threaded
C code (see Section 3.1). Furthermore, we explain how to represent a quantized ANN
by calling our finite-word length (FWL) implementation models, which are discussed
in Section 3.2. Likewise, we show how to discretize each activation function with the
algorithm in Section 3.3.

Once the code has been prepared in this way, the user can specify the desired safety
property with assume and assert statements, as detailed in Section 3.4. Then, we com-
pute a reachable set of values for each variable, using the invariant inference techniques in
Section 3.5. Finally, we verify the safety property via SMT model checking, as explained
in Section 3.6. All the techniques we use to reduce the search space of the SMT solver
are listed in Sections 3.7 and 3.8.

Our whole verification methodology is summarized in Fig. 3.1. Furthermore, we
conclude in Section 3.9 with a complete walk-through example of our workflow.

3.1 ANN code generation

The current approach to ANN development uses machine learning libraries such as Tensor-
Flow and PyTorch to define the architecture of the neural network and train its weights.
Despite those frameworks are efficient for training ANNs, the current approach deals with
the trained ANN regardless how it was trained. Once the development phase is over, a
final implementation of the ANN is produced, targeting a specific computer architecture,
e.g., AMDx64, CUDA-enabled GPUs [51], embedded systems running on FPGAs [52].
Depending on the application, these implementations are optimized with several objec-
tives in mind, ranging from speed of inference to energy consumption and memory re-
quired [53, 54].

In this research, we use the C language as an abstraction of all these possible system

9

CHAPTER 3. METHODOLOGY 10

Figure 3.1: The proposed verification workflow for fixed- and floating-point ANNs.

realizations, with the addition of implementation models to represent fixed-point arith-
metic (see Section 3.2). Furthermore, we limit our scope to single-threaded code, and
leave the verification of concurrent implementations of ANNs (e.g. CUDA) for future
work.

At the same time, given the mathematical model of a specific ANN (see Section 2.1),
there exist multiple possible sequential implementations of it. This is because neural
networks are highly parallel, since the output of all neurons in a single layer can be
computed independently. Furthermore, the activation potential uk of each neuron (see
Equation 2.2) is the result of a sequence of multiply-and-accumulate (MAC) operations,
whose order can be changed arbitrarily.

In our experiments (cf. Section 4.3), we show that our verification framework is
insensitive to changes in the order of the basic operations performed by the ANN. As a
result, all equivalent implementations of the same ANN will yield the same verification
performance in terms of time, memory usage, and outcome. Thus, for the remainder of
this section, we assume that specific implementation is given and detail the sequence of
processing steps required for its verification.

3.2 Models for fixed-point ANN implementations

In this section, we discuss how our implementation models work to support fixed-point
verification of neural network implementations.

There exist two ways of supporting fixed-point neural network implementations [30].
First, convert inputs into fixed-point and perform all the underlying steps, e.g., training
and validation, also in fixed-point. Second, convert trained models and neural network
operations, e.g., realization, from floating-point representation into fixed-point, which is
then followed by a check of the desired properties. The former is likely to produce better
representations, but the latter is likely to be more practical [55] because datasets are
provided in floating-point representation. Besides, such a conversion should keep the
dynamic range noticed in weights and neuron outputs, given that those values obtained
from training are matched to the entire resulting ANN model. Here, we have chosen the
latter. Moreover, such a method, also known as network compression or quantization, is
the usual way of deploying neural networks on restricted devices, reinforcing its use.

Our goal is to transform an existing model (and its constraints) defined in the C

CHAPTER 3. METHODOLOGY 11

programming language into a fixed-point representation. Here, a fixed-point format is
specified as ⟨k, l⟩, where k denotes the number of bits to encode its sign and integral part,
resulting in a representation I, and l indicates the number of bits to encode its fractional
part, resulting in F . Furthermore, given a rational number, we can represent it in fixed-
point by using k + l bits, which is interpreted as I + F

2l
. Such representation allows us

to take a hardware platform’s limitations, where a specific model will be executed, into
account, in such a way that a more suitable implementation is provided. Moreover, in
the present context, two’s complement is used for value representation and arithmetic
operations, due to some advantages, such as the wrap-around effect [56]. For instance,
if we want to encode number +3.25 into format ⟨5, 3⟩, it will give rise to the following
representation in memory: {00011|010}, with the most significant bit (i.e., 0) indicating
the sign ”+”, I = 3, and F = 2.

To model the quantization effect on ANN’s computation steps, we convert each arith-
metic operation (addition, subtraction, multiplication, or division) from floating-point to
their respective fixed-point counterparts. In particular, these operations and conversions
must consider the parameters k and l, along with the sign bit. We achieve this goal with
the implementation models proposed by Chaves et al. [56], which have been extensively
validated in the digital controller domain. Indeed, they replace the mentioned arithmetic
operations (i.e., ”+”, ”−”, ”∗”, and ”/”) and then return results according to a specific
precision. Furthermore, these implementation models formally define a set of methods
and values that precisely represent fixed-point operations’ behavior.

In Fig. 3.2 we show an example of how to convert a piece of floating-point source-code
into a fixed-point representation with the proposed implementation models. Here, we
have a code snippet that computes the activation potential of a single neuron, one of
the basic operations in ANNs. One may notice how the types and operations have been
changed in the fixed-point version. In particular, fxp float to fxp transforms a type
float into a type fxp t (fixed point), and both fxp add and fxp mult make sure that
the addition and multiplication arithmetic operations are performed in fixed-point and
take into account the previously defined desired precision.

In summary, the fixed-point version of an ANN’s code references the appropriate
implementation models, thus ensuring that the behavior of each fixed-point arithmetic
operation is carried out correctly. Our experiments, in Section 4.4, show the impact of
different levels of quantization granularity in ANNs.

Finally, another aspect is worth mentioning: for an entirely correct implementation,
when a fixed-point format is chosen, one should still represent the dynamic range asso-
ciated with the target data. If that is not done, a mismatch between trained model and
processing arises, which leads to overflow and introduces errors that can jeopardize an
ANN’s decision.

In other words, if a given variable holds values that range from −15.5 to 15.5, for
instance, a format ⟨3, 2⟩ should not be used because that would lead to frequent overflow
events. Specifically, values above 3.75 and below −4.00 would not be represented. Con-
sequently, in this specific case, a format ⟨5, 2⟩ (note the dynamic range provided by the
integer part), for instance, would be suitable, then keeping correct representation in all
associated operations.

CHAPTER 3. METHODOLOGY 12

3.3 Discretization of non-linear activation functions

As mentioned in Section 2.1, the choice of an activation function can have a considerable
impact on verification times. While piece-wise linear functions can be readily represented
as a (sequence of) if-then-else instructions, non-linear activation functions require careful
adjustments to avoid severe performance degradation. This section presents an well known
approach [57] to convert such non-linear functions into look-up tables, thus significantly
speeding up verification processes.

Assume that the non-linear activation function N : U 7→ R is a piece-wise Lipschitz
continuous function [58], thus there is a finite set of a locally Lipschitz continuous functions
Ni : Ui 7→ R for i ∈ N≤a, the so-called selection functions, such that the sets Ui ⊂ R are
disjoint intervals, N (u) ∈ {N1(u), . . . ,Na(u)} holds for all u ∈ U, U =

⋃
i∈N≤a

Ui, and

∥Ni(u1)−Ni(u2)∥ ≤ λi∥u1 − u2∥, ∀u1, u2 ∈ Ui, (3.1)

where λi denotes the Lipschitz constant of Ni.
The proposed discretisation is applied to each subset Ui. The idea consists in discretis-

ing the Ui to obtain the discrete and countable set Ũi ⊂ Ui. We build a lookup table for
rounding the evaluation of Ni(u) to Ñi(u) : Ui 7→ R, and consequently rounding N (u) to

Ñ (u) ∈
{
Ñ1(u), . . . , Ña(u)

}
. This lookup table contains uniformly distributed Ni sam-

ples within Ui, including interval limits, to ensure the accuracy ∥Ñi(u)−Ni(u)∥ ≤ ϵ. Let
Li be defined as the length of the interval Ui, i.e.,

Li ≜ sup
u∈Ui

u− inf
u∈Ui

u. (3.2)

The following theorem can choose the number of samplesNi to ensure the desired accuracy
ϵ.

Theorem 3.3.1. Let the non-linear function N : U 7→ R, N ∈ {N1(u), . . . ,Na(u)}, be
piecewise Lipschitz continuous such that each selection function Ni(u) : Ui 7→ R presents

the Lipschitz constant λi, and consider the approximation Ñ (u) ∈
{
Ñ1(u), . . . , Ña(u)

}
,

where each selection function Ñi : Ui 7→ R, for i ∈ N≤a is obtained with Ui ⊂ U containing
Ni samples. The approximation error is bounded as

∥Ñ (u)−N (u)∥ ≤ ϵ, (3.3)

for a given ϵ, if

Ni ≥ 1 +
Liλi

ϵ
, ∀i ∈ N≤a (3.4)

holds.

Proof. Given that the length of each interval Ui is Li (cf. (3.2)), the length of each sub-
interval, obtained by uniformly dividing Ui at the Ni samples, is Li

Ni−1
. Considering the

Lipschitz continuity in (3.1), the rounding error for Ñi(u) is bounded as

∥Ñi(u)−Ni(u)∥ ≤ Li

Ni − 1
λi. (3.5)

CHAPTER 3. METHODOLOGY 13

If (3.3) holds for all i ∈ N≤a, the inequality

Li

Ni − 1
λi ≤ ϵ (3.6)

and, consequently, (3.4) holds. Moreover, from (3.5) and (3.6), ∥Ñi(u) − Ni(u)∥ ≤ ϵ for
all i ∈ N≤a.

Based on Theorem 3.3.1, the number of samples used in the discretization of nonlinear
activation functions, e.g., NTanH and NSigm, described respectively in (2.4) and (2.5), can
be computed to ensure desired accuracy. Without loss of generality, the approximation
Ñi(u) can be defined as

Ñi(u) = Ni (Ai(u)) , (3.7)

where Ai : Ui 7→ Ũi is an arbitrary approximation operator, e.g., rounding and quantiza-
tion.

For instance, consider that we want to obtain the function ÑSigm, which approximates
NSigm based on a discrete domain Ũ , with target accuracy ϵ = 0.01. It is clear that NSigm

is globally Lipschitz continuous with constant λSigm = 0.25 since the supu∈U |NSigm(u)| =
0.25, and U = R. Moreover, let us choose the following three intervals to define the
approximation ÑSigm(u):

U1 = (−∞,−20] , (3.8)

U2 = (−20, 20) , (3.9)

and
U3 = [20,∞) , (3.10)

since the derivative of NSigm(u) is negligible for u ∈ U1∪U3, i.e., λ1 ≈ 0 and λ3 ≈ 0, while
the constant λ2 is equivalent to the global Lipschitz constant, i.e., λ2 = λSigm = 0.25. Now,
we can use (3.4) to compute the number of samples in each interval necessary to ensure
the desired accuracy ϵ = 0.01. Accordingly, the numbers of samples are N1 = N3 = 1 and
N2 = 1001 since L2 = 40 (cf. (3.2)). Note that the approximators Ai can be arbitrarily
chosen. Here, it is suggested to choose A1 = −20 and A3 = 20 because it is not necessary
to have more samples than the limits of the intervals for U1 and U3. Finally, A2 can be
chosen as the half-towards-zero rounding with 3 decimal digits for floating-point and real
ANNs, and as the underlying quantization function for fixed-point ANNs.

Fig. 3.3 illustrates the effect of the discretization when evaluating the sigmoid function.
Note that the approximation fits well for ϵ = 0.01, and it becomes poor when ϵ increases.
It is worth mentioning that a look-up table is fundamentally a trade-off between speed
and memory. If the latter is not a restriction, verification processes may benefit from
such a strategy. Another interesting point is that such a discretization strategy should
be under the final desired fixed-point format so that a safety-property verification is not
compromised. This way, ϵ should be arbitrarily small and also much lower than the
quantization step incurred by a fixed-point format.

CHAPTER 3. METHODOLOGY 14

(a) (b)

Figure 3.3: Comparison between the real sigmoid NSigm and its discretizations ÑSigm for
ϵ = 0.01 (N2 = 1001), ϵ = 0.1 (N2 = 101), ϵ = 1 (N2 = 11): (a) sigmoid activation
function together with its approximations within the range [−20, 20] and (b) a zoom in
to show the interval [−2, 2].

3.4 Introducing safety properties in ANN code

As we explain in Section 2.3, verifying an ANN means proving that a given safety property
holds. Such a safety property is a falsifiable mathematical relation defined on the values
of an ANN’s variables. Since we are considering software implementation of ANNs here,
in this section, we then show how to annotate ANN code and also how to specify a desired
safety property.

As a preliminary step, we annotate code by replacing the concrete input to the neural
network with a general non-deterministic input. We do so by assigning a non-deterministic
value to each input variable as in the following example (another example is shown in
Figure 3.4):

float x 1 = nondet float()

float x 2 = nondet float()
(3.11)

where we use the notation nondet float() prescribed by our underlying verification tool
ESBMC [59, 60]. With this, our verification tool knows to expect any possible input, and
it is then the role of the safety property (see Equation 3.14 below) to restrict the input
space to the sub-domain of interest.

Let us consider safety properties in the general form x ∈ H =⇒ y ∈ G, where
knowing an input vector x, belonging to H, guarantees that the output vector y = f(x)
belongs to G. Consequently, we encode the premise of this implication with a pre-condition
instruction assume, specifying the set of values H that each xi ∈ x can take. For example,
a rectangular domain for the input variables x1 ∈ [0, 2] and x2 ∈ [−1

2
,+1

2
] can be encoded

as
assume(x 1 >= 0 && x 1 =< 2) (3.12)

and
assume(x 2 >= - 0.5 && x 2 =< 0.5). (3.13)

It is also important to mention that comparison between floating point values must con-
sider the smallest quantization step e, e.g., when checking if a floating point variable d

CHAPTER 3. METHODOLOGY 15

equals to 1 the condition should be written as

if(abs(d - 1) < e) (3.14)

This notation instructs the subsequent SMT model checking to search only the inputs
that satisfy the conditions specified in the assume instruction, as it ignores an execution
when being false (e.g., see ESBMC assume [61]), thus making sure that the premise of the
safety property x ∈ H is satisfied. Note also that the instruction assume is general and
supports any boolean condition as its argument.1 This way, any form of input region H
can be specified, as long as it is valid C code syntax. At the same time, hyper-rectangular
input domains tend to lead to faster verification times, as mentioned in Section 2.3.

In contrast, we encode the conclusion of the implication with the post-condition in-
struction assert, specifying the set of values G that each variable yi ∈ y can safely range
in. For instance, if we have a binary classification network with two outputs y1 and y2
indicating the score of each class, we can encode the conclusion of a robustness safety
property for the second class as

assert(y 2 > y 1). (3.15)

Consequently, it requires that when that premise is satisfied, our binary network always
predicts the second class. As for the input regionH, the assert instruction can be used to
specify a variety of output regions G, but now making an assessment of what is expected.

3.5 Invariant inference via interval analysis

Once the safety property has been specified, as we explain in Section 3.4, we can inject
further assume instructions in the code and reduce the model checker’s search space. In-
deed, given the sequential nature of ANN computation, the set H of values allowed by the
premise of a safety property also constrains the range of the following intermediate com-
putation steps. Thus, if we can explicitly derive and unfold these additional constraints
onto intermediate variables, in such a way that we propagate constraints and benefit from
them on subsequent operations, we can more succinctly tell a model checker where to look
for counterexamples.

In general, deriving additional (over-approximated) constraints on intermediate com-
putation steps falls under the umbrella of invariant inference [62]. It is based on the
discovery of an assertion that holds during the execution a given piece of code, which
can then be used in verification procedures. For neural network code, which can easily
be implemented without loops and dynamic memory allocation, we find that an inter-
val invariant analysis suffices [63]. Such a method of invariant analysis computes lower
and upper bounds on the values of each program variable (e.g., a ≤ x ≤ b, where a,
b are constants and x is a variable), by propagating the initial set H through an ANN
with interval arithmetic rules. One may notice that more complex constraint propagation
methods (e.g., zonotopes and polyhedra) exist in the literature [12], but whether reduction
in search space justifies the additional computational cost is an open problem. Moreover,
given that neural network quantization, as tackled here, already increases computational
cost, then simple and efficient constraints are desired.

1When working with quantized representations, whether fixed or floating point, extra care should be
taken in checking that the specified constants are rounded in a way that does not break the desired
condition.

CHAPTER 3. METHODOLOGY 16

On the more practical side, there are many tools to perform interval analysis of C
code. In our experiments, in Section 4, we have used the evolved value analysis (EVA)
plugin of the open-source tool FRAMA-C [64]. We then inject intervals into ANN code as
additional pre-condition instructions assume on intermediate variables, thus covering the
entire processing chain. Finally, we have compared this method with the native interval
analysis support provided by the state-of-the-art verification tool ESBMC [65], in Section
4.3, and found that combining them (both enabled) yields the best results.

3.6 Model checking ANN implementations

Given the annotated C code from Sections 3.4 to 3.5, we are now tasked with answering
the following verification question: do all inputs that satisfy pre-conditions assume also
satisfy associated assert post-conditions, in a specific ANN implementation? In other
terms, are we able to find at least one specific input that violates a safety property, given
an ANN implemented with a specific precision? In this section, we explain how to answer
this question with state-of-the-art symbolic model checking techniques.

In general, model checking is concerned with verifying whether a given property ϕ
holds for a finite state transition system M , which is typically represented by a triple
(S, I, T) [66]. More formally, these mathematical objects are defined as follows:

• S is the set of states a system can be in, where each state consists of the value of
the program counter (PC), local and global variables;

• I : S → {0, 1} is an indicator function for a set of initial states;

• T : si → sj, with si, sj ∈ S, is a transition function describing a system’s evolution,
i.e., pairs of states specifying how a system can move from state to state;

• ϕ : S → {0, 1} is an indicator function for safe states.

In our case, the annotated ANN code defines these objects implicitly. S represents all
possible value assignments to a set of program variables, including the PC. I indicates
all assignments that satisfy existing assume pre-conditions. T holds the semantic of each
instruction in code, defining how to go from one state to another, which allows checking
for reachability (cf. Definition 1 below). Finally, ϕ represents a safety property encoded
with existing assert post-conditions.

Definition 1. Let M be a transition system. A state sr ∈ S is called a reachable state
in M if there exists a finite sequence of N state transitions starting from an initial state

s0 and ending in state sr, i.e., s0
T0→ s1

T1→ . . .
TN→ sN+1 = sr, where sn

Tn→ sn+1 denotes a
state transition when applying Tn.

In practice, several state-of-the-art model checkers accept C code as input [67, 68, 59,
60]. Frequently, input code is readily converted into static single assignment (SSA) form
before further processing [69], which has the advantage of making underlying finite-state
transition systems more explicit. We show an example, in Fig. 3.4, parts (a) and (b), of
such a conversion procedure.

Note that, in all experiments in Section 4, we use ESBMC for this model checking
step [59, 60]. Like any other state-of-the-art model checker, ESBMC has been heavily
optimized to reduce verification times. However, not all of these optimization techniques
apply to feed-forward neural network code, which does not contain loops and recursions.
In the following Sections 3.7 and 3.8, we clarify which techniques do apply to ANN code.

CHAPTER 3. METHODOLOGY 17

3.7 Incremental verification using lemma learning via

SMT

The SMTLIB logic format introduced an assertion stack concept and the ability to push
and pop assertions of it [70]. In particular, some SMTLIB compliant SMT solvers have an
internal stack of assertions, which we can add new assertions to or remove old ones from.
The main idea here is to enable assertion retraction and lemma learning incrementally.
The former allows one to add assertions to a formula, evaluate the individual result, and
then return the same formula to its original form. The latter happens when the SMT
solver stores facts (in the form of lemmas over a formula’s variables). In summary, it has
already determined a formula, which may prove helpful in future checks.

Here, we enable the underlying SMT solver to use lemmas determined during previous
checks for future ones, thereby optimizing search procedures and potentially eliminating
a large amount of formula state-space to be searched. Note that previous studies report
encouraging results using incremental (bounded) model checking for software, increasing
the search depth without leading to the overhead of restarting a verification process
from scratch [71]. This way, we apply incremental SMT solving to verify neural net
implementations, where a formula is built up in stages, and lemmas are learned, along
the way, about that same formula.

In particular, this incremental verification is beneficial to exploring neural net imple-
mentations by ESBMC since they contain various ite operators (e.g., to represent ReLU
activation functions). The existing operation of the SMT solver follows directly from
ESBMC. Indeed, once we build the directed acyclic graph (DAG) and produce an SSA
program by symbolic execution, from a neural net’s implementation, that program is con-
verted to a fragment of first-order logic and translated into a form acceptable for the SMT
solver. Then, after checking the satisfiability of a given formula, the latter is discarded.
Here, many ite operations will be converted, solved, and discarded during a neural net’s
verification procedure. Since each variable in an ite operation is assigned only once along
each path in SSA form, this requires a case split to evaluate the activation function, e.g.,
z = g ? x : y . As a result, we call the SMT solver during a symbolic execution to check
the satisfiability of the guard g and then determine the value of variable z. Using ite
retraction to build and deconstruct a formula has the potential to reduce SMT-conversion
overhead, and lemma learning could lead to swifter verification times. The SMT solvers
supported by ESBMC (i.e., Z3 [47], Yices [72]) claim lemma learning as a feature, thereby
allowing us to evaluate its impact for verifying neural-net implementations.

To use incremental SMT, during neural net verification, we must identify ways to reuse
an SMT formula by pushing and popping ite operations into the solver. In particular,
we retain the formula produced for an ite operator, identify the common prefix between
it and the next ite operator produced, and retract all the ite operations that can be
evaluated. Then, we place the ite operators that could not be evaluated on top of the
remaining formula. Fig. 3.4 illustrates this approach. In particular, in Fig. 3.4(a), we
have two inputs x and y in lines 4 and 5, respectively; three assignments in lines 6, 8,
and 10; three ite operators, which represent ReLU activation functions, in lines 7, 9, and
11; and one assertion representing a safety property, in line 12. Fig. 3.4(b) illustrates the
program of Fig. 3.4(a) converted into SSA form (i.e., each variable is assigned exactly
once), which is the format we use for incremental learning.

During the symbolic execution of this neural net implementation, based on Fig. 3.4(a),
we check the satisfiability of guard “a < 0”, in line 7, and conclude that it could either

CHAPTER 3. METHODOLOGY 18

be evaluated as “true” or “false” since “a” can assume values between −3 (lowest) and
2 (highest). As a result, we cannot simplify this expression before checking the safety
property in line 12 of Fig. 3.4(a). However, we can learn from this assignment and place
its ite operation on top of the remaining formula, which can then be used to check the
mentioned safety property. After that, we check the satisfiability of guard “b < 0”, in
line 9, and conclude that it always evaluates to “false” since “b” can assume only positive
numbers between 0 (lowest) and 5 (highest). So, we are thus able to remove this expression
and the respective assertion. Similarly, we check the satisfiability of guard “f < 0”, in
line 11, and also conclude that it always evaluates to “false” since “f” can assume only
positive values between 0 (lowest) and 4 (highest).

We show the simplified neural net implementation using our incremental verification
via lemma learning in Fig. 3.4(c). One may notice that we have safely removed two
ReLU activation functions represented by the variables b2 and f2, initially present in
Fig. 3.4(b), which thus reduce the formula’s size to be checked by the underlying SMT
solver. Note further that we have learned that variable “a” can assume values between
−3 (lowest) and 2 (highest), which can be used to check the assert statement specified in
line 9 of Fig. 3.4(b). Consequently, that same assert can not be identified in Fig. 3.4(c)
anymore because the knowledge of its range allowed such a simplification. The assertions
b1 ≤ 5 and f1 ≤ 4 were also removed since we previously learned the intervals for the
variable b and f . Lastly, we can observe the ability to perform a query at any neuron
using incremental verification, which can help prune neural net implementation before
deploying it to an embedded device with time, memory, and energy constraints.

3.8 Constant folding, slicing and expression balanc-

ing for search-space reduction

Our employed verification engine implements general code optimizations, when convert-
ing a neural net implementation to SMT. These include constant folding, slicing and
expression balancing [73], which we briefly introduce here.

Constant folding evaluates constants, including nondeterministic symbols, and prop-
agates them throughout the resulting formula, during encoding. In particular, we exploit
the constant propagation technique to reduce the number of expressions associated with
specific neuron computation procedures and activation function. Thus, we simplify the
SSA representation, using local and recursive transformations, to remove functionally re-
dundant expressions (for neuron computation procedures and activation functions) and
redundant literals (for safety properties), as

a ∧ true = a a ∧ false = false
a ∨ false = a a ∨ true = true
a⊕ false = a a⊕ true = ¬a
ite (true, a, b) = a ite (false, a, b) = b
ite (f, a, a) = a ite (f, f ∧ a, b) = ite (f, a, b) .

We apply such simplifications to reduce the size of the resulting formula and consequently
achieve simplification within each time step and across time steps, during the encoding
procedure of a neural net’s implementation. In our experimental evaluation, in Section
4.3, we have noticed substantial improvements using these simplifications in formulas, but
we have not identified improvements using the constant propagation approach itself. It

CHAPTER 3. METHODOLOGY 19

happens because neural net inputs are typically symbolic ones and not constants, as can
be noticed in the illustrative example in Fig. 3.4, where incremental learning removed the
activation functions for neuron b and output f .

Slicing removes expressions that do not contribute to the checking procedure of a given
safety property. It is an essential step to improve a program’s verification procedure,
considerably, in some cases [74]. Our verification engine implements two slicing strategies
in combination. First, it removes all instructions after the last assert in the set of SSA.
Second, it collects all symbols (and their dependent symbols) in assertions and removes
instructions that do not contribute to them. When used in combination, both slicing
strategies ensure that unnecessary instructions are ignored during SMT encoding. As
an example, the code in Fig. 3.4(a) can be considered. If we are interested in checking
that neural net’s output only, we could rewrite the final assert statement, in line 12, as
f <= 4. Consequently, such a modification do indicate that everything not involving f
does not cause an impact on the conclusion of the intended safety property. Based on
such a scenario, the resulting SSA for the code in Fig. 3.4(a) would be sliced as

x1 == nondet symbol(nondet0) ∧ y1 == nondet symbol(nondet1)∧
f1 == 3 ∗ (int)x1 + (int)y1 ∧ f2 == (f1 < 0 ? 0 : f1) ∧ f2 <= 4,

where there is no presence of information (states) regarding neurons a and b. In our
experimental evaluation, in Section 4.3, we have observed that slicing can significantly
reduce the resulting SMT solving time.

Expression balancing reduces the size of SMT formulae by reordering long chains of
operations with the associative rule. This technique has been recently applied to neural
networks by Giacobbe et al. [30], but has been used in compilers for decades. In brief, the
computation of neuron potentials in ANNs requires a linear combination of the neuron in-
puts (see Equation 2.2). Depending on the specific implementation, the resulting sequence
of multiply-and-accumulate operations (MAC) in code is translated to SMT formulae of
different sizes. In the worst case, which is portrayed in Fig. 3.5a, the formula size is linear
in the number of MAC operations (associating to the right). Expression balancing then
ensures that SMT formulae are reordered according to a balanced fashion, as shown in
Fig. 3.5b. Consequently, the sequence of MAC operations is split over multiple accumula-
tors in a divide-and-conquer fashion, yielding a set of semantically equivalent, but smaller
SMT formulae. As a result, it can avoid, for instance, solver time-out events. In Section
4.3, we show that this associative balancing step is crucial in making ANN verification
viable. One may also notice that this result is consistent with that presented by Giacobbe
et al. [30]. Furthermore, in Section 4.3, we show that thanks to this balancing step, the
performance of our verification methodology is stable across different implementations of
the same ANN.

CHAPTER 3. METHODOLOGY 20

+

wnxn +

wn−1xn−1 ...

w1x1 w2x2

(a)

+

+

+

w1x1 w2x2

...

+

... +

wn−1xn−1 wnxn

(b)

Figure 3.5: Effect of expression balancing on abstract syntax trees: (a) linear and (b)
balanced association layouts.

3.9 Illustrative example: robustness to adversarial

images

We conclude this section with an illustrative example of our verification methodology. We
do so in order to clarify the user’s side of the workflow illustrated in Fig. 3.1. Later, in
Section 4, we report more details on the range of ANNs and safety properties that can be
verified with our methodology, as well as the efficiency of doing so.

The present example, illustrated in Fig. 3.6, shows how to verify a character recog-
nition ANN. First, given a network’s architecture and weights, in a high-level represen-
tation, as in Fig. 3.6a, such elements should be converted into single-threaded C code.
This task can be achieved through the popular machine learning libraries PyTorch [75]
and Tensorflow [76], or, like in many of our experiments, in Section 4, by converting
from the mid-level representation NNet2. Here, the converting process is implemented in
C language and it consists in translating the NNet file into a single-threaded C code. In
this example, we use the neural network from our Vocalic benchmark (see Section 4.2)
quantized to a fixed-point representation with 8 integer (including sign) and 8 fractional
bits.

(a) ANN structure and
weights. (b) H center. (c) H lower. (d) H upper. (e) Counterex.

Figure 3.6: Inputs and outputs of our verification approach: (a) ANN implementation;
safety property, where the (b) center, (c) lower, and (d) upper extremes of the input
region are shown; and (e) a counterexample that violates the safety property.

2github.com/sisl/NNet

github.com/sisl/NNet

CHAPTER 3. METHODOLOGY 21

Second, the ANN’s source code undergoes a further sequence of transformations. Ini-
tially, we replace all floating-point arithmetic operations with the corresponding fixed-
point implementation models (see Section 3.2), given that our ANN is quantized. Then,
we also replace any sigmoid, hyperbolic tangent, or piecewise-linear activation function
with its corresponding discretized look-up table (see Section 3.3).

Third, a safety property is encoded by adding the corresponding pair of assume and
assert instructions. In the present example, we check for robustness around a specific
input image, which we show in Fig. 3.6b. More formally, we define the input region of
our safety property (premise) as a set H = {x : |x − xd|∞ ≤ c}, where the centre point
xd corresponds to the 5 × 5 pixel values in the image of the ideal character “A”, i.e.,
without deviation, in Fig. 3.6b, and c = 80. Since ANNs are designed to solve specific
problems, the region and its parameters must vary. For reference, we report the lower
and upper bounds of H that precisely defines the minimum and maximum values of the
defined hyper-rectangle. It is illustrated in the gray image pixel domain, in Figs. 3.6c
and 3.6d, respectively. In this case, it is possible to see that c = 80 is a suitable value for
the vocalic recognition problem, since it produced an accurate adversarial example. It is
important to mention that there is no formal algorithm that produces suitable values of
c, however it can be found by running experiments and analysing its counterexamples.
However, c can also be set by analyzing a specific system and determining the maximum
input error range, for instance. Further we provide a set of benchmarks that evidences
how the value of c interferes on the counterexample proximity.

Likewise, we set the output region of the safety property (conclusion) as the set of all
outputs that assign a higher score yA > yk,∀k ̸= A to class “A” than to any other output
classes. Note that the final softmax layer, typically included in classification ANNs, can
be omitted for our purposes since it is a monotonic function of the score of each class [1].
After this, a static analysis tool such as FRAMA-C [64] propagates the input region H
through the associated ANN code and annotates it with additional assume instructions,
representing the reachable values-interval of each intermediate variable (see Section 3.5).

Fourth, annotated C code goes through a model checker that tries to falsify a safety
property. In our experiments (see Section 4), we have used ESBMC to do so, as it is a
good representative of state-of-the-art SMT model checkers [59, 60]. If a given safety
property can not be verified, ESBMC returns a counterexample that falsifies it, which
represents a potential adversarial attack on a neural network. In the present example,
ESBMC does indeed report such a counterexample, which we show in Fig. 3.6e. More
adversarial examples can be seen in Figs. 4.10a, 4.10b, and 4.10c, for a wide range of
safety properties and quantization granularities of our character recognition ANN.

CHAPTER 3. METHODOLOGY 22

1 float potential(float *w,

2 unsigned int w_len ,

3 float *x,

4 unsigned int x_len ,

5 float b) {

6

7 if (w_len != x_len) {

8 return 0;

9 }

10

11 float result = 0;

12

13 for (unsigned int i = 0; i < w_len; ++i) {

14 result += w[i] * x[i];

15 }

16

17 result += b;

18

19 return result;

20 }

(a)

1 fxp_t potential(float *w,

2 unsigned int w_len ,

3 float *x,

4 unsigned int x_len ,

5 float b) {

6 if (w_len != x_len) {

7 return 0;

8 }

9 fxp_t result = 0;

10 for (unsigned int i = 0; i < w_len; ++i) {

11 fxp_t w_fxp = fxp_float_to_fxp(w[i]);

12 fxp_t x_fxp = fxp_float_to_fxp(x[i]);

13 result = fxp_add(result , fxp_mult(w_fxp , x_fxp

));

14 }

15 fxp_t b_fxp = fxp_float_to_fxp(b);

16 result = fxp_add(result , b_fxp);

17 return result;

18 }

(b)

Figure 3.2: A method to compute the activation potential of neurons in C: (a) floating-
and (b) fixed-point.

CHAPTER 3. METHODOLOGY 23

1 int main() {

2 _Bool x, y;

3 int a, b, f;

4 x = nondet_bool ();

5 y = nondet_bool ();

6 a = ((2*x) - (3*y));

7 a = a < 0 ? 0 : a;

8 b = (x + (4*y));

9 b = b < 0 ? 0 : b;

10 f = ((3*x) + y);

11 f = f < 0 ? 0 : f;

12 assert(a <= 2 && b <= 5

&& f <= 4);

13 return 0;

14 }

(a)

1 x1 == nondet_symbol(nondet0

)

2 y1 == nondet_symbol(nondet1

)

3 a1 == 2 * (int)x1 - 3 * (

int)y1

4 a2 == (a1 < 0 ? 0 : a1)

5 b1 == (int)x1 + 4 * (int)y1

6 b2 == (b1 < 0 ? 0 : b1)

7 f1 == 3 * (int)x1 + (int)y1

8 f2 == (f1 < 0 ? 0 : f1)

9 (assert) a2 <= 2

10 (assert) b2 <= 5

11 (assert) f2 <= 4

(b)

1 x1 == nondet_symbol(nondet0)

2 y1 == nondet_symbol(nondet1)

3 a1 == 2 * (int)x1 - 3 * (int)y1

4 a2 == (a1 < 0 ? 0 : a1)

(c)

Figure 3.4: (a) A simple neural net implemented in C, where variables “a”, “b”, and “c”
range from −3 to 2, 0 to 5, and 0 to 4, respectively. (b) The initial neural-net C program
converted into SSA form. (c) A simplified version of the SSA form using incremental
learning.

Chapter 4

Experimental Evaluation

In this chapter, we test the performance of the verification approach we introduced in
Chapter 3. In this regard, we are mainly interested in the following research questions:

RQ1 - Ablation study - Is it possible to establish the role of each of the enhancement
techniques introduced in Chapter 3 and also define an optimal setup, both regarding
total verification time and performance?

RQ2 - Quantization effects - How does a quantization choice influence our verification
process and the safety of a neural network?

RQ3 - Comparison with SOTA techniques - What is the performance of our verifi-
cation approach when compared to the existing literature?

Regarding RQ1, since those techniques were first introduced for software verification
in general, we are interested, in particular, in finding their optimal configuration to verify
ANNs, including contribution and general setup. In addition, RQ2 is related to quanti-
zation of ANNs, which is in the core of the present work and have the potential to provide
a methodology regarding integration into target platforms. Moreover, if we were to verify
the same property for different quantization levels, would we observe any difference in ver-
ification time or outcome? Finally, regarding RQ3, it is always of paramount importance
to position a given approach among the existing scientific knowledge.

We present our answers to those questions in the following way. In Section 4.1, we
discuss a configuration step regarding quantization and also general data processing to
provide adaptation and avoid overflow in ANN operations. In Section 4.2, we describe the
datasets and ANNs that constitute our verification benchmarks, including the necessary
minimum number of bits for correct data-range representation. In Section 4.3, we isolate
the contribution of each component of our verification approach and propose the config-
uration that yields the best results performance-wise, which answers RQ1. In Section
4.4, we compare the performance and output of our verification approach across different
quantization levels of the same problem, which addresses RQ2, while analyzing impor-
tant aspects and general behavior. In Section 4.5, we compare our verification framework
with the most popular SOTA approaches, which fulfills RQ3. Finally, in Section 4.6, we
list the remaining limitations towards large-scale verification of fixed-point ANNs. All
benchmarks, tools, and results associated with the current evaluation are available for
download at https://tinyurl.com/6y7e49vk.

24

https://tinyurl.com/6y7e49vk

CHAPTER 4. EXPERIMENTAL EVALUATION 25

4.1 Quantization aspects and data adaptation

As mentioned at the end of Section 3.2, when correctness comes into play, not every
quantization format can be used. Indeed, suppose a format that is unsuitable to a target
ANN is chosen, aiming to keep the dynamic range of its data. In that case, overflow will
likely occur, compromising operation results and general ANN output. Nonetheless, a de-
signer can also incur severe quantization and suppose that errors due to wrong operations
are an acceptable side effect (even under frequent overflow). Still, our goal is to provide
compression that results in quantization error only, then preserving an ANN’s associated
dynamic range and correct computation of operations in neurons.

Another aspect is that input data may present a broad diversity of dynamic ranges.
As a consequence, they are usually processed in scaled format. In our framework, input
data is first normalized to the range [0, 1] and then fed to a given ANN (also for training).
This way, the initial (input) dynamic range is always known as well as all neurons output
values.

Consequently, it is essential to analyze neurons in a given ANN and then identify the
minimum and maximum associated values resulting from their processing, given input
data in the range [0, 1], which will define the minimum number of bits for the integer
part of a given representation. It does not specify maximum compression because it only
intends to represent the existing dynamic range and avoid overflow correctly. In this way,
all the worst case values could be represented by the specified number of bits keeping any
possible neuron output inside the dynamic range and no overflow would occur. Hence,
saturation would be avoided. Besides, we should also check the number of bits for the
fractional part to provide the desired accuracy.

Note that the discovery of the minimum number of bits for the integer part is made
by using Eq. (2.8), with p = 1, and taking into account all weights of each neuron to find
the maximum magnitude. Alternatively, FRAMA-C [64] can also be used, as it reveals
intervals associated with variables in ANN code.

4.2 Description of the benchmarks

In our evaluation, we consider ANNs trained on two datasets: the UCI Iris dataset [77] and
a vocalic character recognition dataset [50]. This section gives the details regarding the
employed datasets, the neural networks we trained on top of them, the safety properties
that we used to test our verification approach, and, finally, our general experimental setup.

Iris benchmark

The Iris dataset [77] consists of 50 samples from each of three species of Iris (Iris setosa,
Iris virginica, and Iris versicolor). This dataset contains both the length and width of the
sepals and petals in centimeters (our inputs) and the iris specie label (our output). Here,
we use TensorFlow version 1.4 [76] and keras [78] to train a feedforward neural network
with layers of 4 × 7 × 3 neurons, hyperbolic tangent activation functions, and softmax
output layer. This architecture presented a good training performance when compared
to 4 × 5 × 3 and 4 × 9 × 3 architectures under test accuracy. We train such a neural
network to predict the correct Iris species with the backpropagation algorithm and cross-
validation [1]. When quantizing the ANN to fixed-point arithmetic, we followed what was
presented in Section 4.1. We found that the maximum neuron output was bounded, in

CHAPTER 4. EXPERIMENTAL EVALUATION 26

modulus, by 23.3. Consequently, we allow for 6 integer bits, including sign, as they are
required to avoid overflow. In terms of safety properties, we specify hyper-rectangular
input regions, since it is quite used in ANN safety properties [39]. Hyper-rectangular
inputs are defined for each species: setosa, versicolor, and virginica. We identify the
center of these regions from the dataset with the granular fuzzy clustering algorithm
in [79]. Then, for each of the four input variables, we computed its maximum range.
With it, we generated nine regions Rs for each class, sharing the same center but with
different sizes s ∈ {1, 2, 5, 8, 10, 20, 30, 40, 50} of the hyperrectangle surrounding it, where
s is a percentage representing the fraction of the maximum input range.

Vocalic benchmark

The vocalic dataset [50] consists of 200 gray-scale images with dimensions 5 × 5 pixels.
Half of the dataset consists of the base images illustrated in Fig. 4.1 and also noisy versions
of them. In contrast, the other half presents non-vocalic images. With it, we have trained
a feedforward neural network with architecture 25 × 10 × 4 × 5 and sigmoid activation
functions. As Fig. 4.1 shows, there are five output classes that this network learned to
discriminate via backpropagation algorithm and cross-validation. Once again, we have
followed what was presented in Section 4.1 and found 53.9 as maximum neuron output.
Consequently, we have quantized this ANN to fixed-point arithmetic with a minimum
of 7 integer bits, including sign, as they are required to avoid overflow. As far as the
safety properties are concerned, we specify five hypercubic input regions corresponding
to the vocalic labels. The centers are defined by the base images in Fig. 4.1. Similarly
to the Iris benchmark, we generate five instances Ls of these regions with different sizes
s ∈ {10, 20, 40, 80, 120}, where s represents the hypercube’s side length.

Figure 4.1: Vocalic images in benchmarks.

AcasXu benchmark

The Acas Xu benchmark [80] is the result of avionics research in airborne collision avoid-
ance systems (ACAS) for unmanned aircrafts (Xu). In particular, when avoiding a nearby
aircraft, some specific piloting decisions must be taken. These are recorded in a large state-
action table that is impractical to store on-board due to its memory requirements. The
Acas Xu benchmark splits and compresses such a table into a set of 45 neural networks.
The split is done by discretizing the following two input dimensions: time until loss of
vertical separation (9 intervals), and previous advisory action (5 actions). The remaining
5 inputs are fed into a fully-connected feedforward neural network with ReLU activation
functions and architecture 5 × 300 × 300 × 300 × 300 × 300 × 300 × 5, which outputs
a prediction for each of the 5 possible actions. We quantize all these 45 ANNs with 27
integer bits, which is the least number of bits required to avoid overflow in the worst-case
scenario, i.e., with a neuron output of 72142560.0, as pointed out by FRAMA-C [64].
More details on its associated safety properties can be found in the work developed by
Katz et al. [18] and in Section 4.5.

CHAPTER 4. EXPERIMENTAL EVALUATION 27

Experimental setup

We have conducted our experimental evaluation on a Intel(R) Xeon(R) CPU E5-
2620 v4 @ 2.10GHz with 128 GB of RAM and Linux OS. All presented execution
times are CPU times, i.e., only the elapsed periods spent in allocated CPUs,
which was measured with the times system call [81]. All experimental results
reported here were obtained by executing ESBMC v6.6.01 with the following com-
mand line parameters, unless specifically noted: esbmc <file.c> -I <path-to-OM>

--force-malloc-success --no-div-by-zero-check --no-pointer-check --yices

--no-bounds-check --interval-analysis --fixedbv. In general, we let ESBMC run
without time or memory limits. The timeouts reported in the following experiments
are all due to exceedingly high memory consumption. All of our benchmarks have been
annotated with the reachable intervals provided by FRAMA-C, unless specifically noted.
In particular, we executed FRAMA-C using the following command: frama-c -eva

-eva-plevel 255 -eva-precision 11.

4.3 Ablation study

This section aims at evaluating the impact of different aspects of our approach on the
total verification time. Here, our aim is both to discover the best configuration for our
verification tool and shed some light on the importance of each technique for reducing
the search space of the verification problem. Specifically, we address four choices in our
verification approach: SMT solver, optional parameters offered by the ESBMC verification
engine, interval analysis technique and expression balancing strategy.

SMT solvers comparison

As mentioned in Chapter 3, our approach relies on model checking to reason about the
satisfiability of a given safety property concerning an ANN implementation. For the
experiments of the present section, we have chosen ESBMC as our verification engine
since it has been extensively evaluated at various SV-Comp [82] competitions, where it
has consistently achieved state-of-the-art results [60]. More in detail, the ESBMC model
checker takes care of converting input C code into SMT formulae and then calls an external
SMT solver. Currently, ESBMC supports four solvers: Bitwuzla, Boolector, Yices, and
Z3. In general, they yield different verification results, both in terms of the generated
counterexample (if any) and verification time.

Here, we are interested in comparing the performance of such solvers in verifying ANN
implementations. To this end, we run them on all our fixed-point benchmarks, with word
lengths of 8, 16, and 32 bits. With this choice, we cover the most popular quantization
lengths, and observe the behaviour of our verification methodology on a varied test suite.
We use these experimental settings all throughout our ablation study (see also Sections
4.3, 4.3 and 4.3).

The results of our comparison are summarized in Fig. 4.2. There, we can see that
solvers Bitwuzla and Boolector have nearly identical performance, in terms of verifica-
tion time (Fig. 4.2a). In contrast, Yices exhibits a considerable advantage across the
whole verification suite, being, in some specific cases, even two orders of magnitude faster
(Fig. 4.2b). Finally, solver Z3 struggled to complete the majority of verification runs, and

1Available at http://esbmc.org/

http://esbmc.org/

CHAPTER 4. EXPERIMENTAL EVALUATION 28

it is, in general, orders of magnitude slower than the other three solvers. For this reason,
we do not portray its results in Fig. 4.2.

100 101 102 103 104 105
100

102

104

Bitwuzla
is better

Boolector is better

Bitwuzla verif. time (s)

B
o
ol
ec
to
r
ve
ri
f.

ti
m
e
(s
) Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(a)

100 101 102 103 104
100

102

104

Yices
is better

Boolector is better

Yices verif. time (s)

B
o
ol
ec
to
r
ve
ri
f.

ti
m
e
(s
) Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(b)

Figure 4.2: Comparison with different SMT solvers, regarding verification time (in sec-
onds), when handling the fixed-point Iris and Vocalic benchmarks. On the left, (a) Bitwu-
zla and Boolector show similar performance; on the right, (b) Yices is considerably faster
than Boolector, in most instances. In both plots, we discriminate between successful ver-
ification outcomes (S) and falsifiable safety properties that admit a counterexample (F).

Given the results in Fig. 4.2, we choose Yices as our underlying SMT solver for the
rest of this experimental section. While it is impossible to know exactly why Yices is
the best-performing solver on our test suite, we speculate it is a consequence of the fact
that ESBMC encodes verification problems into SMT formulae with the formalism of
QF AUFBV logic.2 Here, QF stands for quantifier-free formulas, A stands for the theory
of arrays, UF stands for uninterpreted functions, and BV stands for the theory of fixed-
sized bit-vectors. For this type of formulae, Yices represents the state-of-the-art SMT
solver. 3

Comparison regarding ESBMC’s parameters

In Sections 3.7 and 3.8, we have presented a number of state-of-the-art software veri-
fication techniques that apply to ANN implementations. From our prior experience of
participating in software verification and testing competitions (e.g., SV-COMP and Test-
Comp), such techniques play an essential role in optimizing the performance of ESBMC on
a given set of benchmarks [83, 60, 84]. In the present section, we quantify their individual
impact on verification times of our test suite and comment on their relative performance.

Here, we rely on the fact that the ESBMC’s verification engine allows us to toggle each
separate technique via command-line parameters. More specifically, the list of verification
techniques and corresponding ESBMC parameters are as follows:

• Constant propagation. It can be disabled with the option no-propagation.
Otherwise, it will generate a minimal set of SSAs in the symbolic engine.

• Slicing. It can be disabled with the option no-slice. Otherwise, it will eliminate
redundant or irrelevant portions of a program [85]. In ESBMC, this is applied to

2https://smtlib.cs.uiowa.edu/logics.shtml
3https://smt-comp.github.io/2020/results/qf-aufbv-single-query

https://smtlib.cs.uiowa.edu/logics.shtml
https://smt-comp.github.io/2020/results/qf-aufbv-single-query

CHAPTER 4. EXPERIMENTAL EVALUATION 29

the SSA program before it is encoded to SMT to reduce the number of variable
assignments by identifying variables not used to evaluate any property assertion.

• Incremental verification. Activated with the (experimental) options
smt-during-symex and smt-symex-guard. The former enables incremental SMT
solving using the SMT solvers Yices or Z3, the latter allows calls to the solver during
symbolic execution to check the satisfiability of the guards.

• Expression simplification. It can be disabled with the option no-simplify,
effectively neutering constant propagation so that no fact is statically determined
to be true or false, and always end up exploring to the top of the unwind bound.

100 101 102 103 104

100

101

102

103

104

Reference
is better

No propagation
is better

Reference verif. time (s)

N
o
p
ro
p
ag

at
io
n
ve
ri
f.

ti
m
e
(s
)

Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(a)

100 101 102 103 104

101

102

103

104

105

Reference
is better

No slicing
is better

Reference verif. time (s)

N
o
sl
ic
in
g
ve
ri
f.

ti
m
e
(s
) Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(b)

101 102 103
101

102

103

104

105

Reference
is better

Incremental
is better

Reference verif. time (s)

In
cr
em

en
ta
l
ve
ri
f.

ti
m
e
(s
)

Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(c)

Figure 4.3: Comparison of verification times of ESBMC with different parameters settings
on the fixed-point Iris and Vocalic benchmarks. In each figure, one individual technique
has been changed from the best (reference) configuration: (a) disabling constant propa-
gation, (b) disabling slicing, and (c) enabling incremental verification. In the plots, we
discriminate between successful verification outcomes (S) and falsifiable safety properties
that admit a counterexample (F).

Here, we quantify the impact of each technique on the same test suite of Section 4.3.
We do so by setting a reference configuration and toggling one verification technique at
a time. For reasons that become clear from the results shown in Fig. 4.3, our reference
configuration of ESBMC has constant propagation, slicing and expression simplification
enabled. In contrast, we choose to keep incremental verification disabled.

As the results in Fig. 4.3a show, constant propagation makes no difference on our
test suite. This is because we are verifying a specific kind of safety property, namely
robustness to adversarial examples, which allows all input variables to be modified. As
such, there is no constant input that can be propagated through the ANN code, thus
yielding no reduction in the SMT formulae size. At the same time, we believe that
constant propagation is a useful technique for safety properties that restrict the attack
surface to just a subset of the input variables, as the ones identified by Karmon, Zoran,
and Goldberg [86].

In contrast, Fig. 4.3b shows that slicing yields a small improvement in performance,
which becomes the more significant the shorter the verification time is. We speculate that
this is because neural networks are usually redundant (e.g., see dropout [1]), and thus
the majority of neurons contribute to the ANN output. As a consequence, only a small
number of expressions can be removed with slicing.

CHAPTER 4. EXPERIMENTAL EVALUATION 30

Interestingly, incremental verification (cf. Fig. 4.3c) does not improve verification time
as expected. We believe this happens because the cost of deriving and storing new facts
during the verification process outweighs the reduction in search space they induce since it
performs various calls to the solver. Still, we hypothesize that incremental verification may
offer some advantages when verifying not only one but also a whole set of safety properties
since it allows incrementally remembering important facts across properties, whose net
contribution may pay off. For example, we could perform a query at any neuron using
incremental lemma learning, which could help prune neural net implementation before
deploying it to an embedded device with time, memory, and energy constraints. However,
we leave the exploration of such a hypothesis for future work.

Finally, expression simplification is crucial in making the verification of our test suite
practical. Indeed, without expression simplification, none of the safety properties could be
checked before hitting our machine memory limit of 128GB, despite letting the verification
process run without any time limit.

Interval analysis comparison

In Section 3.5, we introduced interval analysis as an essential pre-processing stage before
running the verification engine on ANN code. Here, we show the effect of disabling such
an important step on total verification times. Furthermore, we compare two approaches to
interval analysis and discuss their results. The first requires FRAMA-C [64] to annotate
ANN code with additional assume instructions. In contrast, the second requires running
ESBMC with the extra --interval-analysis option enabled. Note that both of them
compute hyper-rectangular constraints over program variables.

For consistency with the previous experiments, we evaluate the impact of these two
interval analysis options on the same test suite as in Section 4.3. We present the results
in Fig. 4.4, where the native --interval-analysis option and the externally computed
intervals by FRAMA-C are compared with our reference configuration of ESBMC without
any form of interval analysis. Note how the former has almost no impact on the verification
time, while the latter can improve it by up to two orders of magnitude. Still, regarding
the use of FRAMA-C, it is interesting to notice that we only observe improvement on
successful safety properties (S), i.e., those that do not admit a counterexample. This
way, the verification time of falsifiable properties (F) does not appear to be improved by
interval analysis on our test suite.

On the one hand, as no counterexample is found, the FRAMA-C’s more sophisticated
interval analysis indeed pays off, given the apparent reduction in the state space that
must be explored. On the other hand, when a property is falsifiable, that seems to be
easily identified in the proposed framework and adopted test suite. As future work, we
can perform a deep analysis of that matter and then even propose improvements in this
interval analysis focused on ANN code and properties. Note that the intervals produced
by ESBMC work only for integer variables [87], while Frama-C can make intervals for
integer and floating-point ones [88]. Since our benchmarks contain heavily floating-point
computations, we expected Frama-C to improve our verification results considerably com-
pared to the interval analysis implemented in ESBMC, particularly for safe neural nets
due to the state-space size.

Such performance improvement is in line with our previous experiments over a large
set of open-source software benchmarks when enabling invariant generation [60]. In par-
ticular, in the mentioned study, invariant generation based on intervals allowed us to verify
7% more programs using a k -induction proof rule. Therefore, we chose to use both the

CHAPTER 4. EXPERIMENTAL EVALUATION 31

100 101 102 103 104 105 106
100

101

102

103

104

105

106

No interval analysis
is better

--interval-analysis
is better

No intervals verif. time (s)

E
S
B
M
C

in
te
rv
al
s
ve
ri
f.

ti
m
e
(s
)

Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(a)

100 101 102 103 104 105 106

100

101

102

103

104

105

No interval
analysis
is better FRAMA-C

is better

No intervals verif. time (s)

F
R
A
M
A
-C

v
er
if
.
ti
m
e
(s
)

Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(b)

Figure 4.4: Comparison of verification times with and without interval analysis on
the fixed-point Iris and Vocalic benchmarks. On the left, (a) enabling the native
--interval-analysis option in ESBMC does not yield much improvement; on the right,
(b) adding the intervals computed by FRAMA-C reduces verification times of a large
number of safety properties. In both plots, we discriminate between successful verifica-
tion outcomes (S) and falsifiable safety properties that admit a counterexample (F).

--interval-analysis option in ESBMC and the FRAMA-C’s intervals for the upcoming
experiments.

Activation function discretization comparison

The Iris and Vocalic benchmarks we use in the present ablation study are based on
neural networks with sigmoid and hyperbolic tangent activation functions (see detailed
descriptions in Sections 4.2 and 4.2). An important step in our verification methodology
is the discretization of such functions, as explained in Section 3.3. In practical terms, it
means replacing the non-linear mathematical expression of the activation function with
a look-up table. Here, we show the impact of the resolution of such look-up table on
verification times, and how the error we introduce with the discretization influences the
verification outcome.

To this end, we compare three different resolutions of our look-up tables, which we call
Res1, Res2, and Res3. These discretize the input interval [−6,+6] with one, two, or three
decimal fractional places, respectively. Outputs for inputs that fall outside that range are
automatically saturated to 0 or 1 for the sigmoid function and −1 or +1 for the hyperbolic
tangent one. We report the corresponding results on the Iris and Vocalic benchmarks with
8, 16, and 32 bits, all condensed in Fig. 4.5. Although coarser resolutions usually result
in faster verification times, as expected, given the inherent speed-up in operations, one
may also notice some outliers: all regarding the Iris benchmark, when comparing Res1
with Res2, and a mixture of Iris and Vocalic benchmarks, when comparing Res2 with
Res3. This is because different look-up table resolutions affect the computation of each
neuron’s output, and, in some cases, even the ANN’s output itself (see example in Section
2.2). Consequently, a given violation that happened early during state-space exploration
may then occur later or may not be even identified anymore, thus introducing a lot of
variability in the verification time.

CHAPTER 4. EXPERIMENTAL EVALUATION 32

A more outcome-oriented comparison is presented in Table 4.1. As one can notice,
the verification outcome is indeed affected by the resolution choice. In fact, comparing
Res1 and Res2 on the Vocalic benchmark yields one instance where the two verification
runs disagree: Res1 reports a falsifiable property with a counterexample (F), whereas
suh counterexample disappears with the finer resolution Res2 and the property is de-
clared safe (S). Unfortunately, if we increase the resolution further to Res3, the additional
computational requirements overwhelm our verification setup, and we begin to observe a
number of time-outs. This is more noticeable for the Vocalic benchmarks, because they
employ a larger ANN. Res3 would be suitable in a more accurate system, since Res2
already provides reliable counterexamples.

100 101 102 103

100

101

102

103

104

Res1 is better

Res2 is better

Resolution 1 verif. time (s)

R
es
ol
u
ti
on

2
ve
ri
f.

ti
m
e
(s
)

Iris (S-F)

Vocalic (S-F)

(a)

100 101 102 103 104

101

102

103

104

105

Res2 is better

Res3 is better

Resolution 2 verif. time (s)

R
es
ol
u
ti
on

3
ve
ri
f.

ti
m
e
(s
)

Iris (S-F)

Vocalic (S-F)

(b)

Figure 4.5: Comparison of verification times with different discretization resolutions for
activation functions on the fixed-point Iris and Vocalic benchmarks. On the left, (a)
comparison between one and two decimal places; on the right, (b) comparison between
two and three decimal places. In both plots, we only report benchmarks that did not
incur in timeout.

In conclusion, choosing the right discretization resolution is a trade-off between verifi-
cation time and possible errors in verification outcomes. In the ablation study in Section
4.3 and the later quantization experiments in Section 4.4, we choose the intermediate
resolution Res2, based on two main reasons. First, it is the finest resolution that does
not incur in large amounts of timeout when verifying our benchmarks. Second, all the
counterexamples generated with it are valid, as we confirmed by running them through a
non-discretized MATLAB implementation of the corresponding neural networks.

Code generation comparison

In Section 3.1 we mentioned that a single ANN can be implemented in multiple ways. In
fact, due to the intrinsic parallelism of neural architectures, the order of many mathemati-
cal operations can be shuffled arbitrarily. Here, we show that our verification methodology
produces the same result (time and outcome) for very different orderings of these mathe-
matical operations, and thus its performance is stable across them.

Specifically, we focus on the order of operations required to compute the activation
potential of each neuron, one of the basic building blocks of ANNs (see (2.2)). In this

CHAPTER 4. EXPERIMENTAL EVALUATION 33

Iris Res2
Dataset S F TO

Res1
S 72 0 0
F 0 9 0
TO 0 0 0

Vocalic Res2
Dataset S F TO

Res1
S 21 0 0
F 1 53 0
TO 0 0 0

(a)

Iris Res3
Dataset S F TO

Res2
S 70 0 2
F 0 0 9
TO 0 0 0

Vocalic Res3
Dataset S F TO

Res2
S 20 0 2
F 0 0 53
TO 0 0 0

(b)

Table 4.1: Comparison of verification outcomes with different discretization resolutions
of activation functions on the fixed-point Iris and Vocalic benchmarks. On the left, (a)
comparison between one and two decimal places; on the right, (b) comparison between
two and three decimal places. Both tables are structured as confusion matrices: entries on
the main diagonal represent benchmarks with the same outcome under both resolutions.
There, we discriminate between successful verification outcomes (S), falsifiable properties
that admit a counterexample (F), and properties that incurred in timeout (TO).

regard, we compare two opposite implementations of it that we exemplify in Fig. 4.6.
On the one hand, we have run a fully sequential version of that ANN code, where each
multiply-and-accumulate (MAC) operation in (2.2) is executed in the same order as the
input vector x. We implement this version of the code with simple loops as in the
example of Fig. 4.6a. On the other hand, we have also run a balanced version of the
ANN code, where the MAC operations are reordered in a divide-and-conquer sequence
to minimize the number of additions, as in the example of Fig. 4.6b. Such associative
rebalancing procedures are common optimizations performed by compilers, as they reduce
the total number of machine instructions and improve execution time on out-of-order
processors [89, 90, 91].

As we have done in the previous Section 4.3, we compare the verification performance
of these two code generation approaches on the fixed-point Iris and Vocalic benchmarks,
considering the word lengths 8, 16 and 32 (bits). One code generation relies on generating
a C code file where the mathematical operations follows the linear layout and the second
one generates a C code file where the mathematical operations follows the balanced layout
described in Section 3.8. The results in Fig. 4.7 show very little difference in verification
time and identical verification outcomes (except for one single timeout with balanced
code). The reason for such a behavior lies in the understanding that ESBMC performs
several aggressive expression-simplification steps including associative techniques, as ex-
plained in Section 3.8. As such, the final set of SMT formulae that are fed into the
solver are quite insensitive to the order of operations in ANN code. Thus, we can con-
clude that the performance of our verification methodology is consistent across different
implementations of the same ANN.

CHAPTER 4. EXPERIMENTAL EVALUATION 34

100 101 102 103 104

100

101

102

103

104

105

Sequential is better

Balanced is better

Sequential code verif. time (s)

B
al
an

ce
d
co
d
e
ve
ri
f.

ti
m
e
(s
) Iris (S)

Iris (F)

Vocalic (S)

Vocalic (F)

(a)

Iris Balanced
Dataset S F TO

Sequential
S 72 0 0
F 0 9 0
TO 0 0 0

Vocalic Balanced
Dataset S F TO

Sequential
S 22 0 0
F 0 52 1
TO 0 0 0

(b)

Figure 4.7: Comparison of verification performance with different ANN code generation
techniques on the fixed-point Iris and Vocalic datasets. On the left, (a) verification time;
on the right, (b) verification outcome. In all plots and tables, we discriminate between
successful verification outcomes (S) and falsifiable safety properties that admit a coun-
terexample (F).

The results presented here successfully answer RQ1 - Ablation study: we
have identified an optimal configuration for the ESBMC verification engine
within our framework, which consists of using the SMT solver Yices and the
interval-analysis option in conjunction with FRAMA-C intervals. Moreover,
we quantified the individual importance and associated influence of a number of
related techniques: constant propagation, expression simplification, slicing, incre-
mental verification, discretization of non-linear activation functions, and code gen-
eration.

4.4 Verification of quantized ANNs

In Section 4.3, we established what the best configuration of our verification method is
by comparing its runtime under different scenarios. Similarly, in the present section, we
compare its verification time and output along another dimension: the quantization level
of ANNs. Our main result is that the granularity of ANN quantization may influence ver-
ification performance, but that may even be considered minor, depending on the specific
aspect being evaluated. Here, we show that this is true both for verification time and
verification outcome. Consequently, ANN quantization can be regarded as a viable and
effective tool for adaptation towards a given target platform, as long as some evaluation
is performed.

Effects of quantization on verification time

First, let us comment on how the quantization of an ANN affects its verification time of
its safety properties. First, recall that verifying quantized neural networks is PSPACE-
hard, as proven by [19]. However, this is a theoretical worst case, and existing empirical
results in [30] show a positive correlation between the number of bits used in a quantized
representation and the total verification time. Here, we show that this correlation holds

CHAPTER 4. EXPERIMENTAL EVALUATION 35

only for small number of bits and specific safety properties, and there is no general trend
for word lengths equal or longer than 16 bits.

To this end, we run our Iris and Vocalic benchmarks with a broad range of quantization
levels, covering the span between the common word lengths of 8, 16 and 32 bits, and
extending to smaller word lengths with zero fractional bits. We present such results in
Fig. 4.8a. Note that there is a general upwards trend in verification time for short word
lengths (from 6 − 7 to 15 bits), but this phenomenon almost disappears for longer word
lengths (16 bits and above). Moreover, results are spread across six orders of magnitude,
thus it is difficult to prove the existence of a true correlation in the associated data. In
fact, applying common summary statistics (e.g., median verification time like in [30])
shows a correlation between time and quantization for the Iris and Vocalic benchmarks.

10 15 20 25 30
100

102

104

106

Number of bits

V
er

ifi
ca

ti
on

ti
m

e
(s

)

Iris Voc.

(S)

(F)
med.

(a)

10 15 20 25 30
100

102

104

106

Number of bits

V
er

ifi
ca

ti
on

ti
m

e
(s

)

Set. R10 “A” L10

Vers. R40 “O” L120

Virg. R5 “U” L40

(b)

Figure 4.8: Comparison of verification times with different quantization levels on the
fixed-point Iris and Vocalic benchmarks. On the left, (a) a scatter plot of all the safety
properties in our benchmarks with their respective median times; on the right, (b) a
selection of six safety properties shows a very limited correlation between number of bits
and verification time.

A better understanding can be extracted by selecting individual safety properties
and comparing their verification time across different quantization levels. We do so in
Fig. 4.8b, where we choose six properties from Fig. 4.8a that showcase the full range of
behaviors. More specifically, we broadly observe three different behaviors. First, proper-
ties like Vocalic “A” L10 and Vocalic “O” L120 exhibit almost identical verification time
across all quantization levels. Second, properties like Iris Setosa R10 and Iris Versicolor
R40 are somewhat erratic across quantization levels. However, their verification time falls
into a limited range, where no systematic trend emerges. Third, properties like Vocalic
“U” L40 and Iris Virginica R5 have verification time that is mildly correlated with the
quantization level.

Overall, we believe that the quantization level has only a minor impact on the hardness
of the verification problem from a practical perspective. Other factors, like the number of
active neurons or the size of input regions of a given safety property, are probably better
predictors regarding verification time. However, since these are beyond the scope of the
present work, we leave a thorough exploration of them to future work, where we might
establish predictors and bounds.

CHAPTER 4. EXPERIMENTAL EVALUATION 36

Effects of quantization on verification outcome

Another aspect regards verification outcomes, where narrower bit widths deserve some
discussion. Here, we take the results of the same experiments shown in Section 4.4 and
plot, in Fig. 4.9, a summary of how many safety properties are declared safe (S), generate
a counterexample (F), or result in timeout (TO). As the figure shows, the percentage
of successful safety properties is stable across quantization levels. The only noticeable
differences happen in the Iris and Vocalic benchmarks for small word lengths. In the
former, we observe a sudden drop in the number of safe properties between 6 and 7 bits,
which goes through behavior that resembles transient responses in control systems [92],
until a more suitable representation is achieved (12 bits). In addition, with 6 bits, all safety
properties are declared safe, which is indeed due to differences caused by computation with
quantized values (see Section 2.2). Moreover, one may notice a clear trend related to more
comprehensive formats, indicating an increasing number of correct operations.

We observe a higher incidence of undecidable safety properties regarding the Vocalic
benchmarks that lead to a timeout. Note, however, that the Vocalic ANN is larger than
Iris. Thus, more timeout events are expected due to the additional computational com-
plexity, which is also worsened by the chosen representation. Again, stability regarding
verification outcome is only achieved when a more suitable representation is used (14
bits).

In this context, some conclusions can be drawn. Indeed, there is a clear relationship be-
tween data representation and safety-property verification when using restricted formats.
In addition, it becomes negligible when more bits are used. Moreover, arbitrarily small
representations should not be carelessly used, as erratic behavior may be experienced.

10 15 20 25 30
0

10

20

Number of bits

N
u
m
b
er

of
sa
fe
ty

p
ro
p
er
ti
es

Iris (S)

Iris (F)

Iris (TO)

(a)

10 15 20 25 30
0

10

20

Number of bits

N
u
m
b
er

of
sa
fe
ty

p
ro
p
er
ti
es

Vocalic (S)

Vocalic (F)

Vocalic (TO)

(b)

Figure 4.9: Comparison of verification outcomes with different quantization levels on
the fixed-point Iris and Vocalic benchmarks. On the left, (a) Iris dataset; on the right,
(b) Vocalic dataset. In both histograms, we discriminate between successful verification
outcomes (S), falsifiable properties that admit a counterexample (F), and properties that
resulted in timeout (TO).

A more focused picture of the relationship between quantization and verification out-
come can be extracted by looking at individual safety properties. To this end, we report,
in Tables 4.2 and 4.3, all safety properties that have different outcomes across quanti-
zation levels. There, we can see two completely opposite behaviors. On the one hand,
properties like Vocalic “A” L20, Vocalic “I” L10, Iris Versicolor R50 and Iris Virginica L50

are only safe for very short word lengths. On the other hand, properties like Vocalic “U”

CHAPTER 4. EXPERIMENTAL EVALUATION 37

L20 and Iris Versicolor R40 tend to be safe as the word length increases.

Iris Number of bits
Property 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Set.
R40 S S F S
R50 S S F S

Vers.

R20 S F S
R30 S F S
R40 S F S F F F S
R50 S F

Virg.

R20 S F S
R30 S F S
R40 S F S S F S
R50 S F

Table 4.2: Iris safety properties with different verification outcomes across quantization
levels.

Vocalic Number of bits
Property 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

A

L20 S S S S S S S F F F TO F F TO F F F F F F F F F F F F
L40 S F S F F F F F F F TO F TO F F F F F F F F F F F F F
L80 F F TO F
L120 F F F F F F F TO F F F F F F TO F F F F F F F F F F F

E
L40 TO F TO TO TO TO F
L80 F F TO F TO F
L120 F F F F TO F

I
L10 S S S TO F
L20 F S F TO F

O
L20 TO S TO F TO F
L40 F F F F TO F
L80 F F TO F TO F

U
L20 S S F S F S
L40 S F
L80 F F TO F
L120 F F F TO F

Table 4.3: Vocalic safety properties with different verification outcomes across quantiza-
tion levels.

A possible explanation of this behavior is that the properties listed in Tables 4.2 and
4.3 are on the verge of breaking the ANN robustness. In fact, for each of these properties,
reducing the input region size Li orRi makes them more safe, and increasing it makes them
less safe. Thus, by staying on the threshold between these two regimes, any minor change
in the ANN implementation (e.g., the quantization level) can easily flip the verification
outcome and yield the erratic results we observe.

Indeed, there is no prediction methodology or technique capable of indicating that
such behavior will occur; however, the present work successfully reveals it and hints at
how to devise a suitable scheme. For instance, a closed-loop approach could test a chosen
set of properties against some possible quantization levels so that the realization with the
smallest number of bits that still provide an output that is considered stable is chosen.
This way, we could navigate through a response dependent on the target quantization
level and, when a steady-state region is achieved, the narrowest format that allows this
behavior is chosen. Currently, we can only validate or not a given quantized ANN; we
leave the synthesis of neural net implementations as future work.

Effects of quantization on adversarial examples

Finally, let us comment on the effect of quantization on the counterexamples returned by
our verification approach. As Tables 4.2 and 4.3 show, the verification outcome of the same

CHAPTER 4. EXPERIMENTAL EVALUATION 38

safety property changes depending on the chosen ANN representation. This is because
different quantization granularities may either hide or reveal specific vulnerabilities in
ANN computation. At the same time, even if the verification outcome is the same and
the safety property is kept falsifiable (F), the counterexamples returned by the verification
engine may be different.

Here, we present a qualitative comparison between counterexamples, which, in the
context of machine learning research, are also known as adversarial examples. Specifically,
we focus on our three levels of fixed-point quantization, namely 8, 16 and 32 bits, for which
we present a selection of adversarial examples from the Vocalic benchmarks in Figs. 4.10a,
4.10b, and 4.10c respectively. Each figure contains pairs of images, where the center of
the input region is on the left, and its corresponding adversarial example is on the right.

“A”, L40 → “O”. “E”, L40 → “A”. “I”, L40 → “A”. “O”, L40 → “A”. “U”, L40 → “A”.

(a)

“A”, L40 → “U”. “E”, L40 → “A” “I”, L40 → “E”. “O”, L40 → “I”. “U”, L40 → “I”.

(b)

“A”, L40 → “U”. “E”, L40 → “I”. “I”, L40 → “E”. “O”, L40 → “I”. “U”, L40 → “A”.

(c)

Figure 4.10: Counterexamples for the Vocalic benchmarks with (a) 8, (b) 16, and (c)
32-bits fixed-point representations. For each safety property, we report the centroid and
associated counterexample, the input region dimension Li, and the incorrect output label
that was generated.

As Figures 4.10a, 4.10b, and 4.10c show, the granularity of ANN quantization has a
significant effect on the quality of the adversarial examples. On the one hand, coarser
fixed-point representations, such as ⟨4, 4⟩, restrict the search space to fewer gray-scale
levels, which is clearly seen in Fig. 4.10a, given the easily noticeable differences. On
the other hand, finer quantizations, such as ⟨16, 16⟩, let the verification engine produce
counterexamples with minimal noise spread across the whole image (see Fig. 4.10c). The
latter is typical of floating-point ANNs. Besides, it is especially dangerous for this specific
case of image classification, as such adversarial examples may go undetected even by a
human observer [40]. It is important to notice that quantization levels also influence
counterexamples. Moreover, they can be regarded as adapted to the contexts created by
the latter.

CHAPTER 4. EXPERIMENTAL EVALUATION 39

These results successfully answer RQ2 - Quantization effects: we established
that the verification time has some correlation with the number of bits of the ANN
quantization. Moreover, we showed that the safety of an ANN is mostly stable across
different quantization levels, which supports the use of aggressive quantization in
machine learning practice as long as some verification is performed.

4.5 Comparison with state-of-the-art verification

tools

This section compares our verification methodology with existing works in the literature.
We note that the field is progressing very rapidly at the time of writing, and thus the
present comparison is limited to what tools are currently available. Namely, the few
existing approaches for verifying quantized ANNs (Giacobbe et al. [30], Baranowski et
al. [29], Kai Jia et al. [93], Guy Amir et al. [94]) do not provide reliable source code to
replicate their experiments. As such, we can only compare our methodology with earlier
tools that verify the safety of ANNs as abstract mathematical models, i.e. in infinite
precision. Among those, we choose the two most popular ones as follow:

• Marabou [14]. Based on the earlier tool Reluplex [18], Marabou uses a simplex-
like algorithm to split the verification problem in smaller subproblems and invoke
an SMT solver on each of them.

• Neurify [15]. It uses symbolic intervals to over-approximate the ReLU non-linearity
of each neuron, and turn the verification process into finding the solution of a linear
problem. These over-approximation are iteratively tightened by splitting each ReLU
activation function in two independent linear problems.

The goal of this comparison is showing that our quantized methodology is at least as
efficient as these two state-of-the-art tools. At the same time, notice that our methodology
provides more information on the safety of the actual ANN implementations than the
abstract safety guarantees provided by tools like Marabou and Neurify.

To this end, we choose the AcasXu benchmark as our comparison suite (see Section
4.2). This benchmark has the advantage of being already implemented in both Marabou
and Neurify,4 5 thus allowing us to run the authors’ code for a fair comparison of their
performance. Furthermore, the neural networks in the AcasXu benchmark contain ReLU
activation functions exclusively, which makes them compatible with Neurify. In a similar
vein, we focus our comparison on safety property 1 of the AcasXu benchmark, since it is
the one that incurs the fewest time-outs with the aforementioned verification tools [14, 95].
Note that 45 different neural networks need to be verified for each safety property of
AcasXu, thus giving us a larger enough sample size for a significant comparison. Regard-
ing our verification methodology, we choose a 32 bit representation with 28 integer bits
(including sign), which are needed to avoid overflows.

The summary of our results regarding verification time are shown in Figures 4.11
and 4.12. On the one hand, in Fig. 4.11, we compare our methodology with the SMT-
based tool Marabou. Note how our verification methodology is considerably faster than

4https://github.com/NeuralNetworkVerification/Marabou
5https://github.com/tcwangshiqi-columbia/ReluVal

https://github.com/NeuralNetworkVerification/Marabou
https://github.com/tcwangshiqi-columbia/ReluVal

CHAPTER 4. EXPERIMENTAL EVALUATION 40

Marabou. We believe this is because our underlying model checker, ESBMC, is more
efficient at producing optimized SMT formulae (see Section 3.8) than the custom simplex-
like method employed by Marabou [14]. This also explains why the verification times of
our methodology are almost constant across the whole comparison suite.

On the other hand, in Fig. 4.12, we compare our methodology with the symbolic
interval tool Neurify. Note that this tool has been released by the authors as a multi-
threaded software [15]. This is the version we compare to in Fig. 4.12a. However, for
the sake of a fair comparison with our methodology, we also present a modified version
of Neurify that uses only a single thread in Fig. 4.12b.6 Note how the multi-threaded
version of Neurify is faster than our methodology in a majority of cases. This is because,
on our machine, the multi-threaded Neurify uses up to 22 processors in parallel, giving
it an obvious advantage over our single-threaded methodology. At the same time, such
advantage disappears for the single-threaded version: more specifically, for the latter our
methodology is faster in verifying 24 out of the 45 neural networks.

10−1 100 101 102 103 104
10−1

100

101

102

103

104

Marabou is better

Ours is better

Marabou verification time

O
u
r

ve
ri

fi
ca

ti
on

ti
m

e

AcasXu p1 (S-F)

Figure 4.11: Comparison of the verification times of Marabou and our methodology on
property 1 of the AcasXu benchmark.

6The modified code is available at https://github.com/ericksonalves/

nn-verification-comparison

https://github.com/ericksonalves/nn-verification-comparison
https://github.com/ericksonalves/nn-verification-comparison

CHAPTER 4. EXPERIMENTAL EVALUATION 41

10−1 100 101
10−1

100

101

102

103

104

Multi-thread
Neurify is better

Ours is better

Neurify verification time

O
u
r

ve
ri

fi
ca

ti
on

ti
m

e
AcasXu p1 (S-F)

(a)

10−1 100 101 102
10−1

100

101

102

103

104

Single-thread
Neurify is better

Ours is better

Neurify verification time

O
u
r

ve
ri

fi
ca

ti
o
n

ti
m

e

AcasXu p1 (S-F)

(b)

Figure 4.12: Comparison of the verification times of Neurify and our methodology on
property 1 of the AcasXu benchmark. On the left, (a) the original multi-threaded version
of Neurify; on the right, (b) the modified single-threaded version.

For completeness, we also report the verification outcomes on all 45 benchmarks in
Table 4.4. Note how both Neurify and our methodology are able to successfully verify
all 45 neural networks, whereas Marabou incurs a time-out for 13 of them. These results
confirm that our methodology offers a comparable performance to that of Neurify, and
faster than the state-of-the-art tool Marabou. Note also that our methodology offers
guarantees on the actual implementation of the ANNs, e.g. the ones that would be
deployed on an autonomous aircraft in the AcasXu case, thus making it more attractive
for practical scenarios where the safety of a deployed system is critical.

ACAS XU Benchmark
Tool 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 1 2 2 2 3 2 4 2 5 2 6 2 7 2 8 2 9 3 1 3 2 3 3 3 4 3 5

Marabou S S S S S S S S S S S S S S S TO TO TO S S S S S
Neurify S

Ours <28, 4> S

(a)
ACAS XU Benchmark

Tool 3 6 3 7 3 8 3 9 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 5 1 5 2 5 3 5 4 5 5 5 6 5 7 5 8 5 9
Marabou TO TO TO TO S S S S S TO TO TO TO S S S S S S S TO TO
Neurify S

Ours <28, 4> S

(b)

Table 4.4: Verification outcomes of Marabou, Neurify and our methodology on the AcasXu
benchmarks for property 1. For reason of space, we split the 45 results in two subtables
(a) and (b). Note that changing the parallelism of Neurify as in Figures 4.12a and 4.12b
does not change its verification outcomes.

CHAPTER 4. EXPERIMENTAL EVALUATION 42

These results successfully answer RQ3 - Comparison with SOTA: We evalu-
ated and compared our tool with other state-of-the-art tools, including SMT-based
verification and symbolic intervals such as Marabou and Neurify, respectively. In
terms of correctness, our approach can successfully verify all the benchmarks with-
out timeout or crash. Furthermore, considering AcasXu property 1 benchmarks,
our approach is significantly faster and solves more verification tasks than Marabou,
a competitive opponent in SMT-based verification.

4.6 Limitations

We believe the work we present in this research is an essential milestone for verifying
fixed- and floating-point ANNs with arbitrary activation functions. This way, it can be
considered a unified quantization framework, with the potential of broad model explo-
ration and verification regarding data representation. However, we still want to highlight
a few limitations of our verification approach that need to be addressed in future work.

First, we handle non-linear activation functions by replacing them with lookup tables
(see Section 3.3). This step is necessary for efficiency reasons but has a drawback: even
with a proper resolution, a lookup table will always approximate an original function.
Our experiments used lookup tables with a resolution of three decimal places and cor-
rectly validated all adversarial cases with MATLAB. However, we cannot exclude that
our verification approach may produce incorrect adversarial examples or successful ver-
ification outcomes in other ANN verification scenarios, especially when a given lookup
table’s resolution does not match the adopted quantization granularity. This constitutes
a potential threat to the validity of our method.

Second, the biggest challenge in ANN verification is scaling to large neural networks.
In this regard, our Iris and Vocalic benchmarks are small to medium-sized regarding
the number of neurons. Furthermore, the dataset themselves is small, which probably
generated ANNs with low robustness to adversarial attacks. Both these factors contribute
to keeping the dimensionality of resulting SMT formulae low and thus help our method
achieve competitive verification times. However, a thorough investigation of which factors
hamper verification performance and overcome them is still required.

Finally, quantized frameworks do not usually publish the code of their methods, which
compromises any direct comparison attempt. Even so, the research presented here is itself
SOTA and can pave the way for further research towards ANN deployment in restricted
systems based on formal guarantees.

CHAPTER 4. EXPERIMENTAL EVALUATION 43

1 float potential_8(float *w,

2 float *x,

3 float b){

4 float result = 0;

5

6 for (int i=0; i<8; ++i) {

7 result += w[i] * x[i];

8 }

9

10 result += b;

11

12 return result;

13 }

(a)
1 float potential_8(float *w,

2 float *x,

3 float b) {

4 float tmp_01 = w[0]*x[0]+w[1]*x

[1];

5 float tmp_23 = w[2]*x[2]+w[3]*x

[3];

6 float tmp_45 = w[4]*x[4]+w[5]*x

[5];

7 float tmp_67 = w[6]*x[6]+w[7]*x

[7];

8 float tmp_0123 = tmp_01 + tmp_23

;

9 float tmp_4567 = tmp_45 + tmp_67

;

10 float result = tmp_0123 +

tmp_4567;

11 result += b;

12 return result;

13 }

(b)

Figure 4.6: An example of balancing the order of MAC operations when computing
activation potentials with eight inputs: (a) sequential version with a loop and (b) balanced
version with a divide-and-conquer pattern.

Chapter 5

Related Work

This work’s main contribution is providing a sound verification approach for checking the
safety of MLPs with arbitrary activation functions and taking into account FWL effects
in computations (weights, bias, and operations) due to fixed-point implementation, in
addition to activation function discretization. SMT-based approaches [28, 17, 18, 14, 50]
have been used for safety verification of ANNs. Besides, the main advantage of those
techniques lies in SMT solvers’ soundness; however, there is an important drawback: the
scalability is limited since they are sensitive to the ANN complexity. For this reason,
most of them are unable to deal with large ANNs.

Wang et al. [15] propose an efficient approach for checking different safety properties
of large neural networks, aiming at finding adversarial cases. Their approach is based on
two main ideas. First, symbolic linear relaxation combines symbolic interval analysis and
linear relaxation to create an efficient propagation method for tighter estimations. Sec-
ond, directed-constraint refinement, which identifies nodes whose output is overestimated
and iteratively refines their output ranges. Those two techniques are implemented in a
tool called Neurify that was validated against multiple ANN architectures. Furthermore,
to scale up their verification framework, they have implemented their code using multi-
threaded programming techniques. However, as the previous tools [28, 17, 18], Neurify
only supports ReLU activation functions. Katz et al. [14] present Marabou that extends
the Reluplex approach and uses lazy search to deal with nonlinearities of activation func-
tions, allowing verification of ANNs with any piecewise-linear activation functions.

Recently, set-theoretic methods for reachability-based verification have been proposed
for verifying ANN-controlled closed-loop systems. In particular, Tran et al. propose the
NNV tool [12], which over-approximates the exact reachable set by approximating the
exact reachable set after applying an activation function. It allows support to hyper-
bolic tangent and sigmoid activation functions. Other approaches [10, 13] also employ
set-theoretic methods and polynomial approximation of hyperbolic tangent and sigmoid,
using Taylor’s [13] or Bernstein’s [10] polynomials. Our approach also allows verifying
ANNs with non-linear activation functions. This approximation is based on lookup tables
created with a suitable number of intervals (i.e., expected error) to avoid use of non-linear
operators’ in SMT solvers. This approach allows support to any piecewise continuous ac-
tivation function.

Robustness is the ability to ensure safe outputs under the presence of disturbances
and uncertainties, such as input noises and implementation issues [30]. In this sense, Dey
et al. [96] provide a parametric regularization methodology to improve the robustness of
ANNs concerning additive noise. However, sensitivity to FWL effects is not considered in

44

CHAPTER 5. RELATED WORK 45

that approach. ANNs are usually designed to work in real arithmetic; however, it is al-
ready shown that safety violations may occur due to the floating- [97] and fixed-point [30]
implementations. In particular, Baranowski et al. presented a practical SMT-based ap-
proach for verifying neural networks’ properties considering fixed-point arithmetic. Their
approach employs a realistic model of FWL effects that includes different rounding and
overflow models. However, as shown by Henziger et al. [19], the scalability of this kind
of approach is compromised due to the hardness of the verification of fixed-point imple-
mentations of ANNs. Therefore, a new method for verifying fixed-point implementations
based on abstract interpretation is proposed in [19] to reduce complexity and increase
scalability. However, that method can only verify ANNs with piecewise linear activation
functions since it does not consider the propagation of FWL effects through generic non-
linear functions. Our approach also considers FWL effects of fixed-point implementations
of ANNs based on an efficient FWL implementation model that reduces complexity when
verifying those ANNs. It is also important to mention that our approach deals with real
C code implementations in floating and fixed-point representations of ANNs. Our exper-
iments and previous work on verification of fixed-point digital controllers [56] indicated
that scalability is not compromised by the use of this FWL implememntation model.

Our approach implemented on top of ESBMC has some similarities with other tech-
niques described here, e.g., regarding the covering methods proposed by Sun et al. [98],
model checking to obtain adversarial cases proposed by Huang et al.[17], and incremen-
tal verification of ANNs implemented in CUDA by Sena et al. [50]. However, the main
contribution concerns our requirements and how we handle, with invariant inference, ac-
tual implementations of ANNs with non-linear activation functions, also considering FWL
effects. Moreover, the latter results in promptly deployable ANNs, which could be inte-
grated into a unified design framework. Only ANNs’ weights, bias descriptors, and desired
input regarding a dataset are required to run our proposed safety verification. For tools
such as DeepConcolic [98] and DLV [17], obtaining adversarial cases or safety guarantees
in customized ANNs depends on the intrinsic characteristics of models. For instance,
in their implementations, they do not support complex non-linear activation functions.
Moreover, Sena et al. [50] do not exploit invariant inference to prune the state space
exploration, which is done in our proposed approach.

Chapter 6

Conclusion

Verification of ANNs has recently attracted considerable attention, with notable ap-
proaches using optimization, reachability, and satisfiability methods. While the former
two promise to scaling to large neural networks, they achieve such a goal by relaxing
and approximating the verification problem. In contrast, satisfiability methods are exact
by construction but are confronted with the full complexity of the original verification
problem.

In this work, we propose a satisfiability modulo theory (SMT) approach to address
ANN verification. More specifically, we view the ANN not as an abstract mathematical
model but as a concrete piece of software (i.e., source code), which performs a sequence
of fixed- or floating-point arithmetic operations. We can borrow several techniques from
software verification and seamlessly apply them to ANN verification with this view. In
this regard, we center our verification framework around software model checking (SMC)
and empirically show the importance of interval analysis, constant folding, tree balancing,
and slicing in reducing the total verification time. Furthermore, we propose a tailored
discretization technique for non-linear activation functions that allow us to verify ANNs
beyond the piecewise-linear assumptions that many state-of-the-art methods are restricted
to.

Besides, in our experimental evaluation, we covered an important relationship between
the granularity of ANN quantization and verification time and the correctness of its prop-
erties. The more granular the quantization, the more significant the search space and thus
the more prolonged the verification time. This is contrary to the main existing theoretical
result in the literature, which states that verifying quantized ANNs is computationally
harder than verifying real-valued ones. However, further research is needed to shed more
light on this phenomenon. Regarding correctness, we verified that narrower bit widths
can be used but must be verified before deployment to achieve the minimum format that
still provides broadly correct results. However, when that minimum representation is ob-
tained, more comprehensive formats will usually provide correct results, as the stationary
response of a curve relating bit width and verification result.

Besides, regarding the minimum compression that an ANN requires, it was possible to
obtain the minimum compression by running all the benchmarks in all word lengths inside
32 bits. Here we considered the minimum compression the word length capable of keeping
the dynamic range and also the verification outcomes of all the safety properties. In
Vocalic, e.g., 22 bits were the minimum word length that resulted on the same verification
outcomes that 32 bits provided.

We have also evaluated and compared our tool with Marabou and Neurify. Consider-

46

CHAPTER 6. CONCLUSION 47

ing the ACASXu property one benchmarks [80], we have observed that our approach is
significantly faster and solves more verification tasks than Marabou [14], a competitive
opponent in SMT-based verification. However, in many cases, Neurify [15] is faster than
our tool since it deploys a multi-threaded algorithm to solve the verification tasks. How-
ever, note that neither Marabou nor Neurify can verify quantized neural networks as in
our approach.

6.1 Future Works

Finally, we believe that the problem of verifying ANNs is still open. More specifically,
it is unclear which set of techniques yields the best performance when scaling to large
networks. In this regard, our future work includes comparing our verification approach
to other existing techniques and optimizing our verification performance even further. In
addition, the results of our work can be regarded as the first steps towards an approach
capable of revealing the most aggressive ANN representation that still provides correct
operation, which aims at achieving maximum compression for a particular model.

We believe that symbolic execution and iterative refinement [99] will improve our
performance and scale our approach to even bigger ANNs. Since these techniques could
be executed before the verification step and trigger the verification machine to check for
counterexamples under only the refined intervals.

Another promising approach is improving the decision procedure that picks the most
relevant input elements w.r.t the questioned safety property. Then ESBMC could be used
to efficiently refine the most relevant intervals and then perform the verification process
under the refined intervals.

There are also some techniques presented in Neurify [15] and Reluplex [100] can be
integrated before and during the verification process. Lp solvers are more suitable to the
safety properties solving problem, due its efficiency when dealing with piecewise-linear
systems as Relu activation functions.

Bibliography

[1] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[2] M. Nour, Z. Cömert, and K. Polat, “A novel medical diagnosis model for COVID-19
infection detection based on deep features and bayesian optimization,” Appl. Soft
Comput., vol. 97, p. 106580, 2020.

[3] H. Wu, D. Lv, T. Cui, G. Hou, M. Watanabe, and W. Kong, “SDLV: Verification
of steering angle safety for self-driving cars,” Form. Asp. Comput., 2021.

[4] K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash,
T. Kohno, and D. Song, “Robust physical-world attacks on deep learning visual
classification,” in Conf. on Computer Vision and Pattern Recognition, 2018, pp.
1625–1634.

[5] S. Lundberg and S. Lee, “A unified approach to interpreting model predictions,”
in Advances in Neural Information Processing Systems 30, I. Guyon, U. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran
Associates, Inc., 2017, pp. 4765–4774.

[6] M. Fazlyab, M. Morari, and G. Pappas, “Safety verification and robustness analysis
of neural networks via quadratic constraints and semidefinite programming,” IEEE
Trans. Autom. Control, pp. 1–15, 2020.

[7] A. Rössig and M. Petkovic, “Advances in verification of ReLU neural networks,” J.
Glob. Optim., 2020.

[8] A. Venzke and S. Chatzivasileiadis, “Verification of neural network behaviour: For-
mal guarantees for power system applications,” IEEE Trans. Smart Grid, vol. 12,
no. 1, pp. 383–397, 2021.

[9] C. Huang, J. Fan, X. Chen, W. Li, and Q. Zhu, “Divide and slide: Layer-wise
refinement for output range analysis of deep neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 39, no. 11, pp.
3323–3335, 2020.

[10] C. Huang, J. Fan, W. Li, X. Chen, and Q. Zhu, “ReachNN: Reachability analysis
of neural-network controlled systems,” ACM Trans. Embed. Comput. Syst., vol. 18,
no. 5s, pp. 1–22, 2019.

[11] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation and
verification for multilayer neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 29, no. 11, pp. 5777–5783, 2018.

48

BIBLIOGRAPHY 49

[12] H.-D. Tran, X. Yang, D. M. Lopez, P. Musau, L. V. Nguyen, W. Xiang, S. Bak,
and T. T. Johnson, “NNV: The neural network verification tool for deep neu-
ral networks and learning-enabled cyber-physical systems,” in Computer Aided
Verification. Springer, 2020, pp. 3–17.

[13] R. Ivanov, T. Carpenter, J. Weimer, R. Alur, G. Pappas, and I. Lee, “Verifying
the safety of autonomous systems with neural network controllers,” ACM Trans.
Embed. Comput. Syst., vol. 20, no. 1, pp. 1–26, 2021.

[14] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah,
S. Thakoor, H. Wu, A. Zeljić, D. L. Dill, M. J. Kochenderfer, and C. Barrett,
“The marabou framework for verification and analysis of deep neural networks,” in
Computer Aided Verification. Springer, 2019, pp. 443–452.

[15] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Efficient Formal Safety
Analysis of Neural Networks,” in 32nd Int. Conf. on Neural Information Processing
Systems. Curran Associates Inc., 2018, p. 6369–6379.

[16] N. Narodytska, S. Kasiviswanathan, L. Ryzhyk, M. Sagiv, and T. Walsh, “Verifying
properties of binarized deep neural networks,” 2018.

[17] X. Huang, M. Kwiatkowska, S. Wang, and M. Wu, “Safety verification of deep
neural networks,” in Computer Aided Verification. Springer, 2017, pp. 3–29.

[18] G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer, “Reluplex: An efficient
smt solver for verifying deep neural networks,” in Computer Aided Verification.
Springer, 2017, pp. 97–117.

[19] T. A. Henzinger, M. Lechner, and D. Žikelić, “Scalable verification of quantized
neural networks (technical report),” 2020.

[20] V. Tjeng, K. Y. Xiao, and R. Tedrake, “Evaluating robustness of neural networks
with mixed integer programming,” in Int. Conf. on Learning Representations, 2019.

[21] E. Botoeva, P. Kouvaros, J. Kronqvist, A. Lomuscio, and R. Misener, “Efficient veri-
fication of ReLU-based neural networks via dependency analysis,” Conf. on Artificial
Intelligence, vol. 34, no. 04, pp. 3291–3299, 2020.

[22] K. Dvijotham, R. Stanforth, S. Gowal, T. Mann, and P. Kohli, “A dual approach
to scalable verification of deep networks,” in 34th Conf. on Uncertainty in Artificial
Intelligence, vol. 2, 2018, pp. 550–559.

[23] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “XNOR-Net: ImageNet
classification using binary convolutional neural networks,” in Computer Vision –
ECCV, B. Leibe, J. Matas, N. Sebe, and M. Welling, Eds. Cham: Springer Inter-
national Publishing, 2016, pp. 525–542.

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized
neural networks,” in Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, Eds., vol. 29. Curran
Associates, Inc., 2016.

BIBLIOGRAPHY 50

[25] C.-H. Cheng, G. Nührenberg, C.-H. Huang, and H. Ruess, “Verification of binarized
neural networks via inter-neuron factoring,” in Verified Software. Theories, Tools,
and Experiments, R. Piskac and P. Rümmer, Eds. Cham: Springer International
Publishing, 2018, pp. 279–290.

[26] Y. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression of deep
convolutional neural networks for fast and low power mobile applications,” in 4th
Int. Conf. on Learning Representations, Y. Bengio and Y. LeCun, Eds., 2016.

[27] D. Lin, S. Talathi, and S. Annapureddy, “Fixed point quantization of deep convolu-
tional networks,” in 33rd Int. Conf. on Machine Learning, M. F. Balcan and K. Q.
Weinberger, Eds., vol. 48. PMLR, 2016, pp. 2849–2858.

[28] L. Pulina and A. Tacchella, “Challenging smt solvers to verify neural networks,” Ai
Communications, vol. 25, no. 2, pp. 117–135, 2012.

[29] M. Baranowski, S. He, M. Lechner, T. S. Nguyen, and Z. Rakamarić, “An smt theory
of fixed-point arithmetic,” in Automated Reasoning, N. Peltier and V. Sofronie-
Stokkermans, Eds. Cham: Springer International Publishing, 2020, pp. 13–31.

[30] M. Giacobbe, T. A. Henzinger, and M. Lechner, “How many bits does it take to
quantize your neural network?” in Tools and Algorithms for the Construction and
Analysis of Systems, A. Biere and D. Parker, Eds. Cham: Springer International
Publishing, 2020, pp. 79–97.

[31] G. Parascandolo, H. Huttunen, and T. Virtanen, “Taming the waves: sine as acti-
vation function in deep neural networks,” 2016.

[32] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, and G. Wetzstein, “Implicit neural
representations with periodic activation functions,” Advances in Neural Information
Processing Systems, vol. 33, 2020.

[33] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann
machines,” ser. ICML’10. Madison, WI, USA: Omnipress, 2010, p. 807–814.

[34] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2020.

[35] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. Nori, and A. Crim-
inisi, “Measuring neural net robustness with constraints,” in Advances in Neural
Information Processing Systems, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds., vol. 29. Curran Associates, Inc., 2016.

[36] Y. Guo, “A survey on methods and theories of quantized neural networks,” 2018.

[37] B. Alpern and F. B. Schneider, “Recognizing safety and liveness,” Distributed
computing, vol. 2, no. 3, pp. 117–126, 1987.

[38] X. Huang, D. Kroening, W. Ruan, J. Sharp, Y. Sun, E. Thamo, M. Wu, and
X. Yi, “A survey of safety and trustworthiness of deep neural networks: Verification,
testing, adversarial attack and defence, and interpretability,” Comput. Sci. Rev.,
vol. 37, p. 100270, 2020.

BIBLIOGRAPHY 51

[39] C. Liu, T. Arnon, C. Lazarus, C. Strong, C. Barrett, and M. J. Kochender-
fer, “Algorithms for verifying deep neural networks,” Foundations and Trends in
Optimization, vol. 4, no. 3-4, pp. 244–404, 2021.

[40] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus, “Intriguing properties of neural networks,” in Int. Conf. on Learning
Representations, 2014. [Online]. Available: http://arxiv.org/abs/1312.6199

[41] G. Singh, T. Gehr, M. Mirman, M. Püschel, and M. T. Vechev, “Fast and effective
robustness certification.” NeurIPS, vol. 1, no. 4, p. 6, 2018.

[42] R. Jia, A. Raghunathan, K. Göksel, and P. Liang, “Certified robustness to adver-
sarial word substitutions,” in Conf. on Empirical Methods in Natural Language
Processing and the 9th Int. Joint Conf. on Natural Language Processing. Hong
Kong, China: Association for Computational Linguistics, 2019, pp. 4129–4142.

[43] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Model
Checking. Springer, 2018, pp. 305–343.

[44] Y. Vizel, G. Weissenbacher, and S. Malik, “Boolean satisfiability solvers and their
applications in model checking,” Proceedings of the IEEE, vol. 103, no. 11, pp.
2021–2035, 2015.

[45] C. Barrett, A. Stump, C. Tinelli et al., “The smt-lib standard: Version 2.0,” in 8th
Int. workshop on satisfiability modulo theories, vol. 13, 2010, p. 14.

[46] R. de Salvo Braz, C. O’Reilly, V. Gogate, and R. Dechter, “Probabilistic inference
modulo theories,” in IJCAI, 2016.

[47] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems. Springer, 2008, pp.
337–340.

[48] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli, “Cvc4,” in Computer Aided Verification. Springer,
2011, pp. 171–177.

[49] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for bit-vectors and
arrays,” in Int. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 2009, pp. 174–177.

[50] L. Sena, I. Bessa, M. Ramalho, L. Cordeiro, and E. Mota, “Incremental bounded
model checking of artificial neural networks in CUDA,” in IX Brazilian Symp. on
Computing Systems Engineering, 2019.

[51] K.-S. Oh and K. Jung, “Gpu implementation of neural networks,” Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, 2004.

[52] J. Zhu and P. Sutton, “Fpga implementations of neural networks – a survey of a
decade of progress,” in Field Programmable Logic and Application, P. Y. K. Cheung
and G. A. Constantinides, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2003, pp. 1062–1066.

http://arxiv.org/abs/1312.6199

BIBLIOGRAPHY 52

[53] E. Wang, J. J. Davis, R. Zhao, H.-C. Ng, X. Niu, W. Luk, P. Y. K. Cheung, and
G. A. Constantinides, “Deep neural network approximation for custom hardware:
Where we’ve been, where we’re going,” ACM Comput. Surv., vol. 52, no. 2, 2019.

[54] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in 43rd Int. Symp. on Computer Architecture,
2016, pp. 267–278.

[55] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized
neural networks: Training neural networks with low precision weights and activa-
tions,” J. Mach. Learn. Res., vol. 18, no. 1, p. 6869–6898, 2017.

[56] L. Chaves, H. Ismail, I. Bessa, L. Cordeiro, and E. B. de Lima Filho, “Verifying
fragility in digital systems with uncertainties using DSVerifier v2.0,” J Syst Softw,
vol. 153, no. 2019, pp. 22–43, 2019.

[57] D. Manzanas Lopez, T. Johnson, H.-D. Tran, S. Bak, X. Chen, and K. L. Hobbs,
“Verification of neural network compression of acas xu lookup tables with star set
reachability,” in AIAA Scitech 2021 Forum, 2021, p. 0995.

[58] M. O. Searcóid, Metric Spaces. Springer-Verlag, 2006.

[59] M. Gadelha, F. Monteiro, J. Morse, L. Cordeiro, B. Fischer, and D. Nicole, “ESBMC
5.0: an industrial-strength C model checker,” in 33rd Int. Conf. on Automated
Software Engineering, 2018, pp. 888–891.

[60] M. Gadelha, F. Monteiro, L. Cordeiro, and D. Nicole, “ESBMC v6.0: Verifying C
programs using k-Induction and invariant inference - (competition contribution),”
in 28th Int. Conf. on Tools and Algorithms for the Construction and Analysis of
Systems, 2019, pp. 209–213.

[61] H. F. Albuquerque, R. F. Araújo, I. Bessa, L. Cordeiro, and E. B. de Lima Filho,
“Optce: A counterexample-guided inductive optimization solver,” in Formal
Methods: Foundations and Application, 2017.

[62] W. Rocha, H. Rocha, H. Ismail, L. Cordeiro, and B. Fischer, “DepthK: A k-
Induction verifier based on invariant inference for C programs - (competition con-
tribution),” in 26th Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, 2017, pp. 360–364.

[63] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval Analysis.
USA: Society for Industrial and Applied Mathematics, 2009.

[64] A. Blanchard, N. Kosmatov, and F. Loulergue, “A lesson on verification of iot
software with frama-c,” in Int. Conf. on High Performance Computing & Simulation,
2018.

[65] J. Morse, M. Ramalho, L. Cordeiro, D. Nicole, and B. Fischer, “Esbmc 1.22,” in 20th
Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2014, pp. 405–407.

BIBLIOGRAPHY 53

[66] E. M. Clarke, T. A. Henzinger, and H. Veith, Introduction to Model Checking.
Cham: Springer International Publishing, 2018, pp. 1–26.

[67] D. Beyer and M. E. Keremoglu, “Cpachecker: A tool for configurable software
verification,” in Computer Aided Verification, G. Gopalakrishnan and S. Qadeer,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 184–190.

[68] D. Kroening and M. Tautschnig, “Cbmc – c bounded model checker,” in Tools

and Algorithms for the Construction and Analysis of Systems, E. Ábrahám and
K. Havelund, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp. 389–
391.

[69] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, “Efficiently
computing static single assignment form and the control dependence graph,” ACM
TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, vol. 13,
pp. 451–490, 1991.

[70] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library
(SMT-LIB),” www.SMT-LIB.org, 2016.

[71] H. Günther and G. Weissenbacher, “Incremental bounded software model checking,”
in 21st Int. SPIN Symp. on Model Checking of Software, 2014, pp. 40–47.

[72] B. Dutertre, “Yices 2.2,” in Computer Aided Verification. Springer, 2014, pp.
737–744.

[73] L. Cordeiro, “Smt-based bounded model checking of multi-threaded software in
embedded systems,” Ph.D. dissertation, University of Southampton, UK, 2011.
[Online]. Available: http://eprints.soton.ac.uk/186011/

[74] J. Morse, “Expressive and efficient bounded model checking of concurrent
software,” Ph.D. dissertation, University of Southampton, UK, 2015. [Online].
Available: http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658818

[75] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance
deep learning library,” arXiv preprint arXiv:1912.01703, 2019.

[76] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard et al., “Tensorflow: A system for large-scale machine learning,”
in 12th USENIX Symp. on operating systems design and implementation, 2016, pp.
265–283.

[77] D. Dua and C. Graff, “UCI machine learning repository,” 2017. [Online]. Available:
http://archive.ics.uci.edu/ml

[78] A. Gulli and S. Pal, Deep learning with Keras. Packt Publishing Ltd, 2017.

[79] L. Cordovil, P. Coutinho, I. Bessa, M. F. D’Angelo, and R. Palhares, “Uncer-
tain data modeling based on evolving ellipsoidal fuzzy information granules,” IEEE
Trans. Fuzzy Syst., vol. 28, no. 10, pp. 2427–2436, 2020.

http://eprints.soton.ac.uk/186011/
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.658818
http://archive.ics.uci.edu/ml

BIBLIOGRAPHY 54

[80] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer, “Pol-
icy compression for aircraft collision avoidance systems,” in 35th Digital Avionics
Systems Conf. IEEE, 2016, pp. 1–10.

[81] F. Monteiro, E. Alves, I. Silva, H. Ismail, L. Cordeiro, and E. de Lima-Filho,
“ESBMC-GPU a context-bounded model checking tool to verify cuda programs,”
Sci. Comput. Program., vol. 152, pp. 63–69, 2018.

[82] D. Beyer, “Software verification: 10th comparative evaluation (sv-comp 2021),”
Tools and Algorithms for the Construction and Analysis of Systems, vol. 12652, p.
401, 2021.

[83] J. Morse, M. Ramalho, L. Cordeiro, D. A. Nicole, and B. Fischer, “ESBMC 1.22
- (competition contribution),” in 20th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, ser. LNCS, vol. 8413, 2014, pp. 405–407.

[84] M. Gadelha, R. Menezes, F. R. Monteiro, L. Cordeiro, and D. A. Nicole, “ESBMC:
scalable and precise test generation based on the floating-point theory - (competition
contribution),” in 23rd Int. Conf. Fundamental Approaches to Software Engineering,
ser. LNCS, vol. 12076, 2020, pp. 525–529.

[85] A. De Lucia, “Program slicing: Methods and applications,” in 1st Int. Workshop
on Source Code Analysis and Manipulation. IEEE, 2001, pp. 142–149.

[86] D. Karmon, D. Zoran, and Y. Goldberg, “LaVAN: Localized and visible adversarial
noise,” in 35th Int. Conf. on Machine Learning, J. Dy and A. Krause, Eds., vol. 80.
PMLR, 2018, pp. 2507–2515.

[87] M. Gadelha, F. Monteiro, L. Cordeiro, and D. Nicole, “Esbmc v6.0: Verifying c
programs using k-induction and invariant inference,” in 25th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems, 2019.

[88] D. Bühler, “Eva, an evolved value analysis for frama-c : structuring an abstract
interpreter through value and state abstractions,” Ph.D. dissertation, 2017, thèse
de doctorat dirigée par Blazy, Sandrine et Yakobowski, Boris Informatique Rennes
1 2017. [Online]. Available: http://www.theses.fr/2017REN1S016/document

[89] J. Zory and F. Coelho, “Using algebraic transformations to optimize expression eval-
uation in scientific code,” in Int. Conf. on Parallel Architectures and Compilation
Techniques, 1998, pp. 376–384.

[90] E. Dekel, S. Ntafos, and S.-T. Peng, “Parallel tree techniques and code optimiza-
tion,” in VLSI Algorithms and Architectures, F. Makedon, K. Mehlhorn, T. Pap-
atheodorou, and P. Spirakis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
1986, pp. 205–216.

[91] C. Karfa, K. Banerjee, D. Sarkar, and C. Mandal, “Verification of loop and arith-
metic transformations of array-intensive behaviors,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 11, pp. 1787–1800, 2013.

[92] L. Chaves, I. Bessa, H. Ismail, A. B. Frutuoso, L. Cordeiro, and E. B. de Lima Filho,
“DSVerifier-Aided verification applied to attitude control software in unmanned
aerial vehicles,” IEEE Trans. Reliab., vol. 67, no. 4, pp. 1420–1441, 2018.

http://www.theses.fr/2017REN1S016/document

BIBLIOGRAPHY 55

[93] K. Jia and M. Rinard, “Verifying low-dimensional input neural networks via input
quantization,” arXiv preprint arXiv:2108.07961, 2021.

[94] G. Amir, H. Wu, C. Barrett, and G. Katz, “An smt-based approach for verifying bi-
narized neural networks,” in Int. Conf.on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2021, pp. 203–222.

[95] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security analy-
sis of neural networks using symbolic intervals,” in 27th Conf. on Security Symp.
USENIX Association, 2018, p. 1599–1614.

[96] P. Dey, K. Nag, T. Pal, and N. R. Pal, “Regularizing multilayer perceptron for
robustness,” IEEE Trans. Syst., Man, Cybern. Syst., vol. 48, no. 8, pp. 1255–1266,
2018.

[97] K. Jia and M. Rinard, “Exploiting verified neural networks via floating point nu-
merical error,” 2020.

[98] Y. Sun, X. Huang, D. Kroening, J. Sharp, M. Hill, and R. Ashmore, “Structural test
coverage criteria for deep neural networks,” ACM Trans. Embed. Comput. Syst.,
vol. 18, no. 5s, pp. 1–23, 2019.

[99] S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana, “Formal security analysis of
neural networks using symbolic intervals,” in 27th USENIX Security Symp., 2018,
pp. 1599–1614.

[100] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. Kochenderfer, “Reluplex: An
efficient smt solver for verifying deep neural networks,” 02 2017.

	Introduction
	Problem Description
	Objectives
	Contributions
	Dissertation Organization

	Preliminaries
	Artificial Neural Networks (ANNs)
	Quantized Neural Networks (QNNs)
	Safety properties for ANNs and QNNs
	Satisfiability Modulo Theories (SMT)
	Existing SMT approaches for ANNs and QNNs

	Methodology
	ANN code generation
	Models for fixed-point ANN implementations
	Discretization of non-linear activation functions
	Introducing safety properties in ANN code
	Invariant inference via interval analysis
	Model checking ANN implementations
	Incremental verification using lemma learning via SMT
	Constant folding, slicing and expression balancing for search-space reduction
	Illustrative example: robustness to adversarial images

	Experimental Evaluation
	Quantization aspects and data adaptation
	Description of the benchmarks
	Ablation study
	Verification of quantized ANNs
	Comparison with state-of-the-art verification tools
	Limitations

	Related Work
	Conclusion
	Future Works

	Bibliography

