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Abstract

During the last decades, model checking techniques have been applied to improve over-

all system reliability, in unmanned aerial vehicle (UAV) approaches. Nonetheless, there is little

effort focused on applying those methods to the control-system domain, especially when it

comes to the investigation of low-level implementation errors, which are related to digital con-

trollers and hardware compatibility. The present study addresses the mentioned problems and

proposes the application of a bounded model checking tool, named as Digital System Verifier

(DSVerifier), to the verification of digital-system implementation issues, in order to investigate

problems that emerge in digital controllers designed for UAV attitude systems. A verification

methodology to search for implementation errors related to finite word-length effects ( e.g.,

arithmetic overflows and limit cycles), in UAV attitude controllers, is presented, along with its

evaluation, which aims to ensure correct-by-design systems. Experimental results show that

failures in UAV attitude control software used in aerial surveillance, which are hardly found by

simulation and testing tools, can be easily identified by DSVerifier.

Keywords: Unmanned Aerial Vehicle, Symbolic Model Checking, Fixed-Point Digital Con-

trollers, Embedded Systems.



Resumo

Durante as últimas décadas, técnicas de verificação de modelos tem sido utilizadas para

melhorar a confiabilidade de sistemas, no que diz respeito a veículos aéreos não-tripulados

(VANTs). Contudo, existem poucos esforços focados em aplicar esses métodos ao controle de

sistemas, especialmente os relativos à investigação de erros de implementação de baixo nível,

os quais estão relacionados a controladores digitais e compatibilidade de hardware. O presente

trabalho aborda os problemas mencionados e propõe a aplicação de uma ferramenta de verifi-

cação limitada de modelos, conhecida como Digital System Verifier (DSVerifier) ou Verificador

de Sistemas Digitais, à verificação de implementação de sistemas digiais, com o objetivo de in-

vestigar problemas em controladores digitais projetados para sistemas de atitude em VANTs.

Apresenta-se uma metodologia de verificação para procurar por erros de implementação rela-

cionados a efeitos de tamanho de palavra finita (i.e, estouros aritméticos e ciclos-limites), em

controladores de atitude de VANTs, juntamente com sua avaliação, o que visa garantir a corre-

tude desses sistemas. Resultados experimentais mostram que falhas encontradas em software de

controle de atitude de VANTs usados em vigilância aérea, as quais são dificilmente encontradas

pro simulação e ferramentas de teste, podem ser facilmente identificadas pelo DSVerifier.

Palavras-Chave: Veículos Aéreos Não Tripulados, Verificação Símbolica de Modelos, Contro-

ladores de Ponto-Fixo, Sistemas Embarcados.
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Chapter 1

Introduction

During the last decades, the unmanned aerial vehicle (UAV) approach has been used

in various military and civil applications [2], such as armed attacks, training targets, aerial

surveillance, journalism, and entertainment [2]. More recently, autonomous UAVs have gone

through a notable development, due to the current evolution of embedded systems.

Applications based on autonomous UAVs are becoming very usual, both in military and

civil missions, in order to avoid fatal risks regarding human lives [2]. For instance, after the

cataclysmic earthquake and tsunami that struck Japan, in 2011, a nuclear leakage occurred and

prevented human access to the affected areas. In order to monitor those regions, Japan em-

ployed small UAVs, whose low-altitude flight and maneuverability allowed scientists to register

accurate live readings of radiation levels [3].

Since the 90’s decade, formal methods have been applied to improve automation sys-

tems. In that sense, hybrid systems (HS) and cyber-physical systems (CPS), which are the two

important parts of the actual industrial evolution trends, are usually represented by hybrid au-

tomata, for which several formal verification methods have been proposed. Alur et al. [4, 5]

present the earliest application of model checking for timed automata using the Timed Compu-

tation Tree Logic (TCTL) as an extension of CTL model checking for real-time systems. Those

initiatives inspired the development of formal methods and model checking tools for verifying

timed automata and for representing any control system by finite state machines; notable model

checking tools include UPPAAL [6] and HyTech [7], which support cyber-physical and hybrid

systems and are also able to improve their reliability [8].

Formal verification has been applied to avionics embedded software, since the 2000s,

1



1. INTRODUCTION 2

due to safety and reliability requirements [9]. Different tools (e.g., SPIN [10], SMV [11],

and NuSMV [12]) were used for developing and validating flight control software, such as the

NASA’s missions Mars science laboratory [13] and deep space 1 [14], the flight control system

FCS 5000 [15], and the military aircraft A-7 [16].

Most previous studies concentrate on safety regarding real-time requirements [8]; how-

ever, there are a few that discuss low-level properties and even less related to implementation

aspects and hardware features, such as the finite word-length (FWL) problem. That occurs

because such properties typically take into account complex system dynamics and require veri-

fication tools specialized in implementation aspects.

The main challenges regarding verification of UAV digital controllers are related to how

finite word-length (FWL) effects influence their performance and make them susceptible to

errors related to overflows (limited by the maximum and minimum representations) and limit-

cycles (due to overflows and also round-offs), which are problems related to fixed-point imple-

mentation. If an overflow is not avoided, an UAV controller might then perform wrong opera-

tions, which could impair performance and navigation/positioning of UAV systems. In addition,

limit cycles might surpass the limiting safe flight boundaries of aircrafts and potentially lead to

structural damage and catastrophes [17]. Indeed, in terms of verification, detection of overflow

and limit-cycle is computationally expensive, due to the presence of finite word-length (FWL)

effects, which thus requires additional processing time and memory [18, 19].

1.1 Problem Description

During the development of digital controllers for UAV systems implemented in fixed-

point arithmetic, designers must take into account all characteristics of the underlying hardware.

In this matter, it is necessary to balance between:

• Cost: A device (with a high number of bits) can raise the value of a final product (if

produced on large scale);

• Accuracy: The higher the number of bits, the lower the number of rounds, and, conse-

quently, the accuracy of numerical values will be better.
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• Performance: If a few bits are available for fractional parts, problems related to the

discrete domain could manifest as overflows, limit cycles, loss of stability, and minimum-

phase.

Based on those factors, this dissertation aims to seek answers to the following research

questions:

• RQ1: How digital controllers that are designed for UAV attitude systems are susceptible

to violations, according to fixed-point representations and realizations?

• RQ2: Are verification results using BMC approaches sound and can their overflow and

limit cycle violations be reproduced and also validated by external tools (e.g., MAT-

LAB [20])?

1.2 Objectives

The overall objective of this dissertation is employ the Bounded Model Checking (BMC)

techniques as an alternative tool during design and verification of UAV digital controllers, by

assisting control engineers with an efficient approach, which brings more confidence and less

effort than traditional simulation tools (e.g., MATLAB [20] and LabVIEW [21]), mainly the

ones that require manual intervention.

The specific objectives are listed below:

• Research and improve the existing arithmetic overflow and limit cycle checks for the

BMC-based verifier;

• Investigate the impact of overflow verification, according to the saturate and wrap-around

modes;

• Investigate the counterexamples by developing an automatic validation tool to reproduce

all counterexamples generated by DSVerifier;

• Apply the proposed methodology to the verification of digital controllers, considering

UAV Benchmarks (using the traditional and synthesis approaches) for different realiza-

tion forms (e.g., DFI, DFII and TDFII) and with different implementations for fixed-point

arithmetic.
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1.3 Contributions

The main contribution of the present study is to introduce a verification methodology

based on DSVerifier and also its theoretical basis, which aims to investigate finite word-length

(FWL) effects in digital controllers developed for UAV systems. In addition, this work describes

for the first time (i) the verification applied to closed-loop systems described in transfer-function

in order to check limit-cycle oscillations and quantization error, (ii) the automatic validation of

counterexamples applied for digital controllers, in order to reproduce the verification results,

and (iii) the overflow verification regarding saturation and wrap-around modes.

1.4 Organization of the Dissertation

The remainder of this work is organized as follows. Chapter 2 describes fundamental

concepts about digital controllers, along with implementation aspects, and also theoretical fun-

damentals about bounded model checkers, fixed-point arithmetics, and how the UAV models

could be designed.

In Chapter 3, the proposed verification methodology for UAVs is presented, which in-

cludes a detailed explanation about the verification of each property checked by DSVerifier for

UAV systems: overflow for saturate and wrap-around mode, and limit-cycle oscillations.

Chapter 4, in turn, tackles the performed verification experiments and discusses the ob-

tained results for overflow and limit cycle properties. In addition, this chapter presents discus-

sions about limit-cycle and overflow effects in closed-loop dynamics and efficiency. Specifi-

cally, section 4.5 describes how those same outcomes were reproduced an validated.

Finally, chapter 5 concludes this dissertation proposes future research topics, and in-

cludes an activity planning regarding this research.



Chapter 2

Background

2.1 Digital Controllers

A digital controller is a linear time-invariant (LTI) discrete-time system, which deals

with discrete numerical signals and whose implementation is a program executed by a micro-

processor. There are many mathematical representations employed for controllers (e.g., trans-

fer functions, state equations, and difference equations) [22], but one of the most common

approaches is the difference equation, which can be described as

y(n) =−
N

∑
k=1

aky(n− k)+
M

∑
k=0

bkx(n− k), (2.1)

where y(n) and x(n) are the n-th output and input samples, respectively, ak and bk are multiplier

coefficients, and N is the order for output equation, and M is the order for input equation, in

controller structures [22]. Through z-transform, equation (2.1) can be converted into a transfer

function

H(z) =
b0 +b1z−1 + ...+bMz−M

1+a1z−1 + ...+aNz−N , (2.2)

where z and z−1 are known as the forward-shift and backward-shift operators, respectively. In

addition, the roots of the numerator are called zeros of H(z) and the roots of the denomina-

tor are called poles of H(z) [22, 23]. For this dissertation will explore the transfer function

representation.

5
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2.1.1 Direct-Form Realizations

Direct realizations use the coefficients in equation (2.1) in its implementation. The ad-

vantage of this implementation is that state variables are derivations of delayed inputs and out-

puts, using the shift operator. Nonetheless, direct-form implementations make controllers ex-

tremely sensitive to numerical errors, which is strongly evident in fixed-point implementations.

As a result, that may specially harm system stability and performance.

Different direct forms (e.g., DFI, DFII, and TDFII) present different numerical perfor-

mances, given that those realizations implement the same controller, but with different oper-

ations numbers and orders. Figures 2.1a, 2.1b, and 2.1c show three different direct represen-

tations, where gains ak and bk are the coefficients and z−1 represents the shift operations in

equations (2.1) and (2.2), respectively. Figure 2.1 shows three different direct representations:

Direct Form I (DFI), Direct Form II (DFII), and Transposed Direct Form II (TDFII), in parts

2.1a, 2.1b, and 2.1c, respectively. Gains ak and bk represent controller coefficients, while z−1

describes shift operations, as shown in equations (2.1) and (2.2). Further details about digital-

system representations can be found in control and digital signal processing literature [22–24].

b0

b1

b2

a1

a2

(a) Direct form I.

b0

b1

b2

a1

a2

(b) Direct form II.

b0

b1

b2

a1

a2

(c) Direct transposed
form II.

Figure 2.1: Direct realizations for digital controllers.

2.2 Fixed-Point Representation

2.2.1 Fixed-Point Arithmetics

Let 〈I,F〉 denote a fixed-point format and F〈I,F〉(x) denote a real number x represented

in a fixed-point domain, with I bits representing the integer part and F bits representing the

decimal one. The smallest number cm that can be represented in such a domain is cm = 2−F and
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any mathematical operations performed at F〈I,F〉(x) will introduce errors, for which an upper

bound can be given [25].

Arithmetic operations with fixed-point variables are different from the ones with real

numbers, once there are some non-linear phenomenons, e.g., overflows and round-offs, the

radix must be aligned [25]. Here, we treat fixed-point operators for sums, multiplications,

subtractions, and divisions.

2.2.2 Fixed-Point Implementation in UAVs Controllers

Typically, UAVs are driven by digital controllers, which are implementations of differ-

ence equations, which generally run on microcontrollers and whose main goal is to make a

plant (e.g., a UAV system) follow a desired behavior, based on errors regarding reference and

output signals. Nonetheless, signals provided by UAV sensors (e.g., accelerometers and gyro-

scopes) are actually analog and then must be converted into digital form, by analog-to-digital

(A/D) converting devices. Besides, microcontrollers run control routines and produce discrete

control signals, which have to be converted into analog form through digital-to-analog (D/A)

conversion and zero-order hold (ZOH) devices [22], and then delivered to UAV actuators.

Direct realizations employ the coefficients shown in equation (2.1) and their main ad-

vantage is that they only deal with delayed input and output versions; however, they also make

controllers extremely sensitive to numerical errors, which become evident in fixed-point imple-

mentations and may severely harm system stability and performance. Different direct forms

may present distinct numerical performances, given that those realizations implement the same

controller, but with different organizations regarding the executed operations [26].

Fig. 2.2 shows an algorithm for Direct Form I controllers, which can be implemented in

C language (as shown in Fig. 2.3) and verified by the supported BMC tools present in DSVer-

ifier. In a C Program, fixed-point variables are implemented as integer variables, with implicit

power-of-2 scaling factors. As illustrated in Fig. 2.3, functions fxp_add, fxp_mult, fxp_div,

and fxp_sub take two input arguments and return the respective addition, multiplication, divi-

sion, and subtraction results, in fxp32_t format, which is internally defined in DSVerifier as

int32_t. Addition and multiplication blocks also include quantization effects and consider the

fixed-point representation used by a given system. Besides, function fxp_quantize provides

quantization effects on each output, for a Direct Form I controller.
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Figure 2.2: An algorithm for direct form I controllers.

Various other digital controller realizations may also be found in the literature, e.g.,

state-space representations [22], through δ [26] and ρ [27] operators, and lattices [28].

2.3 Problems Related to Fixed-Point Implementations

Implementations of digital controllers are subject to finite word-length (FWL) effects,

which are amplified in a fixed-point processor. FWL effects are related to small imprecision

or functional problems, such as instability. The most common error sources are round-offs

and quantization [29]. the latter occurs during analog-to-digital conversions, which consist of

approximating analog signal values to quantized ones. This process generates a rounding error,

whose maximum value is 2−F−1, where F is the number of bits in the fractional part.

A realistic model of a FWL system must include the quantization of every numerical

value, including each arithmetic result (sums and products), input signals, and system coeffi-

cients; the latter are narrowly related to the system’s dynamics. Those accumulated errors might

affect the position of poles and zeros of digital controllers (mainly in direct forms) and make

them lose stability or minimum phase characteristics. In the control literature, this is called
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1 f x p _ t f x p _ d i r e c t _ f o r m _ 1 ( f x p _ t y [ ] , f x p _ t x [ ] ,
2 f x p _ t a [ ] , f x p _ t b [ ] , i n t Na , i n t Nb ) {
3 f x p _ t ∗ a _ p t r , ∗ y _ p t r , ∗ b _ p t r , ∗ x _ p t r ;
4 f x p _ t sum = 0 ;
5 a _ p t r = &a [ 1 ] ;
6 y _ p t r = &y [ Na − 1 ] ;
7 b _ p t r = &b [ 0 ] ;
8 x _ p t r = &x [ Nb − 1 ] ;
9 i n t i , j ;

10 f o r ( i = 0 ; i < Nb ; i ++) {
11 sum = fxp_add ( sum , f x p_ m u l t (∗ b _ p t r ++ , ∗ x _ p t r −−) ) ;
12 }
13 f o r ( j = 1 ; j < Na ; j ++) {
14 sum = fxp_sub ( sum , f x p_ m u l t (∗ a _ p t r ++ , ∗ y _ p t r −−) ) ;
15 }
16 sum = f x p _ d i v ( sum , a [ 0 ] ) ;
17 r e t u r n f x p _ q u a n t i z e ( sum ) ;
18 }

Figure 2.3: C code fragment of a direct form I controller.

controller’s fragility [23].

In the design phase, control engineers avoid poles and zero positions, which might be

fatally affected by FWL effects (i.e., they seek positions slightly away from the unitary circle);

however, sometimes, it cannot be done easily or simply it may not be desired. An example is

given by resonant controllers, in which poles must be positioned next to the stability border.

The fixed-point arithmetic influence in those controllers is studied by Harnefors and Peretz et

al. [30, 31].

A particular fixed-point representation < I,F >, where I is the number of bits of the in-

teger part and F is the number of bits of the fractional one, can only represent values in the range

from 2I−1− 2−F to −2I−1. An overflow occurs when an addition or multiplication operation

returns a result outside the range of representable values. A microprocessor generally handles

overflow via wrap-around (i.e., it allows numerical representation wrapping) or saturation (i.e.,

it holds the maximum representation), and Round-off or overflow errors might lead to periodic

oscillations called limit cycles. There are books that explain completely the fixed-point theory

and operations, as in Granas and Dugundji [32]. Additionally, problems related to FWL effects

on fixed-point format can be extensively found in literature [23, 24, 29, 33].
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2.3.1 Round-off Effect and Poles and Zeros Sensitivity

The problems related to the precision of digital controllers are well-known [23, 34–37].

There are, essentially, two alternatives to handle them: the first one is a simple but expensive

technique that consists of increasing the word-length, using more expensive and improved hard-

ware, with the drawback of increasing the product price; the second one consists of optimizing

and minimizing the FWL effects via deep knowledge and understanding of the phenomena re-

lated to round-off effects with the drawback of it being a quite laborious task. Some authors

give an overview of the main techniques to minimize the performance degradation in digital

filters, controllers, and identifiers, because of quantizations and effects of round-offs, and how

to achieve optimal realization [23, 38, 39].

Round-off effects may be especially harming when coefficients are affected, because

they might displace poles and zeros and consequently change the desired system’s behav-

ior [35]. Although optimal FWL techniques, improved hardware, and special representation

(with larger number of bits for coefficients) have been used, poles and zeros sensitivity to FWL

still presents a challenge. There are several tools and techniques to handle model uncertainty

and perturbation (e.g., H∞ control), producing optimal and robust controllers; however, Keel

and Bhattacharyya showed that these controllers may still present an undesired property [40]:

fragility or sensitivity to implementation aspects (e.g., the FWL representation of the digital

controllers). The fragility of digital systems may be reduced by generating only small output

errors, or may be very harmful by affecting a system’s stability. To minimize controller fragility,

some techniques, such as the nonfragile control, were proposed [39].

2.3.2 Arithmetic Overflow

The arithmetic overflow is a well-known problem in digital controllers. Overflow may

occur in any node of a digital controller realization, when an operation result exceeds the limited

range of a processor’s word-length, resulting in undesirable nonlinearities at the output. In

particular, those events may be avoided with a correct scaling of input signals. Jackson et al.

showed that if the computation result of a digital controller, implemented with two-complement

arithmetic, does not exceed the numerical range, then intermediate steps of the computation may

be allowed to overflow any number of times, without causing an erroneous accumulation [33]:

overflow distortions because of sums can be recovered by subsequent additions. Overflow can
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be avoided if one ensures that it will not occur in the final node, which can be done by scaling

the multiplier inputs. The necessary and sufficient condition to avoid overflow, for any input

signal, is to ensure that an output will be bounded by vm, which represents the bound of a

processor’s representative range.

This condition is rarely used in practice as it generally results in a very stringent scal-

ing, which may be harmful to the accuracy of the output signal, once the word-length is finite.

There are previous studies that present efforts to optimize the number of bits used in the fixed-

point format [41–49] or to present more relaxed norms [24, 50, 51] to minimize round-off

effects. In any case, the accuracy is directly related to the dynamical behavior and to the sta-

bility of a system, which might present fragility because of the FWL effects and round-offs.

Some researchers focus their efforts on the design phase, developing controllers with an ade-

quate performance after FWL effects [38, 39, 52–54], and other authors investigate different

implementation forms [53, 55].

2.3.3 Limit Cycle

Limit cycle oscillations (LCO) in digital controllers are defined by the presence of os-

cillations occurring in the output, even when the input sequence is a constant value [23]. Those

oscillations may be very harmful to a control system, because of the signal-to-noise ratio of

a controller’s output, degrading control actions and causing damages to physical plants (espe-

cially in mechanical systems), harming surround products, and increasing material losses [56].

Some authors have studied the consequences of limit cycles. Peterchev and Sanders

show that the presence of limit cycle oscillations in pulse-width modulation (PWM) power

converters can increase the energy waste and decrease the lifespan of electronic devices [57].

The same problem was also studied for resonant controllers by Peretz and Ben-Yaakov [31].

LCOs may be classified as granular or overflow limit cycles. Granular limit cycles

are autonomous oscillations, originating from quantization performed in the least significant

bits [24]. The absence of overflow limit cycles may be assured by preventing overflows or

treating them through saturation.
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2.3.4 Sampling effect

The sample time is an important factor to be considered in a digital controller design.

Obviously, the choice of slow sampling implies difficulties in the signal reconstruction, increas-

ing reconstruction errors. The minimum criterion is the Shannon’s theorem below:

Theorem 2.1 Any signal y(t) that presents frequency components in the interval
[
−ωs

2 , ωs
2

]
can

be exactly reconstructed, from the sample values y(kT ), where T is the sampling period and

ωs =
2π

T ,

y(t) =
∞

∑
k=−∞

y(kT )
sin(ωs

2 (t− kT ))
ωs
2 (t− kT )

. (2.3)

This theorem is not practical and the sum in equation (2.3) is difficult to be evaluated and

may accumulate large errors after signal reconstruction. For this specific reason, polynomial

interpolation are more commonly used in signal reconstruction (e.g., zero-order hold) and a

superior sample rate is necessary, which is extended to almost ten times the bandwidth,in order

to avoid loss of information [37]. Furthermore, with the use of delta operators, small sample

times can approximate the convergence region from the continuous one [34].

However, the use of excessively high sampling might result in undesirable performance,

leading to large numerical errors due to FWL effects. In a real-time system, which may consist

of other tasks beyond control actions, high sample rates will require more processing resources.

Therefore, the use of high sample rates may be insufficient to execute tasks and may degrade a

system’s performance. Recommended sample rates are between 10 and 50 times of the band-

width [37].

2.4 Satisfiability Modulo Theories

The Satisfiability Module Theories (SMT) decide the satisfiability of first-order formu-

lae using a combination of different background theories and thus generalizes propositional sat-

isfiability by supporting uninterpreted functions, linear and non-linear arithmetic, bit-vectors,

tuples, arrays, and other decidable first-order theories.

In general, Σ− theory is a collection of sentences about the signature Σ. Given a theory

T and a quantifier-free formula ϕ , we say that ϕ is T -satisfiable if T ∪ { ϕ } is satisfiable. In

other words, we can say that the theory T is defined as a class of structures and ϕ is a satisfiable

modulo if exists a structure M in T that satisfies ϕ (i.e., M |= ϕ) [58].
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The SMT solvers as Z3 [59] and Boolector [60] support different types of theories, and

their performance may vary according to their implementation.

Theory Example
Equality x1 = x2∧¬(x2 = x3)⇒¬(x1 = x3)

Linear Arithmetic (4y1 +3y2 ≥ 4)∨ (y2−3y3 ≤ 3)
Bit-vectors (b >> i)&1 = 1

Arrays store(a, j,2)⇒ a[ j] = 2
Combined Theories ( j ≤ k∧a[ j] = 2)⇒ a[i]< 3

Table 2.1: Example of supported theories.

The Table 2.1 shows some of the theories that are supported by the SMT solvers used

in this dissertation. The equality theory allows verification of equality and inequality between

predicates, using operators (=) (≤) (<). The theory of linear arithmetic is only responsible

for handling arithmetic functions (addition, subtraction, multiplication, and division) between

variables and arithmetic constants. The theory about bit-vectors allows operations bit to bit

regarding different architectures (e.g., 32 and 64 bits) and is described by some operators as: and

(&), or (|), or-exclusive (⊕), complement (∼), shift-right (�), and shift-left (�). In addition,

the array theory allows the manipulation of operators such as select and store.

In addition, the formulas generated in boolean satisfiability, which consist of proposi-

tional variables only, can assume true or f alse values and accept the usual logical connectives

(e.g., ∨, ∧). The first-order formulas are formed by logical connectors, variables, quantifiers,

functions, and predicate symbols [58]. In general, the satisfiability modulo theories have been

exploited in several applications [61], with better results (if compared to boolean satisfiability),

including the support for different decision procedures [58, 59].

2.5 Bounded Model Checking

The formal verification of software and systems is an important task to ensure that a

model model meets the desired requirements. However, for robust and complex systems, this

procedure becomes hard. Since model verification techniques do not require proof (methods

algorithms rather than deductions), they have gained an important place in the verification
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paradigm, once the systems become more complex (e.g., cyberphysical), which require short

development cycles and high confidence level [62].

A prominent model-checking technique, commonly used for embedded software veri-

fication, since the beginning of the 2000s decade, is Bounded Model Checking (BMC). The

SMT-based BMC was successfully applied to verify single- and multi-threaded programs [63];

however, the application of BMC to ensure correctness of discrete-time systems, considering the

FWL effects (i.e., verifying system robustness related to implementation aspects) is somewhat

recent [26, 64, 65]. The basic idea behind BMC is to check the negation of a given property at

a given depth. The graphic representation of how BMC works is presented in Fig. 2.4.

𝑀0 𝑀1 𝑀2 𝑀𝑘−1 𝑀𝑘

...

¬𝜑0 ¬𝜑1 ¬𝜑2 ¬𝜑𝑘−1 ¬𝜑𝑘

property

bound

transition system

counterexample trace

∨ ∨ ∨ ∨

Figure 2.4: Representation of a transition system.

For a better understading about bounded model checking methodology exposed in Fig. 2.4,

we have the following definition:

Definition 2.1 Given a transition system M, a property φ , and a bound k; BMC unrolls the

system k times and translates it into a verification condition (VC) ψ , which is satisfiable if and

only if φ has a counterexample of depth less than or equal to k. SMT solvers, such as Z3 [59]

and Boolector [60], can be used to check whether ψ is satisfiable.

In BMC of digital controllers, the bound k limits the number of loop iterations and

recursive calls, i.e., the number of considered input samples. This way, such an approach bounds

the state space that needs to be explored, during verification, and is able to find many errors in

digital controllers [66]. BMC thus generates verification conditions (VCs) that reflect the exact

path a statement goes through during execution, the context in which a given controller function
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is called, and the bit-accurate representation of arithmetic expressions. BMC tools are, however,

susceptible to time and memory exhaustion, when verifying programs with loops whose bounds

are too large or cannot be statically determined.

2.6 UAV Control Systems

2.6.1 Modeling UAV Attitude Dynamics

In terms of modelling, the dynamic UAV model described in this work presents some

specific characteristics: (1) the associated vehicle has a rigid and symmetrical structure, (2) the

mass center and the origin of the coordinate system coincide, (3) propellers are rigid, (4) thrust

and drag forces are proportional to the square of the velocity, for the propellants, and (5) gyro-

scopic effects related to propellants and (6) influences of soil or other surface are disregarded.

In addition, the body fixed-frame B and the earth fixed-frame E are illustrated in Fig. 2.5.

B represents the angular movements pitch (θ ), roll (φ ), and yaw (ψ), while E describes quadro-

tor translational movements in a three-dimensional space. The angular dynamics of the men-

tioned quadrotor’s hover control are given by equation (2.4) [67].

𝔼 

𝑦 

𝑧 
𝑥 

𝑦𝐵 

𝑧𝐵 

𝑥𝐵 

𝔹 
𝑈1 

𝑈2 𝑈3 

𝑈4 

𝜙 𝜃 

𝜓 

Figure 2.5: Reference system for a quadcopter model [1].


φ̈ = Iyy−Izz

Ixx
θ̇ ψ̇ + ux

Ixx

θ̈ = Izz−Ixx
Iyy

ψ̇φ̇ + uy
Iyy

ψ̈ = Ixx−Iyy
Izz

φ̇ θ̇ + uz
Izz

(2.4)

The Fig. 2.6 shows the quadcopter used in this dissertation.
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Figure 2.6: Unmanned aerial vehicle.

Nonetheless, as the physical parameters described in equation (2.4) require knowledge

of Ixx, Iyy, Izz (empirical parameters obtained by system identification technique for pitch, roll

and yam angles, respectively), which are unknown, empirical models obtained from black-box

system identification are used when designing controllers. Indeed, their dynamics approximate

a real response, as described in equation (2.5), which represent roll (φ ) and pitch (θ ) angles’

dynamics, while (2.6) expresses the yaw (ψ) angle’s dynamics.

As a result, the physical plants determined in equations (2.5) and (2.6) are obtained based

on a computational tool for systems identification available in MATLAB [20]. The respective

model consists in an autoregressive with Exogenous Inputs (ARX) structure with two poles,

one zero, and no delay.

G1(z) =
−0.06875z2

z2−1.696z+0.7089
. (2.5)

G2(z) =
−0.04785z2

z2−1.789z+0.8014
. (2.6)

2.6.2 Control Strategies in UAVs

Fig. 2.7 shows a typical digital control-system for UAVs, which can be divided into

attitude, altitude, and position controls. Typically, a high-level controller provides coordinates

that contain reference values regarding position and altitude; however, they are coupled to the

attitude dynamics and depend on angle variations. This way, position and altitude controllers
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generate references to the attitude control system, which then drives UAV motors. The attitude

of a quadrotor consists in its orientation w.r.t. an inertial reference system, which is described by

the Euler angles: pitch, roll, and yaw [67]. Attitude control is the basis of UAV control systems,

since they are responsible for translating movement references into desired motor speeds, which

are fed to motor controllers.

The present work tackles only attitude controllers. In summary, they must work prop-

erly, which means that bugs related to control software implementations should be identified

and corrected; otherwise, they may cause serious problems, which normally lead to degraded

performance or stability loss.

Figure 2.7: A typical digital control system for UAVs.

One of the best-known control strategies available in literature is the proportional-integral-

derivative (PID) control, which is shown in Fig. 2.7. In that approach, the controller output u(t)

represents a response to the obtained error e(t), with respect to a reference r(t) and measured

sensor signals, which is proportional to the error itself (P), its derivative (D), and also its inte-

gral (I). Additionally, a controller might contain only two of those: the PD and PI controllers,

where the integrative and derivative actions are null, respectively. In general, a continuous PID

controller has its response represented by

u(t) = KPe(t)+KD
de(t)

dt
+KI

∫ t

0
e(t)dt, (2.7)

where KP, KD, and KI , are the proportional, derivative, and integrative gains, respectively.

The effort necessary to design a PID controller may be reduced to merely tuning its

gains, i.e., KP, KD, and KI , which can be done by model-based (exact) (e.g., pole assign-
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ment [22] and counter-example guided inductive synthesis [68]) or empirical (e.g., Ziegler-

Nichols tuning) methods. Here, PID controllers for attitude UAV control were designed using

the empirical Ziegler-Nichols tuning, which is a popular and attractive approach, due to the

simplicity and predictability of its results [22]. Thus, a mathematical model for UAV attitude

angles was simulated, in Simulink [20], and a proportional closed-loop gain was progressively

enhanced, until stability was reached. In that case, a constant oscillation appeared on its output

and KP, KD, and KI were then computed from that same stability threshold and the associated

oscillation period, using conventional and classical formulas [22]. A PID controller, behaving

as in equation (2.7), can be represented by a continuous transfer function

C(s) =
KDs2 +KPs+KI

s
; (2.8)

however, it is still analog. A respective digital controller can then be obtained by converting

the latter into digital form, with a chosen sample time T , which is known as discretization

by approximation. Discretization by approximation consists in approximating a discrete-time

transfer function (e.g., Hd(z)) by evaluating its respective continuous-time one Hc(s). Different

approximations could be adopted by a designer, such as the Euler’s forward difference (EF),

where s≈ z−1
T is considered, the backward difference (BF), which uses s≈ z−1

T z , and the Tustin’s

(bilinear) approximation, which is based on s≈ 2
T

z−1
z+1 [22].

2.6.3 Synthesizing UAV attitude controllers with CEGIS

In order to synthesize controllers for a UAV system, given a continuous plant, a tool

known as DSSynth [68] can be used, which is a program synthesizer that implements counter-

example guided inductive synthesis (CEGIS) [69]. Given a plant model for roll (φ ), pitch (θ ),

and yaw (ψ) angle dynamics, which is expressed by an ANSI-C syntax as input, DSSynth con-

structs a non-deterministic model to represent that plant family, i.e., it addresses plant variations

as interval sets and formulates a function using implementation details, with the goal of calcu-

lating a group of controller parameters to be synthesized, based on the Jury’s criteria [70]. Then,

DSSynth synthesizes the respective controller coefficients for a given implementation specifi-

cation, i.e., numerical representation and realization form, and, finally, it builds intermediate

C code representing a digital system for a UAV, which is used as input for the CEGIS engine.

The resulting intermediate C code model contains a specification υ for the property of interest
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(i.e., robust stability) and is passed to the CEGIS module of CBMC [71], where a controller is

marked as the input variable to synthesize.

CEGIS employs an iterative counterexample-guided refinement process and reports a

successful synthesis result if it generates a controller that is safe, regarding υ . In particular, the

C code model guarantees that a synthesized solution is complete and sound, w.r.t. the stability

property υ , since it does not depend on system inputs and outputs. In case of stability, υ consists

of a number of assumptions on polynomial coefficients, following the Jury’s criteria.

For instance, by employing the controller-synthesis methodology described by Abate et

al. [68], using DSSynth, the stabilizing controller in equation (2.9) was synthesized for the

attitude dynamics module [72] described in equation (2.5), with a sampling time of 0.002s.

H(z) =
−0.39154052734375z2−0.7646636962890625z
0.8602752685546875z2 +0.52484130859375z

(2.9)

.

2.7 Digital-System Verifier

In this study, DSVerifier [73] is used, which is a BMC tool for digital systems that

employs CBMC [71] and ESBMC [66] as back-ends. Indeed, DSVerifier implements a front-

end for those BMC tools, in order to provide support for digital system design and verification,

and performs three main procedures: initialization, validation, and instrumentation. When it

receives a digital-system specification, the first step is to initialize its internal parameters for

quantization, that is, it computes the maximum and minimum representable numbers for the

chosen FWL format. Then, during validation, it checks whether all required parameters, for the

verification procedure, were correctly provided. In the last step, explicit calls to its verification

engine (for the evaluated properties) are added, using specific functions available in CBMC and

ESBMC (e.g., assume and assert), with the goal of checking property violations.

Once those three procedures are performed, an ANSI-C file provided by a user, as shown

in Fig. 2.8, can then be verified. Such a file contains a digital-system description (struct ds), i.e.,

the numerator (ds.b = {1.561, −1.485 }) and also the denominator (ds.a = {1.0, −0.9})

of its transfer function, along with implementation-specific data (struct impl), such as number



2. BACKGROUND 20

of bits in the integer (impl.int_bits = 3) and precision (impl.frac_bits = 5) parts, input

range (impl.min = -3 and impl.max = 3), and scaling factor (impl.scale = 10).

Indeed, the input file described in Fig. 2.8 represents the standard format used by DSVer-

ifier [73] for characterizing digital systems. In particular, the second-order system described in

Fig. 2.8 represents a controller for an AC motor plant [74].

1 # i n c l u d e < d s v e r i f i e r . h>
2 d i g i t a l _ s y s t e m ds = {
3 . a = { 1 . 0 , −0.9 } , /∗ d e n o m i n a t o r ∗ /
4 . a _ s i z e = 2 , /∗ d e n o m i n a t o r l e n g t h ∗ /
5 . b = { 1 . 5 6 1 , −1.485 } , /∗ n u m e r a t o r ∗ /
6 . b _ s i z e = 2 /∗ n u m e r a t o r l e n g t h ∗ /
7 } ;
8 i m p l e m e n t a t i o n impl = {
9 . i n t _ b i t s = 3 , /∗ i n t e g e r b i t s ∗ /

10 . f r a c _ b i t s = 5 , /∗ p r e c i s i o n b i t s ∗ /
11 . min = −3.0 , /∗ minimum i n p u t ∗ /
12 . max = 3 . 0 , /∗ maximum i n p u t ∗ /
13 . s c a l e = 10
14 } ;

Figure 2.8: A digital-system input file for DSVerifier.

This file is directly sent to a C parser module and then follows the normal verification

flow of CBMC [71] or ESBMC [66]. Fig. 2.9 shows an example of C code automatically pro-

duced by DSVerifier, which computes a DFI structure, includes assert and assume statements,

and is later verified by the chosen back-end, in order to check overflow violations. In partic-

ular, __DSVERIFIER assume limits non-deterministic values to the dynamic range defined in

impl (as shown in Fig. 2.8), shiftL gets values from the vector with inputs x(n) (determined

with non-deterministic values) and permutes them to the left, in order to employ all necessary

values for computing y(n), fxp_direct_form_1() is the DFI controller implementation, and,

finally, __DSVERIFIER assert represents a given property to be checked (in the present case,

overflow), using the maximum and minimum representation defined by fwl_max and fwl_min,

respectively.

In the present work, CBMC and ESBMC are employed for reasoning about bit-vector

programs, using SAT and SMT solvers, respectively [75]. If they find a property violation, a

counterexample is generated; otherwise, the evaluated implementation can then be embedded

into a microcontroller. Finally, further details on DSVerifier are provided by Ismail et al. [73]1.
1One may also notice that users can even access documentation, benchmarks, and publications about DSVeri-

fier, which are available on its website http://www.dsverifier.org

http://www.dsverifier.org
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1 f x p _ t xaux [ ds . b _ s i z e ] ; f x p _ t yaux [ ds . a _ s i z e ] ;
2 f o r ( i n t i = 0 ; i < k ; ++ i ) {
3 x [ i ] = n o n d e t _ i n t ( ) ;
4 __DSVERIFIER_assume ( x [ i ] >= impl . min &&
5 x [ i ] <= impl . max ) ;
6 s h i f t L ( x [ i ] , xaux , ds . b _ s i z e ) ;
7 y [ i ] = f x p _ d i r e c t _ f o r m _ 1 ( yaux , xaux ,
8 ds . a , ds . b , ds . a _ s i z e , ds . b _ s i z e ) ;
9 s h i f t L ( x [ i ] , xaux , ds . b _ s i z e ) ;

10 __DSVERIFIER_assert ( y [ i ] >= fwl_min &&
11 y [ i ] <= fwl_max ) ;
12 }

Figure 2.9: C code fragment of a DFI controller, which was modified by DSVerifier.

2.7.1 Verifying Stability

Stability is a basic requirement when designing digital systems. In particular, digital

controllers are updated every sampling period and one has to ensure that systems will be stable

during its execution, that is, if all its poles are in the interior region of the unitary circle of

z-plane (i.e., the poles must have the module less than one) [22].

In previous studies [65, 76], stability verification using Schur Decomposition was used

and implemented in the ESBMC tool, using the Eigen Library [77]. Such a method, however,

involves many matrix operations that make it computationally expensive. In the present study,

another method to check for stability was chosen: the Jury’s Stability criteria [78], as it is

computationally less expensive than the Schur’s Decomposition and does not require the use of

an external library. The main advantage of the Jury’s algorithm can be easily noticed through

its complexity, which is O(n2), whereas the complexity of the previous stability verification,

based on the Schur’s decomposition, is O(n3) [77].

The Jury’s algorithm can be used for a given polynomial of the form

F(z) = anzn +an−1zn−1 + ...a1z+a0 = 0,an > 0, (2.10)

where an until a0 represent the digital controller denominator coefficients. In particular, such

coefficients are distributed in a Jury’s table using the format shown in Table 2.2.

Considering the Jury’s table as a matrix m with dimensions [2n− 1][n], where n is the

number of coefficients, one can notice:

a) The first line of matrix m has the digital controller’s denominator coefficients;

b) Even-numbered lines have inverse order, when compared with of their previous lines (i.e.,

despising final zeros);



2. BACKGROUND 22

row zn zn−1 ... zn−k ... z1 z0

1 an an−1 ... an−k ... a1 a0

2 a0 a1 ... ak ... an−1 an

3 b0 b1 ... bn−k ... bn−1 0
4 bn−1 bn−2 ... bk ... b0 0
5 c0 c1 ... ... cn−2 0 0
6 cn−2 cn−3 ... ... c0 0 0
... ... ... ... ... ... ... ...

2n−1 r0 0 0 0 0 0 0

Table 2.2: Digital controller denominator coefficients distributed in a Jury’s table.

c) b0 is in line 3 of column 1 and its value is b0 = m[3−2][1]− (m[3−2][p]/m[3−2][1])∗

m[3− 1][1]. Generalizing b j and c j leads to m[i][ j] = m[i− 2][ j]− (m[i− 2][p]/m[i−

2][1])∗m[i−1][ j], where p is the last nonzero column number for line i−2;

d) Line 2n−1 has only one nonzero element in the first column.

With the Jury’s table filled in, it is necessary to check stability using the following two defini-

tions:

Definition 2.2 If m[1][1] is positive, then F(z) will be stable iff all first elements, in odd lines

(i.e., m[3][1], m[5][1], ..., m[2n−1][1]), are positive too.

Definition 2.3 If m[1][1] is negative, then F(z) will be stable iff first elements, in odd lines (i.e.,

m[3][1], m[5][1], ..., m[2n−1][1]), are negative too.

2.7.2 Verifying Minimum-Phase

The invertibility of a linear time-invariant system is intimately related to the character-

istics of the phase spectral function of the system [29]. The minimum-phase property of Finite

Impulse Response (FIR) systems carries over to Infinite Impulse Response (IIR) systems that

have rational system functions [24]. Specifically, an IIR system with system function

H(z) =
B(z)
A(z)

(2.11)

is called minimum-phase if all its zeros are stable, which means that all zeros are inside the unit

circle [29, 78]. This discussion bring us to an important point that should be emphasized, where
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a stable pole-zero system that is minimum phase has a stable inverse which is also minimum

phase. The inverse system has the system function

H−1(z) =
A(z)
B(z)

(2.12)

Hence the minimum-phase property of H(z) ensures the stability of the inverse system H−1(z)

and the stability of H(z) implies the minimum-phase property of H−1(z). Conceptually, as

already mentioned, a minimum-phase system has all its poles and zeros inside the unitary cir-

cle [29, 78]. Indeed, minimum-phase is a desirable property in digital controllers, given that, in

a closed-loop system, zeros of its feedback-part become poles in the general system model (i.e.,

a digital control system with a nonminimum-phase controller is potentially unstable).

In summary, minimum-phase systems are less prone to closed loop instability. The

verification engine for this particular property is similar to the stability one and also uses the

Jury’s stability test; however, it analyzes numerator coefficients to check minimal phase.

2.7.3 Verifying Overflow

When dealing with UAV digital controllers, we need to check overflow to avoid incorrect

system behavior, which is difficult to detected without computational tools, as they usually

occur at run-time during quantization processes. In the present study, assertions are coded in

the quantizer block, and the verification engine is configured to use nondeterministic inputs in a

specified range, in order to detect overflows in a digital controller, for a given fixed-point word-

length. For any addition or multiplication result, during controller operation, if there exists a

value that exceeds the range representable by the fixed-point, an assert statement detects that

as an arithmetic overflow. As a consequence, a literal lsigned_over f low is generated, with the

goal of representing the validity of each addition and multiplication operation, according to the

constraint

lsigned_over f low⇔ (FP≥MIN)∧ (FP≤MAX), (2.13)

where FP is the fixed-point approximation, for the result of adders and multipliers, and MIN and

MAX are the minimum and maximum values that are representable for the given fixed-point bit

format, respectively. Therefore, in the overflow verification, an expression of a fixed-point type

can not be out of the range provided by a fixed-point bit format. If this condition is violated,
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then an overflow has occurred. In addition, an arithmetic overflow can be solved by saturation

or wrap-around.

Definition 2.4 (Saturation) Saturation occurs when values outside a bit range are represented

by minimum or maximum values.

Although it is easy to finding those limits, it would be difficult to know which input led

to saturation.

Definition 2.5 (Wrap-around) Wrapping around consists in attributing minimum values when

the maximum limit is reached and vice-versa [79].

2.7.4 Verifying Limit Cycle

Limit cycle is defined by the presence of oscillations in the output, even when the input

sequence is constant. LCO can be classified as granular or overflow.

Definition 2.6 (Granular LCO) Granular limit cycles are autonomous oscillations due to round-

offs in the least significant bits [24].

Definition 2.7 (Overflow LCO) Overflow limit cycles appear when an operation results in over-

flow using the wrap-around mode [24].

In order to verify the presence of limit cycles, in a particular fixed-point controller re-

alization, the quantizer block routine is configured by setting a flag variable on it to enable

wrap-around on overflow, which means that the verification engine is not expected to detect

overflow failures, as in the previous case. Additionally, the controller is configured to use a

zero or constant input signal and a nondeterministic initial state, for previous outputs. The con-

troller execution is then unrolled, for a bounded number of entries, and an assert statement is

added to detect a failure, if a set of previous outputs states (that repeats during the zero-input

response) is found.

One can note that this method is slightly different from the one presented by Cox [64,

79], which aims at finding a limit cycle by comparing input and output windows, within a

bounded number of steps.
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The constant input limit cycle occurrence is represented by a literal lLCO, with the goal

of determining whether a set of previous outputs states is found, according to the constraint

lLCO⇐⇒∃n,k ∈ N|xm = 0 =⇒∃yk+i = yk+n+i,

∀i ∈ {0,1,2, ...,n},m ∈ {k,k+1,k+2, ...,k+2n}.
(2.14)

Limit cycle absence is then verified by checking ¬lLCO, that is, there exists no execution of the

digital controller on which a set of previous outputs states is found.

2.7.5 Verifying Quantization Error

In the present work, the impairments present on a digital controller output, due to coef-

ficient rounding and arithmetic-operation results, are considered. The quantization error E, due

to the rounding of a number represented with F-bit precision, is

−2−F−1 ≤ E ≤ 2−F−1. (2.15)

One may notice that the accuracy on the computation of digital controllers is limited by the

word-length specified in the digital system realization. Coefficient rounding is highly affected

by the number of precision bits during design phase, i.e., the higher the precision, the better is

the fixed-point approximation of a floating-point number. Coefficient-rounding modifications

cause variations on a controller’s output, which can also be observed in time domain.

Based on that, the verification of output error bound (defined by the designer) is pro-

posed. As a result, the output of a digital controller, implemented with reduced-word-length

fixed-point representation, is compared to a reference output of the same structures, imple-

mented using floating-point arithmetic. The verification engine then applies non-deterministic

inputs to two different implementations (i.e., fixed- and floating-point) for comparison purposes

and check whether the difference between those implementation outputs cannot be greater than

the value specified by the designer Ed . The verification condition for this property is

lerror ⇐⇒
∣∣y f xp− y f loat

∣∣≤ Ed, (2.16)

where y f xp is the output value in fixed-point implementation, y f loat is the respective floating-

point output, and Ed is the acceptable error value defined by a digital controller designer. Thus,

the verification engine checks for the satisfiability of equation (3.8) and when a counterexam-

ple is found, it indicates that the output error is higher than the acceptable error for a digital

controller implementation.
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2.8 Related Work

The use of autonomous UAVs has led researchers to develop model checking applica-

tions for UAV software. Groza et al. [80] used the Hybrid Logics Model Checker, in order

to ensure mission accomplishment requirements related to obstacle detection and avoidance.

Kim [81, 82] proposed a methodology for building and checking specifications with SAT-based

model checking, which are related to UAV mission goals, such as assurance of reachability

of designed locations and surveillance of predetermined areas, which are typically represented

by linear-time temporal logic expressions for safety, reachability, coverage, sequencing, and

avoidance. Based on that methodology, Humphrey employed the SPIN model checker to verify

autonomous UAV mission planing [83], human-automation collaboration UAV missions [84],

and cooperative control of autonomous UAV units [85]. In addition, Zutshi et al. [86] em-

ployed the symbolic execution in order to falsify safety properties of hybrid systems that model

a software system controlling a physical plant (for closed-loop systems).

Formal methods were introduced in NASA’s flight-mission testing-processes by Pingree

et al. [14], for the Deep Space 1 mission, and Groce et al. [13], for the Curiosity rover mars

mission. In a recent work [87], Groce et al. tackled various verification methods and tools em-

ployed in that project, including model checking. In particular, tools based on abstraction and

BMC techniques were evaluated; however, they were regarded as difficult practical implemen-

tations. Finally, the SPIN model checker was employed to perform model-driven verification,

regarding NASA’s flight-mission UAVs.

All aforementioned studies have a common concern about high-level specifications, gen-

erally related to flight planning and navigation. By contrast, the present work focuses on low-

level aspects, by handling hardware-level implementation issues. Furthermore, those related

studies disregard the dynamics of motion controllers in UAV systems, i.e., they consider that

a given UAV behavior is totally described by Kripke-based structures [88], which only repre-

sent transitions and relationships between static tasks, without any computation of input/output

models for controllers and physical plants. As a consequence, such structures are able to capture

some intuition about the underlying system, but do not cover the complexity and myriad of en-

tanglements regarding all involved elements, mainly when that change with respective outputs

(closed-loop).

A promising approach to capture continuous dynamic behavior and also discrete state
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transitions is the hybrid automata representation. Lerda et al. [89] adopted that, which merges

dynamic responses obtained through MATLAB and Simulink and the Java Pathfinder model

checker, in order to detect errors in controller designs. Nonetheless, even employing the MAT-

LAB and Simulink environment, their work do not consider FWL effects in controller dynam-

ics, which may fatally affect closed-loop systems’ dynamics and damage their performance and

stability. Regarding that, the present work does not take into account closed-loop specifications

and UAV dynamics, but instead investigates digital controllers for UAV systems, with respect

to FWL problems and stringent hardware constraints.

One may also notice that software engineering techniques typically disregard platforms

on which (embedded) system software operates. As a consequence, the proposed approach rep-

resents an important contribution towards the verification of low-level implementation aspects,

in order to check errors caused by FWL effects. Indeed, it considers hardware implementation

parameters and FWL effects related to digital controllers used in UAV systems, which was not

tackled by previous approaches [13, 80–84, 87–89].

The work introduced by Abate et al. [68] presents a method for synthesizing stable

controllers that are suitable to continuous plants given as transfer functions, which exploits bit-

accurate verification of software implemented in digital microcontrollers [70, 73]. The men-

tioned authors developed a tool called DSSynth, which is able to synthesize digital controllers

that are algorithmically and numerically sound, w.r.t. stability. DSSynth marks the first use

of counterexample-guided inductive synthesis [69] to synthesize digital controllers, consider-

ing physical plants with uncertain models and FWL effects; however, low-level implementation

errors (e.g., limit cycles) are not further investigated.

Recently, Bessa et al. [26] investigated FWL effects in digital controllers. Properties

related to overflow, limit cycle, time constraint, stability, and minimum phase were verified,

in different software realizations (delta- and direct-forms) and implementations (e.g., number

of bits), using the Digital System Verifier (DSVerifier) [73]. DSVerifier is a bounded model

checking (BMC) framework for digital systems that uses other state-of-the-art tools, such as

the Efficient SMT-based Context-Bounded Model Checker (ESBMC) [66] and the C Bounded

Model Checker (CBMC) [71]. It was developed to verify digital-system implementations and

is suitable for investigating finite word-length (FWL) performance and hardware compatibility,

thus considering implementation aspects. In addition, DSVerifier is able to verify digital filters,

digital controllers, and closed-loop control systems. Following that same line of research, this



2. BACKGROUND 28

dissertation is the first to investigate finite word-length (FWL) effects in UAVs. In particular,

it includes overflow and limit-cycle oscillation (LCO) on the output of physical plants (in this

case, UAVs), considering feedback control, where prior work [26] only tackled such effects at

the output of digital controllers. Furthermore, the LCO and overflow verification engines were

substantially improved, in order to generalize detection for any constant input and different

overflow modes (i.e., saturate and wrap-around). By contrast, DSVerifier v1.0 [73] was only

able to detect zero-input LCO and in wrap-around overflow mode. Finally, UAV applications

present complex elements (multiple control loops and different control configurations), which

are tightly coupled to each other (attitude dynamics, angle variations, and position information)

and impose an ever increasing level of difficulty to existing verification methodologies.

Particularly, software testing has been the standard technique for identifying software

bugs during many years. Currently, there are studies that compare software testing and model

checking techniques [90, 91] and show that model checking is an effective technique, since it is

able to find more bugs in software than testing. The work of Lipka et al. [90] examined a simple

software consisting of several components, in order to compare two different tools: the first one

is SimCo, which is a framework for the simulation-based testing of software components, and

the second one is Java Pathfinder (JPF), which is a software model checking tool for verifying

correctness of components’ behaviors. As a result, they showed that JPF was able to detect

more bugs than SimCo, since JPF covers all possible scenarios and SimCo was not originally

designed for some of them (e.g., it does not search the entire state space).

Dirk and Lemberger [91] also discussed a comparison about testing and model checking

tools, in order to prove that model checking presents reliable results, when looking for bugs

in programs. During the respective experiments, which were performed with tools for random

fuzz testing and model checking, they showed that software model checkers are competitive

for finding bugs, the model checking approach is also mature enough to be used in practice,

given that it even outperforms the bug-finding capabilities of state-of-the-art testing tools, and

BMC techniques are able to find more bugs in programs and are also faster than state-of-the-art

software testing tools. Finally, previous studies mentioned by Lipka [90] and Dirk [91] had

already shown that model checking could be considered for practical applications, which is the

case for the work described here.

Nonetheless, other FWL effects, such as overflow and LCO, are mostly neglected by

current studies. Recently, Ismail et al. [73] and Bessa et al. [26] employed DSVerifier to check
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zero-input LCO and overflow occurrences in fixed-point implementations of digital controllers

and filters, which is also performed in the present work; however, the current algorithms are

more comprehensive, allowing detection of granular LCO for any constant input and over-

flow with and without two’s complement arithmetics. Furthermore, it focuses on UAV attitude

control systems, which are more complex than those used in previous studies, where FWL

violations were propagated for different sub-systems of a control loop.

The methodology presented here was integrated into the DSVerifier tool [73]. Nonethe-

less, there are other verification tools that provide similar features, such as Astrée [92], PolySpa-

ce [93], and Simulink Design Verifier (SDV) [94]. Although Astrée works on preprocessed C

code, it tackles only digital filters and is focused on verifying overflow and register dimension-

ing, which means that it is not prepared to handle digital controllers and physical plants. SVD

is focused on block level (Simulink) and needs substantial work regarding requirement expres-

sion and its respective encoding. Finally, PolySpace is more software oriented and generically

handles potential run-time errors, while also leaves code parts for further review. In addition,

PolySpace and SDV can be integrated into Matlab, Simulink, and Stateflow, but there is no study

that reports their use for checking low-level properties, in digital systems. As a consequence,

our proposed approach, which is supported by an automated verification tool (DSVerifier), pro-

vides distinctive qualities that make it interesting and highly suitable for application to UAVs, to

the detriment of the other mentioned schemes and tools, which would still require considerable

work. The Table 2.3 shows the comparison between the features available in each tool.

Table 2.3: Comparison between verification tools.

Tool Astrée Polyspace SDV DSVerifier
Supports FWL Effects? yes no yes yes
Includes Transfer-Function Format? yes yes yes yes
Processes C/C++ programs? yes yes no yes
Prepared for Digital Controllers? no yes yes yes
Investigates Low level problems (e.g., overflow, LCO)? yes no no yes
Is it available (free) for any user? no no no yes



Chapter 3

Verifying Attitude Control Software in

UAVs

3.1 The Proposed Verification Methodology

This section describes the proposed verification methodology implemented in DSVeri-

fier, in order to automatically check the presence of oscillations and overflows, in attitude con-

trollers employed in UAVs, as show in Fig. 3.1. The addressed devices are commonly used in

aerial surveillance, besides being typically implemented in architectures operating with fixed-

point arithmetic. In step 1, UAV attitude controllers are designed through four tasks, for each

angle dynamics (pitch, roll and yaw): angle-dynamics modeling, selection and design of asso-

ciated structures, coefficient tuning, and controller discretization. In particular, in this work,

PID controllers were designed with Ziegler-Nichols tuning, which represents a classical control

design approach, and second order structures were designed with the CEGIS-based approach

via DSSynth (see Section 2.2.2). Then, they were converted into digital format, with different

methods 1 and sample times. A numerical fixed-point format is then selected in step 2, which,

in this work, is performed as suggested by Carletta et al. [95].

In step 3, all implementations are checked for DFI, DFII, and TDFII, in order to provide

comparison data among different realization forms, and hardware model and overflow mode

(saturate or wrap-around) properties are then defined in step 4. Finally, overflow and limit cycle

events are verified, with 10 (non-deterministic) inputs, which regarding previous studies [26,
1(e.g., Forward Euler, Tustin, Backward Euler)

30
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96], a bound of k = 10 has shown to be enough to detect errors in digital controllers, as already

mentioned in Section 2.5 when we discuss about proof by mathematical induction.

Figure 3.1: The proposed methodology for digital-system verification.

In summary, when using DSVerifier, a digital-system engineer must define UAV system

parameters (step 1), implementation characteristics (steps 2 and 3), and verification settings

(step 4). In particular, the overflow mode (step 4) can be defined as saturate or wrap-around,

which then affects all computations and quantization operations. By default, in limit cycle veri-

fications, the overflow mode is set to wrap-around in order to avoid overflows during the outputs

computation. UAV attitude-controller verification finally occurs in step 5, where the underlying

model-checker is employed. It is worth noticing that the actual digital-system verification only

occurs in step 5, with the selected BMC tool and using two possible different solvers: an SMT

one for ESBMC, called Boolector [60], or a Boolean Satisfiability (SAT) one for CBMC, called

MiniSAT [97]. Furthermore, DSVerifier provides verification results in step 6, which can be

classified as successful, if there is no property violation, up to a bound k = 10, or failed, if it

indicates some violation, along with a counterexample, which contains inputs and states that

lead to the associated failure.

In step 6, DSVerifier checks violations in digital-controller implementations, consider-

ing the desired property. In particular, if the current verification fails, DSVerifier shows a coun-

terexample with inputs, which can lead to the violated property. Other implementation options

(i.e., realizations and representations) can then be evaluated with that same counterexample, in

order to avoid the related errors and find a suitable digital controller implementation.

Obviously, re-implementation procedures can be faster when performed by experienced

engineers and, regarding this work and considering a specific hardware choice (i.e., UAV atti-

tude controller), tuning only three parameters (i.e., number of bits, realization, and scaling) is

enough to fix the majority of implementation-related problems [26]. Additionally, some trade-
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offs have to be taken into account, when performing modifications related to the representation

format:

• Increasing the number of bits of integer parts should fix overflow; however, if the max-

imum value for a given hardware platform is achieved, then it may be necessary to de-

crease the number of bits of the fractional one;

• Decreasing the number of bits of fractional parts leads to an increase in quantization noise

and, consequently, signal-to-noise ratio (SNR) problems [24];

• LCOs are very difficult to prevent. In particular, if a specific controller implementation

presents LCO, another implementation of the same controller (changing the number of

fractional bits) may not suffer from the same problem. Reciprocally, an implementation

free from granular LCO may then present that same problem, if its number of fractional

bits is changed [24, 26];

• Operations can be executed faster if less bits are employed (mainly in field-programmable

gate arrays).

Regarding the effect of changing realizations, for the direct forms addressed in this work,

it is important to notice that:

• DFI and TDFII present the same performance issues, regarding overflows in two-complement

architecture with wrap-around, because only the final (overflow) result affects the sys-

tem [33, 98];

• DFII, in turn, needs verification after each equivalent adder (input and output) [33, 98];

• If saturation arithmetic is employed, when an overflow occurs, not only the final result

but also intermediate operations have the potential to affect the system output, even if

DFI and TDFII are employed [33, 98]. It means that all system-node operations have to

be evaluated, during an overflow verification, and violations may occur for a controller

implementation, in a specific realization form, and disappear when employing another

one;

Finally, for the scaling effect:
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• An appropriate scaling factor can prevent overflows, in stable systems, but such a result

usually requires large attenuation, which can affect the resulting SNR [24];

• Scaling can also prevent overflow LCOs.

When performing verification with DSVerifier [73], with the goal of checking LCO or

overflow violations, a digital-system engineer is also able to analyze the impact of implementa-

tion aspects (number of bits in integer and fractional parts), realization forms (i.e., direct forms),

and scaling factors, in order to design robust digital systems, because the mentioned tool is able

to verify them, with respect to those trade-offs. For instance, consider the following digital

controller (equation (3.1)) representing an UAV controller and its ANSI-C program represented

in Fig. 3.2 as follows:

H(z) =
0.0096z−0.009

0.002z
(3.1)

Performing verification with DSVerifier [73], in order to check the overflow violation by sat-

1 # i n c l u d e < d s v e r i f i e r . h>
2
3 d i g i t a l _ s y s t e m ds = {
4 . b = { 0 . 0 0 9 6 , −0.009 } ,
5 . b _ s i z e = 2 ,
6 . a = { 0 . 0 2 , 0 . 0 } ,
7 . a _ s i z e = 2 ,
8 . s amp le_ t ime = 0 . 0 2
9 } ;

10
11 i m p l e m e n t a t i o n impl = {
12 . i n t _ b i t s = 3 ,
13 . f r a c _ b i t s = 13 ,
14 . max = 1 . 0 ,
15 . min = −1.0
16 } ;

Figure 3.2: ANSI-C program describing the controller defined in equation 3.1.

uration, with direct-form II (DFII) realization, and with 3-bits as integer-part and 13-bits as

fractional-part, an overflow in the digital controller described in equation (3.1) is detected by

DSVerifier. The Fig. 3.3 shows graphically an overflow by saturation in DFII realization form.

The maximum word representation for this fixed-point implementation is 3.999, and the mini-

mum representation allowed is −4.000. However, when a digital-system engineer modifies the

implementation to use the direct-form I (DFI) realization form (See Fig. 3.4), the system is free

from overflow violation, which means that the choose of a diferent realization form impacts



3. VERIFYING ATTITUDE CONTROL SOFTWARE IN UAVS 34

2 3 4 5 6 7 8 9

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Overflow

Violation

Minimum Word

Representation

Figure 3.3: Overflow for the digital controller described in equation (3.1).

directly the presence of arithmetic overflows in digital controllers. The overflow verification
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Figure 3.4: Digital controller defined in equation (3.1) implemented with DFI realization.

scheme employed here is the same used in previous studies [26]; however, the current LCO

verification presents some enhancements, which are explained in the next section. LCO verifi-

cation is indeed a novelty and especially important for UAV attitude-control.

3.1.1 The DSVerifier Counterexample Format

For our current work, DSVerifier exploits counterexamples provided by verifiers [66,

99]; if there is a property violation, then the verifier provides a counterexample, which contains

inputs and initial states that lead the digital system to a failure state. Fig. 3.5 shows an example

of the present counterexample format related to an overflow limit-cycle violation for the digital

system represented by equation (3.2):

H(z) =
2002−4000z−1 +1998z−2

1− z−2 . (3.2)
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1 P r o p e r t y = LIMIT_CYCLE
2 Numerator = { 2002 , −4000 , 1998 }
3 Denominator = { 1 , 0 , −1 }
4 X_Size = 10
5 Sample_Time = 0 .001
6 I m p l e m e n t a t i o n = <13 ,3 >
7 Numerator ( f i x e d−p o i n t ) = { 2002 , −4000 , 1998 }
8 Denominator ( f i x e d−p o i n t ) = { 1 , 0 , −1 }
9 R e a l i z a t i o n = DFI

10 Dynamical_Range = { −1, 1 }
11 I n i t i a l _ S t a t e s = { −0.875 , 0 , −1 }
12 I n p u t s = { 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 }
13 O u t p u t s = { 0 , −1, 0 , −1, 0 , −1, 0 , −1, 0 , −1}

Figure 3.5: Proposed counterexample format example.

The proposed counterexample format shown in Fig. 3.5 describes the violated property

(represented by a string), transfer function numerator and denominator (represented by fixed-

point numbers), bound (represented by an integer), sample time (represented by a fixed-point

number), implementation aspects (integer and fractional bits represented by an integer), realiza-

tion form (represented by a string), dynamical range (represented by an integer), initial states,

inputs, and outputs (which are represented by fixed-point numbers). In particular, the coun-

terexample provides the needed data to reproduce a given property violation via simulation in

MATLAB.

3.2 Verifying Closed-Loop Systems

The proposed methodology for verifying closed-loop digital control systems is described

as follows. The plant model must be represented by a parametric uncertain model, i.e., plant

intervals. Suppose that the digital controller C(z) and the plant model P(z) are given as

C(z) =
β0 +β1z−1 + ...+βMC z−MC

α0 +α1z−1 + ...+αNC z−NC
P(z) =

b0 +b1z−1 + ...+bMGz−MG

a0 +a1z−1 + ...+aNGz−NG
(3.3)

Consider the transfer functions C(z) and P(z) be arranged in vectors c0 and p0, respec-

tively. For each C(z) implementation, there is a function FWL[·] : RNC+MC+2→ Q[RNC+MC+2],

which applies the FWL effects to a digital-system, where Q[R] represents the quantized set

of representable real numbers in the chosen implementation format. The quantized controller
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parameters vector (c) is generated via FWL[c0]. The uncertainty plant parameters (p) can be

expressed as

p = p0 +∆p =

 b0 +∆b0 b1 +∆b1 ... bMG +∆bMG

a0 +∆a0 a1 +∆a1 ... aNG +∆aNG

 , (3.4)

where ∆p represents the uncertainties for each plant coefficient. The polynomial set of possible

values of p is denoted by P.

In addition, DSVerifier supports two closed-loop configurations: feedback (See Fig. 3.6a),

i.e., a digital controller is connected through a feedback path, and series (See Fig. 3.6b), where

a controller is located at a forward path. In the DSVerifier command-line version, loop configu-

ration is chosen with –connection-mode <connection_name>, where <connection_name>

can be represented by SERIES or FEEDBACK.

(a) Feedback configuration.

(b) Series configuration.

Figure 3.6: Closed-loop configurations supported by DSVerifier.

3.2.1 Stability verification

A discrete-time linear time invariant system is considered asymptotic stable if its poles

lie inside the unit circle, i.e., a circle placed at the origin of a complex plane with unitary ra-

dius [78]. Consequently, if a discrete-time linear system is asymptotic stable, then it is consid-

ered bounded-input and bounded-output (BIBO) stable, i.e., given an arbitrary bounded input,

the output is also bounded. Furthermore, a discrete-time system is considered internally stable
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if all its internal states are bounded for all initial conditions and all bounded signals injected in

it, i.e., if all its components are stable [78].

Lemma 3.1 A feedback digital control system represented by C(z) = NC(z)
DC(z)

and P(z) = NP(z)
DP(z)

transfer functions, which represent the controller and plant, respectively, as the one shown in

Fig. 3.6b, is internally stable if and only if:

– the roots of the characteristic polynomial S(z) are inside the open unit circle, where

S(z) = NC(z)NP(z)+DC(z)DP(z);

– the direct loop product NC(z)
DC(z)

· NP(z)
DP(z)

has no pole-zero cancellation on or outside the unit

circle.

Based on Lemma 3.1, DSVerifier checks stability for closed-loop systems according to

Algorithm 3.1. Firstly, DSVerifier applies FWL effects on a controller’s numerator and denom-

inator, then it builds a non-deterministic model to represent the plant family P and, finally,

applies the Jury’s criteria [78] to determine stability regarding S(z).

Algorithm 3.1: Closed-loop stability verification
Data: NC(z), NP(z), DC(z), DP(z), implementation settings, and plant’s parametric deviations ∆p%.
Result: SUCCESS for stable systems or FAILED for unstable systems, along with a counterexample.
begin

Formulate an FWL effect function FW L [·]
Construct the plant interval set P, where N̂P(z) ∈P and D̂P(z) ∈P
Obtain FWL[NC(z)] and FWL[DC(z)]
Check ¬φstability for S(z) = FW L [NC(z)] · N̂P(z)+FW L [DC(z)] · D̂P(z)
if ¬φstability is satisfiable then

return FAILED and a counterexample (i.e., unstable)
end
else

return SUCCESS (i.e., stable)
end

end

Precisely, the stability verification is encoded as a verification condition (VC) ψk =∧k
i=0¬φstability(si) that is satisfiable if, in a given state si, some system’s poles (i.e., eigenvalues)

has magnitude less than 1.
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3.2.2 Limit-cycle oscillation verification

The presence of oscillation in a system’s output, even though a input sequence is con-

stant, is considered as LCO. In DSVerifier, LCO verification is performed in a system’s general

equation H(z), which is computed from plant and controller transfer functions in series config-

uration, as

H(z) =
P(z)

(1+C(z) ·P(z))
=

NP(z)
DP(z)

1+ NC(z)
DC(z)

· NP(z)
DP(z)

=
NH(z)
DH(z)

, (3.5)

and in feedback configuration, as

H(z) =
C(z) ·P(z)

(1+C(z) ·P(z))
=

NC(z)
DC(z)

· NP(z)
DP(z)

1+ NC(z)
DC(z)

· NP(z)
DP(z)

=
NH(z)
DH(z)

. (3.6)

Basically, DSVerifier checks the presence of persistent oscillation in an output, given a constant

input signal, which is illustrated in Algorithm 3.2.

Algorithm 3.2: Closed-loop limit cycle verification
Data: H(z) and its outputs up to k-depth.
Result: SUCCESS for the absence of LCOs, otherwise FAILED along with a counterexample.
begin

Formulate a FWL effect function FWL[·]
Construct the plant interval set P, where N̂P(z) ∈P and D̂P(z) ∈P
Obtain FWL[NC(z)] and FWL[DC(z)]
Compute H(z) according to series or feedback configuration (Cf. equations (3.5) and (3.6)
Obtain the last output from H(z), as reference
Check the presence of a time window
if size of time window is bigger than one then

Check whether elements inside that time window are repeated;
if all elements are repeated then

return FAILED and a counterexample (i.e., presence of LCO)
end

end
else

return SUCCESS (i.e., LCO-free)
end

end

Firstly, the quantizer block routine is configured to enable wrap-around and DSVerifier

selects the last output as a reference and searches the same value among previous elements,

in order to compute the length of a time window for (potential) LCO. If a time window is

detected and the elements inside that are repeated, then DSVerifier confirms the presence of

LCO. Precisely, LCO verification is encoded as a VC that is satisfiable iff there is any window
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(with non-deterministic size) of output samples, which is repeated from any sample until a

bound k (the same used by the BMC algorithm). It is worth noticing that LCO verification

can also be performed for non-deterministic inputs and states, which was impossible with the

previous versions of DSVerifier.

3.2.3 Quantization error verification

Floating-point representations provide better approximation of rational numbers, when

compared with fixed-point ones; however, many practical implementations of digital controllers

are designed with the latter [26]. Additionally, using floating-point arithmetic in BMC frame-

works leads to higher verification time and memory consumption [100]. As a consequence,

DSVerifier supports only fixed-point representation, using bit-vector and rational arithmetic.

In such a context, precision in a digital controller’s operation is limited by its word

length, which is specified in a digital system’s realization. Furthermore, FWL computations

may lead to rounding and truncation errors, which change pole and zero positions and modify

the associated frequency response. Consequently, such changes cause variations that can also

be observed in time domain. Precisely, the quantization error Ed , due to round-off errors in

numerical operations with a precision of F bits, is given by

−2−F−1 ≤ Ed ≤ 2−F−1. (3.7)

Hence, DSVerifier applies non-deterministic inputs to two different implementations

(i.e., with and without FWL effects) and compares results from both of them, in order to check

whether differences regarding their outputs are inside a tolerable bound. Therefore, the VC for

this property is given as

lerror ⇐⇒
∣∣y f xp− y f loat

∣∣< eb, (3.8)

where y f xp is the output value from the fixed-point implementation (i.e., with FWL effects),

y f loat is the output value from the reference floating-point implementation (i.e., without FWL

effects), and eb is the acceptable error value defined by a designer. In summary, DSVerifier

compares the output signal of two closed-loop systems, i.e., with and without FWL effects, and

then checks whether Ed is inside a tolerable bound, as described in Algorithm 3.3.
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Algorithm 3.3: Closed-loop quantization error verification
Data: The controller C(z), the plant P(z), and eb as an acceptable error value.
Result: SUCCESS if the quantization error is lower than eb, otherwise FAILED along with a

counterexample.
begin

Formulate a FWL effect function FWL[·]
Construct the plant interval set P, where N̂P(z) ∈P and D̂P(z) ∈P
Obtain FWL[NC(z)] and FWL[DC(z)]
Compute H f xp(z) according to series or feedback configuration (Cf. equations (3.5) and (3.6) in

fixed-point arithmetic
Compute H f loat(z) according to series or feedback configuration (Cf. equations (3.5) and (3.6) in in

floating-point arithmetic
Calculate outputs from H f xp(z) (i.e., y f xp(k))
Calculate outputs from H f loat(z) (i.e., y f loat(k))
Compute the difference between the fixed- and floating-point outputs, i.e., Ed = y f xp(k)− y f loat(k)
if Ed < eb then

return SUCCESS (i.e., quantization error is within a tolerable bound)
else

return FAILED and a counterexample (i.e., high quantization error)
end

end
end

3.3 Verifying Limit Cycle in UAV digital controllers

Limit cycle oscillations (LCO) may be very harmful to digital control systems, given

that they degrade control actions, cause damage to physical plants, harm surround products,

and increase material losses. In particular, the presence of LCO violations, in UAVs, is related

to flutter behavior in UAV wings[101].

Some authors have already studied the consequences of limit cycles. For instance, Pe-

terchev and Sanders showed that the presence of limit cycle oscillations, in pulse-width mod-

ulation power converters, can increase energy waste and decrease lifespan of electronic de-

vices [57], which was also studied for resonant controllers, by Peretz and Ben-Yaakov [31].

Additionally, according to Pedroza et al. [17], the LCO effect would surpass the limiting safe

flight boundaries of an aircraft [101] and, as a consequence, could potentially lead to struc-

tural damage and catastrophes. The LCO verification scheme employed here extends previous

DSVerifier versions [26, 73], where only zero-input LCO events were detected, by comparing

past and current states. Indeed, DSVerifier searches for the repetition of an output sequence

caused by any non-deterministic constant input, with non-deterministic initial states, which al-

lows verification for many other attitude-angle references (not only the zero one). In summary,

this is a more realistic approach, once the reference of an attitude system is variable and cou-



3. VERIFYING ATTITUDE CONTROL SOFTWARE IN UAVS 41

pled to the device position dynamics: for each different target position, different attitude-angle

references are generated.

The proposed LCO detection algorithm is implemented in DSVerifier, where the system

output computation is iteratively checked, according to the maximum bounded number of en-

tries k. The latter is defined by users, while the constant input signal x(n) and initial states are

determined using non-deterministic values, according to the dynamic range that is provided. In

order to verify the presence of LCO, in a particular digital controller realization, the quantizer

block routine is configured by setting a flag variable on it, in order to enable wrap around on

overflow, which then avoids overflow detection. According to a specific realization, the LCO

algorithm execution is then unrolled, for a bounded number of entries k, and an assert statement

is added to detect a failure, if a set of previous outputs states (that repeat during a constant-input

response) is found.

LCO occurrences are represented by a literal lLCO, with the goal of determining whether

a set of previous outputs is found, according to the constraint

lLCO⇐⇒∃n,k ∈ N,∃cR|xm = c =⇒∃yk+i = yk+n+i,

∀i ∈ {0,1,2, ...,n},m ∈ {k,k+1,k+2, ...,k+2n},
(3.9)

where xk and yk are the k-th input and output samples, respectively. The limit cycle absence

is then verified by checking ¬lLCO, that is, if there exists no execution where a set of previous

outputs is found.

3.3.1 Illustrative Example

In order to explain the DSVerifier-aided verification methodology, the following second-

order controller from an UAV controller [1] is used:

H(z) =
1.5610−1.485z−1

1−0.9z−1 . (3.10)

Indeed, a transfer function definition corresponds to the first step of the proposed methodology,

which is shown in Fig. 3.1. The second step is the choice of the FWL representation, whose

fixed-point parameters are computed according to the method described by Carletta et al. [95]

and considering an 8-bits hardware architecture. It allows the calculation of a (sufficient) num-

ber of bits to avoid overflow, using

j = dlog2(‖h‖1 · ‖x‖∞)e+1, (3.11)
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where ‖h‖1 is the l1-norm of the system impulse response H(z) and ‖x‖∞ is the l∞-norm of

input k, that is, the maximum value that can be assumed by x(k). Indeed, Carletta et al. claim

that equation (3.11) is enough to prevent overflow in the system output, which is true when

two-complement is employed in wrap-around mode (the chosen mode), with DFI and TDFII,

and is known as the Jackson’s rule [33].

Using equation (3.11) for the system in equation (3.10), where ‖x‖∞ = 3, due to its

dynamic range, and ‖h‖1 ≈ 1.9, one may find that 4 bits are sufficient for its integer part. As a

result, the representation 〈4,4〉 is suggested, with a resulting range between −8 and 7.9375. In

addition, it is worth noticing that the maximum value of the system output is perfectly known,

through ‖h‖1.

According to the DSVerifier’s configuration, users must provide specifications in a ANSI-

C file, as shown in Fig. 2.8, and define the desired DFII realization, in the third step. In Step

4, a timeout of 1 hour and a bound of 10 cycles are set, given that limit cycle occurrences

need to be verified2. After a few seconds, the verification process is concluded and a failure
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(a) LCO occurrence for DFII.
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(b) Solving LCO violation using DFI.

Figure 3.7: Responses to a constant input equal to 0.125, w.r.t. equation (3.10) with format
〈4,4〉.

(Step 6) is indicated. A persistent oscillation in the system output is reported, for a constant

input x(k) = 0.125 and an initial state y(−1) =−2.875. The resulting oscillation can be seen in

Fig. 3.7a, with amplitude between 0.25 and 0.125. As a consequence, a designer should go back

to Step 2, in order to avoid the limit cycle reported by DSVerifier, through a simple realization

change. For instance, DFI was able to fix the controller’s implementation, which would lead to

a successful verification (Step 6), as can be seen in Fig. 3.7b.
2The DSVerifier is invoked through command line as follows: dsverifier filename.c --realization DFII --

property LIMIT_CYCLE --x-size 10 --timeout 3600 --bmc CBMC.
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3.4 Verifying Overflow in UAV digital controllers

When dealing with UAV digital controllers, we need to take care about overflow. In

the present study, assertions are encoded into the quantizer block and the verification engine is

configured to use nondeterministic inputs in a specified range, in order to detect overflow, for

a given fixed-point word-length. For any arithmetic computation, if there exists a value that

exceeds the representable range, an assert statement detects that as arithmetic overflow. As a

consequence, a literal lsigned_over f low is generated, with the goal of representing the validity of

each addition, subtraction, division, and multiplication operation, according to the constraint

lsigned_over f low⇔ (FP≥MIN)∧ (FP≤MAX), (3.12)

where FP is the fixed-point approximation, for the result of arithmetic computations, and MIN

and MAX are the minimum and maximum values, which are representable for a given fixed-

point bit format, respectively. Therefore, in overflow verification, an expression of a fixed-point

type can not be out of the range provided by a fixed-point bit format. If this condition is violated,

then overflow has occurred. In addition, arithmetic overflow events can be solved by saturation

or wrap-around [24, 29].

Algorithm 3.4 describes how DSVerifier [73] performs overflow verification. Firstly, it

formulates an FWL-effects function and obtains the numerator and also the denominator of a

digital controller, with those effects. Then, DSVerifier computes a transfer-function with FWL

effects, retrieves its outputs, according to the employed realization form (e.g., DFI, DFII, or

TDFII), and stores the respective results in a vector y(n). After that, the maximum and mini-

mum word-representations are verified, based on I-integer bits and F-fractional ones to avoid

overflow. Finally, it checks if values stored in y(n) are inside the allowed range, according to

the maximum and minimum representations. If a sample is outside that range, then DSVerifier

returns “failed” together with a counterexample; otherwise, if no violation is found, it returns

“successful” up to the given depth k.

Nonetheless, this approach does not consider wrap-around and saturation effects during

the output computation. The proposed overflow detection algorithm is implemented in DSVeri-

fier, where each computation is iteratively checked, by applying saturation or wrap-around, ac-

cording to the maximum bounded number of entries k. The overflow mode is defined by users,

while the constant input signal x(n) and initial states are determined using non-deterministic
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Algorithm 3.4: Overflow verification
Data: NC(z) as the controller numerator, DC(z) as the controller denominator and its output up to depth k.
Result: SUCCESS for the absence of overflows up to the depth k; otherwise, FAILED along with a

counterexample.
begin

Formulate a FWL effect function FWL[·];
Obtain FWL[NC(z)] and FWL[DC(z)];

Compute H(z) = FWL[NC(z)]
FWL[DC(z)]

;
Obtain the outputs (y(n)) from H(z);
Obtain the MIN and MAX representation given I-integer bits and F-fractional bits;
MIN ←−2I ;
MAX ← 2I−2−F ;
for i← 0 to n by 1 do

if y(i) < MIN and y(i) > MAX then
return FAILED and a counterexample (i.e., presence of overflow);

end
end
return SUCCESS (i.e., free from overflows up to the depth k);

end

values, according to the dynamic range that is provided.

Indeed, overflow occurrences in wrap-around mode are detected according to the algo-

rithm described in Algorithm 3.5. Finally, overflow occurrences in saturate mode are detected

according to the algorithm described in Algorithm 3.6.

Algorithm 3.5: Wrap-around overflow algorithm
Data: value to be evaluated in wrap-around algorithm, maximum as the maximum word

representation, and minimum as the minimum word representation.
Result: value after the wrap-around algorithm.
begin

Compute the range of the word-length to be evaluated
range = maximum + minimum - 1;
Check if there is an arithmetic overflow in value
if value < minimum then

value += range ∗ ((minimum − value) / range + 1);
end
return minimum + (value - minimum) % range;

end

In those algorithms, value represents each output that is computed according to the

system realization, maximum represents the maximum word representation, and minimum rep-

resents the minimum word representation.
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Algorithm 3.6: Saturate overflow algorithm
Data: value to be evaluated in the saturate algorithm, maximum as the maximum word

representation, and minimum as the minimum word representation.
Result: Saturation of the value.
begin

Check if there is an arithmetic overflow in value
if value < minimum then

return minimum;
end
else

return maximum;
end

end

3.4.1 Illustrative Example

In order to explain the proposed DSVerifier-aided verification methodology, the follow-

ing second-order controller [1] is used:

H(z) =
60z−50

z
(3.13)

In particular, for DFI and TDFII realization forms with wrap-around mode and according

to the Jackson’s rule [33], a system’s output will not be affected by overflows in intermediate

operations; however, in DFII realization form, if overflow occurs in the input adder (as can be

seen in Fig. 2.1b) and that is not avoided, then the mentioned system’s output can be incorrectly

computed. Besides, in saturate mode, any overflow in intermediate operations will also affect

its output.
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Figure 3.8: Overflow in a second-order digital controller.

Indeed, DSVerifier can identify violations in intermediate nodes and if any problem is

detected, then it automatically concludes the current verification and generates a counterexam-

ple with related inputs and outputs. For instance, operation for equation (3.13), with fixed-point
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format 〈6,10〉 and a DFI realization, led to a violation in an intermediate node, when comput-

ing y(10) = −46.9922. In particular, an overflow violation in saturate mode occurs due to the

minimum representable value, which is −32.00. Regarding Fig. 2.1a, the mentioned overflow

violation occurred during a multiplication by b0. Finally, Table 3.1 shows values computed for

each output from equation (3.13).

Table 3.1: Reproducing an overflow violation in saturate mode.

n 1 2 3 4 5 6 7 8 9 10
y(n) 0.46875 −0.390625 −4.980 −0.126 5.67 15.00 −1.83 −25.34 12.69 −46.9922



Chapter 4

Experimental Evaluation

This section is split into five parts. Section 4.1 presents all benchmarks adopted for

the evaluation of the UAV attitude-angle control software, while in Section 4.2 the objectives

of the experiments are described. Then, the employed setup is described in Section 4.3, while

Section 4.4 shows the performed experiments, through result evaluation and performance com-

parison. Additionally, in Section 4.5, the counterexamples generated by the mentioned experi-

ments are reproduced and automatically validated, using the DSValidator tool [102]. It is worth

noticing that an exhaustive-search algorithm, specifically designed to check the absence of limit

cycles [103, 104], was implemented and applied during the proposed experiments, in order to

confirm the results provided by DSVerifier.

4.1 UAV Control System Description and Benchmarks

UAV modeling is a hard task, given that such kind of system presents many nonlinear-

ities and complex structures. Generally, the respective control system is reasonably sectioned,

with high interdependence among attitude, altitude, and position.

The present experiments were performed on a quadcopter system, whose model was de-

scribed by Bouabdallah et al. [1]. Such an investigation focuses on the attitude control system,

i.e., the control of angular movement, through adjustment of the pitch (θ ), roll (φ ), and yaw

(ψ) angles. Indeed, an attitude control system is the basis for quadcopter stabilization and its

reliability is needed for a correct operation of attitude and position control systems. As men-

tioned before, Fig. 2.5 shows a quadcopter’s attitude angles (θ , φ , and ψ) and the associated

47
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cartesian-position (x, y, and z) references.

Any attitude control system aims to provide stabilization, along with reference tracking.

Five strategies are employed here: combined PD/PD, combined PID/PD, combined PD/P, com-

bined PD/PI, and PID control. The first strategy consists of two control loops for each angle,

i.e., one for angular velocity and another for the orientation angle itself: on each loop, a PD

controller is employed. The second one is very similar to the first, but the angle-control loop

does employ a PID controller. The third one, in turn, employs a PD controller for angle con-

trol and a P rate controller, while the fourth one occurs when the angle control loop employs

both PI and PD controllers. Finally, the last strategy uses only one loop with a PID controller.

Fig. 4.1 shows the controlling structure of the PD/PD, PD/PI, PD/P and PID/PD strategies,

while Fig. 4.2 shows the specific approach adopted for the PID one.

Figure 4.1: Attitude control system with combined structure.

4.1.1 Digital Controllers for UAV Attitude Angles

In the control strategy shown in Fig. 4.1, two controllers are employed for each angle,

where the inner one is used for stabilizing angular rate, i.e., roll rate (φ̇ ), pitch rate (θ̇ ), and yaw

rate (ψ̇) controllers, by computing the control torque around the x (ux), y (uy), and z (uz) axes,

respectively. The outer controllers (roll, yaw, and pitch) are used for stabilization and reference

tracking of attitude angles (φ ,θ , and ψ), by computing angular rate references (φ̇re f , θ̇re f , and

ψ̇re f ), which are provided to the inner control system.

By contrast, Fig. 4.2 shows a control strategy that employs a single controller for each

attitude angle, which thus directly computes the control torques ux, uy, and uz, by means of
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Figure 4.2: Attitude control system with only one PID controller, for each angle.

the roll, pitch, and yaw PID controllers, respectively. In some specific cases, the same con-

troller can be employed for different angles, especially roll and pitch, whose normal behavior is

usually identical. In summary, ten different controllers were designed for the proposed control

strategies, which were tuned in continuous time and then converted into digital format, with

different sample times and methods.

In addition, this work evaluates transfer functions of real digital controllers, which were

employed for UAV attitude control by Frutuoso et al. [72]. The dynamic models related to the

attitude angles were obtained via an identification process based on the least-squares algorithm.

All controllers studied in this dissertation present order less or equal to 2, which is common

in the digital-controller area. Although higher order controllers are not used in this disserta-

tion, our benchmarks are representative of UAV attitude control systems, since they are indeed

extracted from real UAV systems.

Table 4.1 shows the association of each controller, regarding its function (Figs. 4.1

and 4.2), while Table 4.2 describes all designed controllers, with their tuning gains in contin-

uous time, transformation methods, and sample times. The chosen number of bits, associated

to each implementation, is based on the methodology presented by Carletta et al. [95], which

suggests a computation based on the impulse response sum. In particular, C5 does not employ

the mentioned methodology, because the current UAV architecture supports only 16 bits and it
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would require more than that. As a consequence, C5 can be seen as an example of design fail-

ure, in such a way that the impact of FWL effects, on the implementation of fixed-point digital

controllers, are promptly detected and analyzed.

Table 4.1: Controller distribution for the adopted control strategies.

Control Func.
and Strategy

PD/PD
Control

PID/PD
Control

PID
Control

PD/PI
Control

PD/P
Control

DSSynth
Controller

Roll C2 C4 C5 C7 C9 C10
Roll Rate C1 C1 - C6 C8 -

Pitch C2 C4 C5 C7 C9 C10
Pitch Rate C1 C1 - C6 C8 -

Yaw C3 C4 C5 C7 C9 -
Yaw Rate C1 C1 - C6 C8 -

Table 4.2: Digital controllers for the evaluated quadrotor attitude system.

Controller
ID

Tuning Gains Discretization
Method

Sample
Time (ms)

Discrete Transfer
FunctionKP KD KI

C1 1 0.01 -
Forward

Euler (FE) 20 1.5z−0.5
z

C2 10 1 -
Forward

Euler (FE) 20 60z−50
z

C3 10 2 -
Forward

Euler (FE) 20 110z−100
z

C4 10 2.5 0.5
Forward

Euler (FE) 20 135z2−260z+125
z2−z

C5 2 1 0.1
Tustin

(Bilinear) 1 2002z2−4000z+1998
z2−z

C6 5.5 0.0465 -
Tustin

(Bilinear) 20 0.93z−0.87
z+1

C7 0.4 - 50
Tustin

(Bilinear) 20 0.1z−0.09998
z−1

C8 0.3 0.009 -
Backward
Euler (BE) 2 0.0096z−0.009

0.002z

C9 0.1 - -
Backward
Euler (BE) 2 0.1z−0.1

z−1

C10 - - -
Contoller

Synthesized 2 Cf. (equation 2.9)
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4.2 Experimental Objectives

In order to verify the impact of saturation effects in intermediate operations, regarding

different realization forms (i.e., DFI, DFII, and TDFII), overflow-checking experiments were

executed considering both saturate and wrap-around modes. In saturate mode, an overflow

violation can be detected in intermediate nodes, during intermediate operations (i.e., sums and

multiplications) of a realization form; otherwise, in wrap-around mode, overflow detections

take into account only system outputs, since previous studies [33, 98] showed that if a digital

system, implemented with 2’s complement arithmetic and using DFI or TDFII, does not present

overflow on its final result, it will not be affected by overflow in intermediate operations. Such a

behavior is a direct consequence of the Jackson’s rule [33, 98] and is extensively used in digital

systems, in order to simplify designs and minimize FWL effects, given that all quantizers are

configured to wrap-around. In particular, for DFII, overflow detection must also be checked

during a specific intermediate operation, as will be explained in the next paragraph.

According to parts (a) and (c) of Fig. 2.1 (DFI and TDFII realizations, respectively),

multiplier outputs are directly connected to equivalent adders (disregarding delays), which

means that the Jackson’s rule is valid for those realizations forms. By contrast, part (b) (i.e.,

Direct Form II realization) shows two equivalent adders (input and output) connected through

a multiplier (b0), which also means that the Jackson’s rule is still valid for each equivalent ele-

ment; however, the output of the input adder must not overflow. If that is not avoided, the result

of the output adder may be incorrect, as previously mentioned.

For all tested implementations, signal inputs lie between −1 and 1, that is, a sensor’s

(gyroscope) output bound in normal conditions, which means that inputs employed during ver-

ification of LCO and overflow violations also fall within such a range.

In summary, our experimental evaluation aims to answer two research questions:

• RQ1: How digital controllers designed for UAV attitude systems are susceptible to vio-

lations, according to fixed-point representations and realizations?

• RQ2: Are verification results using BMC sound and can their overflow and limit cycle

violations be reproduced and also validated by external tools (e.g., MATLAB)?
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4.3 Experimental Setup

In the present work, DSVerifier v2.0.3 was used to check controllers described in Sec. 4.1.1.

The ones in Table 4.2 were verified with 3 different numerical formats (with at least the number

of integer bits suggested by Carletta et al. [95]) and 3 different realizations (DFI, DFII, and

TDFII), for each one. C10, in turn, was synthesized with DSSynth and verified with only one

format, but using the same 3 different realizations. As a result, there are 84 different verification

tasks for each evaluated property (overflow and LCO), which aim to investigate the importance

of realization forms and numerical formats, regarding FWL performance.

The present experiments were executed on an otherwise idle computer with the follow-

ing configuration: Intel Core i7−2600 3.40 GHz processor, 24 GB of RAM, and Ubuntu 64-bits

OS. CBMC5.5 was employed and the maximum timeout was set to 3600s. All presented execu-

tion times are CPU times, i.e., only time periods spent in allocated CPUs, which were measured

with the times system call (POSIX system).

4.4 Experimental Results

Table 4.3 shows the obtained verification results, where VT denotes the verification time,

in seconds, VR represents the verification result, S means success, that is, DSVerifier did not

find a failure up to k = 10, F means failed, that is, DSVerifier found a property violation and

then returned a counterexample, and, finally, T means timeout, that is, DSVerifier exceeded the

maximum verification time. All digital controllers were verified with implementations on an

ATMEGA328, which is based on a 16-bits processor driven by a 16 MHz clock.

Fig. 4.3 summarizes the obtained verification results, for each realization form, which

show that 29% of the controller implementations presented overflow, when checked by DSVer-

ifier in wrap-around overflow mode, i.e., an overflow violation was detected only in system

outputs. In saturate mode, verification procedures failed for 38% of the controller implemen-

tations, which means that an overflow violation was detected in intermediate nodes, during

verification procedures. In LCO verification, 33% of the controller implementations failed,

while 57% of them presented successful verification and 10% indicated timeout. The larger

times in LCO verification procedures are explained by the more complex algorithm employed,

with non-deterministic initial states, (constant) inputs, and oscillation periods. Despite that,
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Table 4.3: Verification results for the digital controllers used in the mentioned quadrotor attitude
system

ID
Format
〈k, l〉

Overflow - Saturate Mode Overflow - Wrap-Around Mode Limit Cycle
DFI DFII TDFII DFI DFII TDFII DFI DFII TDFII

VR VT VR VT VR VT VR VT VR VT VR VT VR VT VR VT VR VT

C1

〈2,14〉 F 5 F 10 F 6 F 12 F 10 F 8 S 35 S 52 S 367
〈4,12〉 S 5 S 4 S 4 S 3 S 4 S 3 S 21 S 30 S 576
〈6,10〉 S 4 S 5 S 4 S 4 S 3 S 5 S 19 S 23 S 197

C2

〈6,10〉 F 8 F 7 F 8 F 10 F 9 F 8 S 33 S 32 S 510
〈8,8〉 S 5 S 4 S 5 S 4 S 4 S 4 S 14 S 22 S 150
〈10,6〉 S 4 S 5 S 4 S 3 S 4 S 4 S 9 S 11 S 57

C3

〈7,9〉 F 8 F 6 F 8 F 11 F 9 F 8 S 22 S 33 S 338
〈9,7〉 S 4 S 5 S 3 S 4 S 3 S 4 S 11 S 17 S 113
〈11,5〉 S 5 S 5 S 5 S 3 S 3 S 4 S 9 S 10 S 30

C4

〈8,8〉 F 9 F 7 F 8 F 14 F 12 F 12 S 35 T 3600 T 3600
〈10,6〉 F 15 F 10 S 670 T 3600 S 14 S 436 S 42 T 3600 T 3600
〈11,5〉 S 236 F 13 S 97 S 86 S 11 S 36 S 54 T 3600 S 1823

C5

〈10,6〉 F 8 F 7 F 7 F 6 F 5 F 5 F 21 F 17 F 91
〈12,4〉 F 8 F 10 F 6 F 5 F 6 F 4 F 16 F 33 F 22
〈13,3〉 F 11 F 8 F 12 F 6 F 5 F 5 F 13 F 18 F 50

C6

〈4,12〉 F 18 F 12 F 14 F 5 F 5 F 8 F 15 F 14 F 13
〈8,8〉 S 15 S 15 S 19 S 5 S 5 S 6 F 16 F 12 F 15
〈10,6〉 S 16 S 14 S 16 S 4 S 4 S 4 F 10 F 12 F 12

C7

〈4,12〉 S 17 F 15 S 24 S 7 S 5 S 10 S 86 F 29 T 3600
〈8,8〉 S 14 S 12 S 18 S 5 S 5 S 9 S 33 F 57 S 661
〈10,6〉 S 13 S 12 S 17 S 5 S 5 S 4 S 30 F 98 S 248

C8

〈3,13〉 S 7 F 10 S 7 S 2 S 2 S 2 S 44 S 76 T 3600
〈4,12〉 S 7 F 8 S 5 S 1 S 2 S 2 S 47 S 55 S 2092
〈5,11〉 S 6 F 8 S 5 S 1 S 2 S 1 S 29 S 27 S 662

C9

〈4,12〉 S 18 F 14 S 15 S 7 S 6 S 10 S 73 F 37 T 3600
〈8,8〉 S 15 S 12 S 19 S 5 S 5 S 8 S 32 F 69 S 787
〈10,6〉 S 14 S 10 S 18 S 5 S 5 S 4 S 26 F 66 S 234

C10 〈8,8〉 S 31 S 16 S 43 S 33 S 23 S 30 F 47 F 279 F 95

LCO verification procedures were concluded for 90% of the chosen benchmarks, while over-

flow ones were concluded for 99% and 100% of them, in wrap-around and saturate mode,

respectively.
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S F T S F T S F T

Overflow: Saturate

Mode

Overflow: Wrap

around Mode
Limit Cycle

TDFII 23,81% 9,52% 0,00% 23,81% 9,52% 0,00% 19,05% 8,33% 5,95%

DFII 15,48% 17,86% 0,00% 23,81% 9,52% 0,00% 13,10% 16,67% 3,57%

DFI 22,62% 10,71% 0,00% 22,62% 9,52% 1,19% 25,00% 8,33% 0,00%

0,00%

25,00%

50,00%

75,00%

100,00%

TDFII

DFII

DFI

Figure 4.3: Summary of the obtained verification results, per realization form, for the evaluated
controllers.

4.4.1 Overflow Occurrence Discussion

Particularly, digital controller C5 presented overflow in every (possible) implementation,

realization, and overflow mode (saturate and wrap-around). That happened because when we

compute the bits using equation (3.11) suggested at least 17 bits [95], but the UAV architec-

ture used for the experiments supports only 16 bits, as mentioned earlier. In the failed results,

DSVerifier also returned counterexamples, which can be easily reproduced through DSValida-

tor,i.e., a MATLAB toolbox designed to automatically reproduce counterexamples generated

by DSVerifier [102]. The maximum fixed-point implementation for our UAV architecture is

16-bits, and for the controller C5 the implementation are distributed as < 10,6 >, < 12,4 > and

< 13,3 >, and the outputs produced by the computation of any realization form for controller

C5 exceeds the maximum/minimum representation for each fixed-point implementation.

The time spent in overflow verification is relatively low, with a maximum value of 670

and 436 seconds, in saturate and wrap-around modes, respectively, which happened for success-

ful verification procedures for controller C4, using TDFII realization. Lower verification times,

if compared with previous studies [26], are justified by enhancements in the employed verifiers

and solvers. Besides, successful verification results typically take longer than failed ones, since

BMC techniques stop searching when a violation is found. The time spent in verification for

different realization can be explained due to each realization has different number of multipliers

or adders, and it could increase the complexity of computation.

There was only one unfinished overflow verification due to timeout, when checking
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in wrap-around mode: a task started for controller C4 with DFI realization and fixed-point

format 〈10,6〉. Indeed, the latter can be explained by the high order of C4, which requires more

operations for computing system outputs. By contrast, in saturate mode, its verification failed

in 15 seconds, with the same system specification.

Overflows may be avoided by changing bit format implementations or, regarding specif-

ically saturate mode, by changing realization forms. As an example, overflow occurs for digital

controller C1, in all realization forms, when it is implemented in fixed-point format 〈2,14〉. For

that particular numerical format, that happens when the output y(t) is less than −2 or greater

than 1.999, according to Carletta’s rule [95]. Fig. 4.4 shows an overflow failure, for this C1 im-

plementation, in which the graph on the left illustrates the input sequence provided by DSVer-

ifier and the graph on the right corresponds to the controller output; red dashed lines denote

representation limits. One may notice that, in the first sample, the output is slightly greater than

the numerical representation limit; however, in Fig. 4.5, the output does not contain overflow

violation, using the same controller specified for C1 and fixed-point format 〈10,6〉.
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Figure 4.4: Arithmetic overflow occurrence in controller C1, with DFI realization and a format
containing 2 bits in integer part and 14 bits in fractional one.

Carletta’s Issue

It is worth noticing that there were overflow occurrences in DFI and TDFII realizations

with the first format (the one that follows exactly what was computed) of many controllers,

in wrap-around mode, which contradicts what is presented by the jackson’s rule. As a conse-

quence, a deeper investigation was conducted and an interesting behavior was noticed: the

method presented by Carletta et al. [95] does not guarantee complete absence of overflow

events, in certain cases, which occurs because it does not considers the asymmetry of two’s

complement representations, as shown by Volkova et al. [53]. For instance, when the impulse
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Figure 4.5: Absence of arithmetic overflow in Controller C1, with DFI realization and a format
containing 10 bits in integer part and 6 bits in fractional one.

response summation (‖h‖1) is 2 and the maximum input is bounded by −1 and 1 (bounds

included), which means that the output range lies between −2 and 2, the mentioned method re-

turns a format with 2 bits. Nonetheless, the resulting two-complement range provided by such a

representation will allow values between −2 and 1, which is not enough. Indeed, this behavior

was noticed when the maximum output value is a power of 2, due to the way it is computed by

the logarithm, in equation (3.11).

Although the mentioned finding revealed a flawed dimensioning procedure, it further

proved that the proposed methodology is sound and reliable. As a future work, a correct dimen-

sioning procedure can be employed (or even developed), which would allow the choice of a

correct number of bits for the integer part. As previously presented, the methodology described

by Carletta [95] is shown in equation (4.1), as follows:

j = dlog2(‖h‖1 · ‖x‖∞)e+1, (4.1)

However, this solution is not asymmetric for two’s complement representation. In order to solve

this issue, the algorithm purposed by Volkova et al. [53] considers a second term to compute a

correct dimensioning, as follows:

j = dlog2(‖h‖1 · ‖x‖∞)− log2(1−2(1−w))e, (4.2)

where,

w = i + f , with i-integer bits and f -fractional bits.

Additionally, some controllers presented overflow, even with formats with many integer

bits (the second and third ones), in saturate mode. That was expected, given that intermediate

operations are checked in saturate mode and the adopted dimensioning procedure only takes

into account system outputs.
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Overflow’s conclusion

Finally, one may notice that C4 presented the highest verification time, which occurred

due to the high order associated to its implementation. Verification times typically increase

with controller complexity, given that direct-form implementations need two-nested loops to

generate a controller order. It is worth noticing that C5 is also a second-order system, but it

presents low verification times. Indeed, that is an expected result, once verification procedures

for such a controller found errors in all implementations, since property refutation is typically

faster than property correctness.

4.4.2 Limit Cycle Occurrence Discussion

An example of LCO occurrence was noticed (see Table 4.3) for the attitude angle con-

troller C5 in TDFII realization and with format 〈13,3〉. DSVerifier was able to find a violation

for initial states −0.125, −0.0625 and 0.000, with a constant zero-input, as shown in Fig. 4.7a.

The red dashed line represents the input sequence and the blue continuous one the controller’s

response. Besides, one may also notice that the same figure indicates an oscillation on C5’s

output (the controlling torque ux, uy, or uz) between −0.125 and 0.0625, i.e., the violation in-

dicates that the controller might produce oscillating torques, when it should maintain the UAV

movement (e.g., in hovering state).

If the same controller is implemented in DFI format, LCO events are also detected

by DSVerifier. In particular, DSVerifier found that initial states −0.109375, 0.015625, and

−0.1250 and an input sequence −0.0625 lead to the mentioned LCO. Fig. 4.7b shows an LCO

occurrence in C5, with DFI realization, which indicates an output (torque) oscillation between

−0.1250 and 0.015625, i.e., the attitude angle controller C5 might produce torque oscillations

during a pitch, roll, or yaw command, which is performed for any UAV displacement. Indeed,

this same controller also presents overflow, as shown in section 4.4.1, so the LCO occurrences

illustrated in Figs. 4.7a and 4.7b are expected, given that an overflow event can generate LCO

on system outputs, which is known as overflow LCO. By contrast, C7 and C9 present LCO in

DFII realizations with no overflow, i.e., granular LCO occurrences were identified.

In LCO verification, C4 implementations took a reasonable amount of time. C4 is a sec-

ond order system, which means that many non-deterministic initial states are considered and

there are more mathematical operations, which consequently increase the model checking com-
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Overflow:
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Overflow:
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Mode

Limit Cycle

TDFII 955 63 556 50 8845 203

DFII 103 135 92 51 388 462

DFI 405 90 154 69 704 91
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Figure 4.6: Verification-time results for the digital controllers in the mentioned quadrotor atti-
tude system.
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(a) TDFII realization.
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(b) DFI realization.

Figure 4.7: LCO occurrence in C5, with different realizations and format 〈13,3〉.

puting cost. In fact, LCO verifications tend to take longer, due to their algorithmic complexity,

i.e., a search for persistent oscillations on the system output, based on combinations of non-

deterministic constant input, initial states, and oscillation window size. It is worth noticing that

verification times for C5, which is also a second-order system, are much shorter than what is

obtained with C4. That happens because failed verifications are generally faster than successful

ones. In fact, the proposed verification algorithm is interrupted when a failure is found.
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4.4.3 Synthesizing Digital Controllers and Analysing the Impact of LCO

and Overflow Effects

DSVerifier was used to find overflow (in saturate and wrap-around modes) and LCO

violations in the synthesized controller C10, using fixed-point representation < 8,8> and direct-

form realizations (i.e., DFI, DFII and TDFII). As a result, the proposed algorithm found no

overflow violations; however, in all employed direct forms, DSVerifier found LCO on system

outputs, which means that DSVerifier can detect granular LCOs for closed-loop systems, even

though a stable synthesized-controller is used. The outputs produced by DSVerifier, in one

of the counterexamples obtained for C10, are graphically represented in Fig. 4.8, which shows

granular LCO for a DFII realization form.
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Figure 4.8: Granular LCO for the synthesized controller C10, in DFII realization.

In spite of the synthesized controller C10 is stable, a granular LCO was found. The result

obtained here about the granular LCO is very interesting due to the stability found by DSSynth

is not completely safe [68, 105]. In fact, if we reproduce the stability checking using MATLAB,

we can validate the stability of C10, and we can conclude that indeed the controller C10 is stable.

Possibly, employing an algorithm to exhaustively detect the absence of LCO [103, 104] could be

integrated into DSSynth [68, 105] in order to synthesize stable and LCO-free digital controllers.

4.4.4 LCO and Overflow Effects in Closed-loop Dynamics

In order to investigate overflow effects in closed-loop dynamics, attitude dynamics should

be simulated, considering FWL effects and the system output provided by DSVerifier. The plant

employed to analyze impacts regarding overflow and LCO effects is described in equation (4.3),

which represents roll (φ ) and pitch (θ ) angle dynamics.
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G(z) =
−0.06875z2

z2−1.696z+0.7089
. (4.3)

A simulation using C5 in DFI realization and with format 〈10,6〉 was performed. The

roll and pitch angles behavior, after overflow in C5, is illustrated in Fig. 4.9. Fig. 4.9(a) shows

effects in the plant defined by equation (4.3), Fig. 4.9(b) presents the inputs produced by DSVer-

ifier, which were extracted from the counterexample related to the controller C5, and, finally,

Fig. 4.9(c) illustrates closed-loop overflow reproducibility in DSValidator, considering three

different scenarios: (i) ideal operation, i.e., without overflow and FWL effects, (ii) with over-

flows handled by wrapping-around, and (iii) with overflows handled by saturating. The black

dotted signal represents the output, disregarding FWL effects and overflows, and the red dashed

and blue continuous lines represent the output after overflow events handled by saturation and

wrap-around, respectively. One may notice that such an output behavior is affected by overflow

occurrences and the related discrepancy tends to be larger for the wrap-around mode, when

compared with the saturation one.

A second simulation was performed using the angle rate controller C6, in DFI realiza-

tion and with format 〈10,6〉, in order to investigate LCO effects regarding roll (φ ) and pitch (θ )

angles’ behavior. In particular, C6 presented granular LCO. Fig. 4.10 shows, in part (a), the

digital controller’s output with and without the FWL effects due to the fixed-point format and,

in part (b), the effect of the LCO violation is observed in the pitch/roll dynamics. The output

without FWL effects (blue) is compared with the one presenting them (red), whose difference

(error in closed-loop output due to FWL effects) is relevant during transient time and still re-

mains after steady state (black). One may notice that LCO on a controller’s output produces

oscillating torques around x and y axes and, consequently, roll and pitch angles have the poten-

tial to present strong oscillation when they should be constant. Such oscillations can hinder the

action of eventual position control and even lead to instability.

4.4.5 Verification Efficiency Discussion

It is very important to elaborate on verification efficiency. The mean time (disregarding

timeouts) spent for verifying a controller is around 22s (σ = 76s) for overflow verification, in

saturate mode, 13s (σ = 48s), in wrap-around mode, and 146s (σ = 342s), for LCO verification.
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(b) Torques around the x and y (ux and uy) axes produced by
the roll/pitch controller C5 and extracted from an overflow
counterexample provided by DSVerifier.
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(c) Overflow closed-loop effects reproducibility in DSVal-
idator.

Figure 4.9: Overflow effects in closed-loop dynamics.

One may notice that the high standard deviations regarding verification times indicate

that time spent in a successful verification is much shorter than what is necessary to find a

violation, i.e., time spent to achieve a FAILURE result after a model checking procedure. In

general, the mean figure of the latter is 288s, for overflow verification in saturate mode, and

170s, in wrap-around mode. Regarding LCO verification, the mean time spent to find a violation

is 756s.

The time spent in overflow verification is relatively low, with maximum values of 670s

and 436s, in wrap-around and saturate modes, respectively, which happened for successful

verification procedures for controller C4, using TDFII realization. Lower verification times, if
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(b) Effects in the roll and pitch closed-loop behavior described in equation (4.3).

Figure 4.10: LCO effects in closed-loop dynamics of pitch/roll angles.

compared with previous studies [26], are justified by enhancements in the employed verifiers

and solvers. Besides, successful verification results typically take longer than failed ones, since

BMC techniques stop searching when a violation is found.

In general, LCO verification times take longer than overflow ones, as can be noticed in

Fig. 4.6, due to the fact that the former is considerably more complex and considers all possible

initial states, constant inputs, and oscillation periods. In addition, LCO verification presented

more timeout events, which represents 10% of our benchmarks.

4.5 On the validation of DSVerifier results

All verification results provided by DSVerifier v2.0.3 were validated with DSValida-

tor v1.0.1 [102], in order to demonstrate its reliability and soundness. Particularly, the latter

is a complement and an additional support to DSVerifier, which is employed to reproduce its
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counterexamples. The details about DSValidator features and usage are described in the disser-

tation’s appendix C.

4.5.1 Automated Counterexample Reproducibility

The main purpose of DSValidator is to automatically check whether a given counterex-

ample, provided by DSVerifier, is reproducible or not. Indeed, it is able to reproduce counterex-

amples generated by DSVerifier, using typical MATLAB features (e.g., operational functions,

rounding functions, logical functions, conditional functions, loops and structs ), and as a conse-

quence, it is also suitable for investigating digital controller and filter behavior, considering the

implementation and FWL aspects.

DSValidator takes into account implementation aspects, overflow mode (saturate or

wrap-around), and rounding approach (floor and round). Currently, DSValidator performs coun-

terexample reproducibility for stability, minimum-phase, limit cycle, and overflow occurrences.

According to Table 4.4, DSVerifier produced 27 LCO and 56 overflow counterexamples,

the latter being divided into 32 in saturate and 24 in wrap-around mode. DSValidator confirmed

the DSVerifier’s results, i.e., all counterexamples were reproduced by DSValidator, which sug-

gests that DSVerifier is sound and reliable. Furthermore, DSValidator allows us to check the

property violation in graphical mode, using MATLAB, which makes re-implementation phases

easier, in the proposed DSVerifier-aided verification methodology (see Fig. 3.1). Indeed, it’s

very important to notice that DSValidator returns a .MAT-file that represents the digital system

with its implementation (e.g., realization, fixed-point format, inputs). By combining this im-

plementation extracted from the counterexample, the re-design of the digital system is more

practical, due to the fact that a control engineer is then able not only to implement the same

digital system with a different realization or fixed-point format, but he can also check with

DSValidator if the violation is still occurring, i.e., through graphs, property-verification simu-

lation, and also result validation. due to this reason, DSValidator is a strong tool to support the

verification performed by the DSVerifier v2.0.

In order to ensure the absence of LCOs detected by DSVerifier, an algorithm proposed by

Bauer [103, 104] was employed. Such a scheme searches exhaustively for the absence of limit

cycle and is applicable to all direct form realizations, besides being independent on quantization

and digital controller order. Therefore, the Bauer’s method decides about asymptotic stability of
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Table 4.4: Reproducibility results for the mentioned quadrotor attitude system.

Property Evaluated Tests Successful Tests Failed Execution Time
Overflow: Saturate 32 0 0.050703 s

Overflow: Wrap-around 24 0 0.037437 s
LCO 26 1 0.057538 s

(linearly stable) digital systems, by employing an exhaustive search method. If it detects that a

digital system is asymptotic stable, then the latter is free from LCO; otherwise, it is susceptible

to those problems. This way, controllers that present no LCO occurrences, according to Bauer’s

algorithm, are the same with successful verification in DSVerifier.

Note that the automated validation of all counterexamples took less than 1 second. We

consider such times short enough to be of practical use. The present results also show that

all counterexamples (except one) generated by the underlying verifier, considering FWL ef-

fects and different realizations forms (i.e., DFI, DFII and TDFII), are sound and reliable, since

DSVerifier is able to simulate the underlying digital system in MATLAB and then reproduce

the respective counterexample. Nonetheless, for the limit cycle property, there is one counterex-

ample that was not reproduced in DSVerifier. Previously, DSVerifier did not take into account

overflow in intermediate operations to compute the system’s output using the DFII realization

form. Indeed, this bug was confirmed and fixed by the DSVerifier’s developer via a github

commit.1

1https://github.com/ssvlab/dsverifier/commit/88e857bdbc74a7ce3c74d327e2a1e7a246fa48cc

https://github.com/ssvlab/dsverifier/commit/88e857bdbc74a7ce3c74d327e2a1e7a246fa48cc


Chapter 5

Conclusions

This work described an SMT-based BMC verification methodology, which is supported

with the aid of a tool named DSVerifier, with the goal of verifying low-level properties of digital

controllers. FWL effects are considered, in order to investigate LCO and overflow occurrences,

in UAV digital attitude controllers.

The need for reliability and autonomy, in UAV systems, has already motivated other

researchers regarding the application of formal methods; however, the present work differs from

previous approaches, once it investigates FWL effects over digital-controller implementations.

Overflow and LCO were investigated in 10 different digital controllers, through 84 different

implementations (realizations and representations).

The present experimental results show that digital controllers might present failures af-

ter implementation, depending on the chosen numerical format and realization. In particu-

lar, DSVerifier was able to identify LCO and overflow in digital controllers designed with the

Ziegler-Nichols tuning and also with a CEGIS-based approach, via DSSynth. The resulting

simulations showed that failures due to FWL effects caused significant changes in the behavior

of UAV attitude angles. Indeed, the present method based on DSVerifier is repeated until a

sound and non-fragile implementation is found. Consequently, a suitable combination of re-

alization and numerical representation can be identified, regarding a digital attitude controller

designed for a specific hardware platform. However, this combination of realization and nu-

merical representation is performed by the control engineer, and as a future work could be

implemented as an algorithm to permute different realizations and fixed-point representations

until the right implementation could be found. In addition, a flawed dimensioning procedure

65
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(available in literature) was identified and the resulting violations were detected by DSVerifier,

which reinforces its effectiveness and applicability.

According to the provided verification results, regarding overflow verification using

wrap-around mode, 30% of the adopted controller implementations presented violations, which

represents 24 elements, while in saturate mode 40% of the controller implementations presented

violations, which represents 32 elements. For LCO validation, 30% that of controllers imple-

mentations are susceptible to LCO, while the other 70% present absence of LCO. Finally, all

mentioned results were reproduced with DSValidator, which shows that DSVerifier is sound and

reliable and can also be incorporated into digital-controller design processes, in order to obtain

more robust implementations.

In addition, the method presented by Carletta et al. [95] is not really accurate enough

and it does not guarantee complete absence of overflow events, in certain cases, which occurs

because it does not considers the asymmetry of two’s complement representations, as shown by

Volkova et al. [53]. The algorithm purposed by Carletta is working in some cases, except for

some ones where ||h||1.||x||∞ is just strictly below 2bits, but close enough to make the fixed-point

format chosen inadequate.

5.1 Future Work

As future work, this study will be extended to altitude and position UAV models and will

also support closed-loop verification using k-induction techniques [106, 107], which considers

system dynamics and how it is affected by FWL effects. Further studies will also investigate

the consequences of attitude controller fragility in an UAV mission, considering every control

software module.

Additionally, other digital-controller representations can be included, e.g., state-space

based forms [22]. In this respect, further studies could include a method to automatically fix

controller implementations using fault localization methods [108, 109], where an optimal in-

stance can be found, considering hardware constraints. Finally, the latter can also be integrated

into DSSynth [110], which would greatly improve its results and consequently provide LCO-

and overflow-free implementations.

Finally, DSVerifier could include the verification of nonlinear systems [111], and also

include other properties for digital filters verification (e.g., magnitude and phase [24, 29]). In
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addition, DSVerifier could be integrated with DSValidator [102] and DSSynth [110], in order

to synthesize stable controllers (DSSynth), verified by a bounded model checking tool (DSVer-

ifier), and also validated by a reproducibility tool (DSValidator), which could be a strategy to

design reliable digital controllers, and free from errors related to FWL effects.
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Appendix A

Bounded Model Checking Tools

A.1 Efficient SMT-Based Context-Bounded Model Checker

(ESBMC)

The ESBMC [66, 112–115] is an SMT-based context-bounded model checker for C/C++

programs. In ESBMC [66, 115], the associated problem is formulated by constructing the logi-

cal formula:

ψk = I(S0)∧
k∨

i=0

i−1∧
j=0

γ(s j,s j+1)∧φ(si) (A.1)

where φ is a property (e.g., overflow and limit cycle), S0 is a set of initial states of M, and

γ(s j,s j+1) is the transition relation of M between time steps j and j + 1. Hence, I(S0)∧∧i−1
j=0 γ(s j,s j+1) represents the executions of a transition system M of length i. The above

verification condition (VC), ψ , can be satisfied if, and only if, for some i ≤ k there exists a

reachable state at time step i in which φ is violated. If the logical formula (A.1) is satisfiable

(i.e., returns true), then the SMT solver provides a satisfying assignment, from which the values

of the digital controller’s variables can be extracted to construct a counterexample.

It is important to note that this approach can be used only to find property violations

up to a bound k. In order to prove properties, we need to compute the completeness threshold

(CT ), which can be smaller than or equal to the maximum number of loop-iterations occurring

in a program. However, computing CT to stop the BMC procedure and to conclude that no

counterexample can be found is as hard as model checking. Moreover, complex programs
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involve large data-paths and complex expressions. Consequently, even if we knew CT , the

resulting formulae would quickly become too hard to solve and require too much memory to

build. In practice, we can thus only ensure that the property holds in M up to a given bound k. In

ESBMC, the focus is on embedded software verification, since it has characteristics that make

it attractive for BMC, e.g., dynamic memory allocations and recursion are highly discouraged,

which make the limitations of bounded model checking less stringent.

A.2 C Bounded Model Checker (CBMC)

CBMC (C Bounded Model Checker) [99] implements BMC for ANSI-C/C++ programs

using SAT solvers. It can process C/C++ code using the goto-cc [116] tool, which compiles

the C/C++ code into equivalent GOTO-programs using a gcc-compliant style. Alternatively,

CBMC uses its own internal parser based on Flex/Bison, in order to process C/C++ files and

build an abstract syntax tree (AST). The typechecker annotates this AST with types and gen-

erates a symbol table. CBMC’s IRep class then converts the annotated AST and the C/C++

GOTO-programs into an internal language-independent format used by the remaining phase of

the front-end.

CBMC derives VCs using two recursive functions that compute assumptions or constraints

(i.e., variable assignments) and properties (i.e., safety conditions and user-defined assertions).

CBMC’s VC generator (VCG) automatically generates safety conditions that check for arith-

metic overflow and underflow, array bounds violations and null-pointer dereferences. Both

functions accumulate control flow predicates to each program point and use that to guard both

constraints and properties, so that they properly reflect a program’s semantics.

Although CBMC implements several state-of-the-art techniques for propositional BMC,

it still has the following limitations: (i) large data-paths involving complex expressions lead to

large propositional formulae, (ii) high-level information is lost when verification conditions are

converted into propositional logic, and (iii) encoding size increases with array sizes used in a

program.
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A.3 The BMC Counterexample

CBMC [99] and ESBMC [66] construct counterexamples whether a property violation

is found. A counterexamples is a trace that shows that a given property does not hold in the

model. Counterexamples allow the user: (i) to analyze a failure, (ii) to understand an error, and

(iii) to correct either the respective specification or model, in this case, from the property and

the program that has been analyzed [117].

Definition A.1 (Counterexample) A counterexample for a reachability property φ is a se-

quence of states s0,s1, . . . ,sk with s0 ∈ S0 (initial state), sk ∈ S (bad state) and γ (si,si+1) ∈ R

for 0≤ i < k, that refutes φ .



Appendix B

DSVerifier Toolbox

A MATLAB toolbox was developed, with the goal of checking occurrences of design

errors typically found in fixed-point digital systems, considering finite word-length effects. In

particular, the present toolbox works as a front-end to a recently introduced verification tool,

known as Digital-System Verifier (DSVerifier), and checks overflow, limit cycle, quantization,

stability, and minimum phase errors in digital systems represented by transfer-function and

state-space equations. It provides a command-line version with simplified access to specific

functionality and a graphical-user interface, which was developed as a MATLAB application.

The resulting toolbox enables application of verification to real-world systems by control engi-

neers.

B.1 DSVerifier Toolbox Architecture

The verification methodology for the toolbox is based on DSVerifier and can be split

into four main steps, as illustrated in Fig. B.1.

B.2 DSVerifier Toolbox Features

DSVerifier’s features can be described as follows:

a) Digital-system representation: DSVerifier handles digital systems represented by transfer-

function and state-space representations (cf. step 1 of Fig. B.1).

84
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Figure B.1: DSVerifier’s verification methodology.

b) Realization: DSVerifier performs the verification of direct-form I (DFI), direct-form

II (DFII) and transposed direct-form II (TDFII), and also delta direct-form I (DDFI),

delta direct-form II (DDFII) and delta transposed direct-form II (TDDFII) (cf. step 2 of

Fig. B.1).

c) Open-loop systems: DSVerifier verifies, for transfer-function representation, stability,

overflow, minimum phase, limit-cycle and quantization error, while in state-space repre-

sentation, it verifies stability, quantization error, observability and controllability proper-

ties (cf. step 3 of Fig. B.1).

d) Closed-loop systems: DSVerifier verifies stability, limit-cycle and quantization error in

transfer-function representation, while for state-space systems, all properties mentioned

for open-loop systems are checked, via state feedback matrix (cf. step 3 of Fig. B.1).

e) BMC tools: DSVerifier handles the verification for digital-systems using CBMC or ES-

BMC as back-end, to perform the symbolic verification (cf. step 3 of Fig. B.1).
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Table B.1: DSVerifier’s commands and parameters used during verification procedures.

Verification Command system intbits fracbits max min bound cmode error
verifyStability x x x x x
verifyOverflow x x x x x x
verifyError x x x x x x x
verifyMinimumPhase x x x x x
verifyLimitCycle x x x x x x
verifyClosedStability x x x x x x
verifyClosedQuantizationError x x x x x x x x
verifyClosedLimitCycle x x x x x x x
verifyStateSpaceStabiltiy x x x
verifyStateSpaceControllability x x x
verifyStateSpaceObservability x x x
verifyStateSpaceQuantizationError x x x x x

—————————————————

B.3 DSVerifier Toolbox Usage

In order to explain the DSVerifier’s workflow, the following second-order controller

represented by a transfer-function H(z) = B(z)
A(Z) for an A/C motor plant is used

H(z) =
z3−2.819z2 +2.6370z−0.8187
z3−1.97z2 +1.033z−0.06068

. (B.1)

B.3.1 Command Line Version

Users must provide a digital system described as a MATLAB system using a tf (for

transfer-function) or an ss (for state-space) command (cf. step 1 of Fig. B.1). DSVerifier is

then invoked to check the digital system representation and the desired property (cf. steps 2 and

3 of Fig. B.1). Table B.1 summarizes the DSVerifier’s commands that perform the proposed

automatic verification and the required parameters for each property (cf. step 4 of Fig. B.1). In

Table B.1, system represents the digital system in transfer-function or state-space format, intbits

is the integer part, fracbits is the fractional part, max and min are the maximum and minimum

dynamic range, respectively, bound is the k bound to be employed during verification, cmode

is the connection mode, for closed-loop systems in transfer-function (series or feedback), and

error is the maximum possible value in the quantization error check. Additionally, optional

parameters can be included, such as overflow mode, rounding mode, BMC tool, solver, quan-
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Figure B.2: GUI application for transfer-function verification, in closed-loop format.

tization error mode and delta coefficient (for delta realization).1 All available functions w.r.t.

DSVerifier have been exhaustively tested and experimental results are available online.2

B.3.2 MATLAB Application Version

A graphical user interface application was developed (Fig. B.2), in order to favor digital-

system verification in MATLAB, besides improving usability and, consequently, attracting more

digital-system engineers. Users can provide all required parameters for digital-system verifica-

tion: specification, target implementation and properties to be checked.

B.3.3 Illustrative Example

To illustrate the DSVerifier’s usage, Fig. B.3 shows the stability verification for the dig-

ital system specified in Eq. B.1, where “num” and “den” represent the numerator A(z) and

denominator B(z), resp., using a dynamic range [−1,1] and a fixed-point format < 2,13 >, i.e.,

2 bits for the integer part and 13 for the fractional one.

If the fixed-point format is changed to < 12,3 >, for the same system described in

Eq. B.1, the verification indicates a failure, i.e., a digital system is unstable, as shown in
1All functions implemented in DSVerifier are detailed in the Toolbox’s Documentation.
2http://www.dsverifier.org/benchmarks

http://dsverifier.org/dsverifier-toolbox
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1 >> num = [ 1 . 0 0 0 0 −2.8190 2 .6370 −0 .8187] ;
2 >> den = [ 1 . 0 0 0 0 −1.9700 1 .0330 −0 .0607] ;
3 >> sys tem = t f ( num , den , 0 . 0 0 1 ) ;
4 >> v e r i f y S t a b i l i t y ( system ,2 ,13 ,1 , −1) ;
5 >> VERIFICATION SUCCESSFUL

Figure B.3: Verifying stability for Eq. B.1 in MATLAB, with a fixed-point format < 2,13 >.

Fig. B.4, which indicates that DSVerifier can correctly verify digital systems with different

implementations.

1 >> v e r i f y S t a b i l i t y ( system ,12 ,3 ,1 , −1) ;
2 >> VERIFICATION FAILED

Figure B.4: Verifying stability for Eq. B.1 in MATLAB, with a fixed-point format < 12,3 >.

After verifying that the adopted digital system is unstable with format < 12,3 >, the

respective failed verification result can be confirmed by reproducing the counterexample gen-

erated by DSVerifier.
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(a) Successful verification using the fixed-point format <
2,13 >.
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(b) Failed verification using the fixed-point format <
12,3 >.

Figure B.5: Step response for Eq. B.1.

The stability for the digital systems described above could be indeed observed through
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the associated step response for both cases, as shown in Fig. B.5. In subfigure B.5(a), the step

response shows that the digital system is stable, while in B.5(b) it is unstable.



Appendix C

DSValidator Toolbox

An automated counterexample reproducibility tool based on MATLAB is presented,

called DSVerifier, with the goal of reproducing counterexamples that refute specific proper-

ties related to digital systems. We exploit counterexamples generated by the Digital System

Verifier (DSVerifier), which is a model checking tool based on satisfiability modulo theories

for digital systems. DSVerifier reproduces the execution of a digital system, relating its input

with the counterexample, in order to establish trust in a verification result.The resulting toolbox

leverages the potential of combining different verification tools for validating digital systems

via an exchangeable counterexample format.

C.1 Proposed Counterexample Format

DSVerifier exploits counterexamples provided by verifiers; if there is a property viola-

tion, then the verifier provides a counterexample, which contains inputs and initial states that

lead the digital system to a failure state. Fig. C.1 shows an example of the present counterexam-

ple format related to an overflow LCO violation for the digital system represented by Eq. (C.1):

H(z) =
2002−4000z−1 +1998z−2

1− z−2 . (C.1)

The proposed counterexample format shown in Fig. C.1 describes the violated property

(represented by a string), transfer function numerator and denominator (represented by fixed-

point numbers), bound (represented by an integer), sample time (represented by a fixed-point

number), implementation aspects (integer and fractional bits represented by an integer), realiza-

90
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1 P r o p e r t y = LIMIT_CYCLE
2 Numerator = { 2002 , −4000 , 1998 }
3 Denominator = { 1 , 0 , −1 }
4 X_Size = 10
5 Sample_Time = 0 .001
6 I m p l e m e n t a t i o n = <13 ,3 >
7 Numerator ( f i x e d−p o i n t ) = { 2002 , −4000 , 1998 }
8 Denominator ( f i x e d−p o i n t ) = { 1 , 0 , −1 }
9 R e a l i z a t i o n = DFI

10 Dynamical_Range = { −1, 1 }
11 I n i t i a l _ S t a t e s = { −0.875 , 0 , −1 }
12 I n p u t s = { 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 , 0 . 5 }
13 O u t p u t s = { 0 , −1, 0 , −1, 0 , −1, 0 , −1, 0 , −1}

Figure C.1: Proposed counterexample format example.

tion form (represented by a string), dynamical range (represented by an integer), initial states,

inputs, and outputs (which are represented by fixed-point numbers). In particular, the coun-

terexample provides the needed data to reproduce a given property violation via simulation in

MATLAB.

C.2 Automated Counterexample Validation

There are five steps to automatically perform the automated counterexample validation

in DSVerifier. In step (1), DSVerifier obtains the counterexample and then uses a shell script

Figure C.2: Automatic counterexample validation process.

to extract the data related to the digital system, i.e., property, transfer function numerator

and denominator, fixed-point representation, k-bound, sample time, implementation aspects,

realization form, dynamical range, initial states, inputs, and outputs. In step (2), DSVerifier

converts all counterexample attributes into variables that can be manipulated in MATLAB. In

step (3), DSVerifier simulates the counterexample (violation) for the failed property, which is

derived from the counterexample by providing concrete, lower-level details needed to simulate
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the digital system in MATLAB. In this specific step, all FWL effects are applied to the digital

system, and computations to perform the outputs are produced, according to the realization form

and property, as previously mentioned. In step (4), DSVerifier compares the result between the

output provided by the verifier and that simulated by MATLAB. Finally, in step (5), DSVerifier

stores the extracted counterexample in a .MAT file and then reports its reproducibility.

C.3 DSValidator Features

DSVerifier’s features can be described as follows:1

• Macro Functions: functions to reproduce the validation steps ( e.g., parsing, simulation,

comparison, and report).

• Validation Functions: check and validate a violated property ( e.g., overflow, limit-cycle,

stability, and minimum-phase).

• Realizations: reproduce realizations forms to validate overflow and limit-cycle (for direct

and delta forms).

• Numerical Functions: perform the quantization process; select rounding mode and over-

flow mode (wrap-around and saturate); fixed-point operations ( e.g., sum, subtraction,

multiplication, division); and delta operator.

• Graphic Functions: plot the graphical representation of overflow to show each output

exceeding the supported word-length limits; limit-cycle to represent the system’s output

oscillations; and poles/zeros to show stability and minimum-phase with (or without) FWL

effects inside a unitary circle.

C.4 DSValidator Result

The DSVerifier result is structured with counterexample data composed by attributes

and classes as shown in Fig. C.3. The attributes are defined in the .MAT file with the following

structure: counterexample that represents the counterexample identification; digital system that
1Functions implemented in DSVerifier are described in the Toolbox Documentation.

http://dsverifier.org/matlab-toolbox/dsvalidator-documentation/
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Figure C.3: Structure of the .MAT file for representing counterexamples.

represents the numerator, denominator, and transfer function representation; inputs that repre-

sent the input vector and initial states; implementation that represents the integer and fractional

bits, dynamical ranges, delta operator, sample time, bound, and realization form; outputs report

the verification and simulation results, execution time in MATLAB, and comparison status,

where it reports whether the counterexample is reproducible or not. Importantly, all execution

times are actually CPU times, i.e., only the elapsed time periods spent in the allocated CPUs,

which is measured with the times system call (POSIX system).

C.5 DSValidator Usage

DSVerifier can be called via command line in MATLAB as:

validation(path, property, ovmode, rmode, filename)

where path is the directory with all counterexamples; property is defined as: m for minimum

phase; s for stability; o for overflow; and lc for limit cycle; ovmode represents the overflow

mode: wrap for wrap-around mode (default) and saturate for saturation mode; rmode rep-

resents the rounding mode, which can be round (default) and floor; filename represents the

.MAT filename, which is generated after the validation process; by default, the .MAT file is named

as digital_system.
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1 Running Automat i c V a l i d a t i o n . . .
2 Coun te r example s (CE) V a l i d a t i o n Re por t . . .
3 CE 1 t ime : 0 .081929 s t a t u s : r e p r o d u c i b l e
4 CE 2 t ime : 0 .013996 s t a t u s : r e p r o d u c i b l e
5 CE 3 t ime : 0 .009488 s t a t u s : r e p r o d u c i b l e
6 G e n e r a l R epo r t :
7 T o t a l Coun te r ex ample s R e p r o d u c i b l e : 3
8 T o t a l Coun te r ex ample s I r r e p r o d u c i b l e : 0
9 T o t a l Coun te r ex ample s : 3

10 T o t a l E x e c u t i o n Time : 0 .10541

Figure C.4: Counterexample reproducibility report.

After executing the validation command, DSVerifier prints statistics about the coun-

terexamples validation. Fig. C.4 shows a report about the digital system represented in Eq. (C.1)

for realizations DFI, DFII, and TDFII.
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