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Abstract 
 
Apart from Bitcoin, Ethereum is another distributed ledger that uses blockchain technology. 
Smart contracts are autonomous programs that automatically control Ether's transactions in the 
distributive environment of the Ethereum blockchain. A vulnerable smart contract allows the 
hackers to perform unauthorized withdraw. Since a smart contract is immutable after its 
deployment on the Ethereum blockchain, which does not allow the owner to fix bugs, it 
becomes critical to make sure the smart contract is safe prior to deployment. Solidity is the 
most widely used programming language to create such contracts. There is a great deal of 
interest from academia and industry in formal verification for Solidity smart contracts. 
 
The SMT-Based BMC has been successfully used to verify software programs written in 
general programming languages. ESBMC is a state-of-the-art SMT-based bounded model 
checker to verify C and C++ software. This project uses ESBMC as the vehicle to explore the 
opportunity to apply SMT-Based BMC for Solidity verification. However, Solidity is a 
domain-specific language for writing smart contracts. To extend ESBMC to verify Solidity 
smart contract, a detailed study of syntax, semantics and grammar rules of Solidity language 
was conducted. Two type checking methods were proposed to convert Solidity AST into 
ESBMC intermediate representation: Tracker-Based Hybrid Conversion and Grammar-Based 
Hybrid Conversion. 
 
The Grammar-Based Hybrid Conversion method was found to have better extendibility and 
maintainability. As a result, a new Solidity frontend was developed to extend ESBMC to verify 
Solidity smart contacts. Additionally, a test suite that contains vulnerably smart contracts was 
developed due to the lack of a standard benchmark for Solidity. The test results confirmed the 
correctness of the new Solidity frontend that enables ESBMC to verify Solidity smart contracts. 
ESBMC was compared with other state-of-the-art Solidity verification tools by running the 
same test suite against other tools. The results show that ESBMC is the only tool that 
successfully detected all vulnerabilities in each test case and provided the corresponding 
counterexamples for each type of vulnerability. The other tools are only able to reveal the 
vulnerabilities in the test suite partially. 
 
Keywords: programming language theory, compiler, bounded model checking, SMT, Solidity 
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1 Introduction 
 

1.1 Motivation  
 
The blockchain is a distributed ledger technology that forms the main mechanism behind 
Bitcoin, Ethereum, and alternative cryptocurrencies [1]. Blockchain can be considered as a data 
structure that contains a linked list of blocks, each of which contains a list of unmodifiable 
transactions [2]. Smart contracts are autonomous programs that run on Ethereum blockchain 
[3].   
 
Solidity is a domain-specific language (DSL) for writing smart contracts [4].  Once deployed 
on Ethereum blockchain, there is no way to update the smart contract except deleting it completely 
and re-deploying a new one. Even the smart contract author cannot modify the program code or fix 
bugs after deployment [5]. Because the smart contracts are compiled into EVM (Ethereum Virtual 
Machine) assembly instructions for deployment on the blockchain [6]. Due to the nature of such 
immutability, it is critical to ensure the security of the smart contract before deploying it on the 
Ethereum blockchain. But the reality is the opposite. The deployed smart contracts often suffer 
from software vulnerabilities. These vulnerabilities have been exploited by malicious attackers, 
which leads to monetary losses. For example, the DAO attack that happened in 2016 results in a 
large monetary loss of $60 million, which eventually forces the Ethereum blockchain to be hard 
forked to roll back to a previous state [7, 8]. There is growing demand for the verification of 
Solidity smart contracts. For example, the 0xproject offers up to $100,000 US dollars to detect 
of critical vulnerability in Solidity smart contract [9, 10]. 
 

1.2 Research Question, Aim and Objectives 
 
Research Question.  
Solidity is a DSL for writing smart contracts to be deployed on Ethereum blockchain. Hence, 
a natural question would be: Can SMT-based bounded model checking be used to verify DSL?  
 
Aim. 
This project aims to answer this question by using ESBMC as the vehicle for research. The 
goal is to develop a new type checking methodology to transform the Solidity program into 
ESBMC intermediate representation (IR), and ultimately to use the existing SMT-encoding 
schemes of ESBMC to verify the original Solidity program.  
 
Objectives. 
The objectives of this project are outlined as follows: 
 

• [OBJECTIVE-1] Investigate the programming paradigm of Solidity and understand 
Solidity language syntax, semantics, grammar, and special features. 
 

• [OBJECTIVE-2] Investigate and analyse ESBMC to identify:  
 

a. The architecture and the intermediate representations used in ESBMC.  
 

b. The IR data structures in ESBMC 
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c. The existing encoding schemes for verifying the language constructs in general 
programming languages like C and C++.  

 
• [OBJECTIVE-3] Based on the outcomes of [OBJECTIVE-2], extend ESBMC to verify 

Solidity, a DSL for writing smart contracts.  
  
1.3 Deliverables 
 
The deliverables of this project are listed in the following:  
 

• [Deliverable-1] Develop a new type checking methodology to enable ESBMC to 
verify Solidity smart contracts using the existing SMT encoding schemes.  

 
• [Deliverable-2] Due to the lack of a standard benchmark for Solidity, develop a test 

suite that contains vulnerable smart contracts to evaluate the new frontend in 
Deliverable-1.  
 

• [Deliverable-3] Final dissertation to summarize the work done for Deliverable-1 and 
Deliverable-2. 

 
1.4 Contribution 
 
Over the last few years, several Solidity frameworks were proposed. Except for Mythril [11], 
the other frameworks outlined in Section 2.4 do not encode Solidity programs in logic formulae 
or use SMT solvers to verify Solidity smart contracts. Instead, some of them just use SMT 
solvers to find the satisfiability of path conditions after symbolically executing the program. 
Although Mythril uses SMT solver to verify the Solidity smart contracts, it does not always 
generate a counterexample. The test results in Section 4 shows that Mythril did not detect the 
vulnerability of arithmetic underflow in the test case developed in this project.  
 
The contribution of this project is that it successfully used SMT-based bounded model checking 
technique to verify Solidity smart contracts. None of the state-of-the-art Solidity verification 
tools uses such technique. The test results in Section 4 show that ESBMC with the new Solidity 
frontend detected the vulnerability in all test cases and provided a counterexample in each case. 
ESBMC outperforms all other tools.  
 

1.5 Dissertation Structure 
 
This dissertation contains five chapters including the introduction. The layout of the remaining 
chapters is as follows. Chapter 2 presents the relevant background knowledge and theories in 
programming language theory, compiler design, software verification, bounded model 
checking, and Satisfiability Modulo Theories (SMT), which is used to aid in understanding the 
design rationale behind the new type checking methodologies in Chapter 3. There are two type 
checking methodologies proposed in Chapter 3. These methodologies guide the 
implementation of the new Solidity frontend. Chapter 4 discusses the test suite design, and 
explains the test results. In addition, Chapter 4 also compares ESBMC to other state-of-the-art 
Solidity verification frameworks. Chapter 5 concludes this project and identifies further work 
extending ESBMC to cover all Solidity language features.  
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2 Background and Theory 
 
This chapter will lay the theoretical foundation that will become useful in later chapters. Each 
subsection contains an answer to a question “How is … related to this project?”, which explains 
the intention of the corresponding literature review.  
 
The architecture of an SMT-based bounded model checker consists of two parts: the frontend 
and the backend. This chapter starts with introducing topics in programming language theory 
and compiler theory that will help the reader understand the frontend of an SMT-based bounded 
model checker. Next, it uses an illustrative example to explain the verification flow of an SMT-
based bounded model checker. This chapter then gives a survey of state-of-the-art verification 
frameworks for Solidity. It ends by discussing the existing clang-based frontend of ESBMC.  
 
2.1 Programming Language Theory 
 
This subsection aims to explain some key concepts in programming language theory, which 
lay the theoretical foundation for understanding the clang-based frontend in ESBMC, and 
designing the new Solidity frontend.  
 
2.1.1 Syntax and Grammar 
 
The syntax of a programming language can be described precisely using formal grammar [12]. 
The method to formally describe a formal grammar is known as Backus-Naur Form (BNF). 
The origin of BNF is the paper published by computer scientists John Backus and Peter Naur 
in 1960 [13]. BNF is referred to as a metalanguage used to describe another programming 
language. A metalanguage is a language used to describe another language [14]. Hence, the 
syntax of a programming language can be described by context-free grammar written in BNF. 
The context-free grammar contains production is shown as follows:  
 
 
 
 
 
 
 
 
 
 
 
The simple grammar above is written in BNF style. <Expr> is known as a non-terminal symbol 
because it can be replaced by other symbols. <Identifier>, <BinaryOperator> and 
<UnaryOperator> are also non-terminal symbols. ‘a’, ‘b’, ‘c’ and ‘d’ are terminal symbols, so 
are the operators ‘+’, ‘-’ and ‘++’.  
  

<Expr> ::= <Identifier> <BinaryOperator> < Identifier >  
      | <UnaryOperator> <Identifier> 
 

<Identifier> ::= a | b | c | d 
 
<BinaryOperator> := + | -  
 
<UnaryOperator> := ++ 
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The above grammar can be used to check the validity of the syntax in the following expressions:  
 

𝑎 + 𝑏									(2.1)	
+ + 𝑎								(2.2) 
𝑎 + +								(2.3) 
−− 𝑎								(2.4) 
𝑎 ∗ 	𝑏									(2.5) 

 
The syntax of expression (2.1) is valid, because the sequence of symbols in this expression can 
be generated using the production rules as follows: 
 
 
 
 
 
 
 
A production rule is in the form of “<Identifier> → x”. It means that the non-terminal symbol 
<Identifier> can be replaced by another symbol “x” as specified by the BNF-style grammar, 
where “x” could be a terminal symbol (e.g. “a”) or a sequence of non-terminal symbols (e.g. 
as in the rule “<Expr>”).  
 
The syntax of expression (2.2) is valid, because the sequence of symbols in this expression can 
be generated using the production rules as follows:  
 
 
 
 
 
 
 
The syntax of expressions (2.3), (2.4) and (2.5) is invalid for the following reasons:  
 

• There is no production rule to replace <Expr> with < Identifier ><UnaryOperator> in 
expression “a++”. 
 

• There is no production rule to replace <UnaryOperator> with a terminal symbol “--” 
used in the expression “--a”. 

 
• There is no production rule to replace <BinaryOperator> with a terminal symbol “*” 

used in the expression “a * b”. 
 
How is it related to this project?  
The concept discussed in this subsection will become useful to understand the formal grammar 
of the Solidity language [16]. The production rules in Solidity grammar will guide the 
development of Grammar-Based Hybrid Conversion Method. 
  

<Expr> → <Identifier> <BinaryOperator> <Identifier>  
<Identifier> →  a 
<BinaryOperator> → + 
<Identifier> →  b 
                   
 

<Expr> → <UnaryOperator> <Identifier>   
<UnaryOperator> →  ++ 
<BinaryOperator> → a 
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2.1.2 Operational Semantics and Type Checking 
 
While the syntax of a programming language describes the structure of expressions, statements 
and language constructs, emantics is the meaning of those expressions, statements, and 
language constructs [14]. Type specifies the range of values that a variable can represent and 
the set of operations that are defined for these values. Type puts constraints on the operands 
and the operator to ensure they fit together properly [15]. 
 
Type and semantics are not independent of each other. They can be shown in the same picture 
of the processing phases of a programming language. There are two processing phases of a 
programming language: one is the static phase of processing, and the other one is the dynamic 
phase of processing [15]. There are two goals in the static phase of processing to ensure the 
program is well-formed:  
 

1. Make sure the structure is correct. For example, a binary operator “+” expects two 
operands in the form of (a + b), which is a well-formed expression. The expression (a 
+ ) is ill-formed because the right-hand-side operand is missing.  
 

2. Make sure the type is compatible. For example, a binary operator “*” expects two 
operands of numerical types. (1 + 2) is a well-formed expression. The expression (1 + 
“hello”) is ill-formed because the second operand is of the type string and it does not 
make sense to add an integer to a string.  

 
The dynamic phase of processing refers to the execution of a well-formed program based on 
the semantics. One of the formal ways to describe semantics is to use operational semantics. 
There are two types of operational semantics based on the levels of interest [12, 14]:  
 

1. If the interest is in the final result of the execution of a well-formed program, then it is 
called natural operational semantics, also known as big-step semantics.  

 
2. If the interest is in the sequence of state changes during the execution, then it can be 

described by structural operational semantics, also known as small-step semantics.  
 
An example of structural operational semantics is shown in Figure 1 [12]:  
 

 
Figure 1: Structural operational semantics example. 

 
As shown in Figure 1, the structural operational semantics of a for loop can be described using 
the sequential flow that consists of three terms: if statement, goto statement and the 
corresponding labels. The same approach can also be used to describe other non-sequential 
control flows, such as do-while loop or while loop. If it’s a function call, the call expression 
can be replaced by the body of the function to make it sequential. 
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The type compatibility is enforced by typing judgements. The typing judgements are rules 
described in a similar way to the natural deduction [17]. An example of such judgement is 
described below:  
 
First, let 𝜏 represent the types, and let 𝑒 represent expressions defined in Figure 2 [15]:  
 

 
 

Figure 2: τ and e definitions. 

 
Next, a typing environment Γ is defined as a set of (𝑒, 𝜏). This pair means 𝑒 is of the type 𝜏, 
which is often denoted by 𝑒 ∶ 	𝜏. Γ is sometimes called typing context. Using these notations, 
we can define a ternary relation:  
 

Γ ⊢ 𝑒 ∶ 	𝜏 
 
which means that 𝑒 is of the type 𝜏 in the typing environment defined by Γ.  
 
Then, the typing rules can be defined as follows [15]:  
 

Γ	 ⊢ 	𝑎	 ∶ 	𝑛𝑢𝑚									Γ	 ⊢ 	𝑏 ∶ 	𝑛𝑢𝑚
Γ	 ⊢ 𝑝𝑙𝑢𝑠(𝑎, 𝑏) ∶ 	𝑠𝑡𝑟  

         
Γ	 ⊢ 	𝑎	 ∶ 	𝑠𝑡𝑟									Γ	 ⊢ 	𝑏 ∶ 	𝑠𝑡𝑟

Γ	 ⊢ 𝑐𝑎𝑡(𝑎, 𝑏) ∶ 	𝑠𝑡𝑟  

 
Γ	 ⊢ 	𝑎	 ∶ 	𝑠𝑡𝑟		

Γ	 ⊢ 𝑙𝑒𝑛(𝑎) ∶ 	𝑛𝑢𝑚 

 
The relations above the line are premises, and the relation below the line is the conclusion. The 
first rule states that if variable a is of the type num in the typing environment Γ, and variable b 
is of the type num in the typing environment Γ, then the plus function that operates on these 
variables should also be of the type num in the typing environment Γ. Analogously, the second 
rule enforces the type compatibility of the concatenation expression, and the third rule enforces 
the type compatibility of the length expression.  
 
 A type checker is essentially an algorithm that implements the typing rules given above.  
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How are structural operational semantics and type checker related to this project?  
ESBMC uses GOTO program as the intermediate representation of the original program. The 
GOTO program uses only guarded goto and assume statements to model the control flow [18].  
The GOTO program essentially describes the structural operational semantics. The frontend of 
ESBMC has a type checking phase. In clang-based frontend of ESBMC this type checking 
phase is implemented as the clang_c_converter class. This class checks the type of each clang 
AST node and transforms it into the equivalent tree-structured irept node.  
 
2.1.3 Taxonomy 
 
Programming paradigm is the style of programming, which can be used to classify 
programming languages. A program written in an imperative language consists of a sequence 
of commands which modify the memory (or state) [19]. The end of a sequential command is 
indicated by the semicolon. The type system imposes constraints on the formation of 
expressions [15]. A type system consists of the predefined types and the typing rules as 
discussed in the previous section. A program written in a strongly typed (or type safe) language 
cannot violate the distinctions between types defined in that language [19]. Object-oriented 
programming (OOP) is a programming paradigm with three fundamental features: 
Encapsulation, Inheritance and Polymorphism.  
 
How is taxonomy related to this project? 
The goal of this project is to verify smart contracts written in Solidity. It would be useful to 
know what type Solidity language is. In Solidity a contract is like a class in OOP which 
encapsulates the attributes to indicate the state of the contract and methods that defines the way 
how a smart contract can be interacted with.  The statement (or command) in Solidity is also 
ended by a semicolon. Hence, Solidity is:  
 

• An imperative programming language. 
• An OOP language. 
• A strongly typed language.  

 
2.2 Compiler Theory 
 
A compiler translates a source program to a target program. The translation process consists of 
five phases [20]: 
 

1. Lexical Analysis 
2. Syntax Analysis 
3. Semantic Analysis 
4. Optimization 
5. Code generation 

 
Lexical Analysis.  
In this phase, the characters are aggregated to form a word. This is done by a lexical analyzer, 
or sometimes called a scanner, which applies a set of rules to check the validity of the word. If 
it is valid, a token will be generated.  
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Syntax Analysis.  
The input to the parser is a stream of tokens (or words). The purpose of the parser is to 
understand the structure of the program. The parser verifies the input tokens based on the 
formal grammar of the source programming language. The output of the parser is a tree-
structured representation, usually a parse tree or abstract syntax tree (AST) [21]. Parse trees 
contain more information than AST. The parse tree usually includes a record of rules used to 
recognise the input [22]. In a parse tree a node might be the name of the production rule used. 
In an AST the tree is simplified by removing the nodes representing the name of the production 
rule. An AST is more concise than the parse tree [20]. The syntax analysis phase ensures a 
program to be well-formed (c.f. Section 1.1.2). Both parse tree and AST are considered as 
syntax tree. A syntax tree is a tree-structured intermediate representation (IR).  
 
Semantic Analysis.  
Semantic analysis is to check the meaning of the program. A semantic analyser uses syntrax 
tree (usually AST) as the input. First, the semantic analyser generates a symbol table that 
contains the type and scope information of each declaration node in the syntax tree. Next, the 
semantic analyser uses the syntax tree and the symbol table to ensure the source program is 
semantically consistent with the scopes and language type system [21]. Hence, the semantic 
analysis phase contains a type checker (c.f. Section 1.1.2).  
 
How are these concepts related to this project?  
Phases 4 and 5 are not related to this project because the goal of this project is not to improve 
the performance of a specific compiler or generate code for a specific target. Phases 1, 2 and 3 
are related to this project, because the goal of ESBMC frontend is to generate the symbol table. 
The type checker traverses the AST and converts each declaration node into ESBM irept node. 
The irept parse tree is a tree-structured IR used to represent the syntax structure of the original 
program in ESBMC.  
 

2.3 SMT-Based Bounded Model Checking 
 
ESBMC is one of the most powerful SMT-based bounded model checkers to verify software 
programs written in C and C++ [23]. ESBMC has won various awards in previous SV-COMP 
competitions [24]. The overview of ESBMC is shown in Figure 3.  
 
A finite-state transition system can be modelled by a Kripke structure M which has a set of 
states 𝑆 = {𝑠!, 𝑠", … , 𝑠#$"} , where 𝑠!	 ∈ 	𝑆!  and 𝑆!  represents the set of initial states. A 
transition relation R is a subset (not necessarily a proper subset) of the Cartesian product 𝑆 and 
𝑆, i.e. 𝑅 ⊆ 𝑆 × 𝑆. A state transition from 𝑠& to 𝑠&'" is denoted by 𝑅?𝑠& , 𝑠&'"@. It means that the 
program counter moves forward while taking some actions to update the state. Such actions 
can be evaluating an expression and making new assignment to a variable, modifying the 
element in a container data structure, or changing the flow of execution by jumping to another 
block of statements. Given a Kripke structure M that models a state transition system, Bounded 
Model Checking aims to build the verification condition (VC) as the following formula [25]: 

𝜓! = 	𝐼(𝑠") ∧	89𝑅;𝑠# , 𝑠#$%<
&'%

#("

	∧ 	¬𝜙(𝑠&)
!

&("

		 

 
where 𝐼 is the set of initial states, 𝑠& 	is	state	variable	and k represents the bound limit, e.g., the 
number of loop iterations BMC unwinds. In Eq (2.6),  𝐼(𝑠!) ∧ 	⋀ 𝑅)𝑠" , 𝑠"#$+%&$

"'!  means the 

(2.6) 
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execution trace of length 𝑖. ¬𝜙(𝑠%) represents violation of a property in state 𝑠%. If the VC is 
satisfiable, it means that there exists a state 𝑠% that violates the safety property. The violation 
can be arithmetic over- or underflow, divide by zero, accessing a null pointer, double frees, etc. 
The counterexample will be represented by a sequence of states {𝑠!, 𝑠", … , 𝑠#}  and the 
corresponding transitions 𝑅(𝑠& , 𝑠&$%) where 𝑖 is bounded by 0	 ≤ 𝑖	 < 𝑘 [25]. 
 

 
Figure 3: Overview of ESBMC. 

 
In Eq. (2.6), ¬𝜙(𝑠%) corresponds to the property part, “~P” as in “C ∧ ~P” in Figure 3. The rest 
of the equation corresponds the constraint part, “C”. If the verification condition 𝜓 is satisfiable 
then it means that there exists a counterexample that violates the property up to a given bound 
𝑘. However, BMC is incomplete if 𝑘 is not high enough. It is only able to find a logic error 
(also called “falsification”) up to 𝑘 steps [26]. Calculating the completeness threshold (CT) of 
BMC is found to be as hard as the BMC itself [25].  
 

 
 

Figure 4: Example code to be verified. 
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The example code in Figure 4 contains an error of array out-of-bound access. To verify the 
code in Figure 4, the clang-c frontend generates symbol table, which is used by the GOTO 
converter to generate the equivalent GOTO program. Then the program is symbolically 
executed to generate the SSA form shown in Figure 5. Although the code in  Figure 4 has no 
syntax error and can be compiled using GCC or Clang, it contains a run-time error of array out-
of-bound access in line 7. The while loop is unrolled three times according to the value of n. 
The operational semantics of the statement in Line 9 in Figure 5 is as following:  
 
 
 
 
 
 
 
 
 

 
Figure 5: SSA form of the code in Figure 4. 

 
The array equality “a1 = a0” is defined as [25, 27, 28]:  
 

𝑎 = 𝑏 ⇐	∀𝑖	 ∙ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖) = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑏, 𝑖) 
𝑎 ≠ 𝑏 ⇒	∃𝑖	 ∙ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖) ≠ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑏, 𝑖) 

 
The if-then-else statement is represented by the ite operation in Figure 6. The array theory of 
SMT solver is based on McCarthy axiom [26, 30]. The semantics are as follows:   
 

• store(a, i, v) means to write the value of v in position i of array a. This expression returns 
the updated array.  

• select(a, i) means to read the value at position i of array a. This expression returns the 
value at position i in that array. 

 

if g0 == true:  
then: 
 a1 = (a0 WITH [0:=100]) ; 
else: 
 a1 = a0; 
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Figure 6: C and P formulae of the SSA form in Figure 5. 

 
The store(a, i, v) function can be represented by the WITH operator. “(a0 WITH [0:=100])” 
means to write 100 in position 0 of array a0 and return the updated array. The select(a, i) 
function can be represented by the equivalent array subscript expression, a[i] [31], [32]. Note 
that in Figure 5, the initialization of array a0 is not shown, because arrays are unbounded in the 
array theory and we just use a symbolic representation “a0” to denote the initial array. 
Compared to the previous work on array encoding [33], Cordeiro .et. al [25] proposed a new 
method to check array out-of-bound by adding additional bound checks in each unrolled block 
to check the array index against the array bound. Note that ESBMC also applies reduction on 
the formulae shown in Figure 6. Therefore, the actual set of formulae solved by the SMT solver 
is simpler than the one derived manually in Figure 6.  
 

2.4 State-of-The-Art Solidity Verification Frameworks 
 
This section aims to outline five verification frameworks for Solidity smart contracts – 
SolAnalyser, Slither, Oyente, Smartcheck, and Mythril. Additionally, this chapter also 
discusses the Remix, most popular Solidity IDE, which also has some functions to assist the 
developers to verify a smart contract before deployment on the Ethereum mainnet [34]. 
 
SolAnalyser.  
SolAnalyser is an automated verification framework for Solidity smart contracts. It uses both 
static and dynamic analysis. SolAnalyser framework relies on another code instrumentation 
tool called Solidity Instrumentation Framework (SIF). The responsibilities of SIF are [35]:  
 

• Statically analyse the code for vulnerability detection.  
 

• Inject assertions in the source code to specify property checks.  
 

• Generate contract mutants by injecting a single hard-coded vulnerability into the 
original smart contract.  

 
To inject assertions, SIF gathers information of each AST node and inject pre- or post-
conditions into the original contracts based on the operands and operators. For example, the 
pre-condition for the vulnerability of division by zero of the expression “a = b / c” would be 
“c != 0”. The post-condition for the vulnerability of unsigned underflow of the expression “a 
= b + c” would be “a >= c && a >= b” [35].   
 
SolAnalyser uses mutation-based blackbox fuzzing as its strategy for dynamic analysis. A 
contract mutant generated by SIF will be compiled into EVM bytecode, which contains the 
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Abstract Binary Interface (ABI) of the mutant. SolAnalyser interacts with the ABI of the 
mutant and applies fuzz testing [34]. When the test is complete, SolAnalyser searches the test 
logs for a sequence of specific keywords and events that indicate a violation of the property 
checks [53].  
  
Slither. 
Unlike SolAnalyser, Slither is a verification framework that uses only static analysis [29]. The 
static analysis technique used in Slither is taint tracking (not to be confused with taint checking). 
First Slither transforms Solidity AST into an intermediate representation called SlithIR and 
converts the IR into SSA form, and symbolically execute the SSA form. Next, Slither tracks 
the data dependency using tainted tracking. If the data is tainted, it means that the data cannot 
be trusted. A tainted variable is an untrusted variable [36]. Slither marks a variable as tainted 
if the variable can be influenced by the user. For example, if a variable depends on another 
user-controlled variable, Slither will also mark it as tainted [29]. If a protected function depends 
on the tainted variable, then a potential vulnerability might be detected. For example, if the 
parameter of a function is tainted, the usage of this variable in the function body might be 
vulnerable. Slither uses a group of pre-defined bug detectors to make the final verdict. Apart 
from detecting vulnerabilities, Slither is also able to suggest code optimizations.  
 
Oyente. 
Due to the non-determinism and complexity in Ethereum blockchain, it requires much more 
effort to simulate the execution environment of such distributed system input-by-input using 
dynamic analysis techniques [37]. Unlike SolAnalyser and Slither that work on Solidity source 
code, Oyente works on EVM assembly code to follow the execution model of a smart contract. 
As a by-product, the CFG of EVM assembly code can be generated by Oyente [37]. Z3 solver 
is used to find the satisfiability of the branch condition for a path, which is explored using 
Depth First Search (DFS). When a smart contract makes a function call, Oyente collects the 
path condition of the caller and checks the updated states before the callee finishes. If the 
updated states still satisfy the path condition for the caller, then it is possible for the callee to 
re-enter the caller, and hence, re-executing the caller. This refers to a Re-entrancy vulnerability 
[38, 39].  
 
Smartcheck. 
Similar to Slither, Smartcheck converts the Solidity source code into XML-based intermediate 
representation (IR) [40]. Instead of using symbolic execution as in Slither, Smartcheck uses 
XPath queries on the IR to detect vulnerability patterns [41]. Another difference to Slither is 
that Smartcheck performs lexical and syntactical analysis on Solidity source code instead of 
using the Solidity, while Slither takes the Solidity JSON AST as input generated by Solidity 
compiler.  
 
Mythril. 
Mythril is a verification tool that works on EVM bytecode [42].  Unlike the other tools 
proposed in the research, Mythril is a verification tool developed by the company ConsenSys 
[43]. Mythril forms part of the security analysis platform MythX [44]. Mythril uses various 
techniques for software verification– symbolic execution, SMT solving and taint analysis.  
 
Table 1 summarizes the verification strategies used in these tools:  
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Tools SolAnalyser Slither Oyente Smartcheck Mythril 
Input Source code ✓   ✓  

JSON AST  ✓    
EBM bytecode   ✓  ✓ 

Techniques Convert to IR  ✓ 
(SlithIR) 

 ✓  
(XML-
based IR) 

 

Symbolic 
Execution 

 ✓ ✓ ✓ ✓ 

Taint analysis  ✓   ✓ 
SMT solver   ✓  ✓ 
Fuzzing ✓     
Code 
Instrumentation 
Or 
Other queries 

✓  
(Code 
instrumentation) 

  ✓  
(XPath 
queries) 

 

Table 1: Summary of Solidity verification tools. 

 
How are these frameworks related to this project?  
A test suite will be designed in this project to evaluate the new Solidity frontend in ESBMC, 
and each of the test case in this suite will be a vulnerable contract. To compare ESBMC with 
other state-of-the-art verification tools, the same test suite will be run again all tools discussed 
in this section.  
 
2.5 Clang-Based Frontend in ESBMC 
 
A detailed study of the clang-based frontend is conducted to figure out the usage of 
ESBMC irept data structures. The clang-based frontend traverses the AST of the input C 
program and generates a symbol table. First, the clang AST is converted into another IR 
called irept. Then the type checker annotates the irept node based on the information in clang 
AST node and generates the corresponding symbol, which is then added to the symbol table. 
 
2.5.1 Clang AST Context 
 
Since this frontend uses a mix of external APIs of the clang compiler infrastructure to facilitate 
the conversion of clang AST node into the equivalent IRep tree node in ESBMC, the conversion 
process may seem quite intricate to a reader without knowing the specifics of clang. 
 
Clang is the official LLVM frontend for C, C++, Objective-C and Objective-C++ [45]. As of 
version 5.0, ESBMC started to use the clang-based frontend [46]. This frontend uses two clang 
components: clang::tooling and clang::ASTUnit. The clang::tool class provides utility 
functions to perform frontend actions, such as getting the current file name, build AST from 
the current file, .etc.  The clang::ASTUnit class is also a utility class that provides APIs to 
generate the AST context and retrieve each AST node from that context. The AST context can 
be obtained using the getter API getASTContext(). A full list of APIs can be found in the 
clang::tool and clang::ASTUnit reference manuals, respectively [47, 48].  
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In a clang AST context, the root is the translation unit declaration shown in Figure 7. The child 
nodes of the translation unit represent the user-defined declarations, e.g. variable declaration 
nodes or function declaration nodes. Figure 8 shows the text representation of clang AST 
context, which is printed by the dump() function. The translation unit declaration is shown as 
the root of the tree in line 1 in Figure 8.  
 

 
Figure 7: Clang AST context structure 

 
Each declaration is represented by different types derived from the declaration based class in 
clang::Decl. Table 2 shows the class representations of each declaration node in clang.  
 
The top-level translation unit declaration is represented clang::Decl::TranslationUnit, which 
is not a standard language construct but a clang internal data structure to facilitate the compiling 
process. This translation unit can be obtained using the getter API getTranslationUnitDecl(). 
 
The type of a declaration node can be obtained using the getter API getKind(). For each type 
of clang declaration in clang::Decl, there exists a corresponding conversion function that 
converts a clang AST node into irept node in ESBMC, which preserves the semantics of the 
original clang AST node.     
 
 

C Language Construct clang Declaration Type clang Class 
Label clang::Decl::Label clang::LabelDecl 
Var clang::Decl::Var clang::VarDecl 

Function clang::Decl::Function clang::FunctionDecl 
Field clang::Decl::Field clang::FieldDecl 

TypeDef clang::Decl::Typedef clang::TypedefDecl 
Table 2: Clang declaration class 
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Figure 8: Clang AST context in text format



As an example, we consider a variable declaration node shown in Figure 9. 
 

 
Figure 9: The parse tree of a variable declaration node 

 
The edge between the initial value node and its parent node is represented by a dashed line 
because the initial value is optional. A variable declaration without initial value is legal in most 
of the languages. If an initial value is provided, e.g. as in ‘int a = 1;’, this variable declaration 
node will become an initialisation node. An initialisation node is a variable declaration node 
with an additional child representing the initial value. 
 
Therefore, a variable declaration can be represented by a tree that consists of a parent node 
denoting the variable declaration and a group of child nodes defining the semantic of the parent 
node:  
 

• Name and ID of the variable 
• Location of the variable declaration in the source file, e.g. the name of the source file 

and the line number in that source file 
• Type of the variable 
• Storage class that tells the type of variable, e.g. static, global, extern, or local variable 

within a function.  
• Initial value  

 
A variable declaration node is represented by clang::VarDecl class. Its child nodes are also 
represented by the corresponding clang classes. Each child node can be extracted using the 
corresponding getter API of the parent node class, clang::Decl.  Table 3 summarizes the clang 
classes for each type of the child node along with their getter APIs.  
 

Node Type clang class Getter 
Name, ID clang::IdentifierInfo getIdentifier() 

ID.getName() 
Location clang::SourceLocation getSourceRange().getBegin() 

Type clang::QualType getTypePtrOrNull() 
Storage Class clang::StorageClass getStorageClass() 

Init Value clang::Expr getInit() 
Table 3: Clang classes for semantics of the child nodes. 

 
 
  



 27 

2.5.2 ESBMC Intermediate Representation: irept 
 
The purpose of the clang-based frontend is to traverse the AST and generate the symbol table. 
This task is performed by the clang_c_converter class located in the “src/clang-c-frontend/” 
directory. The converter starts from the translation unit declaration, the root node shown in 
Figure 7. When traversing the AST, there is no need to implement the traversal algorithm. 
Because clang already provides the APIs to traverse AST tree. Clang provides the decls() API 
to return an range expression, llvm::iterator_range<decl_iterator>. All the declarations are 
contained in a container data structure bounded by this range iterator. To visit each declaration 
node one by one, all we need to do is executing a range-based for loop over that range 
expression. The decl_iterator can be dereferenced to the pointer that points to a declaration 
node represented by the clang::Decl class. 
 
Now we have the pointer to each declaration node. The goal is to convert each declaration node 
into the equivalent irep node and hence the corresponding symbol. However, the declaration 
nodes extracted from the range expression might be of different types (cf. Table 2). The type 
information of a clang::Decl can be determined using the getter API getKind().The converter 
class provides different functions to process different types of declarations as shown in Table 
4.  
 

C Language Construct Declaration Conversion Function  
Label bool get_decl(const clang::Decl &, exprt &) 
Var bool get_var(const clang::VarDecl &, exprt &) 

Function bool get_function(const clang::FunctionDecl &, exprt &) 
Field bool get_decl(const clang::Decl &, exprt &) 

TypeDef No conversion needed 
Table 4: Conversion functions for declaration node. 

 
Unlike a variable or function declaration, TypeDef is not considered as an “identifier”. The 
converter ignores TypeDef declaration because clang will always give the underlying type 
defined by the typedef. The conversion function takes different types of the declaration node 
as the first parameter, but the types pointed by the decl_iterator are different. 
 
To illustrate the conversion process of transforming a clang AST node into an irept node and 
then into the symbol, let us use the variable declaration node as an example. The structure of a 
variable declaration node with its child nodes is shown in Figure 9. Each child node contains 
just one piece of semantic information of the variable declarations. For each clang AST node 
in Figure 9, there exists an equivalent irept node in ESBMC, which preserves the semantic 
information. Table 5 shows the mapping between clang node classes and ESBMC IRep node 
classes.  
 

Node Type clang class irept class 
Name, ID clang::IdentifierInfo std::string (C++ data type) 
Location clang::SourceLocation locationt 

Type clang::QualType typet 
Storage Class clang::StorageClass Decomposed and represented 

by ‘bool’ 
Init Value (or Function body) clang::Expr exprt 

Table 5: Mapping clang classes to ESBMC irept nodes. 
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For variable name and ID, clang_c_converter uses C++ build-in class std::string. As for the 
storage class, it is decomposed and represented by three Boolean variables: static_lifetime, 
is_extern, and file_local.  
 
The typet class is a base class that also implements the irept interface. Different C data types 
are represented by different derived classes of this base class as shown in Figure 10. A typet 
node may contain multiple child nodes to hold the semantic information of a more complex 
data structures. For example, the subtye node of an array_typet node represents the type of the 
elements stored in an array. The size node represents the size expression. In C language, it is 
legal to use an arithmetic expression as the argument of the array subscripting operator. For 
this reason, the size node is represented by exprt class. The structure of array_typet node is 
shown in Figure 11. 
 

 
Figure 10: Class inheritance hierarchy of typet 

 

 
Figure 11: Structure of the array_typet tree 

 
During the conversion process, the clang_c_converter first creates an equivalent irept node 
based on the mapping shown in Table 5. Next, the clang_c_converter calls the corresponding 
function to complete the conversion. These conversion functions are shown in Table 6.  
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Node Type Child Node Conversion Function 
Name, ID void get_decl_name(const clang::NamedDecl &, 

std::string &, std::string &) 
Location void get_location_from_decl(const clang::Decl &, 

locationt &) 
Type bool get_type(const clang::QualType &, typet &) 

Storage Class Decomposed and processed by the get_var function in 
Table 4 

Init Value (or Function body) bool get_expr(const clang::Stmt &, exprt &) 
Table 6: Conversion functions for child nodes. 

 
When converting a variable declaration node, function get_var (cf. Table 4) will be called to 
process each child node extracted by the getters as listed in Table 3. The irept nodes listed in 
Table 5 will be created when calling each corresponding conversion function listed in Table 6. 
Each conversion function will annotate the equivalent irept node to preserve the semantic 
information held in each child node. Figure 12 shows the transformation of a clang VarDecl 
node into an irept node of ESBMC.  
 

 
Figure 12: Transform clang::VarDecl into code_declt 
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In Figure 12 each clang class is a generalised data structure to hold an AST node's semantic 
information and metadata. They are not exclusive to the clang::VarDecl node but can be used 
to represent the semantics of other AST nodes. For example, clang::QualType can be used to 
represent the type of another language construct, including:  
 

• The type of a variable  
• The type of the operands in a BinaryOperator expression 
• The type of a referenced variable in DeclRef expression 
• The return type of a function declaration 
• The return type of a function call in CallRef expression 
• The type of the elements of an array (the subtype as shown in Figure 11) 

 
Similar to clang::QualType, clang::SourceLocation can also be used to represent the location 
of any language construct, whether it is a variable declaration, a block of statements, a single 
statement, a control statement (e.g. an if statement), or other types. Therefore, the conversion 
functions in Table 6 are not only used for the conversion of a VarDecl node conversion, but 
also used for other types of nodes, e.g. a function declaration node, a block, or an expression 
node, .etc. As shown in Figure 13, the conversion functions are generalised to process the 
semantic information and meta data held in each type of child nodes. The parent of these child 
nodes can be of any type listed in Table 2. 
 

 
Figure 13: UML of clang-based frontend for VarDecl and FunctionDecl conversion. 
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3 Methodology and Implementation 
 
This chapter aims to outline the methodology that guides the implementation of the new 
Solidity frontend. Section 3.1 uses an illustrative example to present an overview of the final 
methodology implemented, which hopefully helps the reader to grasp the big picture. At the 
beginning of the project, two methodologies were proposed: one relies on the Solidity compiler 
libraries, and the other one uses Solidity JSON AST. The latter was chosen to implement. 
Section 3.2 discusses the design rationale and explains why the second methodology is chosen. 
As a result, there two versions of implementation for the second methodology. Section 3.3 
describes the limitations of the first version based on Tracker-Based Hybrid Conversion. 
Section 3.4 outlines the improved version based on Grammar-Based Hybrid Conversion.  
 

3.1 Illustrative Example 
 
This section gives an overview of the final methodology and implementation, which is referred 
to as Grammar-Based Hybrid Conversion. The verification pipeline that uses the new Solidity 
frontend is shown in Figure 14. 
 

 
Figure 14: The new Solidity frontend in ESBMC verification pipeline.  
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As shown in Figure 14, the new Solidity frontend takes Solidity JSON AST as input. The 
ultimate goal is to convert Solidity JSON AST into the quantifier-free formulae C and P. The 
conversion steps are a follow:  
 

1. Generate the GOTO program 
2. Generate the SSA form 
3. Generate the C /\ ~P 

 
We will use the example code in Figure 15 to show the intermediate output and illustrate each 
conversion step.  
 

 
Figure 15: Example code to illustrate conversion steps. 
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The smart contact shown in Figure 15 contains one state variable x, and three functions:  
 

• nondet: a pure function that does not change the state variable x. This function is used 
to assign a non-deterministic value to a variable shown in line 21.  

• get_x: a public function that changes value of the state variable x to 253 and returns this 
value. 

• func_case_study: This is the function to be verified using ESBMC. This function calls 
the other two functions.  

 
The Solidity smart contract shown in  Figure 15 is syntactically correct. However, the 
func_case_study function contains an error of arithmetic overflow. All variables were declared 
as uint8, which represents a value within the range from 0 to 255. The final value of sum 
depends on the predicate “y > x”. The value of x is 253, but the value of y is non-deterministic: 
it can take any value from 0 to 255 returned from the function nondet as shown in line 21. If y 
is 254, then the expression “y > x” evaluates to true and the addition expression in line 28 will 
become “sum = 253 + 10”. The final value of sum would become 263 but this value is not 
within the valid range 0-255 represented by uint8, which leads to the arithmetic overflow error. 
The following subsections will walk the reader through the intermediate output of each 
conversion step, and finally shows the detection of this error by ESBMC.  
 
 
3.1.1 GOTO Program 
 
To verify the Solidity smart contract shown in Figure 15, the type checker converts each AST 
node into a symbol and generate the symbol table. Then the GOTO converter will use this 
symbol table to produce the GOTO program. The GOTO program is the language-independent 
IR in ESBMC.  
 
Figure 16, Figure 17, and Figure 18 compare each original Solidity function with the equivalent 
GOTO program. The state variable x is shown as the global variable in __ESBMC__main 
shown in Figure 19. Each statement is colour coded to show the correspondence.  
 

 
Figure 16: GOTO program of nondet function.  

 
Figure 17: GOTO program of get_x function. 
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Figure 18: GOTO program of func_case_study. 
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Figure 19: Statement variable and function call. 

 
As shown in Figure 18 and Figure 19, the GOTO program of the Solidity smart contract has 
three important features:  
 

• New intermediate variables. 
It introduces new intermediate variables to facilitate the creation of SSA form by the 
symbolic execution engine SymEx in the verification pipeline. For example, the return 
value of get_x function is represented by the intermediate variable 
return_value$_nondet$1, as shown in line 73 of Figure 18. 
 

• Change of Control Flow. 
The GOTO program represents the control flow of the original program using guarded 
GOTO statements. For example, the if-then-else statement is represented by the IF-
THEN-GOTO X statement, where X represents the label number. The expression “sum 
= x + 1” is represented by its equivalent labelled statement in line 95 of the GOTO 
program.   
 

• Statement variable as Global variable.  
In the GOTO program the statement variable in a smart contract is represented by the 
global variable in __ESBMC__main function.  
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3.1.2 SSA Form 
 

 
Figure 20: SSA form of function_case_study shown in Figure 15. 
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The SSA form is shown in Figure 20. The SSA trace generated by the symbolic execution 
engine of ESBMC is shown on the right. The manually simplified SSA is shown on the left. 
Each statement is underlined and colour coded to show the correspondence. Compared to the 
simplified SSA, the SymEx-generated SSA trace has the following features: 
 

• Naming Convention. 
The name of each indexed variable is shown in the front, and the index is shown at the 
end. E.g., “x&0#4” where “x” denotes the variable name, and “#4” denotes the index in 
SSA form.  
 

• More intermediate assignments. 
The SymEx-generated SSA trace contains more intermediate assignments because of 
function call. It seems that these intermediate steps could be simplified.  
 

• Guarded GOTO predicate. 
This is represented by “goto_symex::guard”. (Line 60 in Figure 20) 
 

• Assertion. 
The assertion is shown with a prefix “execution_statet::”. (Line 92 in Figure 20) 
 

A simplified SSA trace can be printed using the option “--ssa-smt-trace”. As shown in Figure 
21, when generating the logic formulae, ESBMC uses a simplified SymEx-generated SSA trace.  
 

 
Figure 21: Simplified SSA trace during SMT encoding. 
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3.1.3 Logic Formulae and Z3 Representation 
 

 
Figure 22: C and P formulae.  

 
To use the Z3 solver, ESBMC must extract the logic formulae from the SSA form using Z3 
syntax. The C and P formulae that are manually derived are shown in Figure 22. ESBMC-
generated formulae are shown in Figure 23. 
 

 
Figure 23: ESBMC-generated C /\ ~P formulae 

 
Any string bounded by “|…|” denotes a variable. E.g. in line 65 of Figure 23, 
“|goto_symex::guard?0!0&0#1|” represents the guard “g1” as shown in line 4 of Figure 22. 
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Figure 23 shows the Z3 representation of the formulae in Figure 22. To understand the Z3 
representation, we are going to walk through a list of Z3 syntax:  
 

• assert command. 
(assert (EXPR)) means “assert EXPR is true”.  

 
•  “=” operator. 

(= (EXPR_A) (EXPR_B)) means assigning EXPR_B to EXPR_A, where EXPR denotes 
a variable, a literal or a more complex expression that uses another Z3 command.  
 

• bvsgt command. 
(bvsgt (EXPR_A) (EXPR_B)), the bit-vector signed greater-than, which returns true if 
“EXPR_A > EXPR_B”. The default operand is 32 bits width.  
 

•  (_ zero_extend 24) command. 
This command represents zero extension with bit width 24. Since our example uses 
uint8 (Figure 15), ESBMC needs to use (_ BitVec 8) to encode this data type. In order 
to match the default operand bit width of 32, this value has to be zero extended with an 
additional bit width of 24, i.e. pad 24 zeros to the front.  
 

• not command.  
(not EXPR_A) means the negation of EXPR_A. 
 

• ite (if-then-else) command. 
(ite (EXPR_A) (VAL_1) (VAL_2)) means “if EXPR_A is true, then returns VAL_1, else 
return VAL_2”.  

 
• "=>” (implication) command. 

“=>” denotes implication. (=> (EXPR_A) (EXPR_B)) means “EXPR_A à EXPR_B”. 
 

• let command.  
(let (IDENTIFIER_A (EXPR_A)) (IDENTIFIER_B (EXPR_B)) …) means  
“let IDENTIFIER A denotes EXPR_A, and let IDENTIFIER B denotes EXPR_B”.  
The user may declare more identifiers if needed.  

 
The list above explains all the Z3 commands that appear in Figure 23, which enables us to map 
the C and P formulae to the corresponding Z3 representations. This mapping is shown in Figure 
24.  
 
Note that Z3 representation is a simplified version of the C/\~P formulae. The clause “x1 = 
253” is simplified to a hex constant shown in line 64 in Figure 24. “#x00000064” represents 
253 in decimal. The same simplification approach also applies to the clauses “sum1 = 253 + 
10” and “sum2 = 253 + 1” as shown in line 66 in Figure 24: the former is simplified to a hex 
constant “#x07” representing 7 in decimal and the latter is simplified to a hex constant “#xfe” 
representing 254.  The value of sum1 should be 263, but it wraps around and finally becomes 
7 due to the arithmetic overflow error. The verification result in Figure 25 shows that Z3 found 
satisfiability with respect to the formulae in Figure 22. ESBMC reported a counterexample that 
satisfies the negation of the property “p = [sum3 > 100]”. The counterexample indicates the 
presence of the arithmetic overflow error.  
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Figure 24: Z3-representations of the formulae 
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Figure 25: Verification result of the illustrative example. 
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3.2 Tracker-Based Hybrid Conversion 
 
This section aims to explain the reason why the methodology that relies on Solidity JSON AST 
was chosen, as well as the implementation of such methodology in ESBMC. This section starts 
with a description of generalised frontend actions in ESBMC to verify general programming 
language. Given an input Solidity program, our goal is to generate the symbol table using 
ESBMC’s internal data structure symbolt, which is used in a later stage to generate the GOTO 
program. This section describes the design challenges and outlines a new methodology to 
resolve these challenges. 
 
3.2.1 Generalised Frontend Actions 
 
As described in Section 2.2, when verifying programs written in a general programming 
language, ESBMC frontend actions can be generalised as follow: 
 

• Pre-processing (pre-processor) 
For C and C++, the purpose of this step is to perform speicfic manipulations based on 
the preprocessor directives, e.g. substitute or expand macros or removing a code block 
if it is bounded by the directives ‘#if 0’ and ‘#endif’ [49].  
 

• Lexical analysis (scanner) 
The step aims to understand the “word” of the C or C++ source code. The scanner 
groups the characters into lexemes and generate a sequence of tokens [21].  
 

• Syntax analysis (parser) 
The purpose of this step is to understand the structure of the input C or C++ source 
code. The parser usually generates the AST to diagram the source code.  
 

• Type checking (type checker) 
The aim of this step is to convert each AST node into ESBMC’s intermediate 
representation irept and generate a symbol table in which each symbol is represented 
by ESBMC’s symbolt data structure.  
 

Action #1, #2 and #3 are typical compiler phases. In ESBMC, these steps are handled by the 
clang APIs. ESBMC has its type checker for step #4. 
 
These actions lead to the creation of a symbol table. In ESBMC, the symbol table enables the 
middle end to perform further actions, including:  
 

• Convert the original program into the equivalent GOTO program 
• Symbolically execute the program and generate the SSA form  

 
3.2.2 Design Challenges and Decisions 
 
Unlike general programming languages, Solidity is a domain-specific language (DSL). A DSL 
is a programming language for a specific field, and it is designed so that the users can be 
particularly productive in that field [22]. Solidity is a DSL with OOP features that are tailored 
to smart contracts of the Ethereum blockchain.  
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Compared with C and C++ languages heavily used in the industry for many years, Solidity is 
a relatively new language. To verify a programming language, there are two items to be 
considers:  
 

• The language standard 
• The toolchain (e.g. compiler, linker and debugger) 

 
The language standard provides a thorough and detailed description of the lexical convention, 
formal grammar, and the production rules, e.g. C++11 standard [50] and C99 standard [51]. 
The toolchain provides libraries and APIs that allow the developers to design a language 
verification tool. For C and C++, such libraries and APIS are provided by the clang compiler 
suite. Additionally, there exists plenty of publications and online resources to assist the 
developers in designing a new language verification tool based on the existing tools, e.g. the 
tools in [45, 47, 48]. However, this is not the case for Solidity. Due to the lack of, designing a 
new ESBMC frontend to verify smart contracts is a challenging task. The design challenges 
are outlined as follows:  
 
Design Challenge #1. Unlike C or C++, there is no officially published document of the 
Solidity language standard. The only language documentation available is [16]. There is not 
enough information to implement a scanner and a parser from scratch.  

 
Design Challenge #2. Apart from the Github repository of the Solidity compiler1 (solc), there 
are no officially published books or papers to help the developers to use the libraries and APIs 
provided by Solidity compilers2. To use these libraries and APIs, one has to become a solc 
expert.  
 
Design challenge #3. Solidity is a relatively new DSL that keeps evolving. Based on 
Solidity's history, there were many breaking changes between two major versions [16]. These 
changes are not backwards compatible. For example, it is impossible to use solc version 
0.4.20 to compile a Solidity program containing features of solc version 0.X.Y, where X > 4. 
The breaking changes are of different types:  
 

• Syntax-only changes 
• Semantic-only changes  
• Semantic and Syntax changes 
• Deprecated elements 
• New features 
• Explicitness requirements, e.g. mark a function ‘virtual’ explicitly if it is defined 

outside an interface without implementation (it is legal to do so in Solidity) 
• Interface changes (including the changes in JSON AST) 

 
 
 
  

 
1 Solidity compiler (solc): https://github.com/ethereum/solidity  
2 Having looked at the source code repository and the build directory of solc, there seem to exist some kind of 
libraries and the corresponding include files, e.g. liblangutil, libsolc, libsolidity .etc.  
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The design goals are as following:  
 
Design Goal #1. The new Solidity frontend of ESBMC shall complete lexical analysis and 
syntax analysis of the input Solidity source code and generate the AST.  
 
Design Goal #2. The new Solidity frontend of ESBMC shall complete the type checking of the 
AST in Design Goal #1. The frontend shall transform the Solidity AST nodes into the 
equivalent ESBMC irept nodes whilst preserving the semantic information, and generate the 
corresponding ESBMC symbols modelled by symbolt class.  
 
There are two methods to achieve these goals:  
 
Methodology #1. Use Solidity source code as input. This frontend uses the libraries and 
include files provided by solc. This methodology requires the integration of ESBMC with solc 
libraries. The conversion functions of the new type checker rely on the solc libraries.  
 
Methodology #2. Use JSON representation of Solidity AST as input. The JSON representation 
of Solidity AST can be generated using the Solidity compiler option “--ast-compact-json”. 
Then the new frontend needs to handle a JSON file. The conversion functions of the new type 
checker is based on the high-level language constructs of Solidity.  
 
Both methodologies can achieve Design Goal #1 and #2. Both methodologies obviate the need 
to implement a scanner and a parser, and hence both can resolve Design Challenge #1. 
However, Design Challenge #2 and #3 cannot be resolved using Methodology #1. For this 
reason, we decided to go for Methodology #2 to implement a new Solidity frontend that 
processes the JSON representation of Solidity AST.  
 

 
Figure 26: Methodology #1 and #2. 

 
As shown in Figure 26, the lexical analysis and parsing phases are “outsourced” to the solc 
(Solidity compiler), which just leaves the semantic analysis to be implemented. But the new 
frontend of Methodology #1 has to handle all three phases. Due to the lack of documentation 
of Solidity compiler, the programmable interfaces provided by solc are challenging to use.  
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The disadvantages of Methodology #1 are as follows: 
 

• As described by Design Challenge #2, due to the lack of publications and learning 
resources of solc toolchain, one must become a solc expert to use the libraries and 
include files provided by solc. Considering the time limit of this MSc project, 
becoming a solc expert is a mission impossible. Having investigated the source code 
and include files, using these libraries is as difficult as developing the new frontend 
itself.  
 

• Since Solidity keeps evolving (cf. Design Challenge #3), the dependency of the new 
type checker on solc libraries is likely to break if there are corresponding changes in 
those libraries. Maintaining such dependency will become a Herculean task because 
we may need to worry about almost all types of breaking changes as listed in Design 
Challenge #3, which may change how a programmable interface is used. 

 
As for Design Challenge #2 and #3, the advantages of Methodology #2 are as follow:  
 

• Methodology #2 does not use solc libraries. Therefore, Design Challenge #2 is 
resolved. 
 

• Methodology #2 uses Solidity JSON AST as input. It is less sensitive to the breaking 
changes because AST is a tree-structured IR representing the syntactic structure of a 
source program [21]. Because we only need to worry about the structural changes with 
respect to the JSON AST. Based on the historical records of Solidity breaking changes, 
the frequency of such changes is very low. It only occurs once between version 0.5.0 
(released in November 2018) and version 0.8.7 (released in July 2021). Therefore, 
Methodology #2 is more robust to the breaking changes in as described in Design 
Challenge #3.  

 
Table 7 compares Methodology #2 to Methodology #1 with respect to the coverage of Design 
Goals and Design Challenges. Table 8 compares these methodologies with respect to the 
coverage of the frontend actions as described in Section 3.2.1.  
 

Methodologies Design 
Goal #1 

Design 
Goal #2 

Design 
Challenge 

#1 

Design 
Challenge 

#2 

Design 
Challenge 

#3 
Methodology #1 ✓ ✓ ✓ ✕ 

 
✕ 
 

Methodology #2 ✓ ✓ ✓ ✓ ✓ 
Table 7: Coverage of Design Goals and Design Challenges 

Methodologies Preprocessing Lexical 
Analysis 

Syntax 
Analysis 

Type Checking 

Methodology #1 N/A to Solidity ✕ ✕ 
 

Expected a new 
type checker to be 

implemented in 
both methodologies 

 
Methodology #2 ✓ 

(bypassed) 
✓ 

(bypassed) 
Table 8: Coverage of frontend actions. 
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The lexical and syntax analysis phases can be bypassed in Methodology #2 because these 
phases are handled by the solc compiler whilst generating the Solidity JSON AST.  
 
As a short summary of this subsection, Methodology #2 gives better coverage of the Design 
challenges shown in Table 7. It also obviates the need to become a solc expert to use the APIs 
and libraries.  
 
Methodology #2 leads us to a roadmap that contains the implementation milestones as 
follow:  
 

• Milestone #1. [Implementation of the New Language Mode] 
Before adding the new Solidity frontend, ESBMC used to supported C and C++ only. 
A new language mode must be added to support Solidity.  
 

• Milestone #2. [Implementation of the New Type Checker] 
The new frontend takes the JSON-represent of Solidity AST. A new type checker is 
required to work with this format.  
 

• Milestone #3. [Add support for ESBMC and SV-COMP Variables and Function] 
The new frontend needs to support all ESBMC and SV-COMP variables and 
functions.  

 
Each subsection describes a detailed solution to achieve each milestone as listed above.  
 
3.2.3 Solidity as A New Language Mode in ESBMC 
 
To achieve Milestone #1, ESBMC must be extended to support Solidity as a new language 
mode.  
 
The list below summarised all the modifications in ESBMC to support a new language. This 
list can also be referenced by other developers to facilitate future extensions, which hopefully 
save a developer’s time during the project ramp-up phase.  
 

• Add a new enum entry of the language to be supported in the mode_table initialised in 
src/esbmc/globals.cpp. 
 

• Define a new extension in src/langapi/mode.cpp to let ESBMC know about the 
extension of the source file name. 
 

• Define a new macro LANGAPI_HAVE_MODE_X in src/langapi/mode.h, where X 
denotes the name of the language to be supported. 
 

• Add the new frontend placeholder (usually a new directory) under the source 
directory, e.g. “src/solidity-frontend/<source files of the new frontend>” was added to 
support the new Solidity mode that was added in the above steps. 
 

• Add the corresponding directives in the CMakeList.txt at various level of the source 
code repository to build the new frontend.  
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Since ESBMC is well-structured, achieving Milesonte #1 is relatively easy compared to the 
other milestones. The above list covers most, if not all, major modifications to support a new 
language mode in ESBMC. 
 
3.2.4 Tracker-Based Conversion 
 
The new Solidity frontend takes JSON-representation of the AST as input. To generate the 
symbol table, a new type checker must transform each AST JSON node into an irept node and 
convert the irept node into the corresponding symbolt, a data structure representing a symbol 
in ESBMC.  
 
There are various third-party libraries available to work with JSON files in C++. The most 
popular one is nlohmann/json library3 developed by Niels Lohmann. This library has been used 
by many tools4, including American fuzzy lop, CMake, Doxygen, Valgrind, and Clang that is 
used by ESBMC’s clang-based C frontend.  
 
There are three challenges with respect to the implementation of the conversion process to 
transform JSON-representation of an AST node to ESBMC irept node: 
 

• Conversion Challenge #1.  
To convert each AST node, the new frontend needs to traverse the Solidity AST. AST 
is a tree structure. In clang-based frontend, this tree structure is well preserved by clang 
and can be traversed using the APIs provided by clang. However, the input JSON file 
is flat. Each AST node is a JSON object that just contains key-value pairs.   

 
• Conversion Challenge #2.  

The new type checker must have common conversion functions to process the child 
nodes that hold the semantic information of a parent declaration node. (cf. Table 3) 

 
• Conversion Challenge #3.  

When processing different types in Solidity, the conversion functions must be able to 
switch between different types of Solidity language constructs.  

 
An illustrative example of Conversion Challenge #1 is shown in Figure 27 and Figure 28. 
Take the expression “sum = get_x() + y + z” as an example, this expression contains nested 
binary operation expressions with a function call expression shown in Figure 27. The json 
representation of such recursion is shown in Figure 28. The left-hand-side expression is parsed 
as “((get_x() + y) + z)”. Table 9 summarizes the solutions to resolve all Conversion 
Challenges. 
   
 
 
 
 
 

 
3 nlohmann/json library: https://github.com/nlohmann/json  
4 A list of tools that use nlohmann/json library can be found at https://github.com/nlohmann/json#used-third-
party-tools  
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Figure 27: Recursion - nested BinaryOperation Expressions. 

 
 
Conversion Challenges Solutions Remarks 
#1 Introduce a common data 

structure tracker to re-
construct the tree 

Implemented in  
solidty_decl_tracker.cpp5  

#2 Introduce a common data 
structure for each type of 
child nodes , 
SourceLocationTracker, 
NamedDeclTracker, and 
QualTypeTracker  

#3 Introduce the type 
conversion functions 

Implemented in 
solidity_type.cpp6 

Table 9: Solutions to design challenges 

 

 
5 The source code of solidity_decl_tracker.cpp is available at  
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3ba4c7d219cb014483170f75fcd8d/src/solidity-ast-
frontend/solidity_decl_tracker.cpp  
6 The source code of solidity_type.cpp is available at  
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3ba4c7d219cb014483170f75fcd8d/src/solidity-ast-
frontend/solidity_type.cpp  
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Figure 28: JSON AST of a nested BinOpExpr. 

To resolve all the Conversion Challenges, a tracker-based conversion method was proposed 
to transform the AST JSON nodes into the equivalent irept nodes.  
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When traversing the AST node in the input JSON file, the Tracker-based Conversion 
Method uses a common data structure called trackers to represent each AST node. This method 
uses different types of trackers to model different types of child nodes shown in Figure 29, for 
example:  
 

• NamedDeclTracker to hold the name information 
• SourceLocationTracker to hold the location information 
• QualTypeTracker to hold the type information   

 

 
Figure 29: Trackers. 

 
Figure 29 shows different types of semantic trackers to track the information when traversing 
the AST node in the input JSON file. Since the new frontend uses a for loop to iterate over the 
nodes array in the input JSON file, the corresponding trackers are instantiated on the fly. When 
the loop reaches the end of the array, the tree structure will be re-constructed. In a sense, it 
“tracks” the progress as the loop moves from one node to another.   
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As shown in Figure 29, the Tracker-based Conversion Method also uses different types of 
declaration trackers to represent different types of the declaration nodes in Solidity AST, for 
example: 
  

• A base DeclTracker class to track declaration node with the following derived classes:  
o VarDeclTracker represents a variable declaration node.  
o FunctionDeclTracker represents a function declaration node.  
 

• A base StmtTracker class to track the statement node with the following derived classes: 
o CompoundStmtTracker represents a block of statements.  
o DeclRefExprTracker represents a statement node being an expression of 

declared variable. 
o BinaryOperatorTracker represents a statement node being an expression of 

binary operation 
o CallExprTracker represents a statement node being an expression of function 

call.  
 
Let us use another code example shown in Figure 30. The composition and inheritance relations 
are shown in Figure 31.  
 

 
Figure 30: Example of a Solidity function. 

 
Figure 31: AST of the function body. 
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In Figure 31 Each node in this tree structure is represented by a tracker as the new frontend 
iterates over the “nodes” array in the input JSON file. All expression trackers are derived 
classes of the base class StmtTracker. Since a statement node can be a block statement or an 
expression statement, and the expression statement can also be a block containing multiple 
statements, it can become challenging to deal with such recursions. This challenge can be 
resolved by the class inheritance hierarchy shown in Figure 31. The type checker can traverse 
each statement node by recursively calling the function get_expr shown in line 229 of Figure 
32.  
 

 
Figure 32: get_expr function. 

 
First, get_expr function checks the type of the statement tracker. Then, depending on the type, 
the function converts the statement tracker into an exprt node (the second argument 
of get_expr function), where exprt implements the irept interface.  
 
Suppose the tracker represents a compound statement tracker. In that case, it will be statically 
casted to a “CompoundStmtTracker” and recursively calls the get_expr function to convert 
each individual statement into the equivalent exprt node. Figure 33 shows two more examples 
to convert binary operation tracker and declaration reference tracker. The conversion of binary 
operation trackers will be handled by get_binary_operator_expr function (Figure 34). The 
get_binary_operator_expr function calls back into get_expr function when converting the LHS 
and RHS expressions. When converting a binary operator expression, the call stack is shown 
in Figure 35. 
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Figure 33: Conversion of BinOpStmt and DeclRefExor. 

 
Figure 34: get_binary_operator_expr calls back into get_expr. 
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Figure 35: Call stack usage when converting "a+b" 
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As a concluding example of this subsection, let us look at a re-constructed tree of the Solidity 
function shown in Figure 36, and its conversion to ESBMC irept. 
 

 
Figure 36: concluding example. 

The re-constructed tree of the function_example2 is shown in Figure 37. This tree is converted 
into ESBMC tree-structured intermediate representation shown in Figure 38.  
 

 
Figure 37: Re-constructed tree using trackers. 
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Figure 38: ESBMC irept parse tree.. 

 
After the conversion to irept, the corresponding symbolt can be generated using the standard 
function get_default_symbol.  
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3.2.5 Hybrid Symbol Conversion for Intrinsic Declarations 
 
There are three important functionalities a BMC needs to support:  
 

• assert(). This function enables the user to define properties.  
 

• assume(). This function enables the user to define constraints.  
 

• nondet(). This function enables the user to assign a non-deterministic value to a 
variable.  

 
To support these functionalities, the new frontend needs to support ESBMC/SV-COMP 
variables and functions shown in Figure 39. As described in Section 3.2.4, the tracker-based 
conversion mechanism only works with the JSON representation of the Solidity AST nodes. It 
does not work with C-style declarations.   
 

 
Figure 39: ESBMC intrinsic variable and function declarations. 

To support these intrinsic declarations, the new Solidity frontend needs to convert them into 
symbols and add them to the symbol table. The final symbol table should contain not only the 
symbols of Solidity declarations but also the symbols of ESBMC intrinsic declarations:  
 

𝑠𝑦𝑚𝑏𝑜𝑙	𝑡𝑎𝑏𝑙𝑒 = {𝐼!…𝐼(, 𝑆!…	𝑆(}																																						(3.1) 
 
where 𝐼!…	𝐼( represents the symbols of the intrinsic declarations and 𝑆!…	𝑆( represents the 
symbols of Solidity declarations.  
There are two methods to generate the symbol table defined in (3.1):  
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• Method #1. Provide the JSON representations of these variables and functions. For 
example, the function declaration, “void __ESBMC_assert(_Bool, const char *)”, can 
be converted into the equivalent JSON representation shown in Figure 40. 
 

• Method #2. Use a hybrid conversion mechanism shown in Figure 41:  
o Use clang-c-frontend to convert ESBMC/SV-COMP declarations 
o Use solidity-frontend to convert Solidity declarations 

 

 
Figure 40: JSON-representation of __ESBMC_assert 

Since there are more than 70 intrinsic declarations, manually converting them into the 
equivalent JSON representation is a time-consuming task. If anything changes in the intrinsic 
declarations, the developers must change the corresponding JSON representations, which leads 
to more maintenance duties. Adding the JSON representations of the intrinsic declarations in 
the new frontend appears to be reinventing the wheel. Therefore, Method #2 was chosen to 
guide the implementation of the new Solidity frontend. 
 
Hybrid conversion mechanism. The new Solidity frontend contains an instantiation of clang-
c-frontend that add the symbols of intrinsic declarations to the symbol table generated by the 
Solidity type checker. Figure 41 illustrates this mechanism. The new Solidity frontend contains 
an instantiation of clang-c-frontend to handle the symbol conversion of ESBMC intrinsic 
declarations. 
 

 
 

Figure 41: Hybrid conversion mechanism. 
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3.3 Limitations of Trackers 
 
As described in Section 3.2.4, tracker is a data structure used to reconstruct the tree from the 
Solidity JSON AST nodes:  
 

• Each node is represented by a tracker object.  
 

• Each edge is represented by the composition relation between two tracker objects, e.g. 
A CompoundStmtTracker is not a BinaryOpExprTracker; it may have one. A 
BinaryOpExprTracker is not a CallExprTracker (i.e. function call); it may have a 
CallExprTracker as the LHS or RHS operand.  

 
Trackers preserve the syntactic structure whilst holding the semantic information of each node 
in the original AST. However, trackers are not free to use. This section explains the limitations 
of the tracker-based symbol conversion.  
 
3.3.1 Scalability 
 
The new Solidity frontend takes the JSON-representation of the original AST as input. In order 
to re-construct the tree, the trackers essentially replicate the semantic information stored in 
each JSON object, i.e. the data is duplicated and stored in two places in the memory: the JSON 
objects and the tracker objects. The data replication is wasting the memory during the tree 
restoration phase.  
 
For the verification of small Solidity programs, the impact of data replication is negligible. 
However, the tracker-based conversion mechanism may suffer from scalability and 
performance problems when it comes to verify large and complex Solidity programs. Because 
there are lots of recursions when converting a tracker node into irept node. Figure 42 shows an 
illustrative example of a nested binary operation expression “sum = a + (b * (c * (…)))”.  
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Figure 42: Trackers of nested BinOpExpr. 

As the binary operator express grows, more tracker objects will be created to replicate the data 
of the corresponding JSON objects, which will waste more memory. It can become even worse 
when verifying multiple complex and large programs.  
 
 
  



 61 

3.3.2 Maintainability, Extendibility and Readability 
 
Since the first goal of the new Solidity frontend is to reconstruct the tree, the tracker class is a 
“helper” data structure. The developers would need to maintain and extend such data structure 
in the codebase. Since Solidity keeps evolving, here are the potential issues with respect to 
extendibility and maintainability: 
 

• Maintainability. 
The structure of the tracker class may change according to changes of the corresponding 
JSON objects. However, frequency of such changes is quite low based on the analysis of 
the historical records of breaking changes as discussed in Section 3.2.2. To cope with such 
changes, the developers may need to update the base tracker class and the corresponding 
declaration class that derives the tracker class.  

 
• Extendibility. 

If a new type of tracker is required, the developers may also need to update three places 
in the code:  
 

i. Add a new tracker class in solidity_decl_tracker.h and solidity_decl_tracker.h 
 

ii. Update the type files (solidity_types.h and solidity_types.cpp) to include the 
new type. 

 
iii. Add a new conversion function that converts this type of tracker into the irept 

node.  
 

• Readability. 
The trackers hold the semantic information of the AST nodes, which facilitate the 
conversion of AST nodes into irept nodes. The conversion functions are developed 
based on the production rules of the formal grammar of the Solidity programming 
language [16]. Using the trackers makes the program more complex to a developer 
who does not know about the design rationale behind using the tracker data structure.  

 
The tracker-based conversion mechanism gives rise to performance and scalability problems 
and requires more efforts when it comes to maintaining and extending the code base. 
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3.4 Grammar-Based Hybrid Conversion 
 
A new conversion methodology was proposed to resolve the limitations of the tracker-based 
hybrid conversion methodology as previously mentioned. The new methodology is referred to 
as the Grammar-Based Hybrid Conversion that was implemented with improvement as follow: 
 

• The scalability problem is resolved.  
Completely removed data replication due to the usage of the tracker data structure 
 

• Code readability has been improved. 
The implementation of conversion functions reflects the production rules in formal 
grammar of the Solidity programming language, i.e. the Solidity grammar 
documentation serves as the design specification of the new type checker of the Solidity 
frontend in ESBMC. If a developer knows about Solidity grammar, the developer 
should be able to observe the mapping of a production rule to the corresponding 
conversion function.  
 

• Maintainability and extendibility have also been improved. 
Reduced the number of files to be updated in case of a major update of the JSON 
structure. 

 
This section starts by investigating the feasibility of tracker removal. The following subsections 
outline the design of grammar-based hybrid conversion.  
 
3.4.1 Feasibility of Tracker Removal 
 
As shown in Figure 43, recall that the new Solidity frontend reconstructs the tree whilst 
iterating over the elements of JSON array “nodes”.  The restored tree is formed of:  
 

• Nodes represented by tracker objects that hold the semantic information 
 

• Edges represented by the composition relations among different types of the tracker 
classes 
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Figure 43: Tree re-constructed from the JSON AST. 

In tracker-based conversion methodology, the conversion functions can be implemented so that 
each conversion function handles one type of tracker as shown in Table 10. 
 

Original Node Types Conversion Functions irept Nodes 
VarDeclTracker get_var code_declt 
FunctionDeclTracker get_function code_declt 
QualTypeTracker get_type typet 
NamedDeclTracker get_decl_name irep_idt 
BinaryOperatorExprTracker get_binary_operator_expr exprt 
SourceLocationTracker get_location_from_decl  location 
DeclRefExprTracker get_decl_ref exprt 
StmtTracker (the base class 
of all other tracker classes) 

get_expr N/A  

Table 10：Conversion functions for irept nodes. 

Note that get_expr by itself does not convert any node, because it is the traversal function that 
walks through each node. Depending on the type of the tracker, get_expr calls other functions 
to perform the actual conversion.  

To remove the trackers, the following conditions must be met:  
 

• Condition #1. 
The semantic information of the AST JSON node must be preserved, which will be 
used to annotate irept nodes.  
 

• Condition #2. 
The composition relation between a declaration node and a child node must be 
preserved.  
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• Condition #3.   
The traversal function get_expr can be reused in a recursive manner provided that the 
correct order of function calls can be preserved.  
 

As shown in Figure 44, a new conversion methodology, called Grammar-based conversion, 
that meets all conditions was proposed to tackle the limitations of the tracker-based hybrid 
conversion method. Grammar-based conversion method does not use trackers because all the 
conversion functions are re-designed to work with the nlohmann::json objects. 
 

 
 

Figure 44: Tracker-based vs. Grammar-based conversion. 

 
3.4.2 Grammar-Based Conversion 
 
A detailed study of the nlohmann JSON library for C++ shows that there exists a base type to 
represent all types of JSON objects: the nlohmann::json data type [12]. All JSON value types 
can be implicitly converted to nlohmann::json type.  
 
For example, the nodes array, the first element in that array, and typeDescription object can be 
implicitly converted into the nlohmann::json data type as shown in Figure 45. The 
nlohmann::json data type can be used to represent different JSON objects regardless of the 
actual data structure. The JSON objects #2 and #3 can be represented by a constant reference 
of the type nlohmann::json shown in Figure 46. 
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Figure 45: The nlohmann::json data type. 

 
Figure 46: Type casting of AST nodes. 

 
This feature of the nlohmann::json library fulfils the requirements as per Condition #1 and #2 
in Section 3.4.1.  
 
To fulfil the requirement as stated in Condition #3, the conversion functions have to be re-
designed to extract the structure of Solidity language construct from nlohmann::json data type 
whilst preserving the correct order of functions calls when it comes to annotate the irept nodes. 
This is to ensure that all child nodes are visited in the correct order. For example, a function 
parameter node must be converted before the function body node. Because the function 
parameters may appear in the function body. If a function body node is converted before its 
parameter node, the type checker will fail to convert any reference to the parameter.  
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The grammar-based conversion methodology uses the production rules of the Solidity grammar 
to make sure each node is visited in the correct order. The production rule is specified in 
Solidity documentation [16]. For example, the init node of the for loop needs to be converted 
before the body. Figure 47 (a) shows the production rule of the for loop in Solidity grammar. 
Figure 47 (b) shows corresponding conversion steps in get_statement function. The steps 
shown in Figure 47 (b) falls within the case of ForStatement as shown in Figure 48. 
“SolidityGrammar::StatementT::ForStatement” represents the rule for-statement as part of the 
rule statement shown in Figure 47. The colour coding shows the composition relation between 
these two rules.  
 

 
Figure 47: The conversion steps of a for loop. 
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Figure 48: the conversion function for “rule statement”. 

 
Figure 49: Production rules of Solidity statement. 

Figure 47 shows the grammar-based conversion steps that convers a Solidity for loop into 
ESBMC IR code_fort shown in Figure 50. Note that the condition part is currently modelled 
as exprt as shown in Line 597 of Figure 47. It can be changed to code_t if the for loop contains 
empty or multiple conditional expressions.  
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Figure 50: equivalent ipret node of the Solidity “for” loop. 

According to the production rule shown in Figure 47 (a), it is legal to write a for statement that 
has empty init, condition and increment, such as “for ( ; ; )”. The code can be easily extended 
to handle such cases. For example, Figure 51 shows a patch with just a few code lines to support 
empty init expression.  
 

 
Figure 51: Patch to support empty init expression. 

During the implementation of the grammar-based conversion method, it was found that the 
Solidity grammar contains some cyclic but non-ambiguous production rules as shown in Figure 
52.  
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Figure 52: cycle references in Solidity grammar. 

As shown in Figure 52, one of the production rules of rule statement generates block; one of 
the production rules of block leads back to statement. These rules are unambiguous because 
statement is bounded by curly braces in rule block. This relation of mutual inclusion is reflected 
in the implementation shown in Figure 53.  
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Figure 53: cyclic references in Solidity grammar. 

 
3.4.3 Improved Readability, Maintainability and Extendibility 
 
As shown in Figure 47, Figure 48 and Figure 49, the grammar-based conversion method is easy 
to follow because the implementation reflects the production rules in the Solidity grammar 
specification. The names of different types strictly follow the naming conventions in Solidity 
grammar. Compared to the tracker-based conversion, it significantly improves the readability 
of the code compared to the tracker method as the trackers may seem confusing to the new 
developers who do not necessarily know the specifics and design intentions of the tracker data 
structure.  The implementation of Solidity grammar production rules and conversion steps were 
kept in two separate source files in tracker-based hybrid conversion method:  
 

• The production rules were implemented in the config function of a tracker.  
 

• The conversion steps were implemented in the conversion functions that deals the 
tracker.  
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In contrast, the grammar-based hybrid conversion method has everything contained in one 
place. The conversion steps can be directly mapped to the production rules defined in the 
Solidity grammar specification. For example, the conversion functions are named after the rule 
names; each case statement of a conversion function is named after the corresponding 
component names in that production rule. It would be relatively straightforward to locate the 
conversion steps for a specific language construct. Therefore, it improves maintainability and 
extendibility. To demonstrate the extendibility, Table 11 shows a group of patches to add 
additional features.  
 
Commit Patche Description Changes Remarks Link 

ad8680a 
 

Add conversion steps of 
the binary operators “<” 
and “-” 

28 
additions, 
0 deletions 

 All patches are 
available in 
kunjson01/esbmc 
Github7.  

c80ba64 
 

Add conversion steps of 
assume function, as well 
as binary operator “!=” 

74 
additions, 
22 
deletions 

 

8ff8734  
 

Add support for 
__VERIFIER__assume 

6 
additions, 
3 deletions 

__VERIFIER__assume 
is an important function 
defition for SV-COMP 

85654eb Add conversion steps of 
for loop 

113 
additions, 
3 deletions 

 

Table 11: Extendibility of the new Solidity frontend. 

 
  

 
7 Commit history: https://github.com/kunjsong01/esbmc/commits/dev-solidity-support  
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3.5 Summary of Methodology 
 
This section describes two methodologies to implement the new Solidity frontend:  
 

• Tracker-Based Hybrid Conversion 
• Grammar-Based Hybrid Conversion 

 
The implementation of these methodologies is shown in Figure 54 and Figure 55. Compared 
to the Tracker-Based Hybrid Conversion method, the Grammar-Based Hybrid Conversion  
method is more compact, and has improved readability, maintainability, and extendibility.  
 

 
Figure 54: Workload of Tracker-Based Hybrid Conversion method 

 

 
Figure 55 Workload of Grammar-Based Hybrid Conversion method. 
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4 Evaluation 
 

4.1 Test Suite Design 
 
Since Solidity does not have a standard benchmark, a test suite was created. This test suite 
contains t test cases, each of which is for a specific type of vulnerability. The test cases are 
shown in Table 12. 
 
Category Test Case ID Description 
Pattern-Based 
Vulnerability 

#1 Authorization Through 
Tx.origin in a payable function 
in the smart contract 

Reasoning-Based 
Vulnerability 

#2 Arithmetic overflow with 
nested binary operator 
expression 

#3 Arithmetic underflow with 
unary expression 

#4 Loops. Use incremental-bmc to 
detect arithmetic underflow in a 
loop. 

#5 Array Out-of-Bound exception 
in a loop. 

#6 Satisfiability test with nondet, 
assume and assert 

#7 Test __VERIFIER__assume 
Table 12: Test suite 

The test cases are classified into two groups: pattern-based vulnerability and reasoning-based 
vulnerability. For pattern-based vulnerabilities, the new Solidity frontend loops over the AST 
nodes and tries to detect a pattern of unsafe code. As for reasoning-based vulnerabilities, the 
new Solidity frontend transforms the AST nodes into the irept nodes and generates the symbols 
table. Then the rest is handed over to the middle end and backend of ESBMC verification 
pipeline. 
 
These test cases are microbenchmarks, which serve three purposes:  
 

• To guide the development of a Solidity type checker. This project employs test-driven 
development.  

• To test the Solidity verification pipeline in ESBMC 
• To test other verification tools and compare the results to ESBMC’s results.  

 
Each subsection describes one test case in Table 12. 
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4.1.1 TC1: Authorization Through Tx.orgin 
 
This test case is shown in Figure 56. The function transferTo in Line 10 is used to transfer 
Ethers to another smart contract. Since this function is used for making payment, it is protected 
by the statement “require(tx.origin == owner);”. It means that the payment is authorized if and 
only if the caller of this function is the owner of this smart contract. It seems reasonably safe 
to authorize a payment by checking the precondition “(tx.origin == owner)”. However, it can 
be easily attacked by the malicious contract shown in Figure 57.  
 
 

 
Figure 56: TC1 - Authorization using Tx.Origin.8 

 

 
Figure 57: Attacker smart contract.8 

 

 
8 This example is taken from: https://medium.com/coinmonks/solidity-tx-origin-attacks-58211ad95514  
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With the new Solidity frontend, ESBMC can detect this vulnerability by checking an AST 
node that contains the pattern as follow:  

 
• A call to the authorization function “require” 
• The argument of this function is a “BinaryOperation” expression that uses “==” 

operator 
• The “leftExpression” is a “MemberAccess” expression referring to the special 

identifier “tx” and accessing to the member “origin”.  
 
This pattern is shown in Figure 58.  
 
Figure 59 shows that ESBMC successfully detected the vulnerability “authorization through 
Tx.Origin” and identified it as SWC-115 listed in the SWC registry for Smart Contract 
Weakness Classification and Test Cases [54]. 
 

 
Figure 58: Pattern of "Autorization through Tx.origin" 

 

 
Figure 59: ESBMC detects authorization through Tx.origin. 
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4.1.2 TC2: Arithmetic Overflow 
 
This test demonstrates that ESBMC can detect arithmetic overflow error in a nested binary 
operation expression shown in line 15 in Figure 60.  
 

 
Figure 60: TC2 - arithmetic overflow in a nested binary operation expression. 

 
As shown in Figure 61, the arithmetic overflow error is successfully detected by ESBMC. The 
counterexample shows that there exists a state, State 9, that violates the safety property “sum > 
100” as specified by the assert statement in line 16 in Figure 60. Because sum was declared as 
uint8, which can only represent values from 0 to 255. The expression “x + y + z” evaluates to 
100 + 240 + 3 = 343, a value that cannot be represented by uint8.  
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Figure 61: TC2 result. 
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4.1.3 TC3: Arithmetic Underflow 
 
This test demonstrates that ESBMC can detect arithmetic underflow in a program that 
contains unary operators shown in line 9 and 10 in Figure 62.  
 

 
Figure 62: TC3 –arithmetic underflow with unary operators 

 
As shown in Figure 63, the arithmetic underflow is successfully detected by ESBMC. The 
counterexample shows that there exists a state, State 5, that violates the safety property “x < 5” 
as specified by the assert statement in line 11 in Figure 62. Because x was declared as uint8, 
which can only represent values from 0 to 255. The expression “--x” in line 9 and 10 decrements 
x twice. The result is -1, a value that cannot be represented by uint8. Due to arithmetic 
underflow, -1 wraps back to 255.   
 
 

 
Figure 63: TC3 result 
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4.1.4 TC4: Loops 
 
This test case aims to test the verification strategy “--incremental-bmc” in ESMBC. The code 
is shown in Figure 64. This test case contains a bug of arithmetic overflow in the 3rd iteration 
of the loop.  
 
 

 
Figure 64: TC4 – loop 

 
As shown in Figure 65, the bug is successfully detected by ESBM. To show which loop 
iteration triggers this bug, TC#4 was tested using “--incremental-bmc” option so that ESBMC 
can unwind the loop incrementally with the index k. ESBMC reported “Bug found (k = 3)”, 
which means that the bug was found in the 3rd iteration. After the 2nd iteration, x becomes 0. In 
the 3rd iteration, x is decremented by 1, which leads to the arithmetic underflow error.  
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Figure 65: TC4 result 
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4.1.5 TC5: Array Out-of-Bound Exception in a loop 
 
This test demonstrates that ESBMC can detect out-of-bound exceptions in an array subscript 
expression shown in line 10 in Figure 66. Similar to TC4, TC5 was also tested using the option 
“--incremental-bmc” to verify array out-of-bound exception in a loop.  
 

 
Figure 66: TC5 – Array out-of-bound access a loop. 

As shown in Figure 67, ESBMC successfully detected the bug. ESBMC reported “Bug found 
(k = 2)”, which means that the bug was found in the 2nd iteration of the loop. In this iteration, 
the array subscript expression “a[i] = 100” contains an invalid index i = 2, which exceeds the 
bound of this array.  
 

 
Figure 67: TC5 result. 
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4.1.6 TC6: Satisfiability Test using nondet, assume and assert 
 
ESBMC can find a counterexample to satisfy the negation of the property we would like to 
check. This test case aims to show the effect of additional constraints. The test case is shown 
in Figure 68. The data type used in this test case is uint8. 
 

 
Figure 68: TC6 – effect of "assume" on finding satisfiability. 

 
The satisfiability problem is described as follow:  
 
Satisfiability_#1. Given the binary operation expression “sum = x + y” where x = 0, find a 
value of y that satisfies the NEGATION of the property “sum % 16 != 0”. 
 
The negation of the property in line 24 is “sum % 16 == 0”. ESBMC finds the answer to 
Satisfiability_#1: y = 240 shown in line 357 in Figure 69.  
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Figure 69: Answer to Satisfiability_#1. 

Satisfiability_#2. Given the binary operation expression “sum = x + y” where x = 0 and  
220 < y < 255, find a value of y that satisfies the NEGATION of the property “sum % 16 != 0”. 
 
To specify the range “220 < y < 255”, additional constraints are added using the specifical 
function “__ESBMC__assume” in line 22 and 23 in Figure 70. In this range, there are two 
numbers satisfying the negation of the property in line 26 of Figure 70: {224, 240}. ESBMC 
successfully found the answer y = 224 shown in line 389 in Figure 71. 
 

 
Figure 70: updated TC6 for Satisfiability_#2. 
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Figure 71: Answer to Satisfiability_#2. 

 
Satisfiability_#3. Given the binary operation expression “sum = x + y” where x = 0 and  
220 < y < 255, and y is not 224, find a value of y that satisfies the NEGATION of the property  
“sum % 16 != 0”. 
 
To specify the the additional condition “y is not 244”, additional constraint is added to exclude 
the number 224 in line 24 in Figure 72. In this range, there are two numbers satisfying the 
negation of the property in line 27: {224, 240}. Since the number 224 is excluded, this only 
leaves us with the number 240. ESBMC successfully found the answer y = 240 shown in line 
399 in Figure 73. 
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Figure 72: updated TC6 for Satisfiability_#3. 
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Figure 73: Answer to Satisfiability_#3. 

 
Satisfiability_#4. Given the binary operation expression “sum = x + y” where x = 0 and  
220 < y < 255, and y is not 224 or 240, find a value of y that satisfies the NEGATION of the 
property “sum % 16 != 0”. 
 
To exclude the number 240, additional constraint is added to exclude the number 240 in line 
25 in Figure 74. In this range, there are two numbers that satisfies the negation of the property 
in line 28: {224, 240}. Since both 224 and 240 are excluded, this only leaves us with an empty 
set ∅. As shown in Figure 75, ESBMC reports “VERIFICATION SUCCESSFULL” because 
it cannot find a counterexample to satisfy the negation of the property in line 28 of Figure 74. 
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Figure 74: updated TC6 for Satisfiability_#4. 

 

 
Figure 75: Answer to Satisfiability_#4. 
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4.1.7 TC7: Satisfiability Test using SV-COMP Function 
 
This test case aims to show the effect of additional constraints using __VERIFIER__assume 
function. The test case repeats the test of Satisfiability_#3 defined in the previous section. As 
shown in Figure 76, TC7 is an updated version of TC6 with the modifications as follow:  
 

• __ESBMC__assume function is replaced by __VERIFIER__assume function in line 
15.  

• The additional constrains are specified in using __VERIFIER__assume in lines 23, 24 
and 25. 

 
As shown in Figure 77, ESBMC can find the answer y = 240, which proves that the new 
Solidity frontend also supports __VERIFIER_assume function.  
 
 

 
Figure 76: TC7 – effect of "assume" on finding satisfiability. 
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Figure 77: TC7 result. Answer to Satisfiability_#3. 

 
 

4.2 Threats to Validity 
 
Internal Validity.  
 

• Each test case was designed to just contain one vulnerability. The vulnerability does 
not have dependencies on a second vulnerability. The vulnerability in each test case is 
of the type specified by the SWC registry [54]. For example, the Tx.Origin test case is 
the vulnerable example from the official Solidity document. Using Tx.Origin for 
authorization is considered a pitfall in Solidity document [55]. Remix IDE, Slither, 
Mythril and ESBMC were able to detect such vulnerability. However, SmartCheck and 
Oyente are not able to detect it.  

 
 
Generalizability. 
The test cases are not tailored SMT-Based Bounded Model Checking. They were designed to 
be used as a general case.  
 

• Each test case was a well-formed Solidity program (c.f. Section 2.1.2) because it is 
syntactically correct, and can be compiled by Solidity compiler without any errors or 
warnings. All language constructs were used according to Solidity grammar rules.  
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4.3  Findings and Comparison to Other Verification Frameworks 
 
The test cases were also run with other state-of-the-art Solidity verification frameworks. This 
section compares ESBMC to other verification frameworks. As shown in Table 13 and Table 
14, only ESBMC can verify all tests cases and provide counterexamples for each type of 
vulnerability.  
 

Vulnerability 
Detection 

Remix 
IDE 

Smartcheck Slither Oyente Mythril *ESBMC* SolAnalyser 

Overflow Not 
found 

Not found Not 
found 

Not 
found 

Found  Found This 
framework 

does not work 
with Solidity 

compiler 
version 0.8.26 

Underflow Not 
found 

Not found Not 
found 

Not 
found 

Not found Found 

TxOrigin Found  Not found Found  Not 
found 

Found Found 

Array out of 
bound access 

Not 
found 

Not found Not 
found 

Not 
found 

Found Found 

Table 13: Compare ESBMC to other tools.9 

 
Counterexamples Remix 

IDE 
Smartcheck Slither Oyente Mythril *ESBMC* SolAnalyser 

Overflow N/A N/A N/A N/A No counter- 
example 
provided 

Counter- 
example 
provided 

This 
framework 

does not 
work with 
Solidity 
compiler 
version 
0.8.26 

Underflow N/A N/A N/A N/A N/A Counter- 
example 
provided 

TxOrigin TxOrigin 
Identified 

N/A TxOrigin 
Identified 

N/A TxOrigin 
Identified 

TxOrigin 
Identified 

Array out of bound 
access 

N/A N/A N/A N/A Counter- 
example 
provided 

Counter- 
example 
provided 

Table 14: Availability of counterexamples. 

 
The evaluation shows that ESBMC (Solidity frontend) outperforms all other tools.  
 
 
 
 
 
 
 
 
 

 
9 https://github.com/kunjsong01/data_set/tree/main/vulnerability_examples/results_Nedas  
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5 Conclusion and Further Work 
 
This chapter reviews the deliverables of this project to determine to what extent the objectives 
have been met, and reflect on the project to assess what went well and what could be improved. 
This chapter ends by discussing limitations and recommending future work. 
 

5.1 Deliverables and Key Achievements 
 
Deliverables. 
A new Solidity frontend was developed to enable ESBMC to verify smart contracts written in 
Solidity programming language. In this new frontend, the most critical component is the type 
checker. Two methods were proposed and implemented to implement the new type checker to 
convert Solidity AST nodes into ESBMC irept nodes: Tracker-Based Hybrid 
Conversion and Grammar-Based Hybrid Conversion. As a result, two versions of the new 
Solidity frontend were developed: 
 
Versions Methodology Workload 
f06110810 Tracker-Based  

Hybrid Conversion 
3629 lines of C++ code  
 

66f36ff10 Grammar-Based  
Hybrid Conversion 

3087 lines of C++ code 
 

Table 15: Two versions of the new Solidity frontend. 

As shown in Table 15, the new Solidity frontend that was implemented using Grammar-Based 
Hybrid Conversion is more compact. To integrate the new frontend with existing ESBMC 
language infrastructure, the following patches were merged to the dev-solidity-support branch:  
 
Patches Description Workload 
Commit d7ac87410 
 

Added Solidity placeholders 144 additions and 1 deletion 

Commit 801141310 Fixed linking error in 
CMake 

5 additions and 5 deletions 

Table 16: Integrate the new Solidity frontend with ESBMC. 

Table 16 shows that ESBMC is well-structured and can be easily extended to add a new 
frontend to support a new language.  
 
Since Solidity does not have a standard benchmark, a test suite was also developed to test the 
new Solidity frontend. The Grammar-based Hybrid Conversion method facilitates the 
extension and maintainability of code to support the verification of more complex Solidity 
programs that contain advanced language constructs and special functions like assume and 
nondeterminism. 
 
Key Achievements. 
In this project a new Solidity frontend is implemented, which enables ESBMC to verify 
Solidity smart contracts using SMT-based Bounded Model Checking. The key component in 
this new frontend is the type checker, which was implemented based on the new symbol 
conversion methodology Grammar-based Hybrid Conversion. It also supports the main 

 
10 Available at: https://github.com/kunjsong01/esbmc/commits/dev-solidity-support/src  
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features of a bounded model checker: nondet, assert and assume. Apart from the new Solidity 
frontend, three patches were submitted and merged to ESBMC main line:  
 
Patch Description Patch size  
Commit 34cfd4a6 Improved building 

instructions for macOS 
42 additions and 4 deletions 

Commit 3f9d3f8b 
 

PR #485 - Fixed symbol 
table printing 

3 additions and 1 deletions 

Commit 39bf25d4 Added test case for PR #485 12 additions and 0 deletions 
Table 17: Contributions to ESBMC main line. 

 
5.2 Reflection 
 
This subsection summarizes what went well and what could be improved, which is similar to 
Agile Retrospective [56].  
 
What went well?  
Due to the lack of a standard benchmark for Solidity smart contracts, this project employs the 
test-driven development method [57]. Before extending the code to support a new Solidity 
language construct that usually needs some prerequisites to support multiple related production 
rules in Solidity grammar, a test case that contains such construct is developed before writing 
the code.  
 
What could be improved?  
Similar to other software development projects, this project also contains development tasks 
that consume more time than the original estimate. Making a precise estimate for each task is 
as difficult as the project itself. In this project, a 25% of the buffer time was used, e.g. if the 
original estimate for a development task is 2d (i.e. two days in Jira time unit [58]), a buffer 
time of 4h (i.e. four hours in Jira time unit) is taken into the overall estimate. However, there 
still exists a few tasks that exceed 100% of the original estimate.  
 
For example, the original estimate of adding support for function return was 6 hours, but the 
actual time logged was two days. This overflow happened because of the unexpected blocking 
task to implement FunctionToPointer decay. A similar case also happened when implementing 
the feature to type check array due to ArrayToPointer decay. 
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5.3 Limitations and Future Work 
 
To support all Solidity features, the new Solidity frontend must be extended to support all 
production rules as specified in Solidity grammar.  
 
Solidity is an imperative programming language supporting the objected oriented programming 
paradigm. Similar to a class in other OOP programming languages like C++ and Java, a Solidity 
contract is a container that includes the data and corresponding methods. Solidity supports: 
 

i. Multiple inheritance as well as polymorphism  
ii. Interface that contains function declarations without implementation  

iii. Special functions like constructor and destructor (called selfdestruct).  
iv. Visibility specifiers, such as public, private, external, and internal.  

 
Apart from these standard OOP features, Solidity also supports some advanced features 
including:  
 

i. Cryptographic hash functions, e.g. keccak256, sha256 and ripmd160.  
ii. Callable objects,  

iii. An unnamed fallback function to be called when no other functions match the callee’s 
reference id provided by the caller. Each contract is only allowed to have one 
unnamed fallback function  

iv. Types with unconventional bit width, such as bytes3, int24, uint56 and int256.  
v. Multiple return values  

vi. Ethereum Virtual Machine has three types of memory: “storage” to hold the contract 
state variables, “memory” to hold temporary values and stack to hold small local 
variables. The users can manipulate data in “storage” and “memory” areas using the 
keywords storage and memory respectively.  

 
To support the OOP features, advanced data structures and the crypto functions, we might 
need to extend the irept class, add new encoding schemes to combine various background 
theories in SMT-LIB [59], and add new operational modes [60].  
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