SMT-Based Bounded Model Checking
for Solidity Smart Contracts

A Dissertation Submitted to The University of Manchester
For The Degree of Master of Science
In The Faculty of Science and Engineering

2021

Kunjian Song
10264348

Department of Computer Science

Contents

LISt Of FIGUIES..cccvvuriiiiiinnrinsisnnriissssnnnecsssssncssnsas 4
LISt Of TADIES auueeeennieinniiiniiiiiieisnienineissntecssnnessssnessssnsssssnecsssesssssesssssesssssasssssssssssasssssssssssssssns 6
ADSIFACTcccueeeieitiieiteecinteisneicsateisteessstesssseessssesssssesssssssssssessssssssssesssssssssssassssssssssssssssasssssassssns 7
DeClaration....ceeeecieecnneecisneicisniecineeissntcisseessssecssssesssssssssssecsssssssssssssssesssssasssssssssssssssssssssssssssn 8
COPYTIGRL aaueeeriiirrriiiiinniiiniinniicsissntiessssssncssssssssssssssssessnsas 9
ACKNOWICAZEIMENLS ...cuuueerriiiiinniicsssnnicsssssnrissssssnessssssssssssssssess 10
1 INrOdUCTION...uueiiineeeieieiiereiieeeiintenssnteessnnesssssecsssnessssnsssssssssssesssssnsssssasssssnssssssssssassssanes 11
1.1 Motivation 11
1.2 Research Question, Aim and Objectives 11
1.3 Deliverables 12
14 Contribution 12
1.5 Dissertation Structure 12

2 Background and TReEOIY.....ieiiiciissnricssssnnicsssnsscsssssssesses 13
2.1 Programming Language Theory 13
2.1.1 SyntaX and GIAMIMATco.ererieieieieieet ettt ettt e te bt see st e be st eseessesetenseneeneeseeseesesseebeebessessensan 13

2.1.2 Operational Semantics and Type Checking............cceceiiiiiiriininineeee e 15

2,13 TAXOMOMYY ..ttt ettt ettt ettt e sttt e e sb et sb e et e bt et e e bt e bt e st e ebeeneesae e bt sbtenbeeabenbeenbenbeens 17

2.2 Compiler Theory 17
2.3 SMT-Based Bounded Model Checking 18
24 State-of-The-Art Solidity Verification Frameworks 21
2.5 Clang-Based Frontend in ESBMC 23
2.5.1 Clang AST COMEEXL.....erueruiterterteieienie et eett et ettt eteetesbesee st bessentens et e tenseneeneeneeseesesaeebeebesseseeean 23

2.5.2 ESBMC Intermediate Representation: irePt.........ceevereeierrieienieeiiereereereeseesreeseeeseesaeesesseessesseens 27

3 Methodology and Implementationcccceccneecsscsnrecssssssnecssssssssssssssesssssssssssssssssssans 31
3.1 Hlustrative Example 31
3101 GOTO PrOZIAM ..cniiiieiiieeie ettt sttt sttt et sbe et b et sb et ebe et e it enaeeae 33

312 SSA FOIM coiiiiiiiiietee etttk etttk ekttt ekt 36

3.1.3 Logic Formulae and Z3 RepreSentationccccecueerieiririinieneniesiesieie e eeieeeeeeseeiesee e sie e e 38

3.2 Tracker-Based Hybrid Conversion 42
3.2.1 Generalised Frontend ACHONScoeouerieiieieieieiei ettt sbe b e 42

3.2.2 Design Challenges and DECISIONS..........ccuerueieieieieiieiieteeteste st ste sttt ettt ebesbesbesaesbeseens 42

3.2.3 Solidity as A New Language Mode in ESBMCccoociiiiiiiiiniiieeeeeeeeeeee e 46

324 Tracker-Based CONVETSIONciuiriirierieieieieiecetiet ettt ettt sttt te et st et e st eaeebesaesbeebesbeseens 47

3.2.5 Hybrid Symbol Conversion for Intrinsic Declarations.............cccceerererieneneieneeeeeesceesese e 57

33 Limitations of Trackers 59
3301 SCALADIIIEY -ttt sttt ettt a e eae bbb be st naen 59

3.3.2 Maintainability, Extendibility and Readability.............ccceciiirinininineieeeeeeec e 61

34 Grammar-Based Hybrid Conversion 62
3.4.1 Feasibility of Tracker REMOVaLccccuiiiiiiiiiiiiicieiceecceeee et 62

342 Grammar-Based CONVEISIONcc.eierierierieieieietieieeie ettt ste ettt et e e eseeseebesaesbesbesbeseens 64

3.43 Improved Readability, Maintainability and Extendibilityccccocereieneieieiiinincceeeee 70

3.5 Summary of Methodology 72

4 EVAIUALION uvrreeeiiiicciiiinrssnennsiicessssssssssssssescssssssssssssssscsssanssssess 73
4.1 Test Suite Design 73
4.1.1 TCI1: Authorization Through TX.OTZINccecieiiiiiiiiiie et 74

4.1.2 TC2: ArithmetiC OVEITIOWcceiiiieiiiiiiciiitieie sttt te b re b e s reesaeeraesaeessesbeessesseens 76

4.1.3 TC3: Arithmetic UNdIflOWccvieiiiiiiiiiiieieieeie ettt ettt veeae e sae st e saeessesaeessesreens 78

14 TCA: LOOPS veeuveeaurienuieeteeniteeteestteesteesttesataesssessseessseasseesssesnseesseessseesssessseessseessessssesnsessssessessssenssesnns 79

4.1.5 TCS5: Array Out-of-Bound Exception in @ 100Dcoceeiriiiriininiineeeeeeee e 81

4.1.6 TC6: Satisfiability Test using nondet, asSume and aSSEIt..........ccereruerierierierieeeieieeee e seeees 82

4.1.7 TC7: Satisfiability Test using SV-COMP FUNCtionc.ccoeririneienienieeeeeece e 88

4.2 Threats to Validity 89
4.3 Findings and Comparison to Other Verification Frameworks 90

5 Conclusion and FUrther WorkKiceeiiccneeiicnnneiiinnnneiicssesiicsnssssesssssssssssssssssssssnns 91
5.1 Deliverables and Key Achievements 91
5.2 Reflection 92
53 Limitations and Future Work 93

0 REEIEINCE auueeeiiiiiiiiivcrrnnnniiiicisisnsssannssiecsssssssssnsssssscsssssssssssssssessssssssssssssssssssssssssssnssssssssssses 94

Word Count: 17831

List of Figures

Figure 1: Structural operational semantics example..................cc.cccoiiiiiii, 15
Figure 2: T and e defInitions.cc.cooiiiiiiiiii e 16
Figure 3: Overview of ESBMC.coooiiiiiiieeteee et 19
Figure 4: Example code to be verified..................ccoooiiiiiie 19
Figure 5: SSA form of the code in Figure 4. ..., 20
Figure 6: C and P formulae of the SSA form in Figure S. ..., 21
Figure 7: Clang AST context StrUCEUIe.oc.eiiiiiiiiiiiiiiieiceee e 24
Figure 8: Clang AST context in text format....................coiiiiiiiiiiiiecee 25
Figure 9: The parse tree of a variable declaration nodeccooociiiiinnin, 26
Figure 10: Class inheritance hierarchy of typet..................ocooi i, 28
Figure 11: Structure of the array typet tree............cccoccooviviiiiiiiieniiiee e 28
Figure 12: Transform clang::VarDecl into code declt.....................ccooiiiiiiiiiiiininnies 29
Figure 13: UML of clang-based frontend for VarDecl and FunctionDecl conversion....30
Figure 14: The new Solidity frontend in ESBMC verification pipeline............................ 31
Figure 15: Example code to illustrate conversion Steps.ccoccceeviierniiinieeniieenieeenns 32
Figure 16: GOTO program of nondet function.co.ccoooiiiiiiiiiiineee, 33
Figure 17: GOTO program of get X function.c.ccooiiiiiiiiiniiiee, 33
Figure 18: GOTO program of func_case_study.coccooiiiiiiiiiiniinieeeeeee, 34
Figure 19: Statement variable and function call......................., 35
Figure 20: SSA form of function_case study shown in Figure 15..........................oco. 36
Figure 21: Simplified SSA trace during SMT encoding.............c...cccoooiiiniiiiniiinnninneenn, 37
Figure 22: Cand P formulae................oooiiiiiiiiceeeee e 38
Figure 23: ESBMC-generated C A ~P formulaecooiiiiie, 38
Figure 24: Z3-representations of the formulae ..., 40
Figure 25: Verification result of the illustrative example.ccooii, 41
Figure 26: Methodology #1 and #2.coooiiiiiiiiiieieeeee et e e 44
Figure 27: Recursion - nested BinaryOperation Expressions...................cccoocoiiiinniiinenn. 48
Figure 28: JSON AST of a nested BinOpEXPT.........cccccoiiiiiiiiiiiiieeeeeeee e 49
FIgure 29: Trackers. ..ot e 50
Figure 30: Example of a Solidity function.ccoccciiiiiiiieceee 51
Figure 31: AST of the function Body..............coooiiiiiiiieceee 51
Figure 32: get_expr funcCtion..............oooiiiiiiiiiiiii e 52
Figure 33: Conversion of BinOpStmt and DeclRefExor. ..., 53
Figure 34: get_binary_operator_expr calls back into get_expr.c.occccoeoiniiiinnnnnn, 53
Figure 35: Call stack usage when converting "a+b" ..., 54
Figure 36: concluding example.ccooooiiiiiiiiiii e 55
Figure 37: Re-constructed tree using trackers.ccoooooiiiiiniiiiniiincceceeeee 55
Figure 38: ESBMC irept PArse tree..cccooiiiiiiiiieiiiiiiee e eriieeeeeieee e siteeeesseneee e 56
Figure 39: ESBMC intrinsic variable and function declarations................c....ccccccoeeen. 57
Figure 40: JSON-representation of __ ESBMC _assert..............ccooceeiiiiniiniiiinneenieen, 58
Figure 41: Hybrid conversion mechanisSm.................ccccccoiiiiiiiiiiniiiicicceceeeee 58
Figure 42: Trackers of nested BINOPEXPI.ccccoiiiiiiiii e 60
Figure 43: Tree re-constructed from the JSON AST. ..., 63
Figure 44: Tracker-based vs. Grammar-based conversion.c.c.cooceviiininnnennnn. 64
Figure 45: The nlohmann::json data type.cccooeviiiiiiiiiiiiieceee e 65
Figure 46: Type casting of AST nodes.ccooooiiiiiiiiiiiiiiceceeee e 65
Figure 47: The conversion steps of a for 100p...............cccovriiiiiiiiniii e, 66

Figure 48: the conversion function for “rule statement”.ccoooiiiinnninnn, 67
Figure 49: Production rules of Solidity statement.coooiiiiiiinninieee 67
Figure 50: equivalent ipret node of the Solidity “for” loop.ccccccoviiniiiinnniinnnn. 68
Figure 51: Patch to support empty init eXpression.ccccceevviiiiiinniiieeeiiee e 68
Figure 52: cycle references in Solidity grammar.coooiiiiiiiiiiieeeee 69
Figure 53: cyclic references in Solidity grammar.ccooccoiiiiniiiinceee 70
Figure 54: Workload of Tracker-Based Hybrid Conversion method............................... 72
Figure 55 Workload of Grammar-Based Hybrid Conversion method............................. 72
Figure 56: TC1 - Authorization using TX.Origin.............cccoocoiiiiiiiiiiiiiiiee e 74
Figure 57: Attacker smart contract.®coooiiiiiiieee e 74
Figure 58: Pattern of '"Autorization through Tx.origin"ccooiiiiiiiiiiiie 75
Figure 59: ESBMC detects authorization through Tx.origin.ccooeiiiiiinniinnnn. 75
Figure 60: TC2 - arithmetic overflow in a nested binary operation expression. 76
Figure 61: TC2 reSul..........oooiiiiiiiii et 77
Figure 62: TC3 —arithmetic underflow with unary operators..................cccocccevvniiennnnn. 78
Figure 63: TC3 resull..........oooiiiiiiiiiii et s 78
FIgUIe 64: TCA — 100D ...cceeeiiiiiiiiee ettt 79
Figure 65: TCA resull..... ..ot 80
Figure 66: TCS — Array out-of-bound access a loop................ccooeviiiiiiiiiiiiiinieeeee 81
Figure 67: TCS resul..........oooiiiiii et 81
Figure 68: TC6 — effect of ""assume" on finding satisfiability. 82
Figure 69: Answer to Satisfiability #1...............coooiiiiiii e 83
Figure 70: updated TC6 for Satisfiability #2.............cccccoiiiiiiiieee 83
Figure 71: Answer to Satisfiability #2..............ccooiiiiiiii e 84
Figure 72: updated TC6 for Satisfiability #3.............ccooiiiiiiiieee, 85
Figure 73: Answer to Satisfiability #3.............ccooiiiiii e 86
Figure 74: updated TC6 for Satisfiability #4...............cccoiiiiiiiieeee 87
Figure 75: Answer to Satisfiability #4..............ccoooiiiii e 87
Figure 76: TC7 — effect of ""assume" on finding satisfiability. 88
Figure 77: TC7 result. Answer to Satisfiability #3..............ccoociiiiiiiiii e 89

List of Tables

Table 1: Summary of Solidity verification tools....................ccccooiiiiiiiniii e, 23
Table 2: Clang declaration Class..............coooiiiiiiiiiii e 24
Table 3: Clang classes for semantics of the child nodes.ccccoiiiiiiiii. 26
Table 4: Conversion functions for declaration node.c.ccooiiiiiiiiiiiiininiee, 27
Table 5: Mapping clang classes to ESBMC irept nodes.ccccooevviiiiiiniiiiiiiniieeeens 27
Table 6: Conversion functions for child nodes.....................ccccciiiiiiiiiii e 29
Table 7: Coverage of Design Goals and Design Challenges...................cccceeviiininnnnnnn. 45
Table 8: Coverage of frontend actions.ccooiiiiiiiiiiiiiiiie e 45
Table 9: Solutions to design challenges....................cooooiiiiiiiiiiiii e 48
Table 10: Conversion functions for irept nodes.ccccoeiiiiiiiiiniiiii e 63
Table 11: Extendibility of the new Solidity frontend.......................cccoiiiiiiiniiiiis 71
Table 12: TeSt SUITEoociiiiiiiiiii ettt sttt e e 73
Table 13: Compare ESBMC to other tools................coocviiiiiiiiiiiieeeeee e 90
Table 14: Availability of counterexamples.ccoocviiiiiiiiiiiiiiii e 90
Table 15: Two versions of the new Solidity frontend.cccooiiiiiiiiiiiie 91
Table 16: Integrate the new Solidity frontend with ESBMC....................cccoooiiiiiniinnnn. 91
Table 17: Contributions to ESBMC main line.cccooooiiiiiiiiiiiieeeeee e 92

Abstract

Apart from Bitcoin, Ethereum is another distributed ledger that uses blockchain technology.
Smart contracts are autonomous programs that automatically control Ether's transactions in the
distributive environment of the Ethereum blockchain. A vulnerable smart contract allows the
hackers to perform unauthorized withdraw. Since a smart contract is immutable after its
deployment on the Ethereum blockchain, which does not allow the owner to fix bugs, it
becomes critical to make sure the smart contract is safe prior to deployment. Solidity is the
most widely used programming language to create such contracts. There is a great deal of
interest from academia and industry in formal verification for Solidity smart contracts.

The SMT-Based BMC has been successfully used to verify software programs written in
general programming languages. ESBMC is a state-of-the-art SMT-based bounded model
checker to verify C and C++ software. This project uses ESBMC as the vehicle to explore the
opportunity to apply SMT-Based BMC for Solidity verification. However, Solidity is a
domain-specific language for writing smart contracts. To extend ESBMC to verify Solidity
smart contract, a detailed study of syntax, semantics and grammar rules of Solidity language
was conducted. Two type checking methods were proposed to convert Solidity AST into
ESBMC intermediate representation: Tracker-Based Hybrid Conversion and Grammar-Based
Hybrid Conversion.

The Grammar-Based Hybrid Conversion method was found to have better extendibility and
maintainability. As a result, a new Solidity frontend was developed to extend ESBMC to verify
Solidity smart contacts. Additionally, a test suite that contains vulnerably smart contracts was
developed due to the lack of a standard benchmark for Solidity. The test results confirmed the
correctness of the new Solidity frontend that enables ESBMC to verify Solidity smart contracts.
ESBMC was compared with other state-of-the-art Solidity verification tools by running the
same test suite against other tools. The results show that ESBMC is the only tool that
successfully detected all vulnerabilities in each test case and provided the corresponding
counterexamples for each type of vulnerability. The other tools are only able to reveal the
vulnerabilities in the test suite partially.

Keywords: programming language theory, compiler, bounded model checking, SMT, Solidity

Declaration

No portion of the work referred to in this dissertation has been submitted in support of an
application for another degree or qualification of this or any other university or other institute
of learning.

Copyright

11.

1il.

1v.

The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The
University of Manchester certain rights to use such Copyright, including for
administrative purposes.

Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,
may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

The ownership of certain Copyright, patents, designs, trade marks and other intellectual
property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property and/or
Reproductions described in it may take place is available in the University IP Policy
(see

http://documents.manchester.ac.uk/Doculnfo.aspx?DocID=24420), in any relevant
Thesis restriction declarations deposited in the University Library, The University
Library’s regulations (see

http://www.library.manchester.ac.uk/about/regulations/) and in The University’s
policy on presentation of Theses

Acknowledgements

I would like to thank my supervisor Dr. Lucas Cordeiro for his guidance, encouragement, and
advice he has provided throughout this project. ESBMC opened up a new world for me - a
world in automated reasoning, decision procedures, and program verification.

10

1 Introduction

1.1 Motivation

The blockchain is a distributed ledger technology that forms the main mechanism behind
Bitcoin, Ethereum, and alternative cryptocurrencies [1]. Blockchain can be considered as a data
structure that contains a linked list of blocks, each of which contains a list of unmodifiable
transactions [2]. Smart contracts are autonomous programs that run on Ethereum blockchain

[3].

Solidity is a domain-specific language (DSL) for writing smart contracts [4]. Once deployed
on Ethereum blockchain, there is no way to update the smart contract except deleting it completely
and re-deploying a new one. Even the smart contract author cannot modify the program code or fix
bugs after deployment [5]. Because the smart contracts are compiled into EVM (Ethereum Virtual
Machine) assembly instructions for deployment on the blockchain [6]. Due to the nature of such
immutability, it is critical to ensure the security of the smart contract before deploying it on the
Ethereum blockchain. But the reality is the opposite. The deployed smart contracts often suffer
from software vulnerabilities. These vulnerabilities have been exploited by malicious attackers,
which leads to monetary losses. For example, the DAO attack that happened in 2016 results in a
large monetary loss of $60 million, which eventually forces the Ethereum blockchain to be hard
forked to roll back to a previous state [7, 8]. There is growing demand for the verification of
Solidity smart contracts. For example, the Oxproject offers up to $100,000 US dollars to detect
of critical vulnerability in Solidity smart contract [9, 10].

1.2 Research Question, Aim and Objectives

Research Question.
Solidity is a DSL for writing smart contracts to be deployed on Ethereum blockchain. Hence,
a natural question would be: Can SMT-based bounded model checking be used to verify DSL?

Aim.

This project aims to answer this question by using ESBMC as the vehicle for research. The
goal is to develop a new type checking methodology to transform the Solidity program into
ESBMC intermediate representation (IR), and ultimately to use the existing SMT-encoding
schemes of ESBMC to verify the original Solidity program.

Objectives.
The objectives of this project are outlined as follows:

e [OBJECTIVE-1] Investigate the programming paradigm of Solidity and understand
Solidity language syntax, semantics, grammar, and special features.

e [OBJECTIVE-2] Investigate and analyse ESBMC to identify:
a. The architecture and the intermediate representations used in ESBMC.

b. The IR data structures in ESBMC

11

c. The existing encoding schemes for verifying the language constructs in general
programming languages like C and C++.

e [OBJECTIVE-3] Based on the outcomes of [OBJECTIVE-2], extend ESBMC to verify
Solidity, a DSL for writing smart contracts.

1.3 Deliverables

The deliverables of this project are listed in the following:

e [Deliverable-1] Develop a new type checking methodology to enable ESBMC to
verify Solidity smart contracts using the existing SMT encoding schemes.

e [Deliverable-2] Due to the lack of a standard benchmark for Solidity, develop a test
suite that contains vulnerable smart contracts to evaluate the new frontend in
Deliverable-1.

e [Deliverable-3] Final dissertation to summarize the work done for Deliverable-1 and
Deliverable-2.

1.4 Contribution

Over the last few years, several Solidity frameworks were proposed. Except for Mythril [11],
the other frameworks outlined in Section 2.4 do not encode Solidity programs in logic formulae
or use SMT solvers to verify Solidity smart contracts. Instead, some of them just use SMT
solvers to find the satisfiability of path conditions after symbolically executing the program.
Although Mythril uses SMT solver to verify the Solidity smart contracts, it does not always
generate a counterexample. The test results in Section 4 shows that Mythril did not detect the
vulnerability of arithmetic underflow in the test case developed in this project.

The contribution of this project is that it successfully used SMT-based bounded model checking
technique to verify Solidity smart contracts. None of the state-of-the-art Solidity verification
tools uses such technique. The test results in Section 4 show that ESBMC with the new Solidity
frontend detected the vulnerability in all test cases and provided a counterexample in each case.
ESBMC outperforms all other tools.

1.5 Dissertation Structure

This dissertation contains five chapters including the introduction. The layout of the remaining
chapters is as follows. Chapter 2 presents the relevant background knowledge and theories in
programming language theory, compiler design, software verification, bounded model
checking, and Satisfiability Modulo Theories (SMT), which is used to aid in understanding the
design rationale behind the new type checking methodologies in Chapter 3. There are two type
checking methodologies proposed in Chapter 3. These methodologies guide the
implementation of the new Solidity frontend. Chapter 4 discusses the test suite design, and
explains the test results. In addition, Chapter 4 also compares ESBMC to other state-of-the-art
Solidity verification frameworks. Chapter 5 concludes this project and identifies further work
extending ESBMC to cover all Solidity language features.

12

2 Background and Theory

This chapter will lay the theoretical foundation that will become useful in later chapters. Each
subsection contains an answer to a question “How is ... related to this project?”, which explains
the intention of the corresponding literature review.

The architecture of an SMT-based bounded model checker consists of two parts: the frontend
and the backend. This chapter starts with introducing topics in programming language theory
and compiler theory that will help the reader understand the frontend of an SMT-based bounded
model checker. Next, it uses an illustrative example to explain the verification flow of an SMT-
based bounded model checker. This chapter then gives a survey of state-of-the-art verification
frameworks for Solidity. It ends by discussing the existing clang-based frontend of ESBMC.

2.1 Programming Language Theory

This subsection aims to explain some key concepts in programming language theory, which
lay the theoretical foundation for understanding the clang-based frontend in ESBMC, and
designing the new Solidity frontend.

2.1.1 Syntax and Grammar

The syntax of a programming language can be described precisely using formal grammar [12].
The method to formally describe a formal grammar is known as Backus-Naur Form (BNF).
The origin of BNF is the paper published by computer scientists John Backus and Peter Naur
in 1960 [13]. BNF is referred to as a metalanguage used to describe another programming
language. A metalanguage is a language used to describe another language [14]. Hence, the
syntax of a programming language can be described by context-free grammar written in BNF.
The context-free grammar contains production is shown as follows:

<Expr> ::= <Identifier> <BinaryOperator> < Identifier >
| <UnaryOperator> <Identifier>

<Identifier>::=a|b|c|d
<BinaryOperator> :=+ | -

<UnaryOperator> := ++

The simple grammar above is written in BNF style. <Expr> is known as a non-terminal symbol
because it can be replaced by other symbols. <Identifier>, <BinaryOperator> and
<UnaryOperator> are also non-terminal symbols. ‘a’, ‘b’, ‘c’ and ‘d’ are terminal symbols, so
are the operators ‘+’, ‘-> and ‘“++’.

13

The above grammar can be used to check the validity of the syntax in the following expressions:

a+b (2.1)
++a (2.2)
a++ (2.3)
—-——a (2.4)
axb (2.5)

The syntax of expression (2.1) is valid, because the sequence of symbols in this expression can
be generated using the production rules as follows:

<Expr> — <ldentifier> <BinaryOperator> <Identifier>
<Identifier> — a

<BinaryOperator> — +

<Identifier>— b

A production rule is in the form of “<Identifier> — x”. It means that the non-terminal symbol
<Identifier> can be replaced by another symbol “x” as specified by the BNF-style grammar,
where “x” could be a terminal symbol (e.g. “a”) or a sequence of non-terminal symbols (e.g.
as in the rule “<Expr>").

The syntax of expression (2.2) is valid, because the sequence of symbols in this expression can
be generated using the production rules as follows:

<Expr> — <UnaryOperator> <Identifier>
<UnaryOperator> — ++
<BinaryOperator> — a

The syntax of expressions (2.3), (2.4) and (2.5) is invalid for the following reasons:

e There is no production rule to replace <Expr> with < Identifier ><UnaryOperator> in
expression “a++”.

e There is no production rule to replace <UnaryOperator> with a terminal symbol “--”
used in the expression “--a”.

e There is no production rule to replace <BinaryOperator> with a terminal symbol “*”
used in the expression “a * b”.

How is it related to this project?

The concept discussed in this subsection will become useful to understand the formal grammar
of the Solidity language [16]. The production rules in Solidity grammar will guide the
development of Grammar-Based Hybrid Conversion Method.

14

2.1.2 Operational Semantics and Type Checking

While the syntax of a programming language describes the structure of expressions, statements
and language constructs, emantics is the meaning of those expressions, statements, and
language constructs [14]. Type specifies the range of values that a variable can represent and
the set of operations that are defined for these values. Type puts constraints on the operands
and the operator to ensure they fit together properly [15].

Type and semantics are not independent of each other. They can be shown in the same picture
of the processing phases of a programming language. There are two processing phases of a
programming language: one is the static phase of processing, and the other one is the dynamic
phase of processing [15]. There are two goals in the static phase of processing to ensure the
program is well-formed:

1. Make sure the structure is correct. For example, a binary operator “+” expects two
operands in the form of (a + b), which is a well-formed expression. The expression (a
+) is ill-formed because the right-hand-side operand is missing.

2. Make sure the type is compatible. For example, a binary operator “*” expects two

operands of numerical types. (I + 2) is a well-formed expression. The expression (1 +

“hello”) is ill-formed because the second operand is of the type string and it does not

make sense to add an integer to a string.

The dynamic phase of processing refers to the execution of a well-formed program based on
the semantics. One of the formal ways to describe semantics is to use operational semantics.

There are two types of operational semantics based on the levels of interest [12, 14]:

1. If the interest is in the final result of the execution of a well-formed program, then it is
called natural operational semantics, also known as big-step semantics.

2. If the interest is in the sequence of state changes during the execution, then it can be
described by structural operational semantics, also known as small-step semantics.

An example of structural operational semantics is shown in Figure 1 [12]:

C Statement Meaning
for (exprl; exprl; expr3) { exprl;
loop: if expr2 == 0 goto out
} e
expr3;
goto loop

out:

Figure 1: Structural operational semantics example.

As shown in Figure 1, the structural operational semantics of a for loop can be described using
the sequential flow that consists of three terms: if statement, gofo statement and the
corresponding labels. The same approach can also be used to describe other non-sequential
control flows, such as do-while loop or while loop. If it’s a function call, the call expression
can be replaced by the body of the function to make it sequential.

15

The type compatibility is enforced by typing judgements. The typing judgements are rules
described in a similar way to the natural deduction [17]. An example of such judgement is
described below:

First, let T represent the types, and let e represent expressions defined in Figure 2 [15]:

Typ T == num num numbers
str str strings

Exp e == «x x variable
num [77] n numeral
str[s] ”s" literal
plus(ej;e) e1+e addition
times(e1;e2) e1*ep multiplication
cat(ey;ep) e1” e concatenation
len(e) lel length

let(ei;x.e2) letxbeeiine, definition

Figure 2: t and e definitions.

Next, a typing environment I' is defined as a set of (e, 7). This pair means e is of the type t,
which is often denoted by e : 7. I' is sometimes called typing context. Using these notations,
we can define a ternary relation:

Fe: T
which means that e is of the type 7 in the typing environment defined by I'.

Then, the typing rules can be defined as follows [15]:

I' - a: num ' - b: num
I' +plus(a,b): str

' - a: str ' - b: str
[' + cat(a,b): str

' - a: str
' +len(a): num

The relations above the line are premises, and the relation below the line is the conclusion. The
first rule states that if variable a is of the type num in the typing environment I', and variable b
is of the type num in the typing environment I', then the p/us function that operates on these
variables should also be of the type num in the typing environment I'. Analogously, the second
rule enforces the type compatibility of the concatenation expression, and the third rule enforces
the type compatibility of the length expression.

A type checker is essentially an algorithm that implements the typing rules given above.

16

How are structural operational semantics and type checker related to this project?
ESBMC uses GOTO program as the intermediate representation of the original program. The
GOTO program uses only guarded goto and assume statements to model the control flow [18].
The GOTO program essentially describes the structural operational semantics. The frontend of
ESBMC has a type checking phase. In clang-based frontend of ESBMC this type checking
phase is implemented as the clang ¢ converter class. This class checks the type of each clang
AST node and transforms it into the equivalent tree-structured irept node.

2.1.3 Taxonomy

Programming paradigm is the style of programming, which can be used to classify
programming languages. A program written in an imperative language consists of a sequence
of commands which modify the memory (or state) [19]. The end of a sequential command is
indicated by the semicolon. The type system imposes constraints on the formation of
expressions [15]. A type system consists of the predefined types and the typing rules as
discussed in the previous section. A program written in a strongly typed (or type safe) language
cannot violate the distinctions between types defined in that language [19]. Object-oriented
programming (OOP) is a programming paradigm with three fundamental features:
Encapsulation, Inheritance and Polymorphism.

How is taxonomy related to this project?

The goal of this project is to verify smart contracts written in Solidity. It would be useful to
know what type Solidity language is. In Solidity a contract is like a class in OOP which
encapsulates the attributes to indicate the state of the contract and methods that defines the way
how a smart contract can be interacted with. The statement (or command) in Solidity is also
ended by a semicolon. Hence, Solidity is:

e An imperative programming language.

e An OOP language.
e A strongly typed language.

2.2 Compiler Theory

A compiler translates a source program to a target program. The translation process consists of
five phases [20]:

1. Lexical Analysis
2. Syntax Analysis
3. Semantic Analysis
4. Optimization

5. Code generation

Lexical Analysis.

In this phase, the characters are aggregated to form a word. This is done by a lexical analyzer,
or sometimes called a scanner, which applies a set of rules to check the validity of the word. If
it is valid, a token will be generated.

17

Syntax Analysis.

The input to the parser is a stream of tokens (or words). The purpose of the parser is to
understand the structure of the program. The parser verifies the input tokens based on the
formal grammar of the source programming language. The output of the parser is a tree-
structured representation, usually a parse tree or abstract syntax tree (AST) [21]. Parse trees
contain more information than AST. The parse tree usually includes a record of rules used to
recognise the input [22]. In a parse tree a node might be the name of the production rule used.
In an AST the tree is simplified by removing the nodes representing the name of the production
rule. An AST is more concise than the parse tree [20]. The syntax analysis phase ensures a
program to be well-formed (c.f. Section 1.1.2). Both parse tree and AST are considered as
syntax tree. A syntax tree is a tree-structured intermediate representation (IR).

Semantic Analysis.

Semantic analysis is to check the meaning of the program. A semantic analyser uses syntrax
tree (usually AST) as the input. First, the semantic analyser generates a symbol table that
contains the type and scope information of each declaration node in the syntax tree. Next, the
semantic analyser uses the syntax tree and the symbol table to ensure the source program is
semantically consistent with the scopes and language type system [21]. Hence, the semantic
analysis phase contains a type checker (c.f. Section 1.1.2).

How are these concepts related to this project?

Phases 4 and 5 are not related to this project because the goal of this project is not to improve
the performance of a specific compiler or generate code for a specific target. Phases 1, 2 and 3
are related to this project, because the goal of ESBMC frontend is to generate the symbol table.
The type checker traverses the AST and converts each declaration node into ESBM irepf node.
The irept parse tree is a tree-structured IR used to represent the syntax structure of the original
program in ESBMC.

2.3 SMT-Based Bounded Model Checking

ESBMC is one of the most powerful SMT-based bounded model checkers to verify software
programs written in C and C++ [23]. ESBMC has won various awards in previous SV-COMP
competitions [24]. The overview of ESBMC is shown in Figure 3.

A finite-state transition system can be modelled by a Kripke structure M which has a set of
states S = {sg, Sy, ..., Sk_1}, where s, € S, and S, represents the set of initial states. A
transition relation R is a subset (not necessarily a proper subset) of the Cartesian product S and
S,1.e. R € § X §. A state transition from s; to s;,, is denoted by R(sj, sj+1). It means that the
program counter moves forward while taking some actions to update the state. Such actions
can be evaluating an expression and making new assignment to a variable, modifying the
element in a container data structure, or changing the flow of execution by jumping to another
block of statements. Given a Kripke structure M that models a state transition system, Bounded

Model Checking aims to build the verification condition (VC) as the following formula [25]:
k i-1

i = 16 A \/ [\R(5501) A G0 2.6)

i=0 j=0

where I is the set of initial states, s; is state variable and k represents the bound limit, e.g., the
number of loop iterations BMC unwinds. In Eq (2.6), I(sp) A A'Z{ R(s;, sj41) means the

18

execution trace of length i. =¢(s;) represents violation of a property in state s;. If the VC is
satisfiable, it means that there exists a state s; that violates the safety property. The violation
can be arithmetic over- or underflow, divide by zero, accessing a null pointer, double frees, etc.
The counterexample will be represented by a sequence of states {sy,sy, ..., S,} and the
corresponding transitions R(s;, s;+1) Where i is bounded by 0 <i < k [25].

Lexical Analysis + Parsing +
Semantic Analysis (type checking)

cfile » clang-c-frontend
Symbol Table
ESBMC backend - [ESBMC middleware |
Verification : Y
Successful .
GOTO Converter
No property violation . .
(up to bound k) GOTO Program
: v
“CA~P : SSA Form
L [, Logical Formula |_
Pommm SMT solver |« Gonerator oro SymEx

Property Violation Convert Constraints and Properties

Counter-example ‘

Figure 3: Overview of ESBMC.

In Eq. (2.6), =¢(s;) corresponds to the property part, “~P” as in “C A ~P” in Figure 3. The rest
of the equation corresponds the constraint part, “C”. If the verification condition v is satisfiable
then it means that there exists a counterexample that violates the property up to a given bound
k. However, BMC is incomplete if k is not high enough. It is only able to find a logic error
(also called “falsification”) up to k steps [26]. Calculating the completeness threshold (CT) of
BMC is found to be as hard as the BMC itself [25].

int main() {

1

2

3 int al2];

4 unsigned n = 2, i = 0;
5 while (i <= n)
6

7

8

9

{
ali] = 100;
++1;
¥
10 assert(ale] + 1 = 101);
11
12 return 0;
13}

Figure 4: Example code to be verified.

19

The example code in Figure 4 contains an error of array out-of-bound access. To verify the
code in Figure 4, the clang-c frontend generates symbol table, which is used by the GOTO
converter to generate the equivalent GOTO program. Then the program is symbolically
executed to generate the SSA form shown in Figure 5. Although the code in Figure 4 has no
syntax error and can be compiled using GCC or Clang, it contains a run-time error of array out-
of-bound access in line 7. The while loop is unrolled three times according to the value of n.
The operational semantics of the statement in Line 9 in Figure 5 is as following:

if g0 == true:
then:

al = (a0 WITH [0:=100]) ;
else:

al = a0;

i@, i1, i2: bitvector(64)

io = 0;

n, N: bitvector(é4)
n=2;

N = 2; // array bound

ge = (i@ <= n);

assert(i@ + 1 < N); // array bound check
al = g@? (a@ WITH [@:=100]) : a@;

il = ¢g@? (ie+1) : i@

gl = (i1 <= n);

assert(il + 1 < N); // array bound check
a2 = g1? (al WITH [1:=108]) : al;

i2 = g1? (i1+1) : i1

g2 = (i2 <= n);

assert(i2 + 1 < N); // array bound check
a3 = g2? (a2 WITH [2:=100]) : a2;

i3 = g2? (i2+1) : 12

assert(a3[e] + 1 == 101)
Figure 5: SSA form of the code in Figure 4.

The array equality “al = a0 is defined as [25, 27, 28]:

a=>b &< Vi -select(a,i) = select(b,i)
a # b = 3i -select(a,i) + select(b,i)

The if-then-else statement is represented by the ite operation in Figure 6. The array theory of
SMT solver is based on McCarthy axiom [26, 30]. The semantics are as follows:

e store(a, 1, v) means to write the value of v in position i of array a. This expression returns
the updated array.

e select(a, 1) means to read the value at position i1 of array a. This expression returns the
value at position i in that array.

20

C=[
i@=1 /\ N=2 /\ n=2
/\ g8=(i@ <= n) /\ al=ite(g0d, store(a0,0,100),a0) /\ il=ite(g@,(i0+1),i0)
/\ gl=(il <= n) /\ a2=ite(gl, store(al,1,100),al) /\ i2=ite(gl,(il+1),il1)
/\ 92=(i2 <= n) /\ a3=itel(g2, store(a2,2,100),a2) /\ i3=ite(g2,(i2+1),i2)
]

P=
(i0 + 1) <N
/\ (i@ + 1) <N
/\ (i@ + 1) <N
/\ (select(a3,0) + 1) = 101

Figure 6: C and P formulae of the SSA form in Figure 5.

The store(a, i, v) function can be represented by the WITH operator. “(a0 WITH [0:=100])”
means to write 100 in position 0 of array a0 and return the updated array. The select(a, 1)
function can be represented by the equivalent array subscript expression, afi/ [31], [32]. Note
that in Figure 5, the initialization of array a0 is not shown, because arrays are unbounded in the
array theory and we just use a symbolic representation “a0” to denote the initial array.
Compared to the previous work on array encoding [33], Cordeiro .et. al [25] proposed a new
method to check array out-of-bound by adding additional bound checks in each unrolled block
to check the array index against the array bound. Note that ESBMC also applies reduction on
the formulae shown in Figure 6. Therefore, the actual set of formulae solved by the SMT solver
is simpler than the one derived manually in Figure 6.

2.4 State-of-The-Art Solidity Verification Frameworks

This section aims to outline five verification frameworks for Solidity smart contracts —
SolAnalyser, Slither, Oyente, Smartcheck, and Mythril. Additionally, this chapter also
discusses the Remix, most popular Solidity IDE, which also has some functions to assist the
developers to verify a smart contract before deployment on the Ethereum mainnet [34].

SolAnalyser.

SolAnalyser is an automated verification framework for Solidity smart contracts. It uses both
static and dynamic analysis. SolAnalyser framework relies on another code instrumentation
tool called Solidity Instrumentation Framework (SIF). The responsibilities of SIF are [35]:

e Statically analyse the code for vulnerability detection.
e Inject assertions in the source code to specify property checks.

e (Generate contract mutants by injecting a single hard-coded vulnerability into the
original smart contract.

To inject assertions, SIF gathers information of each AST node and inject pre- or post-
conditions into the original contracts based on the operands and operators. For example, the
pre-condition for the vulnerability of division by zero of the expression “a = b / ¢” would be
“c 1= 0”. The post-condition for the vulnerability of unsigned underflow of the expression “a
=b + ¢’ would be “a >=c && a >=b" [35].

SolAnalyser uses mutation-based blackbox fuzzing as its strategy for dynamic analysis. A
contract mutant generated by SIF will be compiled into EVM bytecode, which contains the

21

Abstract Binary Interface (ABI) of the mutant. SolAnalyser interacts with the ABI of the
mutant and applies fuzz testing [34]. When the test is complete, SolAnalyser searches the test
logs for a sequence of specific keywords and events that indicate a violation of the property
checks [53].

Slither.

Unlike SolAnalyser, Slither is a verification framework that uses only static analysis [29]. The
static analysis technique used in Slither is taint tracking (not to be confused with taint checking).
First Slither transforms Solidity AST into an intermediate representation called SlithIR and
converts the IR into SSA form, and symbolically execute the SSA form. Next, Slither tracks
the data dependency using tainted tracking. If the data is tainted, it means that the data cannot
be trusted. A tainted variable is an untrusted variable [36]. Slither marks a variable as tainted
if the variable can be influenced by the user. For example, if a variable depends on another
user-controlled variable, Slither will also mark it as tainted [29]. If a protected function depends
on the tainted variable, then a potential vulnerability might be detected. For example, if the
parameter of a function is tainted, the usage of this variable in the function body might be
vulnerable. Slither uses a group of pre-defined bug detectors to make the final verdict. Apart
from detecting vulnerabilities, Slither is also able to suggest code optimizations.

Oyente.

Due to the non-determinism and complexity in Ethereum blockchain, it requires much more
effort to simulate the execution environment of such distributed system input-by-input using
dynamic analysis techniques [37]. Unlike SolAnalyser and Slither that work on Solidity source
code, Oyente works on EVM assembly code to follow the execution model of a smart contract.
As a by-product, the CFG of EVM assembly code can be generated by Oyente [37]. Z3 solver
is used to find the satisfiability of the branch condition for a path, which is explored using
Depth First Search (DFS). When a smart contract makes a function call, Oyente collects the
path condition of the caller and checks the updated states before the callee finishes. If the
updated states still satisfy the path condition for the caller, then it is possible for the callee to
re-enter the caller, and hence, re-executing the caller. This refers to a Re-entrancy vulnerability
[38, 39].

Smartcheck.

Similar to Slither, Smartcheck converts the Solidity source code into XML-based intermediate
representation (IR) [40]. Instead of using symbolic execution as in Slither, Smartcheck uses
XPath queries on the IR to detect vulnerability patterns [41]. Another difference to Slither is
that Smartcheck performs lexical and syntactical analysis on Solidity source code instead of
using the Solidity, while Slither takes the Solidity JSON AST as input generated by Solidity
compiler.

Mythril.

Mythril is a verification tool that works on EVM bytecode [42]. Unlike the other tools
proposed in the research, Mythril is a verification tool developed by the company ConsenSys
[43]. Mythril forms part of the security analysis platform MythX [44]. Mythril uses various
techniques for software verification— symbolic execution, SMT solving and taint analysis.

Table 1 summarizes the verification strategies used in these tools:

22

Tools SolAnalyser Slither | Oyente | Smartcheck | Mythril
Input Source code v v

JSON AST N4

EBM bytecode v v
Techniques | Convert to IR v N4

(SlithIR) (XML-
based IR)

Symbolic v v V4 V4

Execution

Taint analysis v v

SMT solver v v

Fuzzing v

Code v v

Instrumentation | (Code (XPath

Or instrumentation) queries)

Other queries

Table 1: Summary of Solidity verification tools.

How are these frameworks related to this project?

A test suite will be designed in this project to evaluate the new Solidity frontend in ESBMC,
and each of the test case in this suite will be a vulnerable contract. To compare ESBMC with
other state-of-the-art verification tools, the same test suite will be run again all tools discussed
in this section.

2.5 Clang-Based Frontend in ESBMC

A detailed study of the clang-based frontend is conducted to figure out the usage of
ESBMC irept data structures. The clang-based frontend traverses the AST of the input C
program and generates a symbol table. First, the clang AST is converted into another IR
called irept. Then the type checker annotates the irepf node based on the information in clang
AST node and generates the corresponding symbol, which is then added to the symbol table.

2.5.1 Clang AST Context

Since this frontend uses a mix of external APIs of the clang compiler infrastructure to facilitate
the conversion of clang AST node into the equivalent /Rep tree node in ESBMC, the conversion
process may seem quite intricate to a reader without knowing the specifics of clang.

Clang is the official LLVM frontend for C, C++, Objective-C and Objective-C++ [45]. As of
version 5.0, ESBMC started to use the clang-based frontend [46]. This frontend uses two clang
components: clang::tooling and clang::ASTUnit. The clang::tool class provides utility
functions to perform frontend actions, such as getting the current file name, build AST from
the current file, .etc. The clang::ASTUnit class is also a utility class that provides APIs to
generate the AST context and retrieve each AST node from that context. The AST context can
be obtained using the getter API getASTContext(). A full list of APIs can be found in the
clang::tool and clang::ASTUnit reference manuals, respectively [47, 48].

23

In a clang AST context, the root is the translation unit declaration shown in Figure 7. The child
nodes of the translation unit represent the user-defined declarations, e.g. variable declaration
nodes or function declaration nodes. Figure 8 shows the text representation of clang AST
context, which is printed by the dump() function. The translation unit declaration is shown as
the root of the tree in line 1 in Figure 8.

AST Context /

TranslationUnitDecl

UserDefined
FuncDeclt | ses see

UserDefined
VarDecl2

UserDefined
VarDecl1

Figure 7: Clang AST context structure

Each declaration is represented by different types derived from the declaration based class in
clang::Decl. Table 2 shows the class representations of each declaration node in clang.

The top-level translation unit declaration is represented clang::Decl::TranslationUnit, which
is not a standard language construct but a clang internal data structure to facilitate the compiling
process. This translation unit can be obtained using the getter API getTranslationUnitDecl().

The type of a declaration node can be obtained using the getter API getKind(). For each type
of clang declaration in clang::Decl, there exists a corresponding conversion function that
converts a clang AST node into irept node in ESBMC, which preserves the semantics of the
original clang AST node.

C Language Construct clang Declaration Type clang Class
Label clang::Decl::Label clang::LabelDecl
Var clang::Decl::Var clang::VarDecl
Function clang::Decl::Function clang::FunctionDecl
Field clang::Decl::Field clang::FieldDecl
TypeDef clang::Decl::Typedef clang::TypedefDecl

Table 2: Clang declaration class

24

TranslationUnitDecl 0x7fd37a80
TypedefDecl 0x7fd37a80aec8
*-BuiltinType 0x7fd37a80aba0d
TypedefDecl 0x7fd37a80af38
*-BuiltinType 0x7fd37a80abc0o
TypedefDecl 0x7fd37a80b240
*~RecordType 0x7fd37a80b01

*~Record 0x7fd37a80af90
TypedefDecl 0x7fd37a80b2e8
*~PointerType 0x7fd37a80b2a0

*~BuiltinType 0x7fd37a80a6
TypedefDecl 0x7fd38a80c000

*~ConstantArrayType 0x7fd37a

*~RecordType 0x7fd37a80b3c
*~Record 0x7fd37a80b340

FunctionDecl 0x7fd38a80c130

*~ParmVarDecl 0x7fd38a80c068

FunctionDecl 0x7fd38a80c390
ParmVarDecl 0x7fd38a80c230

*~ParmVarDecl 0x7fd38a80c2b0

FunctionDecl 0x7fd38a80c5e0
ParmVarDecl 0x7fd38a80c488

*~ParmVarDecl 0x7fd38a80c508

FunctionDecl 0x7fd38a80c6ed

FunctionDecl 0x7fd38a80c7a0

FunctionDecl 0x7fd38a80c928

*~-ParmVarDecl 0x7fd38a80c858

FunctionDecl 0x7fd38a80cab8

*-ParmVarDecl 0x7fd38a80c9e8

a608

<<invalid sloc>>
<<invalid sloc>>

, t128'

<<invalid sloc>>
‘unsigned
<<invalid sloc>>
'struct __NSConstantStri
' _NSConstantStrin
<<invalid sloc>>

‘char
a@ 'char'

80b580 'struct

@ 'struct

<col:21>
<line:2:1,
<col:21>
<col:28,
<line:3:1,
<col:27,
<col:41,

<col:17>

col:26

<invalid

<invalid
_int128'
<invalid

<invalid
sloc>

loc>

loc>
tag'

g_tag'
<invalid

loc>

' Bool'

sloc>
implicit

implicit

implicit

implicit

<<invalid sloc>> <invalid sloc> implicit _ builtin_va_list
va_list_tag
va_list_tag'

_va_list_tag
<esbmc_intrinsics.h:1:1,

(1]1' 1

col:40> col:6 __ESBMC_assert

col:26
col:39>

col:38>
col:52>

col:20

' _Bool'
col:40

col:39
col:53

‘int'

onst char x

col:53> col:7 __ESBMC_same_object
‘const void
‘const void x*
<line:4:1, col:27> col:6 __ ESBMC_atomic_begin
<line:5:1, col:25> col:6 __ESBMC_atomic_end
<line:7:1, col:20> col:5 __ESBMC_abs

<line:8:1, col:31> col:10 __ESBMC_lab

<col:23,

col:28>

col:31 'long'

__int128_t '
__uint128_t 'unsi

__NSConstantString

__builtin_ms_va_list

‘int

_int128'

ned nt128'

‘struct __NSConstantString_tag'

‘char *

'struct __va_list_tag [1]'

col:26> col:6 __ESBMC_assume 'v

'void (_Bool, c

_Bool (const void

‘void ()'
'void ()

nt)

ong (long)'

Clang AST context in text format

Figure 8

25

As an example, we consider a variable declaration node shown in Figure 9.

Storage
Class

Figure 9: The parse tree of a variable declaration node

The edge between the initial value node and its parent node is represented by a dashed line
because the initial value is optional. A variable declaration without initial value is legal in most
of the languages. If an initial value is provided, e.g. as in ‘int a = 1;’, this variable declaration
node will become an initialisation node. An initialisation node is a variable declaration node
with an additional child representing the initial value.

Therefore, a variable declaration can be represented by a tree that consists of a parent node
denoting the variable declaration and a group of child nodes defining the semantic of the parent
node:

e Name and ID of the variable

e Location of the variable declaration in the source file, e.g. the name of the source file
and the line number in that source file

e Type of the variable

e Storage class that tells the type of variable, e.g. static, global, extern, or local variable
within a function.

e Initial value

A variable declaration node is represented by clang::VarDecl class. Its child nodes are also
represented by the corresponding clang classes. Each child node can be extracted using the
corresponding getter API of the parent node class, clang::Decl. Table 3 summarizes the clang
classes for each type of the child node along with their getter APIs.

Node Type clang class Getter
Name, ID clang: :Identifierinfo getldentifier()
ID.getName()
Location clang::SourceLocation getSourceRange().getBegin()
Type clang::QualType getTypePtrOrNull()
Storage Class clang::StorageClass getStorageClass()
Init Value clang::Expr getlnit()

Table 3: Clang classes for semantics of the child nodes.

2.5.2 ESBMC Intermediate Representation: irept

The purpose of the clang-based frontend is to traverse the AST and generate the symbol table.
This task is performed by the clang c converter class located in the “src/clang-c-frontend/”
directory. The converter starts from the translation unit declaration, the root node shown in
Figure 7. When traversing the AST, there is no need to implement the traversal algorithm.
Because clang already provides the APIs to traverse AST tree. Clang provides the decls() API
to return an range expression, /lvm::iterator range<decl iterator>. All the declarations are
contained in a container data structure bounded by this range iterator. To visit each declaration
node one by one, all we need to do is executing a range-based for loop over that range
expression. The decl_iterator can be dereferenced to the pointer that points to a declaration
node represented by the clang::Decl class.

Now we have the pointer to each declaration node. The goal is to convert each declaration node
into the equivalent irep node and hence the corresponding symbol. However, the declaration
nodes extracted from the range expression might be of different types (cf. Table 2). The type
information of a clang::Decl can be determined using the getter API getKind().The converter

class provides different functions to process different types of declarations as shown in Table
4.

C Language Construct Declaration Conversion Function
Label bool get decl(const clang::Decl &, exprt &)
Var bool get var(const clang::VarDecl &, exprt &)
Function bool get function(const clang::FunctionDecl &, exprt &)
Field bool get decl(const clang::Decl &, exprt &)
TypeDef No conversion needed

Table 4: Conversion functions for declaration node.

Unlike a variable or function declaration, TypeDef is not considered as an “identifier”. The
converter ignores TypeDef declaration because clang will always give the underlying type
defined by the typedef. The conversion function takes different types of the declaration node
as the first parameter, but the types pointed by the dec/ iterator are different.

To illustrate the conversion process of transforming a clang AST node into an irept node and
then into the symbol, let us use the variable declaration node as an example. The structure of a
variable declaration node with its child nodes is shown in Figure 9. Each child node contains
just one piece of semantic information of the variable declarations. For each clang AST node
in Figure 9, there exists an equivalent irept node in ESBMC, which preserves the semantic
information. Table 5 shows the mapping between clang node classes and ESBMC /Rep node
classes.

Node Type clang class irept class
Name, ID clang: :IdentifierInfo std::string (C++ data type)
Location clang::SourceLocation locationt
Type clang::QualType typet
Storage Class clang::StorageClass Decomposed and represented
by ‘bool’
Init Value (or Function body) clang::Expr exprt

Table 5: Mapping clang classes to ESBMC irept nodes.

27

For variable name and ID, clang c_converter uses C++ build-in class std::string. As for the
storage class, it is decomposed and represented by three Boolean variables: static lifetime,
is_extern, and file local.

The typet class is a base class that also implements the irept interface. Different C data types
are represented by different derived classes of this base class as shown in Figure 10. A typet
node may contain multiple child nodes to hold the semantic information of a more complex
data structures. For example, the subtye node of an array typet node represents the type of the
elements stored in an array. The size node represents the size expression. In C language, it is
legal to use an arithmetic expression as the argument of the array subscripting operator. For
this reason, the size node is represented by exprt class. The structure of array typet node is
shown in Figure 11.

typet

bv_typet bool_typet empty_typet floatbv_typet array_typet

Unsignedbv_typet signedbv_typet

Figure 10: Class inheritance hierarchy of typet

array_typet

Figure 11: Structure of the array_typet tree

During the conversion process, the clang ¢ converter first creates an equivalent irept node
based on the mapping shown in Table 5. Next, the clang c_converter calls the corresponding
function to complete the conversion. These conversion functions are shown in Table 6.

28

Node Type Child Node Conversion Function

Name, ID void get_decl name(const clang::NamedDecl &,

std::string &, std::string &)
Location void get_location_from_decl(const clang::Decl &,
locationt &)
Type bool get type(const clang::QualType &, typet &)
Storage Class Decomposed and processed by the get_var function in
Table 4
Init Value (or Function body) bool get _expr(const clang::Stmt &, exprt &)

Table 6: Conversion functions for child nodes.

When converting a variable declaration node, function get var (cf. Table 4) will be called to
process each child node extracted by the getters as listed in Table 3. The irept nodes listed in
Table 5 will be created when calling each corresponding conversion function listed in Table 6.
Each conversion function will annotate the equivalent irept node to preserve the semantic
information held in each child node. Figure 12 shows the transformation of a clang VarDecl

node into an irept node of ESBMC.

get_decl_name

clang::
Identifierinfo

get_location_from_decl

clang::
QualType

clang::
VarDecl

Decomposition :
"""""""""""""""""""""""" beeeeoeoopl is_extern

..........

Figure 12: Transform clang::VarDecl into code_declt

29

code_declt

In Figure 12 each clang class is a generalised data structure to hold an AST node's semantic
information and metadata. They are not exclusive to the clang::VarDecl node but can be used
to represent the semantics of other AST nodes. For example, clang::QualType can be used to
represent the type of another language construct, including:

The type of a variable

The type of the operands in a BinaryOperator expression

The type of a referenced variable in Dec/Ref expression

The return type of a function declaration

The return type of a function call in CallRef expression

The type of the elements of an array (the subtype as shown in Figure 11)

Similar to clang::QualType, clang::SourceLocation can also be used to represent the location
of any language construct, whether it is a variable declaration, a block of statements, a single
statement, a control statement (e.g. an if statement), or other types. Therefore, the conversion
functions in Table 6 are not only used for the conversion of a VarDecl node conversion, but
also used for other types of nodes, e.g. a function declaration node, a block, or an expression
node, .etc. As shown in Figure 13, the conversion functions are generalised to process the
semantic information and meta data held in each type of child nodes. The parent of these child
nodes can be of any type listed in Table 2.

clang::Decl clang::QualType
1
+ PLoc: [requires self-defined] @—————= + field: type

+ getKind(): clang::Decl + getTypeClass(): clang::Type
+ isFunctionOrMethod(): bool + isConstQualified() : bool
A + isVolatileQualified() : bool
inherits + isRestrictQualified() : bool
V clang::NamedDecl V
+ field: type
'i_nherits) }nherits
N w get_type (- .
clang::FunctionDecl returns QualType const clang::QualType &q_type, returns QualType
typet &new_type) clang::VarDecl
+ field: type
+ field: type

+ isimplicit(): bool
+ getType(): QualType

+ isDefined() : bool as the first arg)
as the first arg + hasAttrs() : bool
+ getReturnType() : QualType
get_location_from_decl(+ getStorageClass() : bool
+ isVariadic() : bool const clang::Decl &decl,
locationt &location) + hasExternalStorage() : bool

+ isInlined() : bool
+ hasAttrs() : bool
+ getStorageClass() : bool

+ isExternallyVisible() : bool

+ hasBody() : bool as the first arg as the first arg

get_decl_name(
const clang::NamedDecl &nd,
std::string &name,
std::string &id)

Figure 13: UML of clang-based frontend for VarDecl and FunctionDecl conversion.

30

3 Methodology and Implementation

This chapter aims to outline the methodology that guides the implementation of the new
Solidity frontend. Section 3.1 uses an illustrative example to present an overview of the final
methodology implemented, which hopefully helps the reader to grasp the big picture. At the
beginning of the project, two methodologies were proposed: one relies on the Solidity compiler
libraries, and the other one uses Solidity JSON AST. The latter was chosen to implement.
Section 3.2 discusses the design rationale and explains why the second methodology is chosen.
As a result, there two versions of implementation for the second methodology. Section 3.3
describes the limitations of the first version based on Tracker-Based Hybrid Conversion.
Section 3.4 outlines the improved version based on Grammar-Based Hybrid Conversion.

3.1 Illustrative Example

This section gives an overview of the final methodology and implementation, which is referred
to as Grammar-Based Hybrid Conversion. The verification pipeline that uses the new Solidity
frontend is shown in Figure 14.

))) Semantic Analysis
Lexical Analysis + Parsin .
: ysis + ng (type checking)
.sol file AST in JSON
» Solidity Compiler »New Solidity Frontend
Symbol Table
ESBMC backend ESBMC middleware
Verification .
Successful .
GOTO Converter
No property violation .
(up to bound k) . 1. GOTO Program
: A 4
B.CA~P| | 2. SSA Form
] Logical Formula | ¢
SMT solver |« Generator SymEx
(23)

Property Violation Convert Constraints and Properties

Counter-example

Figure 14: The new Solidity froﬁtend in ESBMC verification pipeline.

31

As shown in Figure 14, the new Solidity frontend takes Solidity JSON AST as input. The
ultimate goal is to convert Solidity JSON AST into the quantifier-free formulae C and P. The
conversion steps are a follow:

1. Generate the GOTO program
2. Generate the SSA form

3. Generate the C A ~P

We will use the example code in Figure 15 to show the intermediate output and illustrate each

conversion step.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.26;

contract MyContract {

}

uint8 x;

function nondet() public pure returns(uint8)
{

uint8 1i;

return 1i;

function get_x() public returns(uint8)
{

X = 253;

return x;

function func_case_study() external
{

uint8 y = nondet();

uint8 sum;

x = get_x();
if (y > x)

{

sum

get_x() + 10;

else

sum = X + 1;

assert(sum > 100);

Figure 15: Example code to illustrate conversion steps.

32

The smart contact shown in Figure 15 contains one state variable x, and three functions:

e nondet: a pure function that does not change the state variable x. This function is used
to assign a non-deterministic value to a variable shown in line 21.

e get x:apublic function that changes value of the state variable x to 253 and returns this
value.

e func case study: This is the function to be verified using ESBMC. This function calls
the other two functions.

The Solidity smart contract shown in Figure 15 is syntactically correct. However, the
func_case_study function contains an error of arithmetic overflow. All variables were declared
as uint8, which represents a value within the range from 0 to 255. The final value of sum
depends on the predicate “y > x”. The value of x is 253, but the value of y is non-deterministic:
it can take any value from 0 to 255 returned from the function nondet as shown in line 21. If y
is 254, then the expression “y > x” evaluates to true and the addition expression in line 28 will
become “sum = 253 + 10”. The final value of sum would become 263 but this value is not
within the valid range 0-255 represented by uint8, which leads to the arithmetic overflow error.
The following subsections will walk the reader through the intermediate output of each
conversion step, and finally shows the detection of this error by ESBMC.

3.1.1 GOTO Program

To verify the Solidity smart contract shown in Figure 15, the type checker converts each AST
node into a symbol and generate the symbol table. Then the GOTO converter will use this

symbol table to produce the GOTO program. The GOTO program is the language-independent
IR in ESBMC.

Figure 16, Figure 17, and Figure 18 compare each original Solidity function with the equivalent
GOTO program. The state variable x is shown as the global variable in ESBMC main
shown in Figure 19. Each statement is colour coded to show the correspondence.

50
51 nondet (sol:@F@nondet):

7 function nondet() public pure returns(uint8)

8 { 52 // 17 file MyContract_case_study.sol line 1 function nondet

9 . . 53 unsigned char 1i;

~uint8 di; e ——

10 return i; 34 // 18

1 } 55 RETURN: i
56 // 19 file MyContract_case_study.sol line 1 function nondet
57 END_FUNCTION // nondet

58 AA

Figure 16: GOTO program of nondet function.

59

13 function get_x() public returns(uint8)
14 { 60 get_x (sol:@F@get_x):
15 x = 253; 61 // 20 file MyContract_case_study.sol line 1 function get_x
16 return x; 62 X=253i
17 } 63 // 21
64 RETURN: x
65 // 22 file MyContract_case_study.sol line 1 function get_x
66 END_FUNCTION // get_x

67 ANAA

Figure 17: GOTO program of get x function.

33

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

67
68

function func_case_study() external 69

{
uint8 y = nondet();

uint8 sum;

x = get_x();
T if (y > x)
{
sum = get_x() + 10;
}
else
{

sum = X + 1;

assert(sum > 100);

}

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106

func_case_study (sol:@F@func_case_study):

// 23 file MyContract_case_study.sol line 1 function
unsigned char i

// 24 file MyContract_case_study.sol line 1 function
unsigned char return_value$_nondet$l;

// 25 file MyContract_case_study.sol line 1 function
FUNCTION_CALL: return_value$_nondet$l=nondet()

// 26 file MyContract_case_study.sol line 1 function
y=return_value$_nondet$1;

// 27 file MyContract_case_study.sol line 1 function
unsigned char sum;

// 28 file MyContract_case_study.sol line 1 function
FUNCTION_CALL: x=get_x()

// 29 no location

IF !((signed int)y > (signed int)x) THEN GOTO 1

// 38 file MyContract_case_study.sol line 1 function
unsigned char return_value$_get_x$2;

// 31 file MyContract_case_study.sol line 1 function
FUNCTION_CALL: return_value$_get_x$2=get_x()

// 32 file MyContract_case_study.sol line 1 function

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

sum=(unsigned char)((signed int)return_value$_get_x$2 + 10);

// 33 file MyContract_case_study.sol line 1 function
dead return_value$_get_x$2;

// 34 file MyContract_case_study.sol line 1 function
GOTO 2

// 35 file MyContract_case_study.sol line 1 function

1: sum=(unsigned char)((signed int)x + 1);

// 36 file MyContract_case_study.sol line 1 function

2: ASSERT (signed int)sum > 100

// 37 file MyContract_case_study.sol line 1 function
dead sum;

// 38 file MyContract_case_study.sol line 1 function
dead y;

// 39 file MyContract_case_study.sol line 1 function
dead return_value$_nondets$l;

// 4@ file MyContract_case_study.sol line 1 function
END_FUNCTION // func_case_study

Figure 18: GOTO program of func_case_study.

34

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

108 __ESBMC_main (__ESBMC_main):

109 // 41 file esbmc_intrinsics.h line 16

110 __ESBMC_alloc=ARRAY_OF(0);

111 // 42 file esbmc_intrinsics.h line 19

112 __ESBMC_deallocated=ARRAY_OF(0);

113 // 43 file esbmc_intrinsics.h line 22

114 __ESBMC_is_dynamic=ARRAY_OF(0);

115 // 44 file esbmc_intrinsics.h line 25

116 _ ESBMC_alloc_size=ARRAY_OF(0);

117 // 45 file esbmc_intrinsics.h line 30

118 __ESBMC_rounding_mode=0;

119 // 46 file MyContract_case_study.sol line 1
120 x=0;

121 // 47 file pthread_lib.c line 54

122 __ESBMC_num_threads_running=0;

123 // 48 file pthread_lib.c line 53

124 __ESBMC_num_total_threads=0;

125 // 49 no location

126 FUNCTION_CALL: pthread_start_main_hook()
127 // 508 no location

128 FUNCTION_CALL: func_case_study()

129 // 51 no location

130 FUNCTION_CALL: pthread_end_main_hook()
131 // 52 file MyContract_case_study.sol line 1 function func_case_study
132 END_FUNCTION // func_case_study

133

Figure 19: Statement variable and function call.

As shown in Figure 18 and Figure 19, the GOTO program of the Solidity smart contract has
three important features:

e New intermediate variables.
It introduces new intermediate variables to facilitate the creation of SSA form by the
symbolic execution engine SymEx in the verification pipeline. For example, the return
value of get x function is represented by the intermediate variable
return_value$ nondet$1, as shown in line 73 of Figure 18.

e Change of Control Flow.
The GOTO program represents the control flow of the original program using guarded
GOTO statements. For example, the if-then-else statement is represented by the IF-
THEN-GOTO X statement, where X represents the label number. The expression “sum
= x + I” is represented by its equivalent labelled statement in line 95 of the GOTO
program.

e Statement variable as Global variable.

In the GOTO program the statement variable in a smart contract is represented by the
global variable in _ ESBMC _main function.

35

3.1.2 SSA Form

46
47
48
49
50
51
52
53
54
55
56
57
58
59

// all variables were declared as uint8 60

yl = nd_ucharl;
x1 = 253;

gl = Xl > x1;

61
62
63

suml = x1 + 10; // 7 due to overflow! 64

sum2 = x1 + 1; // 254
sum3 = ite(gl, suml, sum2);

assert(sum3 > 100);

—

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT ()
y?71!0&0#1 == func_case_study::$tmp::return_value$_nondet

func_case_study

$171!060#1

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT ()

x&0#2 == 253

Thread @
ASSIGNMENT (HIDDEN)

x&0#3 == 253

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT (HIDDEN)
goto_symex::guard?0!0&0#1 == (signed int)y?1!0&0#1 > 253

get_x

func_case_study

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT ()

x&0#4 == 253

Thread @
ASSIGNMENT (HIDDEN)
func_case_study::$tmp::return_value$_get_x$2?71!0&0#1 ==

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT ()
sum?1!0&0#1 == 7

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT (HIDDEN)

x&0#5 == 253

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT ()
sum?1!0&0#2 == 254

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT (HIDDEN)
x&0#6 == 253

Thread @ file MyContract_case_study.sol line 1 function
ASSIGNMENT (HIDDEN)
sum?1!0&0#3 == (goto_symex::quard?0!0&0#1 ? 7 : 254)

Thread @ file MyContract_case_study.sol line 1 function
ASSERT

execution_statet::\guard_exec?0!® => (signed int)sum?1!0&0#3 > 100 +—

assertion

get_x

253

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

func_case_study

Figure 20: SSA form of function_case_study shown in Figure 15.

36

The SSA form is shown in Figure 20. The SSA trace generated by the symbolic execution
engine of ESBMC is shown on the right. The manually simplified SSA is shown on the left.
Each statement is underlined and colour coded to show the correspondence. Compared to the
simplified SSA, the SymEx-generated SSA trace has the following features:

e Naming Convention.
The name of each indexed variable is shown in the front, and the index is shown at the
end. E.g., “x&0#4” where “x” denotes the variable name, and “#4” denotes the index in
SSA form.

e More intermediate assignments.
The SymEx-generated SSA trace contains more intermediate assignments because of
function call. It seems that these intermediate steps could be simplified.

e Guarded GOTO predicate.
This is represented by “gofo_symex.:guard”. (Line 60 in Figure 20)

e Assertion.
The assertion is shown with a prefix “execution_statet::”. (Line 92 in Figure 20)

A simplified SSA trace can be printed using the option “--ssa-smt-trace”. As shown in Figure
21, when generating the logic formulae, ESBMC uses a simplified SymEx-generated SSA trace.

1 Generated 1 VCC(s), 1 remaining after simplification (5 assignments)

2 Encoding remaining VCC(s) using bit-vector/floating-point arithmetic

3 Thread @

4 ASSIGNMENT (HIDDEN)

5 func_case_study::$tmp::return_value$_nondet$171!0&0#1 == i?1!0&0#0

6

7 Thread @ file MyContract_case_study.sol line 1 function func_case_study
8 ASSIGNMENT ()

9 y?1!0&0#1 == func_case_study::$tmp::return_value$_nondet$1?1!0&0#1

10

11 Thread @ file MyContract_case_study.sol line 1 function func_case_study
12 ASSIGNMENT (HIDDEN)

13 goto_symex::guard?0!0&0#1 == (signed int)y?71!0&0#1 > 253

14

15 Thread @ file MyContract_case_study.sol line 1 function func_case_study
16 ASSIGNMENT (HIDDEN)

17 sum?1!@&0#3 == (goto_symex::quard?0!0&0#1 7 7 : 254)

18

19 Thread @ file MyContract_case_study.sol line 1 function func_case_study
20 ASSERT
21 execution_statet::\guard_exec?@!® => (signed int)sum?1!0&0#3 > 100
22 assertion
23
24 Encoding to solver time: ©0.001s
25 Solving with solver Z3 v4.8.10
26 Encoding to solver time: 0.001s
27 Runtime decision procedure: 0.002s
28

Figure 21: Simplified SSA trace during SMT encoding.

37

3.1.3 Logic Formulae and Z3 Representation

1 C=[

2 yl = nd_uchar /\
3 x1 = 253 /\
4 gl = y1 > x1 /\
5 suml = 253 + 10 /\
6 sum2 = 253 + 1 /\
7 sum3 = ite(gl, suml, sum2)
8 1

9

10 p=1[sum3 > 100]
11

12

Figure 22: C and P formulae.

To use the Z3 solver, ESBMC must extract the logic formulae from the SSA form using Z3
syntax. The C and P formulae that are manually derived are shown in Figure 22. ESBMC-
generated formulae are shown in Figure 23.

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

(assert (= |sol:MyContract_case_study.solast@445@F@nondet@i?1!0&0#0 |
|sol:@F@func_case_study::$tmp::return_value$_nondet$171!0&0#1|))
(assert (= |sol:@F@func_case_study::$tmp::return_value$_nondet$171!0&0#1 |
|sol:MyContract_case_study.solast@445@F@func_case_study@y?1!0&0#1|))
(assert (= (bvsgt ((_ zero_extend 24)
|sol:MyContract_case_study.solast@445@F@func_case_study@y?1!0&0#1|)
#x0000007d)
|goto_symex: :guard?0!0&0#1|))
(assert (= (ite |goto_symex::guard?0!0&0#1| #x07 #xfe)
|sol:MyContract_case_study.solast@445@F@func_case_study@sum?1!0&0#3|))
(assert (let ((a!l (=> true
(=> |execution_statet::\\guard_exec?0!0|
(bvsgt ((_ zero_extend 24)
|sol:MyContract_case_study.solast@445@F@func_case_study@sum?1!0&0#3 |)
#x00000064)))))
(not a!l)))
Figure 23: ESBMC-generated C /\ ~P formulae

Any string bounded by “|...|” denotes a variable. E.g. in line 65 of Figure 23,
“|goto_symex::guard?0!0&0#1|” represents the guard “g/” as shown in line 4 of Figure 22.

38

Figure 23 shows the Z3 representation of the formulae in Figure 22. To understand the Z3
representation, we are going to walk through a list of Z3 syntax:

e assert command.
(assert (EXPR)) means “assert EXPR is true”.

e “=”goperator.
(= (EXPR_A) (EXPR_B)) means assigning EXPR B to EXPR_A, where EXPR denotes
a variable, a literal or a more complex expression that uses another Z3 command.

e bvsgt command.
(bvsgt (EXPR_A) (EXPR_B)), the bit-vector signed greater-than, which returns true if
“EXPR A>FEXPR B”. The default operand is 32 bits width.

e (_zero_extend 24) command.
This command represents zero extension with bit width 24. Since our example uses
uint8 (Figure 15), ESBMC needs to use (_ BitVec 8) to encode this data type. In order
to match the default operand bit width of 32, this value has to be zero extended with an
additional bit width of 24, i.e. pad 24 zeros to the front.

e not command.
(not EXPR_A) means the negation of EXPR A.

o jte (if-then-else) command.
(ite (EXPR _A) (VAL 1) (VAL 2)) means “if EXPR A is true, then returns VAL 1, else
return VAL 2”.

e "=>” (implication) command.
“=>" denotes implication. (=> (EXPR A) (EXPR_B)) means “EXPR A - EXPR B”.

e Jet command.
(let (IDENTIFIER A (EXPR _A)) (IDENTIFIER B (EXPR _B)) ...) means
“let IDENTIFIER A denotes EXPR_A, and let IDENTIFIER B denotes EXPR B”.
The user may declare more identifiers if needed.

The list above explains all the Z3 commands that appear in Figure 23, which enables us to map
the C and P formulae to the corresponding Z3 representations. This mapping is shown in Figure
24.

Note that Z3 representation is a simplified version of the C/\~P formulae. The clause “x/ =
2537 is simplified to a hex constant shown in line 64 in Figure 24. “#x00000064 " represents
253 in decimal. The same simplification approach also applies to the clauses “suml = 253 +
10” and “sum2 = 253 + I” as shown in line 66 in Figure 24: the former is simplified to a hex
constant “#x07” representing 7 in decimal and the latter is simplified to a hex constant “#xfe”
representing 254. The value of sum/ should be 263, but it wraps around and finally becomes
7 due to the arithmetic overflow error. The verification result in Figure 25 shows that Z3 found
satisfiability with respect to the formulae in Figure 22. ESBMC reported a counterexample that
satisfies the negation of the property “p = [sum3 > 100]”. The counterexample indicates the
presence of the arithmetic overflow error.

39

1 C=1[

2 yl = nd_uchar _ /\
3 x1 = 253 N\
4 gl = yl > x1 /\
5 suml = 253 + 10 /\
6 sum2 = 253 + 1 /\
7 sum3 = ite(gl, suml, sum2)
8 1

9

10 p=1[sum3 > 100]
11

12

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

(assert (= |sol:MyContract_case_study.solast@445@F@nondet@i?1!0&0#0 |
|sol:@F@func_case_study::$tmp::return_value$_nondet$1?71!0&0#1|))

(assert (= |sol:@F@func_case_study::$tmp::return_value$_nondet$171!0&0#1 |
|sol:MyContract_case_study.solast@445@F@func_case_study@y?1!0&0#1|))

(assert (= (bvsgt ((_ zero_extend 24)
|sol:MyContract_case_study.solast@445@F@func_case_study@y?1!0&0#1|)
#x0000007d)
|goto_symex::quard?0!0&0#1]))

(assert (= (ite |goto_symex::guard?@!0&0#1| #x07 #xfe)
|sol:MyContract_case_study.solast@445@F@func_case_study@sum?1!0&0#3|))

(assert (let ((a!l (=> true
(=> |execution_statet::\\guard_exec?0!0|
(bvsgt ((_ zero_extend 24)
|sol:MyContract_case_study.solast@445@F@func_case_study@sum?1!0&0#3 |)
#x00000064)))))
(not_a!1)))

Figure 24: Z3-representations of the formulae

40

Counterexample:

State 1 file MyContract_case_study. i thread 0

254 (11111110)
3 file MyContract_case_study.
253 (11111101)
4 file MyContract_case_study.

253 (11111101)

5 file MyContract_case_study.

= 7 (00000111)
State 6 file MyContract_case_study.

Violated property:
file MyContract_case_study.sol line 1 function func_case_study
assertion
(signed int)sum > 100

VERIFICATION FAILED
Figure 25: Verification result of the illustrative example.

41

3.2 Tracker-Based Hybrid Conversion

This section aims to explain the reason why the methodology that relies on Solidity JSON AST
was chosen, as well as the implementation of such methodology in ESBMC. This section starts
with a description of generalised frontend actions in ESBMC to verify general programming
language. Given an input Solidity program, our goal is to generate the symbol table using
ESBMC’s internal data structure symbolt, which is used in a later stage to generate the GOTO
program. This section describes the design challenges and outlines a new methodology to
resolve these challenges.

3.2.1 Generalised Frontend Actions

As described in Section 2.2, when verifying programs written in a general programming
language, ESBMC frontend actions can be generalised as follow:

e Pre-processing (pre-processor)
For C and C++, the purpose of this step is to perform speicfic manipulations based on
the preprocessor directives, e.g. substitute or expand macros or removing a code block
if it is bounded by the directives ‘#if 0’ and ‘#endif” [49].

e Lexical analysis (scanner)
The step aims to understand the “word” of the C or C++ source code. The scanner
groups the characters into lexemes and generate a sequence of tokens [21].

e Syntax analysis (parser)
The purpose of this step is to understand the structure of the input C or C++ source
code. The parser usually generates the AST to diagram the source code.

e Type checking (type checker)
The aim of this step is to convert each AST node into ESBMC’s intermediate
representation irept and generate a symbol table in which each symbol is represented
by ESBMC’s symbolt data structure.

Action #1, #2 and #3 are typical compiler phases. In ESBMC, these steps are handled by the
clang APIs. ESBMC has its type checker for step #4.

These actions lead to the creation of a symbol table. In ESBMC, the symbol table enables the
middle end to perform further actions, including:

e Convert the original program into the equivalent GOTO program
e Symbolically execute the program and generate the SSA form

3.2.2 Design Challenges and Decisions

Unlike general programming languages, Solidity is a domain-specific language (DSL). A DSL
is a programming language for a specific field, and it is designed so that the users can be
particularly productive in that field [22]. Solidity is a DSL with OOP features that are tailored
to smart contracts of the Ethereum blockchain.

42

Compared with C and C++ languages heavily used in the industry for many years, Solidity is
a relatively new language. To verify a programming language, there are two items to be
considers:

e The language standard
e The toolchain (e.g. compiler, linker and debugger)

The language standard provides a thorough and detailed description of the lexical convention,
formal grammar, and the production rules, e.g. C++11 standard [50] and C99 standard [51].
The toolchain provides libraries and APIs that allow the developers to design a language
verification tool. For C and C++, such libraries and APIS are provided by the clang compiler
suite. Additionally, there exists plenty of publications and online resources to assist the
developers in designing a new language verification tool based on the existing tools, e.g. the
tools in [45, 47, 48]. However, this is not the case for Solidity. Due to the lack of, designing a
new ESBMC frontend to verify smart contracts is a challenging task. The design challenges
are outlined as follows:

Design Challenge #1. Unlike C or C++, there is no officially published document of the
Solidity language standard. The only language documentation available is [16]. There is not
enough information to implement a scanner and a parser from scratch.

Design Challenge #2. Apart from the Github repository of the Solidity compiler! (solc), there
are no officially published books or papers to help the developers to use the libraries and APIs
provided by Solidity compilers?. To use these libraries and APIs, one has to become a solc
expert.

Design challenge #3. Solidity is a relatively new DSL that keeps evolving. Based on
Solidity's history, there were many breaking changes between two major versions [16]. These
changes are not backwards compatible. For example, it is impossible to use solc version
0.4.20 to compile a Solidity program containing features of so/c version 0.X.Y, where X > 4.
The breaking changes are of different types:

Syntax-only changes

Semantic-only changes

Semantic and Syntax changes

Deprecated elements

New features

Explicitness requirements, e.g. mark a function ‘virtual’ explicitly if it is defined
outside an interface without implementation (it is legal to do so in Solidity)

e Interface changes (including the changes in JSON AST)

! Solidity compiler (solc): https://github.com/ethereum/solidity
2 Having looked at the source code repository and the build directory of solc, there seem to exist some kind of
libraries and the corresponding include files, e.g. liblangutil, libsolc, libsolidity .etc.

43

The design goals are as following:

Design Goal #1. The new Solidity frontend of ESBMC shall complete lexical analysis and
syntax analysis of the input Solidity source code and generate the AST.

Design Goal #2. The new Solidity frontend of ESBMC shall complete the type checking of the
AST in Design Goal #1. The frontend shall transform the Solidity AST nodes into the
equivalent ESBMC irept nodes whilst preserving the semantic information, and generate the
corresponding ESBMC symbols modelled by symbolt class.

There are two methods to achieve these goals:

Methodology #1. Use Solidity source code as input. This frontend uses the libraries and
include files provided by solc. This methodology requires the integration of ESBMC with solc
libraries. The conversion functions of the new type checker rely on the solc libraries.

Methodology #2. Use JSON representation of Solidity AST as input. The JSON representation
of Solidity AST can be generated using the Solidity compiler option “--ast-compact-json”.
Then the new frontend needs to handle a JSON file. The conversion functions of the new type
checker is based on the high-level language constructs of Solidity.

Both methodologies can achieve Design Goal #1 and #2. Both methodologies obviate the need
to implement a scanner and a parser, and hence both can resolve Design Challenge #1.
However, Design Challenge #2 and #3 cannot be resolved using Methodology #1. For this
reason, we decided to go for Methodology #2 to implement a new Solidity frontend that
processes the JSON representation of Solidity AST.

Methodology #1:

Lexical Analysis + Parsing + Semantic Analysis

—‘l Solidity source file Symbol Table Exsiting ESBMC
.sol file »New Solidity Frontend———»{ middle end and
backend
Methodology #2:
Lexical Analysis + Parsing Semantic Analysis
sol file AST in JSON Symbol Table | Exsiting ESBMC

Solidity Compiler —————>New Solidity Frontend—————»| middle end and
backend

Figure 26: Methodology #1 and #2.

As shown in Figure 26, the lexical analysis and parsing phases are “outsourced” to the solc
(Solidity compiler), which just leaves the semantic analysis to be implemented. But the new
frontend of Methodology #1 has to handle all three phases. Due to the lack of documentation
of Solidity compiler, the programmable interfaces provided by solc are challenging to use.

44

The disadvantages of Methodology #1 are as follows:

As described by Design Challenge #2, due to the lack of publications and learning
resources of solc toolchain, one must become a solc expert to use the libraries and
include files provided by solc. Considering the time limit of this MSc project,
becoming a solc expert is a mission impossible. Having investigated the source code
and include files, using these libraries is as difficult as developing the new frontend
itself.

Since Solidity keeps evolving (cf. Design Challenge #3), the dependency of the new
type checker on solc libraries is likely to break if there are corresponding changes in

those libraries. Maintaining such dependency will become a Herculean task because

we may need to worry about almost all types of breaking changes as listed in Design
Challenge #3, which may change how a programmable interface is used.

As for Design Challenge #2 and #3, the advantages of Methodology #2 are as follow:

Methodology #2 does not use solc libraries. Therefore, Design Challenge #2 is
resolved.

Methodology #2 uses Solidity JSON AST as input. It is less sensitive to the breaking
changes because AST is a tree-structured IR representing the syntactic structure of a
source program [21]. Because we only need to worry about the structural changes with
respect to the JSON AST. Based on the historical records of Solidity breaking changes,
the frequency of such changes is very low. It only occurs once between version 0.5.0
(released in November 2018) and version 0.8.7 (released in July 2021). Therefore,
Methodology #2 is more robust to the breaking changes in as described in Design
Challenge #3.

Table 7 compares Methodology #2 to Methodology #1 with respect to the coverage of Design
Goals and Design Challenges. Table 8 compares these methodologies with respect to the
coverage of the frontend actions as described in Section 3.2.1.

Methodologies Design Design Design Design Design
Goal #1 Goal #2 Challenge Challenge Challenge
#1 #2 #3
Methodology #1 N4 N4 N4 X X
Methodology #2 v v v v v
Table 7: Coverage of Design Goals and Design Challenges
Methodologies Preprocessing Lexical Syntax Type Checking
Analysis Analysis
Methodology #1 N/A to Solidity X X Expected a new
type checker to be
implemented in
Methodology #2 4 v both methodologies
(bypassed) (bypassed)

Table 8: Coverage of frontend actions.

45

The lexical and syntax analysis phases can be bypassed in Methodology #2 because these
phases are handled by the solc compiler whilst generating the Solidity JSON AST.

As a short summary of this subsection, Methodology #2 gives better coverage of the Design
challenges shown in Table 7. It also obviates the need to become a solc expert to use the APIs
and libraries.

Methodology #2 leads us to a roadmap that contains the implementation milestones as
follow:

e Milestone #1. [Implementation of the New Language Mode]
Before adding the new Solidity frontend, ESBMC used to supported C and C++ only.
A new language mode must be added to support Solidity.

e Milestone #2. [Implementation of the New Type Checker]
The new frontend takes the JSON-represent of Solidity AST. A new type checker is
required to work with this format.

e Milestone #3. [Add support for ESBMC and SV-COMP Variables and Function]
The new frontend needs to support all ESBMC and SV-COMP variables and
functions.

Each subsection describes a detailed solution to achieve each milestone as listed above.

3.2.3 Solidity as A New Language Mode in ESBMC

To achieve Milestone #1, ESBMC must be extended to support Solidity as a new language
mode.

The list below summarised all the modifications in ESBMC to support a new language. This
list can also be referenced by other developers to facilitate future extensions, which hopefully
save a developer’s time during the project ramp-up phase.

e Add a new enum entry of the language to be supported in the mode table initialised in
src/esbme/globals.cpp.

e Define a new extension in src/langapi/mode.cpp to let ESBMC know about the
extension of the source file name.

e Define a new macro LANGAPI HAVE MODE X in src/langapi/mode.h, where X
denotes the name of the language to be supported.

e Add the new frontend placeholder (usually a new directory) under the source
directory, e.g. “src/solidity-frontend/<source files of the new frontend>" was added to

support the new Solidity mode that was added in the above steps.

e Add the corresponding directives in the CMakeList.txt at various level of the source
code repository to build the new frontend.

46

Since ESBMC is well-structured, achieving Milesonte #1 is relatively easy compared to the
other milestones. The above list covers most, if not all, major modifications to support a new
language mode in ESBMC.

3.2.4 Tracker-Based Conversion

The new Solidity frontend takes JSON-representation of the AST as input. To generate the
symbol table, a new type checker must transform each AST JSON node into an irept node and
convert the irept node into the corresponding symbolt, a data structure representing a symbol
in ESBMC.

There are various third-party libraries available to work with JSON files in C++. The most
popular one is nlohmann/json library® developed by Niels Lohmann. This library has been used
by many tools*, including American fuzzy lop, CMake, Doxygen, Valgrind, and Clang that is
used by ESBMC’s clang-based C frontend.

There are three challenges with respect to the implementation of the conversion process to
transform JSON-representation of an AST node to ESBMC irept node:

e Conversion Challenge #1.
To convert each AST node, the new frontend needs to traverse the Solidity AST. AST
is a tree structure. In clang-based frontend, this tree structure is well preserved by clang
and can be traversed using the APIs provided by clang. However, the input JSON file
is flat. Each AST node is a JSON object that just contains key-value pairs.

e Conversion Challenge #2.
The new type checker must have common conversion functions to process the child
nodes that hold the semantic information of a parent declaration node. (cf. Table 3)

e Conversion Challenge #3.
When processing different types in Solidity, the conversion functions must be able to
switch between different types of Solidity language constructs.

An illustrative example of Conversion Challenge #1 is shown in Figure 27 and Figure 28.
Take the expression “sum = get x() + y + z” as an example, this expression contains nested
binary operation expressions with a function call expression shown in Figure 27. The json
representation of such recursion is shown in Figure 28. The left-hand-side expression is parsed
as “((get x() + y) + z)”. Table 9 summarizes the solutions to resolve all Conversion
Challenges.

3 nlohmann/json library: https:/github.com/nlohmann/json
4 A list of tools that use nlohmann/json library can be found at https:/github.com/nlohmann/json#used-third-

party-tools

47

BinaryOperationExpr 1

sum=get x()+y+z
FunctionballExpr 1

BinaryOpérationExpr 2

BinaryOperationExpr 3
Figure 27: Recursion - nested BinaryOperation Expressions.

Conversion Challenges Solutions Remarks

#1 Introduce a common data Implemented in
structure tracker to re- solidty decl tracker.cpp
construct the tree

#2 Introduce a common data
structure for each type of
child nodes ,
SourcelocationTracker,
NamedDeclTracker, and
QualTypeTracker

5

#3 Introduce the type Implemented in
conversion functions solidity type.cpp®

Table 9: Solutions to design challenges

> The source code of solidity_decl_tracker.cpp is available at
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3badc7d219¢b014483170f75fcd8d/src/solidity-ast-
frontend/solidity_decl_tracker.cpp

¢ The source code of solidity type.cpp is available at
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3badc7d219¢b014483170f75fcd8d/src/solidity-ast-
frontend/solidity_type.cpp

48

"leftHandSide":
{=
}

"nodeType": "Assignment",
"operator': "=",
"rightHandSide":
{
"commonType" :
{=
I
"id": 60,
"isConstant":
"isLValue": :
"isPure": .
"1ValueRequested":
"leftExpression":
{
"commonType":
{=
-
Halie [S
"isConstant":
"isLValue": :
"isPure": :
"1ValueRequested":
"leftExpression":
{=
},
"nodeType": "BinaryOperation",
"operator': "+",
“"rightExpression":
{=
},
"src": "882:7:0",
"typeDescriptions":
{=
}
}

"nodeType": "BinaryOperation",
Ilopcratorll: II+II'
"rightExpression':
{=

"src": "882:17:0",
"typeDescriptions':
{=

}

Figure 28: JSON AST of a nested BinOpExpr.

To resolve all the Conversion Challenges, a tracker-based conversion method was proposed
to transform the AST JSON nodes into the equivalent irept nodes.

When traversing the AST node in the input JSON file, the Tracker-based Conversion
Method uses a common data structure called trackers to represent each AST node. This method
uses different types of trackers to model different types of child nodes shown in Figure 29, for
example:

e NamedDeclTracker to hold the name information
e SourceLocationTracker to hold the location information
* QualTypeTracker to hold the type information

> «NamedDeclTracker» nodeType :
(1 name "nodes":

«VarDecl» ® 9«SourceLocationTracker» "constant”:
vd & 1 location "id": 3,
"mutability": "
"name": " x"
LN L T T —
"nameLocation":
«QualTypeTracker»
| - 1 0 0
> type nodeType" :

"scope": y
" "

"spc': ,

«NamedDeclITracker» "stateVariable": == globa

1
= name "storagelLocation": " ",
"typeDescriptions":
«SourcelLocationTracker» "

"typeldentifier": " .
"typeString": " "

«FunctionDecl»

- N
fd 1> location

’

1 «QualTypeTracker»
type

Figure 29: Trackers.

Figure 29 shows different types of semantic trackers to track the information when traversing
the AST node in the input JSON file. Since the new frontend uses a for loop to iterate over the
nodes array in the input JSON file, the corresponding trackers are instantiated on the fly. When
the loop reaches the end of the array, the tree structure will be re-constructed. In a sense, it
“tracks” the progress as the loop moves from one node to another.

50

As shown in Figure 29, the Tracker-based Conversion Method also uses different types of
declaration trackers to represent different types of the declaration nodes in Solidity AST, for
example:

e A base DeclTracker class to track declaration node with the following derived classes:
o VarDeclTracker represents a variable declaration node.
o FunctionDeclTracker represents a function declaration node.

e A base StmtTracker class to track the statement node with the following derived classes:

o CompoundStmtTracker represents a block of statements.

o DeclRefExprTracker represents a statement node being an expression of
declared variable.

o BinaryOperatorTracker represents a statement node being an expression of
binary operation

o CallExprTracker represents a statement node being an expression of function
call.

Let us use another code example shown in Figure 30. The composition and inheritance relations
are shown in Figure 31.

function func_example() external

assert(_x ==)H
}
Figure 30: Example of a Solidity function.

- > StmtTracker

inheritance

CompoundStmtTracker
1 1 1

[l

BinaryOpExprTracker BinaryOpExprTracker CallExprTracker
_x=100; _y=100; assert(_x == 100);

k J

Figure 31: AST of the function body.

. . inheritance
inheritance

51

In Figure 31 Each node in this tree structure is represented by a tracker as the new frontend
iterates over the “nodes” array in the input JSON file. All expression trackers are derived
classes of the base class StmtTracker. Since a statement node can be a block statement or an
expression statement, and the expression statement can also be a block containing multiple
statements, it can become challenging to deal with such recursions. This challenge can be
resolved by the class inheritance hierarchy shown in Figure 31. The type checker can traverse
each statement node by recursively calling the function get expr shown in line 229 of Figure
32.

bool solidity convertert::get_expr(const StmtTrackerx stmt, exprt &new_expr)
{

static int call_expr_times = @; // TODO: remove debug

locationt location;

get_start_location_from_stmt(stmt, location);

assert(stmt);

switch(stmt->F e class())

{
case SolidityTypes::stmtClass::CompoundStmtClass:
{
printf(" @@@ got Expr: SolidityTypes::stmtClass::CompoundStmtClass, ");
printf(" call_expr_times=%d\n", call_expr_times++);

const CompoundStmtTrackerx compound_stmt =
static_cast<const CompoundStmtTrackers>(stmt); // pointer to const CompoundStmtTracker

code_blockt block;
unsigned ctr = 0;
for (const auto &stmt : compound_stmt->get_statements())

{
exprt statement;
if(get_expr(stmt, statement))

return true;

convert_expression_to_code(statement);
block.operands().push_back(statement);
++ctr;

}

Figure 32: get_expr function.

First, get_expr function checks the type of the statement tracker. Then, depending on the type,
the function converts the statement tracker into an exprtnode (the second argument
of get _expr function), where exprt implements the irept interface.

Suppose the tracker represents a compound statement tracker. In that case, it will be statically
casted to a “CompoundStmtTracker” and recursively calls the get expr function to convert
each individual statement into the equivalent exprt node. Figure 33 shows two more examples
to convert binary operation tracker and declaration reference tracker. The conversion of binary
operation trackers will be handled by get binary operator expr function (Figure 34). The
get_binary operator expr function calls back into get_expr function when converting the LHS
and RHS expressions. When converting a binary operator expression, the call stack is shown
in Figure 35.

52

// Binary expression such as a+l, a-1 and assignments
case SolidityTypes::stmtClass::BinaryOperatorClass:
{
printf(" @@@ got Expr: SolidityTypes::stmtClass::BinaryOperatorClass, ");
printf(" call_expr_times=%d\n", call_expr_times++);
const BinaryOperatorTrackerx binop =
static_cast<const BinaryOperatorTrackerx>(stmt); // pointer to const CompoundStmtTracker

if(get_binary_operator_expr(binop, new_expr))
return true;

break;

// Reference to a declared object, such as functions or variables

case SolidityTypes::stmtClass::DeclRefExprClass:

{
printf(" @@@ got Expr: SolidityTypes::stmtClass::DeclRefExprClass, ");
printf(" call_expr_times=%d\n", call_expr_times++);

const DeclRefExprTrackerx decl =
static_cast<const DeclRefExprTrackers>(stmt);

// associate previous VarDecl AST node with this DeclRefExpr

// In order to get the referenced declaration, we want two key information: name and type.
// We need to do the followings to achieve this goal:

// 1. find the associated AST node json object

// 2. use that json object to populate NamedDeclTracker and QualTypeTracker

/7 of this DeclRefExprTracker

assert(decl->get_decl_ref_id() != DeclRefExprTracker::declRefIdInvalid);
assert(decl->get_decl_ref_kind() != SolidityTypes::declRefError);

if(get_decl_ref(decl, new_expr))
return true;

break;

Figure 33: Conversion of BinOpStmt and DeclRefExor.

161 bool solidity_convertert::get_binary_operator_expr(
const BinaryOperatorTrackerx binop,
exprt &new_expr)

exprt lhs;
166 if(get_expr(binop->get_LHS(), lhs))
return true;

exprt rhs;
if(get_expr(binop->get_RHS(), rhs))
return true;

3 typet t;
174 if(get_type(binop->get_qualtype_tracker(), t))
17 return true;
Figure 34: get_binary operator_expr calls back into get_expr.

53

a+b

LHS conversion: a

get_expr

get_binary_operator_expr

get_binary_operator_expr

get_expr

get_expr

get_expr

LHS conversion completed

RHS conversion: b

get_expr

RHS conversion completed

get_binary_operator_expr

get_binary_operator_expr

get_binary_operator_expr

get_expr

get_expr

get_expr

Type conversion

get_type

get_binary_operator_expr

Type conversion completed

Conversion of
the operator "+"
(done within
get_binary_operator_expr)

get_binary_operator_expr

get_binary_operator_expr

get_expr

get_expr

get_expr

BinOpExpr conversion done,
back to get_expr function

get_expr

10

Figure 35: Call stack usage when converting "a+b"

54

As a concluding example of this subsection, let us look at a re-constructed tree of the Solidity
function shown in Figure 36, and its conversion to ESBMC irept.

function func_example2() external

{

sum = get_x() + y + z;

Figure 36: concluding example.

The re-constructed tree of the function example?2 is shown in Figure 37. This tree is converted
into ESBMC tree-structured intermediate representation shown in Figure 38.

FunctionDeclTracker
1 1 1 1
} [
QualType NamedDecl SourcelLocation
‘ Tracker Tracker Tracker CompoundStmtTracker
1
BinaryOpExprTracker
sum = (.)
LHS RHS
DeclRefExprTracker BinaryOpExprTracker
sum (get x() +y) +z
LHS RHS
BinaryOpExprTracker DeclRefExprTracker
get_x() +y z
LHS RHS
CallExprTracker DeclRefExprTracker
get_x() y

Figure 37: Re-constructed tree using trackers.

55

code_declt

code_blockt
operands
exprt
(BinOp)
operands
exprt exprt
(BinOp) (DeclRef)
operands
exprt exprt
(CallExpr) (DeclRef)

Figure 38: ESBMC irept parse tree..

After the conversion to irept, the corresponding symbolt can be generated using the standard
function get default symbol.

56

3.2.5 Hybrid Symbol Conversion for Intrinsic Declarations
There are three important functionalities a BMC needs to support:

e assert(). This function enables the user to define properties.

e assume(). This function enables the user to define constraints.

e nondet(). This function enables the user to assign a non-deterministic value to a
variable.

To support these functionalities, the new frontend needs to support ESBMC/SV-COMP
variables and functions shown in Figure 39. As described in Section 3.2.4, the tracker-based
conversion mechanism only works with the JSON representation of the Solidity AST nodes. It
does not work with C-style declarations.

std::string intrinsics =

Figure 39: ESBMC intrinsic variable and function declarations.

To support these intrinsic declarations, the new Solidity frontend needs to convert them into
symbols and add them to the symbol table. The final symbol table should contain not only the
symbols of Solidity declarations but also the symbols of ESBMC intrinsic declarations:

symbol table = {I, ...1,,, Sy ... Sy} (3.1)
where [, ... I,, represents the symbols of the intrinsic declarations and Sy ... S,, represents the

symbols of Solidity declarations.
There are two methods to generate the symbol table defined in (3.1):

57

e Method #1. Provide the JSON representations of these variables and functions. For
example, the function declaration, “void ESBMC assert(_Bool, const char *)”, can
be converted into the equivalent JSON representation shown in Figure 40.

e Method #2. Use a hybrid conversion mechanism shown in Figure 41:
o Use clang-c-frontend to convert ESBMC/SV-COMP declarations
o Use solidity-frontend to convert Solidity declarations

{
"name" : "__ESBMC_assert",
"returns" : "void",
"parameters" :
[
{
"type" : "_Bool"

’

"type" : "const char x"

}
{
}

]
}
Figure 40: JSON-representation of ESBMC _assert

Since there are more than 70 intrinsic declarations, manually converting them into the
equivalent JSON representation is a time-consuming task. If anything changes in the intrinsic
declarations, the developers must change the corresponding JSON representations, which leads
to more maintenance duties. Adding the JSON representations of the intrinsic declarations in
the new frontend appears to be reinventing the wheel. Therefore, Method #2 was chosen to
guide the implementation of the new Solidity frontend.

Hybrid conversion mechanism. The new Solidity frontend contains an instantiation of clang-
c-frontend that add the symbols of intrinsic declarations to the symbol table generated by the
Solidity type checker. Figure 41 illustrates this mechanism. The new Solidity frontend contains
an instantiation of clang-c-frontend to handle the symbol conversion of ESBMC intrinsic
declarations.

the new Solidity frontend

clnag-c-frontend

/

symbols of Solidity declarations symbols of intrinsic declarations

Symbol Table

Figure 41: Hybrid conversion mechanism.

58

3.3 Limitations of Trackers

As described in Section 3.2.4, tracker is a data structure used to reconstruct the tree from the
Solidity JSON AST nodes:

e FEach node is represented by a tracker object.

e FEach edge is represented by the composition relation between two tracker objects, e.g.
A CompoundStmtTracker is not a BinaryOpExprTracker; it may have one. A
BinaryOpExprTracker is not a CallExprTracker (i.e. function call); it may have a
CallExprTracker as the LHS or RHS operand.

Trackers preserve the syntactic structure whilst holding the semantic information of each node
in the original AST. However, trackers are not free to use. This section explains the limitations
of the tracker-based symbol conversion.

3.3.1 Scalability

The new Solidity frontend takes the JSON-representation of the original AST as input. In order
to re-construct the tree, the trackers essentially replicate the semantic information stored in
each JSON object, i.e. the data is duplicated and stored in two places in the memory: the JSON
objects and the tracker objects. The data replication is wasting the memory during the tree
restoration phase.

For the verification of small Solidity programs, the impact of data replication is negligible.
However, the tracker-based conversion mechanism may suffer from scalability and
performance problems when it comes to verify large and complex Solidity programs. Because
there are lots of recursions when converting a tracker node into irept node. Figure 42 shows an
illustrative example of a nested binary operation expression “sum =a + (b * (¢ *(...)))”.

59

= Stmt MMEEFERUE R- ; lecoll,

+ field: type {

ydeType'" : "ContractDefinition
+ method(type): type noc T/;‘ ntractD nition

inheritance
- nodeType" : "BinaryOpExpr",
- BinaryOperatorTracker .
+ RHS: Stmt*
+ LHS: Stmt* 1‘_\
inheritance
+ method(type): type
s "nodeType" : "BinaryOpExpr
‘:‘BinaryOperatorTracker < "LHS"
1
“—— + RHS: Stmt* > { name
+ LHS: Stmt*
"RHS"
+ method(type): type {
..
= BinaryOperatorTracker (more nested BinaryOpExpr here)
E .-
+ RHS: Stmt*
+ LHS: Stmt*

+ method(type): type

Figure 42: Trackers of nested BinOpExpr.

As the binary operator express grows, more tracker objects will be created to replicate the data
of the corresponding JSON objects, which will waste more memory. It can become even worse
when verifying multiple complex and large programs.

60

3.3.2 Maintainability, Extendibility and Readability

Since the first goal of the new Solidity frontend is to reconstruct the tree, the tracker class is a
“helper” data structure. The developers would need to maintain and extend such data structure
in the codebase. Since Solidity keeps evolving, here are the potential issues with respect to
extendibility and maintainability:

e Maintainability.

The structure of the tracker class may change according to changes of the corresponding
JSON objects. However, frequency of such changes is quite low based on the analysis of
the historical records of breaking changes as discussed in Section 3.2.2. To cope with such
changes, the developers may need to update the base tracker class and the corresponding
declaration class that derives the tracker class.

e Extendibility.
If a new type of tracker is required, the developers may also need to update three places
in the code:

1. Add anew tracker class in solidity decl tracker.h and solidity decl tracker.h

ii. Update the type files (solidity types.h and solidity types.cpp) to include the
new type.

iii. Add a new conversion function that converts this type of tracker into the irept
node.

e Readability.
The trackers hold the semantic information of the AST nodes, which facilitate the
conversion of AST nodes into irept nodes. The conversion functions are developed
based on the production rules of the formal grammar of the Solidity programming
language [16]. Using the trackers makes the program more complex to a developer
who does not know about the design rationale behind using the tracker data structure.

The tracker-based conversion mechanism gives rise to performance and scalability problems
and requires more efforts when it comes to maintaining and extending the code base.

61

3.4 Grammar-Based Hybrid Conversion

A new conversion methodology was proposed to resolve the limitations of the tracker-based
hybrid conversion methodology as previously mentioned. The new methodology is referred to
as the Grammar-Based Hybrid Conversion that was implemented with improvement as follow:

The scalability problem is resolved.
Completely removed data replication due to the usage of the tracker data structure

Code readability has been improved.

The implementation of conversion functions reflects the production rules in formal
grammar of the Solidity programming language, i.e. the Solidity grammar
documentation serves as the design specification of the new type checker of the Solidity
frontend in ESBMC. If a developer knows about Solidity grammar, the developer
should be able to observe the mapping of a production rule to the corresponding
conversion function.

Maintainability and extendibility have also been improved.
Reduced the number of files to be updated in case of a major update of the JSON
structure.

This section starts by investigating the feasibility of tracker removal. The following subsections
outline the design of grammar-based hybrid conversion.

3.4.1 Feasibility of Tracker Removal

As shown in Figure 43, recall that the new Solidity frontend reconstructs the tree whilst
iterating over the elements of JSON array “nodes”. The restored tree is formed of:

Nodes represented by tracker objects that hold the semantic information

Edges represented by the composition relations among different types of the tracker
classes

62

JSON-representation of AST nodes Reconstructed tree

ContractDofintion
1

"name": "MyContract",
"nameLocation: "72:10:0", 4
"nodeType'": "ContractDefinition",

"nodes": v :
[CompoundStmt Tracker

+

-
8

BinaryOpExprTracker

LHS RHS

b

Y '
DeclRo/Expr Trackor BinaryOpExprTracker

sum (ot x() ¢+ y) o2

LHS RHS

‘]

v
BinaryOpExpe Trackee

DeciRelExprTracker

get x() +y 2

{
}
{
}
{
}l
{m=
}
{
}
{
}
{
}

LHS RHS
L]

—

CarExprTracker DeciRetExpr Tracker

got_x

Figure 43: Tree re-constructed from the JSON AST.

In tracker-based conversion methodology, the conversion functions can be implemented so that
each conversion function handles one type of tracker as shown in Table 10.

Original Node Types Conversion Functions irept Nodes
VarDeclTracker get var code declt
FunctionDeclTracker get function code declt
QualTypeTracker get type typet
NamedDeclTracker get decl name irep idt
BinaryOperatorExprTracker | get binary operator expr exprt
SourceLocationTracker get location from decl location
DeclRefExprTracker get decl ref exprt
StmtTracker (the base class | get expr N/A

of all other tracker classes)

Table 10: Conversion functions for irept nodes.

Note that get expr by itself does not convert any node, because it is the traversal function that
walks through each node. Depending on the type of the tracker, get expr calls other functions

to perform the actual conversion.

To remove the trackers, the following conditions must be met:

e Condition #1.

The semantic information of the AST JSON node must be preserved, which will be

used to annotate irept nodes.

e Condition #2.

The composition relation between a declaration node and a child node must be

preserved.

63

e Condition #3.
The traversal function get expr can be reused in a recursive manner provided that the
correct order of function calls can be preserved.

As shown in Figure 44, a new conversion methodology, called Grammar-based conversion,
that meets all conditions was proposed to tackle the limitations of the tracker-based hybrid
conversion method. Grammar-based conversion method does not use trackers because all the
conversion functions are re-designed to work with the nlohmann::json objects.

Tracker-based conversion:

JSON file

Y

re-constructed trees conversion
nlohmann::json : - i - -
on using _functions | jreptannotation ——» symbolt

trackers

nlohmann Library

Grammar-based conversion with trackers removed:

JSON file
Grammar-based
conversion functions
Y that directly work on
nlohmann::json
nlohmann Library) » irept annotation ———> symbolt

Figure 44: Tracker-based vs. Grammar-based conversion.

3.4.2 Grammar-Based Conversion

A detailed study of the nlohmann JSON library for C++ shows that there exists a base type to
represent all types of JSON objects: the nlohmann::json data type [12]. All JSON value types
can be implicitly converted to nlohmann: :json type.

For example, the nodes array, the first element in that array, and typeDescription object can be
implicitly converted into the nlohmann::json data type as shown in Figure 45. The
nlohmann::json data type can be used to represent different JSON objects regardless of the
actual data structure. The JSON objects #2 and #3 can be represented by a constant reference
of the type nlohmann::json shown in Figure 46.

64

"name": "MyContract",
"nameLocation": "72:10:0",
"nodeType": "ContractDefinition", R y
T i nlohmann::json object #1
nodes':)
nlohmann::json object #2

"constant": ,

"id": 3,

"mutability": "mutable",

"name": "_x",

"namelLocation: "95:2:0",
"nodeType": "VariableDeclaration",
"scope": 73,

"src": "89:8:0",

"stateVariable": ,
"storagelLocation": "default",
"typeDescriptions”: nlohmann::json obje

"typeName":
{m=
}

isibility": "internal"

oy ey Syt St ey g ey o ey oy ey oyt

] ’

"scope": 74,

"src": "63:1180:0",
"usedErrors": []

Figure 45: The nlohmann::json data type.

nlohmann::json &object2 nodes [0];

nlohmann::json &object3 object2["typeDescrip
Figure 46: Type casting of AST nodes.

This feature of the nlohmann::json library fulfils the requirements as per Condition #1 and #2
in Section 3.4.1.

To fulfil the requirement as stated in Condition #3, the conversion functions have to be re-
designed to extract the structure of Solidity language construct from nlohmann::json data type
whilst preserving the correct order of functions calls when it comes to annotate the irepf nodes.
This is to ensure that all child nodes are visited in the correct order. For example, a function
parameter node must be converted before the function body node. Because the function
parameters may appear in the function body. If a function body node is converted before its
parameter node, the type checker will fail to convert any reference to the parameter.

65

The grammar-based conversion methodology uses the production rules of the Solidity grammar
to make sure each node is visited in the correct order. The production rule is specified in
Solidity documentation [16]. For example, the inif node of the for loop needs to be converted
before the body. Figure 47 (a) shows the production rule of the for loop in Solidity grammar.
Figure 47 (b) shows corresponding conversion steps in get statement function. The steps
shown in Figure 47 (b) falls within the case of ForStatement as shown in Figure 48.
“SolidityGrammar::StatementT: : ForStatement” represents the rule for-statement as part of the
rule statement shown in Figure 47. The colour coding shows the composition relation between
these two rules.

rule for-statement

For statement with optional init, condition and post-loop part.

.| variable-declaration-statement |

()
CT' expression-statement '_(_
) J 1
589 // 1. annotate init
590 codet init = code_skipt();
591 if (get_statement(stmt["initializationExpression"], init))
592 return true;
593
594 convert_expression_to_code(init);
595
596 // 2. annotate condition
597 exprt cond = true_exprt();
598 if (get_expr(stmt["condition"], cond))
599 return true;
600
601 // 3. annotate increment
602 codet inc = code_skipt();
603 if (get_statement(stmt["loopExpression"], inc))
(b) 604 return true;
605
606 convert_expression_to_code(inc);
607
608 // 4. annotate body
609 codet body = code_skipt();
610 if (get_statement(stmt["body"], body))
611 return true;
612
613 convert_expression_to_code(body);
614
615 code_fort code_for;
616 code_for.init() = init;
617 code_for.cond() = cond;
618 code_for.iter() = inc;
619 code_for.body() = body;
620
621 nev_expr = code_for;
622 break;
623 }

Figure 47: The conversion steps of a for loop.

66

bool solidity_convertert::get_sta ent(nlohmann::json &stmt, exprt &new_expr)
N
// For rule statement
// Since this is an additional layer of grammar rules compared to clang C, we do N(
// Just pass the new_expr reference to the next layer.
int call_stmt_times @; // TODO: remove debug

SolidityGrammar: :StatementT type SolidityGrammar:: (stmt);
(" @@@ got Stmt: SolidityGrammar::StatementT: :%s ', SolidityGrammar::
(" call_stmt_times=%d\n", call_stmt_times

switch(type)
{

case SolidityGrammar::StatementT: :Block:
{=
}
case SolidityGrammar::StatementT::ExpressionStatement:
{m=
}
case SolidityGrammar::StatementT::VariableDeclStatement:
{m=
}
case SolidityGrammar::StatementT::ReturnStatement:
{m=
}
case SolidityGrammar::StatementT::ForStatement: e
{m
}
case SolidityGrammar::StatementT::IfStatement:
{=
}
default:
{m=
}
}

return

}

Figure 48: the conversion function for “rule statement”.

rule statement
|
variable-declaration-statement
expression-statement
\l 1f-sfafemenf I y

\l !or-sEaEemenE I v
\l while-statement Il v

\l do-while-statement I y
\{ continue-statement I y
reak-statemen y

\l Ery-sfafemenf I A
\l return-statement Il A

\l emit-statement } y
\{ revert-statement I v
\I assembly-statement } J

Figure 49: Production rules of Solidity statement.

Figure 47 shows the grammar-based conversion steps that convers a Solidity for loop into
ESBMC IR code fort shown in Figure 50. Note that the condition part is currently modelled
as exprt as shown in Line 597 of Figure 47. It can be changed to code t if the for loop contains
empty or multiple conditional expressions.

67

code_fort

exprt
(or code_t)

Figure 50: equivalent ipret node of the Solidity “for” loop.

According to the production rule shown in Figure 47 (a), it is legal to write a for statement that
has empty init, condition and increment, such as “for (; ;)”. The code can be easily extended
to handle such cases. For example, Figure 51 shows a patch with just a few code lines to support
empty init expression.

diff --git a/src/solidity-frontend/solidity_convert.cpp b/src/solidity-frontend/solidity_convert.cpp

index 921b3d87a..0a67d4f0b 100644

--- a/src/solidity-frontend/solidity_convert.cpp

+++ b/src/solidity-frontend/solidity_convert.cpp

@@ -587,9 +587,12 @@ bool solidity_convertert::get_statement(const nlohmann::json &stmt, exprt &new_e
current_forStmt = &stmt;

// 1. annotate init

convert_expression_to_code(init);

Figure 51: Patch to support empty init expression.

During the implementation of the grammar-based conversion method, it was found that the

Solidity grammar contains some cyclic but non-ambiguous production rules as shown in Figure
52.

68

rule block

A curly-braced block of statements. Opens its own scope.

unchecked-block

rule unchecked-block

I_(unchecked)_' block |_|

rule statement

|
variable-declaration-statement
expression-statement
\| 1: f-sfafemenf = v
\{ for-statement II y

Figure 52: cycle references in Solidity grammar.

As shown in Figure 52, one of the production rules of rule statement generates block; one of
the production rules of block leads back to statement. These rules are unambiguous because
statement 1s bounded by curly braces in rule block. This relation of mutual inclusion is reflected
in the implementation shown in Figure 53.

69

429 bool solidity_convertert::get_block(const nlohmann::json &block, exprt &new_expr)
430 {
431 // For rule block

static int call_block_times = 0; // Jly: remove debug

locationt location;

get_start_location_from_stmt(block, location);

SolidityGrammar: :BlockT type = SolidityGrammar::get_block_t(block);
printf(, SolidityGrammar::block_to_str(type));
printf(, call_block_times++);

switch(type)

{
// deal with a block of statements
case SolidityGrammar::BlockT: :Statement:
{

const nlohmann::json &stmts = block[

~/ESBMC/ESBMC_Project/esbmc/src/solidity-frontend/solidity_convert.cpp[+] CWD: /Users/kunjian/ESBMC/ESBMC
}
}

new_expr.location() = location;
return 5

}

bool solidity_convertertiotaatltement(const nlohmann::json &stmt, exprt &new_expr)
{

// For rule statemenft

static int call_stmt_times = 0; // JMi: remove debug

SolidityGrammar::StatementT type = SolidityGrammar{iSERERgtement_t(stmt);
printf(, SolidityGrammar::statement_to_str(type));
printf(, call_stmt_times++);

switch(type)
{

case SolidityGrammar::StatementT: :Block:

{
get_block(stmt, new_expr);

Figure 53: cyclic references in Solidity grammar.

3.4.3 Improved Readability, Maintainability and Extendibility

As shown in Figure 47, Figure 48 and Figure 49, the grammar-based conversion method is easy
to follow because the implementation reflects the production rules in the Solidity grammar
specification. The names of different types strictly follow the naming conventions in Solidity
grammar. Compared to the tracker-based conversion, it significantly improves the readability
of the code compared to the tracker method as the trackers may seem confusing to the new
developers who do not necessarily know the specifics and design intentions of the tracker data
structure. The implementation of Solidity grammar production rules and conversion steps were
kept in two separate source files in tracker-based hybrid conversion method.:

e The production rules were implemented in the config function of a tracker.

e The conversion steps were implemented in the conversion functions that deals the
tracker.

70

In contrast, the grammar-based hybrid conversion method has everything contained in one
place. The conversion steps can be directly mapped to the production rules defined in the
Solidity grammar specification. For example, the conversion functions are named after the rule
names; each case statement of a conversion function is named after the corresponding
component names in that production rule. It would be relatively straightforward to locate the
conversion steps for a specific language construct. Therefore, it improves maintainability and
extendibility. To demonstrate the extendibility, Table 11 shows a group of patches to add
additional features.

Commit | Patche Description Changes Remarks Link
ad8680a | Add conversion steps of | 28 All patches are
the binary operators “<” | additions, available in
and “-” 0 deletions kunjsonO1/esbmc
Github’.
c80ba64 | Add conversion steps of | 74
assume function, as well | additions,
as binary operator “!=" 22
deletions
8ff8734 | Add support for | 6 __VERIFIER _assume
__VERIFIER assume | additions, | is an important function
3 deletions | defition for SV-COMP
85654eb | Add conversion steps of | 113
for loop additions,
3 deletions

Table 11: Extendibility of the new Solidity frontend.

7 Commit history: https:/github.com/kunjsong0 1/esbme/commits/dev-solidity-support

71

3.5 Summary of Methodology
This section describes two methodologies to implement the new Solidity frontend:

e Tracker-Based Hybrid Conversion
e Grammar-Based Hybrid Conversion

The implementation of these methodologies is shown in Figure 54 and Figure 55. Compared
to the Tracker-Based Hybrid Conversion method, the Grammar-Based Hybrid Conversion
method is more compact, and has improved readability, maintainability, and extendibility.

83 ./solidity_convert.h

15 ./CMakelists.txt

78 ./solidity_ast_language.h

34 ./solidity_convert_literals.cpp
93 ./solidity_type.h

9 ./typecast.h

224 ./solidity_type.cpp
931 ./solidity_convert.cpp
12 ./typecast.cpp
129 ./solidity_ast_language.cpp
1057 ./solidity_decl_tracker.cpp
604 ./solidity_decl_tracker.h
3269 total
Figure 54: Workload of Tracker-Based Hybrid Conversion method

./solidity_convert.h
./CMakelLists.txt
./solidity_grammar.cpp
./solidity_convert_literals.cpp
./solidity_language.h
./solidity_grammar.h
./pattern_check.h
./typecast.h
./solidity_convert.cpp
./solidity_language.cpp
./typecast.cpp
./pattern_check.cpp
total

Figure 55 Workload of Grammar-Based Hybrid Conversion method.

72

4 Evaluation

4.1 Test Suite Design

Since Solidity does not have a standard benchmark, a test suite was created. This test suite
contains t test cases, each of which is for a specific type of vulnerability. The test cases are
shown in Table 12.

Category Test Case ID Description
Pattern-Based #1 Authorization Through
Vulnerability Tx.origin in a payable function
in the smart contract
Reasoning-Based #2 Arithmetic overflow with
Vulnerability nested binary operator
expression
#3 Arithmetic underflow with
unary expression
#4 Loops. Use incremental-bmc to
detect arithmetic underflow in a
loop.
#5 Array Out-of-Bound exception
in a loop.
#6 Satisfiability test with nondet,
assume and assert
#7 Test VERIFIER assume

Table 12: Test suite

The test cases are classified into two groups: pattern-based vulnerability and reasoning-based
vulnerability. For pattern-based vulnerabilities, the new Solidity frontend loops over the AST
nodes and tries to detect a pattern of unsafe code. As for reasoning-based vulnerabilities, the
new Solidity frontend transforms the AST nodes into the irept nodes and generates the symbols
table. Then the rest is handed over to the middle end and backend of ESBMC verification
pipeline.

These test cases are microbenchmarks, which serve three purposes:
e To guide the development of a Solidity type checker. This project employs test-driven
development.

e To test the Solidity verification pipeline in ESBMC
e To test other verification tools and compare the results to ESBMC’s results.

Each subsection describes one test case in Table 12.

73

4.1.1 TCI1: Authorization Through Tx.orgin

This test case is shown in Figure 56. The function transferTo in Line 10 is used to transfer
Ethers to another smart contract. Since this function is used for making payment, it is protected
by the statement “require(tx.origin == owner),”. It means that the payment is authorized if and
only if the caller of this function is the owner of this smart contract. It seems reasonably safe
to authorize a payment by checking the precondition “(zx.origin == owner)”. However, it can
be easily attacked by the malicious contract shown in Figure 57.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.7.0 <0.9.0;

3 contract TxOriginVictim {

4 address owner;

5

6 constructor() {

7 owner = msg.sender;

8 }

9

10 function transferTo(address payable dest, uint amount) public {
11 require(tx.origin == owner);
12 dest.transfer(amount);

13 ¥

14 }

Figure 56: TCI - Authorization using Tx.Origin.®

// SPDX-License-Identifier: GPL-3.0

pragma solidity >=0.7.0 <0.9.0;

interface TxOriginVictim {

function transferTo(address to, uint amount);

contract TxOriginAttacker {

W o N L A WN R
-

address owner;

10 function TxOriginAttacker() public {

11 owner = msg.sender;

12 }

13

14 function getOwner() public returns (address) {
15 return owner;

16 }

17

18 function() payable public {

19 Tx0OriginVictim(msg.sender).transferTo(owner, msg.sender.balance);
20 }

21}

Figure 57: Attacker smart contract.’®

8 This example is taken from: https://medium.com/coinmonks/solidity-tx-origin-attacks-58211ad95514

74

With the new Solidity frontend, ESBMC can detect this vulnerability by checking an AST
node that contains the pattern as follow:

e A call to the authorization function “require”

e The argument of this function is a “BinaryOperation” expression that uses “=="
operator

o The “leftExpression” is a “MemberAccess” expression referring to the special
identifier “#x” and accessing to the member “origin”.

This pattern is shown in Figure 58.
Figure 59 shows that ESBMC successfully detected the vulnerability “authorization through

Tx.Origin” and identified it as SWC-115 listed in the SWC registry for Smart Contract
Weakness Classification and Test Cases [54].

- leftExpression"

expression':

{

"expression':

{

argumentTypes":

[e=

1%

id":

name':

nodeType": "Identifier",
overloadedDeclarations":

'id": 20,

'name": "tx",

‘nodeType": "Identifier"

'overloadedDeclarations": [],

'referencedDeclaration": -26,
R

'typeDescriptions":

typeldentifier": "t_magic_transaction”,
referencedDeclaration': typeString”: "tx
src': "243:7:0",

typeDescriptions”:

"typeldentifier": "t_function_require_pure$_t_bool
"typeString": function (bool) pure

: "origin",
"nodeType": "MemberAccess",
RS TGO e o =)
"typeDescriptions":

id": 24,

isConstant": ’
isLValue": -

isPure": -

kind": "functionCall",
LValueRequested": -
names": [],

nodeType'": "FunctionCall",

'typeldentifier”: "t_address",
'typeString": "address"

)
nodeType': "BinaryOperation",
op tor": =y
rightExpression":
{m=

},

Figure 58: Pattern of "Autorization through Tx.origin"

Done conversion of intrinsics...
Checking function transferTo

- Pattern-based checking: SWC-115 Authorization through tx.origin
statements in function body array ...

@@ checking body stmt @

- Found vulnerability SWC-115 Authorization through tx.origin
Assertion failed: (@), function check_authorization_through_tx_origin
Abort trap

Figure 59: ESBMC detects authorization through Tx.origin.

75

4.1.2 TC2: Arithmetic Overflow

This test demonstrates that ESBMC can detect arithmetic overflow error in a nested binary
operation expression shown in line 15 in Figure 60.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5 uint8 x;

6 uint8 y;

7 uint8 z;

8 uint8 sum;

9

10 function func_overflow() external {
11 X = 100;

12 y = 240;

13 z = 3;

14

15 sum = X + Yy + Z;

16 assert(sum > 100);

17 }

18 1}

Figure 60: TC2 - arithmetic overflow in a nested binary operation expression.

As shown in Figure 61, the arithmetic overflow error is successfully detected by ESBMC. The
counterexample shows that there exists a state, State 9, that violates the safety property “sum >
100” as specified by the assert statement in line 16 in Figure 60. Because sum was declared as
uint8, which can only represent values from 0 to 255. The expression “x + y + z” evaluates to
100 + 240 + 3 = 343, a value that cannot be represented by uint§.

76

349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391

Counterexample:

State 1 file MyContract_overflow_nested.sol line 1 thread @
x = 0 (00000000)

State 2 file MyContract_overflow_nested.sol line 1 thread @
y = 0 (00000000)

State 3 file MyContract_overflow_nested.sol line 1 thread @
z =0 (00000000)

State 4 file MyContract_overflow_nested.sol line 1 thread @
sum = @ (00000000)

State 5 file MyContract_overflow_nested.sol line 1 function
x = 100 (01100100)

State 6 file MyContract_overflow_nested.sol line 1 function
y = 240 (11110000)

State 7 file MyContract_overflow_nested.sol line 1 function
z = 3 (00000011)

State 8 file MyContract_overflow_nested.sol line 1 function
sum = 87 (01010111)

State 9 file MyContract_overflow_nested.sol line 1 function

Violated property:
file MyContract_overflow_nested.sol line 1 function func_overflow
assertion
(signed int)sum > 100

VERIFICATION FAILED

Figure 61: TC2 result.

77

func_overflow

func_overflow

func_overflow

func_overflow

func_overflow

thread @

thread @

thread @

thread @

thread @

4.1.3 TC3: Arithmetic Underflow

This test demonstrates that ESBMC can detect arithmetic underflow in a program that
contains unary operators shown in line 9 and 10 in Figure 62.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5 uint8 x;

6

7 function func_underflow() external {
8 x =13

9 -=X}

10 -=X3

11 assert(x < 5);

12 }

13}

Figure 62: TC3 —arithmetic underflow with unary operators

As shown in Figure 63, the arithmetic underflow is successfully detected by ESBMC. The
counterexample shows that there exists a state, State 5, that violates the safety property “x < 5”
as specified by the assert statement in line 11 in Figure 62. Because x was declared as uint§,
which can only represent values from 0 to 255. The expression “--x” in line 9 and 10 decrements
x twice. The result is -/, a value that cannot be represented by uint8. Due to arithmetic
underflow, -/ wraps back to 255.

332 Counterexample:

333

334 State 1 file MyContract_underflow_UnaryOp.sol line 1 thread @

335

336 x = @ (00000000)

337

338 State 2 file MyContract_underflow_UnaryOp.sol line 1 function func_underflow thread @
339

340 x =1 (00000001)

341

342 State 3 file MyContract_underflow_UnaryOp.sol line 1 function func_underflow thread @
343

344 x = 0 (00000000)

345

346 State 4 file MyContract_underflow_UnaryOp.sol line 1 function func_underflow thread @
347

348 x = 255 (11111111)

349

350 State 5 file MyContract_underflow_UnaryOp.sol line 1 function func_underflow thread @
351

352 Violated property:

353 file MyContract_underflow_UnaryOp.sol line 1 function func_underflow

354 assertion

355 (signed int)x < 5

356

357

358 VERIFICATION FAILED
Figure 63: TC3 result

78

4.1.4 TC4: Loops

This test case aims to test the verification strategy “--incremental-bmc” in ESMBC. The code
is shown in Figure 64. This test case contains a bug of arithmetic overflow in the 3™ iteration

of the loop.

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.26;

contract MyContract {
uint8 _x;

function func_loop() external {
X =2
for (uint8 i = @; i < 3; ++i)
{
X=_Xx=-1;
assert(_x < 5);
}
}

Figure 64: TC4 — loop

As shown in Figure 65, the bug is successfully detected by ESBM. To show which loop
iteration triggers this bug, TC#4 was tested using “--incremental-bmc” option so that ESBMC
can unwind the loop incrementally with the index &. ESBMC reported “Bug found (k = 3)”,
which means that the bug was found in the 3 iteration. After the 2" iteration, x becomes 0. In
the 3™ iteration, x is decremented by 1, which leads to the arithmetic underflow error.

79

394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438

Counterexample:

State 1 file MyContract_underflow_loop.sol line

1

thread @

_x =0 (00000000)

declared before the loop

State 2 file MyContract_underflow_loop.sol line

1

function

_x =2 (00000010)

func_loop

thread @

assignment before the loop

State 3 file MyContract_underflow_loop.sol line

1

function

i=10 (00000000)

State 4 file MyContract_underflow_loop.sol line

1

function

_x =1 (00000001)

func_loop

func_loop

thread @

thread @

State 5 file MyContract_underflow_loop.sol line

1

function

i =1 (00000001)

State 6 file MyContract_underflow_loop.sol line

1

function

_x =0 (00000000)

func_loop

func_loop

thread @

thread @

State 7 file MyContract_underflow_loop.sol line

1

function

i =2 (00000010)

State 8 file MyContract_underflow_loop.sol line

1

function

_x = 255 (11111111)

func_loop

func_loop

thread @

thread @

State 9 file MyContract_underflow_loop.sol line

1

function

Violated property:

func_loop

file MyContract_underflow_loop.sol line 1 function func_loop

assertion
(signed int) _x <5

VERIFICATION FAILED

thread @

Violated the above property when k = 3

Bug found (k = 3)

Figure 65: TC4 result

80

4.1.5 TCS: Array Out-of-Bound Exception in a loop

This test demonstrates that ESBMC can detect out-of-bound exceptions in an array subscript
expression shown in line 10 in Figure 66. Similar to TC4, TCS was also tested using the option
“-—-incremental-bmc” to verify array out-of-bound exception in a loop.

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5

6 function func_array_loop() external pure {
7 uint8([2] memory a;

8

9 alo] = 10@;

10 for (uint8 i = 1; i < 3; ++i)
11 {

12 alil = 1ee;

13 assert(al[i-1] == 100);

14 }

15 }

16 }

Figure 66: TC5 — Array out-of-bound access a loop.

As shown in Figure 67, ESBMC successfully detected the bug. ESBMC reported “Bug found
(k = 2)”, which means that the bug was found in the 2" iteration of the loop. In this iteration,
the array subscript expression “a/i/ = 100 contains an invalid index i = 2, which exceeds the
bound of this array.

388 Counterexample:

389
390 State 1 file MyContract_array_loop.sol line 1 function func_array_loop thread @
391 .
assignment before loop
392 a[0] = 100 (01100100)
393
394 State 2 file MyContract_array_loop.sol line 1 function func_array_loop thread @
395
396 i =1 (00000001) k=1
397
398 State 3 file MyContract_array_loop.sol line 1 function func_array_loop thread @
399
400 all] = 100 (01100100)
401
402 State 5 file MyContract_array_loop.sol line 1 function func_array_loop thread 0
403
404 i =2 (00000010) k=2
405
406 State 6 file MyContract_array_loop.sol line 1 function func_array_loop thread 0
407
408 Violated property:
409 file MyContract_array_loop.sol line 1 function func_array_loop
410 array bounds violated: array “a' upper bound
411 (signed long int)i < 2
412
413

414 VERIFICATION FAILED

415 /
416 Bug found (k = 2)

Figure 67: TCS result.

81

4.1.6 TC6: Satisfiability Test using nondet, assume and assert

ESBMC can find a counterexample to satisfy the negation of the property we would like to
check. This test case aims to show the effect of additional constraints. The test case is shown
in Figure 68. The data type used in this test case is uint§.

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5 uint8 x;

6 uint8 sum;

7

8 function nondet() public pure returns(uint8)
9 {
10 uint8 i;

11 return 1i;
12 }

13

14 function _ ESBMC_assume(bool) internal pure { }
15

16 function func_sat() external {

17 X = 0;

18 uint8 y = nondet();

19 sum = X + Y;
20
21 // C : Add additional constraints here
22
23 // P : Properties we want to check
24 assert(sum % 16 != 0);
25 }
26 }

Figure 68: TC6 — effect of ""assume" on finding satisfiability.

The satisfiability problem is described as follow:

Satisfiability #1. Given the binary operation expression “sum =x + 7y’ where x = 0, find a
value of y that satisfies the NEGATION of the property “sum % 16 !=0".

The negation of the property in line 24 is “sum % 16 == (0”. ESBMC finds the answer to
Satisfiability #1:y = 240 shown in line 357 in Figure 69.

82

355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

State 1 file MyContract_satisfiability.sol line 1 function func_sat thread @

y = 240 (11110000)

State 2 file MyContract_satisfiability.sol line 1 function func_sat thread @

sum = 240 (11110000)

State 3 file MyContract_satisfiability.sol line 1 function func_sat thread @

Violated property:
file MyContract_satisfiability.sol line 1 function func_sat
assertion
(signed int)sum % 16 != @

VERIFICATION FAILED
Figure 69: Answer to Satisfiability #1.

Satisfiability #2. Given the binary operation expression “sum =x + 7y’ where x = 0 and
220 <y <255, find a value of y that satisfies the NEGATION of the property “sum % 16 !=0"".

To specify the range “220 <y < 2557, additional constraints are added using the specifical

function

ESBMC _assume” in line 22 and 23 in Figure 70. In this range, there are two

numbers satisfying the negation of the property in line 26 of Figure 70: {224, 240}. ESBMC
successfully found the answer y = 224 shown in line 389 in Figure 71.

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5 uint8 x;

6 uint8 sum;

7

8 function nondet() public pure returns(uint8)
9 {

10 uint8 i;

11 return 1i;

12 }

13

14 function _ ESBMC_assume(bool) internal pure { }
15

16 function func_sat() external {

17 X = 0;

18 uint8 y = nondet();

19 sum = X + y;

20

21 // C : Add additional constraints here
22 __ESBMC_assume(y < 255);

23 __ESBMC_assume(y > 220);

24

25 // P : Properties we want to check

26 assert(sum % 16 != 0);

27 }

28 }

Figure 70: updated TC6 for Satisfiability #2.

&3

373 Counterexample:

374

375 State 1 file MyContract_satisfiability_2.sol line 1 thread @

376

377 x = 0 (00000000)

378

379 State 2 file MyContract_satisfiability_2.sol line 1 thread @

380

381 sum = @ (00000000)

382

383 State 3 file MyContract_satisfiability_2.sol line 1 function func_sat thread @
384

385 x = 0 (00000000)

386

387 State 4 file MyContract_satisfiability_2.sol line 1 function func_sat thread @
388

389 y = 224 (11100000)

390

391 State 5 file MyContract_satisfiability_2.sol line 1 function func_sat thread @
392

393 sum = 224 (11100000)

394

395 State 8 file MyContract_satisfiability_2.sol line 1 function func_sat thread @
396

397 Violated property:

398 file MyContract_satisfiability_2.sol line 1 function func_sat

399 assertion

400 (signed int)sum % 16 != 0

401

402

403 VERIFICATION FAILED
Figure 71: Answer to Satisfiability #2.

Satisfiability #3. Given the binary operation expression “sum =x + 7y’ where x = 0 and
220 <y <255, andy is not 224, find a value of y that satisfies the NEGATION of the property
“sum % 16 1= 0".

To specify the the additional condition “y is not 244”, additional constraint is added to exclude
the number 224 in line 24 in Figure 72. In this range, there are two numbers satisfying the
negation of the property in line 27: {224, 240}. Since the number 224 is excluded, this only
leaves us with the number 240. ESBMC successfully found the answer y = 240 shown in line
399 in Figure 73.

84

W o N O AW N

NN NNNNRNNNNRNBR R B B 92 3 93 @92 B2 92
W 0~ A WNR®@SW®W®ONO U HE WRNRS®

// SPDX-License-Identifier: GPL-3.0
pragma solidity >=0.4.26;

contract MyContract {
uint8 x;
uint8 sum;

function nondet() public pure returns(uint8)
{

uint8 1i;

return i;

function _ ESBMC_assume(bool) internal pure { }

function func_sat() external {
X = 0;
uint8 y = nondet();
sum = X + y;

// C : Add additional constraints here
__ESBMC_assume(y < 255);

__ESBMC_assume(y > 220);

__ESBMC_assume(y != 224); // 224 = 16 * 14;

// P : Properties we want to check
assert(sum % 16 != 0);

Figure 72: updated TC6 for Satisfiability #3.

85

383 Counterexample:

384

385 State 1 file MyContract_satisfiability_3.sol line 1 thread @

386

387 x = @ (00000000)

388

389 State 2 file MyContract_satisfiability_3.sol line 1 thread @

390

391 sum = @ (00000000)

392

393 State 3 file MyContract_satisfiability_3.sol line 1 function func_sat thread @
394

395 x = 0 (00000000)

396

397 State 4 file MyContract_satisfiability_3.sol line 1 function func_sat thread @
398

399 y = 240 (11110000)

400

401 State 5 file MyContract_satisfiability_3.sol line 1 function func_sat thread @
402

403 sum = 240 (11110000)

404

405 State 9 file MyContract_satisfiability_3.sol line 1 function func_sat thread @
406

407 Violated property:

408 file MyContract_satisfiability_3.sol line 1 function func_sat

409 assertion

410 (signed int)sum % 16 != 0@

411

412

413 VERIFICATION FAILED
Figure 73: Answer to Satisfiability #3.

Satisfiability #4. Given the binary operation expression “sum =x + 7y’ where x = 0 and
220 <y < 255, and y is not 224 or 240, find a value of y that satisfies the NEGATION of the
property “sum % 16 !=0".

To exclude the number 240, additional constraint is added to exclude the number 240 in line
25 in Figure 74. In this range, there are two numbers that satisfies the negation of the property
in line 28: {224, 240}. Since both 224 and 240 are excluded, this only leaves us with an empty
set @. As shown in Figure 75, ESBMC reports “VERIFICATION SUCCESSFULL” because
it cannot find a counterexample to satisfy the negation of the property in line 28 of Figure 74.

86

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393

1 // SPDX-License-Identifier: GPL-3.0
2 pragma solidity >=0.4.26;
3
4 contract MyContract {
5 uint8 x;
6 uint8 sum;
7
8 function nondet() public pure returns(uint8)
9 {
10 uint8 i;
11 return i;
12 }
13
14 function _ ESBMC_assume(bool) internal pure { }
15
16 function func_sat() external {
17 X = 0;
18 uint8 y = nondet();
19 sum = X + y;
20
21 // C : Add additional constraints here
22 __ESBMC_assume(y < 255);
23 __ESBMC_assume(y > 220);
24 __ESBMC_assume(y != 224); // 224 = 16 * 14;
25 __ESBMC_assume(y != 240); // 240 = 16 * 15;
26
27 // P : Properties we want to check
28 assert(sum % 16 != 0);
29 }
30}

Figure 74: updated TC6 for Satisfiability #4.

Generating GOTO Program

GOTO program creation time: 0.294s

GOTO program processing time: 0.000s

Starting Bounded Model Checking

Symex completed in: ©.002s (21 assignments)

Slicing time: 0.000s (removed 1 assignments)

Generated 1 VCC(s), 1 remaining after simplification (20 assignments)
No solver specified; defaulting to Boolector

Encoding remaining VCC(s) using bit-vector/floating-point arithmetic
Encoding to solver time: 0.000s

Solving with solver Boolector 3.2.1

Encoding to solver time: 0.000s

Runtime decision procedure: 0.001s

BMC program time: 0.005s

VERIFICATION SUCCESSFUL
Figure 75: Answer to Satisfiability #4.

87

4.1.7 TCT7: Satisfiability Test using SV-COMP Function

This test case aims to show the effect of additional constraints using VERIFIER _assume
function. The test case repeats the test of Satisfiability #3 defined in the previous section. As
shown in Figure 76, TC7 is an updated version of TC6 with the modifications as follow:

e ESBMC assume function is replaced by VERIFIER _assume function in line
15.

e The additional constrains are specified in using VERIFIER _assume in lines 23, 24
and 25.

As shown in Figure 77, ESBMC can find the answer y = 240, which proves that the new
Solidity frontend also supports VERIFIER assume function.

1 // SPDX-License-Identifier: GPL-3.0

2 pragma solidity >=0.4.26;

3

4 contract MyContract {

5 uint8 x;

6 uint8 sum;

7

8 function nondet() public pure returns(uint8)

9 {

10 uint8 1i;

11 return 1i;

12 }

13

14 //function __ ESBMC_assume(bool) internal pure { }
15 function _ VERIFIER_assume(bool) internal pure { }
16

17 function func_sat() external {

18 X = 0;

19 uint8 y = nondet();
20 sum = X + Yy,
21
22 // C : Add additional constraints here
23 __VERIFIER_ assume(y < 255);
24 __VERIFIER_ assume(y > 220);
25 __VERIFIER assume(y != 224); // 224 = 16 % 14;
26
27 // P : Properties we want to check
28 assert(sum % 16 != 0);
29 }
30 }

Figure 76: TC7 — effect of "assume'’ on finding satisfiability.

88

394

State

1

file MyContract_satisfiability_VERIFIER.

sol

State

®

2

(00000000)

file MyContract_satisfiability_VERIFIER.

sol

sum

State

3

0 (00000000)

file MyContract_satisfiability_VERIFIER.

sol

4

(00000000)

file MyContract_satisfiability_VERIFIER.

sol

State

240 (11110000)

5

file MyContract_satisfiability_VERIFIER.

sol

sum

State

9

240 (11110000)

file MyContract_satisfiability_VERIFIER.

sol

Violated property:
file MyContract_satisfiability_VERIFIER.sol line 1 function func_sat
assertion

(signed int)sum % 16 != @

VERIFICATION FAILED
Figure 77: TC7 result. Answer to Satisfiability #3.

4.2 Threats to Validity

Internal Validity.

e FEach test case was designed to just contain one vulnerability. The vulnerability does
not have dependencies on a second vulnerability. The vulnerability in each test case is
of the type specified by the SWC registry [54]. For example, the Tx.Origin test case is
the vulnerable example from the official Solidity document. Using Tx.Origin for
authorization is considered a pitfall in Solidity document [55]. Remix IDE, Slither,
Mythril and ESBMC were able to detect such vulnerability. However, SmartCheck and

Oyente are not able to detect it.

Generalizability.

The test cases are not tailored SMT-Based Bounded Model Checking. They were designed to

be used as a general case.

e FEach test case was a well-formed Solidity program (c.f. Section 2.1.2) because it is
syntactically correct, and can be compiled by Solidity compiler without any errors or

line

line

line

line

line

line

thread @

thread @

function

function

function

function

func_sat thread @

func_sat thread @

func_sat thread @

func_sat thread @

warnings. All language constructs were used according to Solidity grammar rules.

89

4.3 Findings and Comparison to Other Verification Frameworks

The test cases were also run with other state-of-the-art Solidity verification frameworks. This
section compares ESBMC to other verification frameworks. As shown in Table 13 and Table
14, only ESBMC can verify all tests cases and provide counterexamples for each type of
vulnerability.

Vulnerability ﬂ%emix Smartcheck [Slither |Oyente [Mythril [FESBMC* [SolAnalyser

Detection DE

Overflow N ot Not found N ot N ot Found Found This
found found [found framework

Underflow Not Not found [Not Not Not found [Found does not work
found found |found with Solidity

TxOrigin Found [Not found Found [Not Found Found compiler

found version 0.8.26
Array out of [Not Not found Not Not Found Found
bound access [found found [found

Table 13: Compare ESBMC to other tools.’

Counterexamples ﬂ%emix Smartcheck Slither [OyenteMythril *ESBMC* SolAnalyser
DE
Overflow N/A N/A N/A N/A [No counter- [Counter- This
example example framework
rovided rovided does not
Underflow IN/A IN/A IN/A N/A [N/A Counter- work with
example Solidity
rovided compiler
TxOrigin TxOrigin [N/A TxOrigin [N/A [TxOrigin [TxOrigin version
[dentified [dentified [dentified [ldentified 0.8.26
Array out of bound [N/A IN/A IN/A N/A [Counter- |Counter-
access example example
rovided rovided

Table 14: Availability of counterexamples.

The evaluation shows that ESBMC (Solidity frontend) outperforms all other tools.

9 https://github.com/kunjsong01/data_set/tree/main/vulnerability examples/results Nedas

90

5 Conclusion and Further Work

This chapter reviews the deliverables of this project to determine to what extent the objectives
have been met, and reflect on the project to assess what went well and what could be improved.
This chapter ends by discussing limitations and recommending future work.

5.1 Deliverables and Key Achievements

Deliverables.

A new Solidity frontend was developed to enable ESBMC to verify smart contracts written in
Solidity programming language. In this new frontend, the most critical component is the type
checker. Two methods were proposed and implemented to implement the new type checker to
convert Solidity AST nodes into ESBMC irept nodes: Tracker-Based Hybrid
Conversion and Grammar-Based Hybrid Conversion. As a result, two versions of the new
Solidity frontend were developed:

Versions Methodology Workload

f061108'° Tracker-Based 3629 lines of C++ code
Hybrid Conversion

66136ff1° Grammar-Based 3087 lines of C++ code
Hybrid Conversion

Table 15: Two versions of the new Solidity frontend.

As shown in Table 15, the new Solidity frontend that was implemented using Grammar-Based
Hybrid Conversion is more compact. To integrate the new frontend with existing ESBMC
language infrastructure, the following patches were merged to the dev-solidity-support branch:

Patches Description Workload

Commit d7ac874'° Added Solidity placeholders | 144 additions and 1 deletion

Commit 80114130 Fixed linking error in 5 additions and 5 deletions
CMake

Table 16: Integrate the new Solidity frontend with ESBMC.

Table 16 shows that ESBMC is well-structured and can be easily extended to add a new
frontend to support a new language.

Since Solidity does not have a standard benchmark, a test suite was also developed to test the
new Solidity frontend. The Grammar-based Hybrid Conversion method facilitates the
extension and maintainability of code to support the verification of more complex Solidity
programs that contain advanced language constructs and special functions like assume and
nondeterminism.

Key Achievements.

In this project a new Solidity frontend is implemented, which enables ESBMC to verify
Solidity smart contracts using SMT-based Bounded Model Checking. The key component in
this new frontend is the type checker, which was implemented based on the new symbol
conversion methodology Grammar-based Hybrid Conversion. It also supports the main

10 Available at: https://github.com/kunjsong01/esbmc/commits/dev-solidity-support/src

91

features of a bounded model checker: nondet, assert and assume. Apart from the new Solidity
frontend, three patches were submitted and merged to ESBMC main line:

Patch Description Patch size

Commit 34cfd4a6 Improved building 42 additions and 4 deletions
instructions for macOS

Commit 3f9d3f8b PR #485 - Fixed symbol 3 additions and 1 deletions
table printing

Commit 39bf25d4 Added test case for PR #485 | 12 additions and 0 deletions

Table 17: Contributions to ESBMC main line.

5.2 Reflection

This subsection summarizes what went well and what could be improved, which is similar to
Agile Retrospective [56].

What went well?

Due to the lack of a standard benchmark for Solidity smart contracts, this project employs the
test-driven development method [57]. Before extending the code to support a new Solidity
language construct that usually needs some prerequisites to support multiple related production
rules in Solidity grammar, a test case that contains such construct is developed before writing
the code.

What could be improved?

Similar to other software development projects, this project also contains development tasks
that consume more time than the original estimate. Making a precise estimate for each task is
as difficult as the project itself. In this project, a 25% of the buffer time was used, e.g. if the
original estimate for a development task is 2d (i.e. two days in Jira time unit [58]), a buffer
time of 4h (i.e. four hours in Jira time unit) is taken into the overall estimate. However, there
still exists a few tasks that exceed 100% of the original estimate.

For example, the original estimate of adding support for function return was 6 hours, but the
actual time logged was two days. This overflow happened because of the unexpected blocking
task to implement FunctionToPointer decay. A similar case also happened when implementing
the feature to type check array due to ArrayToPointer decay.

92

5.3 Limitations and Future Work

To support all Solidity features, the new Solidity frontend must be extended to support all
production rules as specified in Solidity grammar.

Solidity is an imperative programming language supporting the objected oriented programming
paradigm. Similar to a class in other OOP programming languages like C++ and Java, a Solidity
contract is a container that includes the data and corresponding methods. Solidity supports:

1.
1i.
1ii.
iv.

Multiple inheritance as well as polymorphism

Interface that contains function declarations without implementation
Special functions like constructor and destructor (called selfdestruct).
Visibility specifiers, such as public, private, external, and internal.

Apart from these standard OOP features, Solidity also supports some advanced features
including:

i.
ii.
1ii.
1v.

V1.

Cryptographic hash functions, e.g. keccak256, sha256 and ripmd160.

Callable objects,

An unnamed fallback function to be called when no other functions match the callee’s
reference id provided by the caller. Each contract is only allowed to have one
unnamed fallback function

Types with unconventional bit width, such as bytes3, int24, uint56 and int256.
Multiple return values

Ethereum Virtual Machine has three types of memory: “storage” to hold the contract
state variables, “memory” to hold temporary values and stack to hold small local
variables. The users can manipulate data in “storage” and “memory’ areas using the
keywords storage and memory respectively.

To support the OOP features, advanced data structures and the crypto functions, we might
need to extend the irept class, add new encoding schemes to combine various background
theories in SMT-LIB [59], and add new operational modes [60].

93

6 Reference

[1]. Bashir, Imran. Mastering Blockchain: A Deep Dive into Distributed Ledgers, Consensus
Protocols, Smart Contracts, DApps, Cryptocurrencies, Ethereum, and More. Third edition,
PACKT, 2020.

[2]. Lantz, Lorne, and Daniel Cawrey. Mastering Blockchain: Unlocking the Power of
Cryptocurrencies, Smart Contracts, and Decentralized Applications. First edition,
O’REILLY, 2020.

[3]. Lexi Brent and Anton Jurisevic and Michael Kong and Eric Liu and Franccois Gauthier
and Vincent Gramoli and Ralph Holz and Bernhard Scholz (2018). Vandal: A Scalable
Security Analysis Framework for Smart Contracts. CoRR, abs/1809.03981.

[4]. Solorio, Kevin, et al. Hands-on Smart Contract Development with Solidity and
Ethereum: From Fundamentals to Deployment. First edition, O’Reilly Media, Inc, 2019.

[5]. Antonopoulos, Andreas M., and Gavin Wood. Mastering Ethereum: Building Smart
Contracts and DApps. First edition, O’Reilly, 2019.

[6]. Bin Hu and Zongyang Zhang and Jianwei Liu and Yizhong Liu and Jiayuan Yin and
Rongxing Lu and Xiaodong Lin (2021). A comprehensive survey on smart contract
construction and execution: paradigms, tools, and systems. Patterns, 2(2), 100179.

[7]. Muhammad Izhar Mehar and Charles Louis Shier and Alana Giambattista and Elgar
Gong and Gabrielle Fletcher and Ryan Sanayhie and Henry M. Kim and Marek Laskowski
(2019). Understanding a Revolutionary and Flawed Grand Experiment in Blockchain: The
DAO Attack. J. Cases Inf. Technol., 21(1), 19-32.

[8]. ‘The DAO Attacked: Code Issue Leads to $60 Million Ether Theft - CoinDesk’.
CoinDesk: Bitcoin, Ethereum, Crypto News and Price Data,
https://www.coindesk.com/markets/2016/06/17/the-dao-attacked-code-issue-leads-to-60-
million-ether-theft/. Accessed 30 Aug. 2021.

[9]. Daniel Perez and Benjamin Livshits (2019). Smart Contract Vulnerabilities: Does
Anyone Care?. CoRR, abs/1902.06710.

[10]. Bounties — Ox Protocol 4.0 Documentation.
https://protocol.0x.org/en/latest/additional/bounties.html. Accessed 30 Aug. 2021.

[11]. Welcome to Mythril’s Documentation! — Mythril v0.22.24 Documentation.
https://mythril-classic.readthedocs.io/en/master/.

[12]. Dowek, Gilles, and Jean-Jacques Lévy. Introduction to the Theory of Programming
Languages. Springer, 2011.

94

[13]. John W. Backus and Friedrich L. Bauer and Julien Green and C. Katz and John
McCarthy and Alan J. Perlis and Heinz Rutishauser and Klaus Samelson and Bernard
Vauquois and Joseph Henry Wegstein and Adriaan van Wijngaarden and Michael Woodger
(1960). Report on the algorithmic language ALGOL 60. Commun. ACM, 3(5), 299-314.

[14]. Sebesta, Robert W. Concepts of Programming Languages. Eleventh edition, Pearson,
2016.

[15]. Harper, Robert. Practical Foundations for Programming Languages. Cambridge
University Press, 2013.

[16]. Language Grammar — Solidity 0.8.7 Documentation.
https://docs.soliditylang.org/en/v0.8.7/grammar.html.

[17]. Huth, Michael, and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. 2nd ed, Cambridge University Press, 2004.

[18]. The CProver user manual, https://www.cprover.org/cbmc/doc/manual.pdf

[19]. Gabbrielli, Maurizio, et al. Programming Languages: Principles and Paradigms.
Springer, 2010.

[20]. Cooper, Keith D., and Linda Torczon. Engineering a Compiler. 2nd ed,
Elsevier/Morgan Kaufmann, 2012.

[21]. Aho, Alfred V., and Alfred V. Aho, editors. Compilers: Principles, Techniques, &
Tools. 2nd ed, Pearson/Addison Wesley, 2007.

[22]. Parr, Terence. Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages. Pragmatic Bookshelf, 2010.

[23]. Dirk Beyer. Second competition on software testing: Test-comp 2020. Fundamental
Approaches to Software Engineering, LNCS, vol. 12076, 2020; 505-519.

[24]. ESBMC. http://www.esbmc.org/.

[25]. Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva. SMT-based bounded model
checking for embedded ANSI-C software. IEEE Transactions on Software Engineering 2012;
38(4):957-974.

[26]. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu (2003). Bounded model checking. Adv. Comput., 58, 117-148.

[27]. C. Barrett and C. Tinelli, “CVC3,” Proc. Int’l Conf. Computer Aided Verification, pp.
298-302, 2007.

[28]. R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for Bit-Vectors and

Arrays,” Proc. Int’l Conf. Tools and Algorithms for the Construction and Analysis of
Systems, pp. 174-177, 2009.

95

[29]. Feist, J., Greico, G., Groce, A.: Slither: A static analysis framework for smart
contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain. pp. 8—15. IEEE (2019)

[30]. J. Mccarthy, “Towards a Mathematical Science of Computation,” Proc. Int’l Federation
of Information Processing Congress, pp. 21-28, 1962.

[31]. E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSIC Programs,” Proc.
Int’l Conf. Tools and Algorithms for the Construction and Analysis of Systems, pp. 168-176,
2004.

[32]. D. Gries and G. Levin, “Assignment and Procedure Call Proof Rules,” ACM Trans.
Programming Languages and Systems, vol. 2, no. 4, pp. 564-579, 1980.

[33]. A. Armando, J. Mantovani, and L. Platania, “Bounded Model Checking of Software
Using SMT Solvers Instead of SAT Solvers,” Int’l J. Software Tools Technology Transfer,
vol. 11, no. 1, pp. 69-83, 2009.

[34]. ‘Ethereum Glossary’. Ethereum.Org, https://ethereum.org. Accessed 2 Sept. 2021.

[35]. C. Peng and S. Akca and A. Rajan (2019). SIF: A Framework for Solidity Contract
Instrumentation and Analysis. In 26th Asia-Pacific Software Engineering Conference,
APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019 (pp. 466—473). IEEE.

[36]. Jorgensen, Paul. Software Testing: A Craftsman’s Approach. Fourth edition, CRC Press,
Taylor & Francis Group, 2014.

[37]. Loi Luu and Duc-Hiep Chu and Hrishi Olickel and Prateek Saxena and Aquinas Hobor
(2016). Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28,
2016 (pp. 254-269). ACM.

[38]. Thomas Durieux and Joao F. Ferreira and Rui Abreu and Pedro Cruz (2020). Empirical
review of automated analysis tools on 47, 587 Ethereum smart contracts. In ICSE '20: 42nd

International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,
2020 (pp. 530-541). ACM.

[39]. TheDAO smart contract.
http://etherscan:io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[40]. S. Tikhomirov, E. Voskresenskaya, 1. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y.
Alexandrov, ‘‘SmartCheck: Static analysis of ethereum smart contracts,’” in Proc.
IEEE/ACM st Int. Workshop Emerg. Trends Softw. Eng. Blockchain (WETSEB), Jun.
2018, pp. 9-16.

[41]. XML Path Language (XPath) 2.0 (Second Edition). https://www.w3.org/TR/xpath20/.

[42]. Mythril, https://github.com/ConsenSys/mythril

96

[43]. ‘Blockchain Technology Solutions | Ethereum Solutions’. ConsenSys,
https://consensys.net/.

[44]. MythX: Smart Contract Security Service for Ethereum. https://mythx.io/.

[45]. Lopes, Bruno Cardoso, and Rafael Auler. Getting Started with LLVM Core Libraries:
Get to Grips with LLVM Essentials and Use the Core Libraries to Build Advanced Tools.
Packt Publ, 2014.

[46]. Mikhail Y. R. Gadelha and Felipe R. Monteiro and Jeremy Morse and Lucas C.
Cordeiro and Bernd Fischer and Denis A. Nicole (2018). ESBMC 5.0: an industrial-strength
C model checker. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018 (pp.
888-891). ACM.

[47]. Clang: Clang::Tooling::ClangTool Class Reference.
https://clang.llvm.org/doxygen/classclang 1 1tooling 1 1ClangTool.html. Aug. 2021.

[48]. Clang: Clang::ASTUnit Class Reference.
https://clang.llvm.org/doxygen/classclang 1 1ASTUnit.html.

[49]. Deitel, Paul J., and Harvey M. Deitel. C: How to Program, with an Introduction to
C++. 8., ed.Global ed, Pearson, 2016.

[50]. ISO (2012). ISO/IEC 14882:2011 Information technology — Programming languages —
- C++. International Organization for Standardization.

[51]. ISO/TEC 9899:1999°. ISO,
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/92/29237 .html.

[52]. JSON for Modern C++.: JSON for Modern C++.
https://nlohmann.github.io/json/doxygen/index.html.

[53]. Sefa Akca and Ajitha Rajan and Chao Peng (2019). SolAnalyser: A Framework for
Analysing and Testing Smart Contracts. In 26¢h Asia-Pacific Software Engineering
Conference, APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019 (pp. 482-489). IEEE.

[54]. Overview - Smart Contract Weakness Classification and Test Cases.
http://swcregistry.io/. Accessed 29 Aug. 2021.

[55]. Security Considerations — Solidity 0.6.2 Documentation.
https://docs.soliditylang.org/en/v0.6.2/security-considerations.html. Accessed 3 Sept. 2021.

[56]. Derby, Esther, and Diana Larsen. Agile Retrospectives: Making Good Teams Great.
Pragmatic Bookshelf, 2006.

[57]. Langr, Jeff, and Michael Swaine. Modern C++ Programming with Test-Driven
Development: Code Better, Sleep Better. The Pragmatic Bookshelf, 2013.

97

[58]. Macneil, Dean. Cader, Aslam.: A Practical Guide to Strategically Scaling Agile across
Teams, Programs, and Portfolios in Enterprises. PACKT PUBLISHING LIMITED, 2020.

[59]. SMT-LIB The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.edu/.
Accessed 30 Aug. 2021.

[60]. Felipe R. Monteiro and Mikhail R. Gadelha and Lucas C. Cordeiro (2021). Model
Checking C++ Programs. CoRR, abs/2107.01093.

98

