

SMT-Based Bounded Model Checking
for Solidity Smart Contracts

2021

Kunjian Song
10264348

Department of Computer Science

A Dissertation Submitted to The University of Manchester
For The Degree of Master of Science

In The Faculty of Science and Engineering

 2

Contents
List of Figures ... 4

List of Tables .. 6
Abstract ... 7

Declaration .. 8
Copyright .. 9

Acknowledgements .. 10
1 Introduction .. 11

1.1 Motivation .. 11
1.2 Research Question, Aim and Objectives ... 11
1.3 Deliverables .. 12
1.4 Contribution ... 12
1.5 Dissertation Structure ... 12

2 Background and Theory .. 13
2.1 Programming Language Theory .. 13

2.1.1 Syntax and Grammar ... 13
2.1.2 Operational Semantics and Type Checking ... 15
2.1.3 Taxonomy .. 17

2.2 Compiler Theory .. 17
2.3 SMT-Based Bounded Model Checking .. 18
2.4 State-of-The-Art Solidity Verification Frameworks .. 21
2.5 Clang-Based Frontend in ESBMC ... 23

2.5.1 Clang AST Context .. 23
2.5.2 ESBMC Intermediate Representation: irept .. 27

3 Methodology and Implementation ... 31
3.1 Illustrative Example .. 31

3.1.1 GOTO Program ... 33
3.1.2 SSA Form .. 36
3.1.3 Logic Formulae and Z3 Representation .. 38

3.2 Tracker-Based Hybrid Conversion .. 42
3.2.1 Generalised Frontend Actions ... 42
3.2.2 Design Challenges and Decisions .. 42
3.2.3 Solidity as A New Language Mode in ESBMC .. 46
3.2.4 Tracker-Based Conversion .. 47
3.2.5 Hybrid Symbol Conversion for Intrinsic Declarations .. 57

3.3 Limitations of Trackers ... 59
3.3.1 Scalability .. 59
3.3.2 Maintainability, Extendibility and Readability .. 61

3.4 Grammar-Based Hybrid Conversion .. 62
3.4.1 Feasibility of Tracker Removal ... 62
3.4.2 Grammar-Based Conversion ... 64
3.4.3 Improved Readability, Maintainability and Extendibility ... 70

3.5 Summary of Methodology ... 72

 3

4 Evaluation ... 73
4.1 Test Suite Design .. 73

4.1.1 TC1: Authorization Through Tx.orgin .. 74
4.1.2 TC2: Arithmetic Overflow .. 76
4.1.3 TC3: Arithmetic Underflow .. 78
4.1.4 TC4: Loops .. 79
4.1.5 TC5: Array Out-of-Bound Exception in a loop ... 81
4.1.6 TC6: Satisfiability Test using nondet, assume and assert .. 82
4.1.7 TC7: Satisfiability Test using SV-COMP Function .. 88

4.2 Threats to Validity ... 89
4.3 Findings and Comparison to Other Verification Frameworks 90

5 Conclusion and Further Work ... 91
5.1 Deliverables and Key Achievements .. 91
5.2 Reflection .. 92
5.3 Limitations and Future Work .. 93

6 Reference .. 94

Word Count: 17831

 4

List of Figures

Figure 1: Structural operational semantics example. ... 15
Figure 2: τ and e definitions. ... 16
Figure 3: Overview of ESBMC. .. 19
Figure 4: Example code to be verified. ... 19
Figure 5: SSA form of the code in Figure 4. .. 20
Figure 6: C and P formulae of the SSA form in Figure 5. ... 21
Figure 7: Clang AST context structure .. 24
Figure 8: Clang AST context in text format .. 25
Figure 9: The parse tree of a variable declaration node .. 26
Figure 10: Class inheritance hierarchy of typet .. 28
Figure 11: Structure of the array_typet tree ... 28
Figure 12: Transform clang::VarDecl into code_declt ... 29
Figure 13: UML of clang-based frontend for VarDecl and FunctionDecl conversion. ... 30
Figure 14: The new Solidity frontend in ESBMC verification pipeline. 31
Figure 15: Example code to illustrate conversion steps. .. 32
Figure 16: GOTO program of nondet function. ... 33
Figure 17: GOTO program of get_x function. .. 33
Figure 18: GOTO program of func_case_study. .. 34
Figure 19: Statement variable and function call. .. 35
Figure 20: SSA form of function_case_study shown in Figure 15. 36
Figure 21: Simplified SSA trace during SMT encoding. .. 37
Figure 22: C and P formulae. .. 38
Figure 23: ESBMC-generated C /\ ~P formulae ... 38
Figure 24: Z3-representations of the formulae ... 40
Figure 25: Verification result of the illustrative example. ... 41
Figure 26: Methodology #1 and #2. .. 44
Figure 27: Recursion - nested BinaryOperation Expressions. ... 48
Figure 28: JSON AST of a nested BinOpExpr. ... 49
Figure 29: Trackers. .. 50
Figure 30: Example of a Solidity function. .. 51
Figure 31: AST of the function body. ... 51
Figure 32: get_expr function. .. 52
Figure 33: Conversion of BinOpStmt and DeclRefExor. ... 53
Figure 34: get_binary_operator_expr calls back into get_expr. 53
Figure 35: Call stack usage when converting "a+b" .. 54
Figure 36: concluding example. .. 55
Figure 37: Re-constructed tree using trackers. ... 55
Figure 38: ESBMC irept parse tree.. ... 56
Figure 39: ESBMC intrinsic variable and function declarations. 57
Figure 40: JSON-representation of __ESBMC_assert ... 58
Figure 41: Hybrid conversion mechanism. .. 58
Figure 42: Trackers of nested BinOpExpr. ... 60
Figure 43: Tree re-constructed from the JSON AST. .. 63
Figure 44: Tracker-based vs. Grammar-based conversion. .. 64
Figure 45: The nlohmann::json data type. .. 65
Figure 46: Type casting of AST nodes. .. 65
Figure 47: The conversion steps of a for loop. ... 66

 5

Figure 48: the conversion function for “rule statement”. .. 67
Figure 49: Production rules of Solidity statement. ... 67
Figure 50: equivalent ipret node of the Solidity “for” loop. .. 68
Figure 51: Patch to support empty init expression. .. 68
Figure 52: cycle references in Solidity grammar. ... 69
Figure 53: cyclic references in Solidity grammar. .. 70
Figure 54: Workload of Tracker-Based Hybrid Conversion method 72
Figure 55 Workload of Grammar-Based Hybrid Conversion method. 72
Figure 56: TC1 - Authorization using Tx.Origin. ... 74
Figure 57: Attacker smart contract.8 ... 74
Figure 58: Pattern of "Autorization through Tx.origin" ... 75
Figure 59: ESBMC detects authorization through Tx.origin. ... 75
Figure 60: TC2 - arithmetic overflow in a nested binary operation expression. 76
Figure 61: TC2 result. .. 77
Figure 62: TC3 –arithmetic underflow with unary operators ... 78
Figure 63: TC3 result ... 78
Figure 64: TC4 – loop .. 79
Figure 65: TC4 result ... 80
Figure 66: TC5 – Array out-of-bound access a loop. .. 81
Figure 67: TC5 result. .. 81
Figure 68: TC6 – effect of "assume" on finding satisfiability. .. 82
Figure 69: Answer to Satisfiability_#1. .. 83
Figure 70: updated TC6 for Satisfiability_#2. ... 83
Figure 71: Answer to Satisfiability_#2. .. 84
Figure 72: updated TC6 for Satisfiability_#3. ... 85
Figure 73: Answer to Satisfiability_#3. .. 86
Figure 74: updated TC6 for Satisfiability_#4. ... 87
Figure 75: Answer to Satisfiability_#4. .. 87
Figure 76: TC7 – effect of "assume" on finding satisfiability. .. 88
Figure 77: TC7 result. Answer to Satisfiability_#3. .. 89

 6

List of Tables

Table 1: Summary of Solidity verification tools. ... 23
Table 2: Clang declaration class ... 24
Table 3: Clang classes for semantics of the child nodes. .. 26
Table 4: Conversion functions for declaration node. ... 27
Table 5: Mapping clang classes to ESBMC irept nodes. .. 27
Table 6: Conversion functions for child nodes. ... 29
Table 7: Coverage of Design Goals and Design Challenges ... 45
Table 8: Coverage of frontend actions. .. 45
Table 9: Solutions to design challenges .. 48
Table 10：Conversion functions for irept nodes. ... 63
Table 11: Extendibility of the new Solidity frontend. ... 71
Table 12: Test suite .. 73
Table 13: Compare ESBMC to other tools. ... 90
Table 14: Availability of counterexamples. ... 90
Table 15: Two versions of the new Solidity frontend. .. 91
Table 16: Integrate the new Solidity frontend with ESBMC. .. 91
Table 17: Contributions to ESBMC main line. ... 92

 7

Abstract

Apart from Bitcoin, Ethereum is another distributed ledger that uses blockchain technology.
Smart contracts are autonomous programs that automatically control Ether's transactions in the
distributive environment of the Ethereum blockchain. A vulnerable smart contract allows the
hackers to perform unauthorized withdraw. Since a smart contract is immutable after its
deployment on the Ethereum blockchain, which does not allow the owner to fix bugs, it
becomes critical to make sure the smart contract is safe prior to deployment. Solidity is the
most widely used programming language to create such contracts. There is a great deal of
interest from academia and industry in formal verification for Solidity smart contracts.

The SMT-Based BMC has been successfully used to verify software programs written in
general programming languages. ESBMC is a state-of-the-art SMT-based bounded model
checker to verify C and C++ software. This project uses ESBMC as the vehicle to explore the
opportunity to apply SMT-Based BMC for Solidity verification. However, Solidity is a
domain-specific language for writing smart contracts. To extend ESBMC to verify Solidity
smart contract, a detailed study of syntax, semantics and grammar rules of Solidity language
was conducted. Two type checking methods were proposed to convert Solidity AST into
ESBMC intermediate representation: Tracker-Based Hybrid Conversion and Grammar-Based
Hybrid Conversion.

The Grammar-Based Hybrid Conversion method was found to have better extendibility and
maintainability. As a result, a new Solidity frontend was developed to extend ESBMC to verify
Solidity smart contacts. Additionally, a test suite that contains vulnerably smart contracts was
developed due to the lack of a standard benchmark for Solidity. The test results confirmed the
correctness of the new Solidity frontend that enables ESBMC to verify Solidity smart contracts.
ESBMC was compared with other state-of-the-art Solidity verification tools by running the
same test suite against other tools. The results show that ESBMC is the only tool that
successfully detected all vulnerabilities in each test case and provided the corresponding
counterexamples for each type of vulnerability. The other tools are only able to reveal the
vulnerabilities in the test suite partially.

Keywords: programming language theory, compiler, bounded model checking, SMT, Solidity

 8

Declaration

No portion of the work referred to in this dissertation has been submitted in support of an
application for another degree or qualification of this or any other university or other institute
of learning.

 9

Copyright

i. The author of this thesis (including any appendices and/or schedules to this thesis) owns
certain copyright or related rights in it (the “Copyright”) and s/he has given The
University of Manchester certain rights to use such Copyright, including for
administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy,

may be made only in accordance with the Copyright, Designs and Patents Act 1988 (as
amended) and regulations issued under it or, where appropriate, in accordance with
licensing agreements which the University has from time to time. This page must form
part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual

property (the “Intellectual Property”) and any reproductions of copyright works in the
thesis, for example graphs and tables (“Reproductions”), which may be described in
this thesis, may not be owned by the author and may be owned by third parties. Such
Intellectual Property and Reproductions cannot and must not be made available for use
without the prior written permission of the owner(s) of the relevant Intellectual Property
and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and

commercialisation of this thesis, the Copyright and any Intellectual Property and/or
Reproductions described in it may take place is available in the University IP Policy
(see
http://documents.manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant
Thesis restriction declarations deposited in the University Library, The University
Library’s regulations (see
http://www.library.manchester.ac.uk/about/regulations/) and in The University’s
policy on presentation of Theses

 10

Acknowledgements

I would like to thank my supervisor Dr. Lucas Cordeiro for his guidance, encouragement, and
advice he has provided throughout this project. ESBMC opened up a new world for me - a
world in automated reasoning, decision procedures, and program verification.

 11

1 Introduction

1.1 Motivation

The blockchain is a distributed ledger technology that forms the main mechanism behind
Bitcoin, Ethereum, and alternative cryptocurrencies [1]. Blockchain can be considered as a data
structure that contains a linked list of blocks, each of which contains a list of unmodifiable
transactions [2]. Smart contracts are autonomous programs that run on Ethereum blockchain
[3].

Solidity is a domain-specific language (DSL) for writing smart contracts [4]. Once deployed
on Ethereum blockchain, there is no way to update the smart contract except deleting it completely
and re-deploying a new one. Even the smart contract author cannot modify the program code or fix
bugs after deployment [5]. Because the smart contracts are compiled into EVM (Ethereum Virtual
Machine) assembly instructions for deployment on the blockchain [6]. Due to the nature of such
immutability, it is critical to ensure the security of the smart contract before deploying it on the
Ethereum blockchain. But the reality is the opposite. The deployed smart contracts often suffer
from software vulnerabilities. These vulnerabilities have been exploited by malicious attackers,
which leads to monetary losses. For example, the DAO attack that happened in 2016 results in a
large monetary loss of $60 million, which eventually forces the Ethereum blockchain to be hard
forked to roll back to a previous state [7, 8]. There is growing demand for the verification of
Solidity smart contracts. For example, the 0xproject offers up to $100,000 US dollars to detect
of critical vulnerability in Solidity smart contract [9, 10].

1.2 Research Question, Aim and Objectives

Research Question.
Solidity is a DSL for writing smart contracts to be deployed on Ethereum blockchain. Hence,
a natural question would be: Can SMT-based bounded model checking be used to verify DSL?

Aim.
This project aims to answer this question by using ESBMC as the vehicle for research. The
goal is to develop a new type checking methodology to transform the Solidity program into
ESBMC intermediate representation (IR), and ultimately to use the existing SMT-encoding
schemes of ESBMC to verify the original Solidity program.

Objectives.
The objectives of this project are outlined as follows:

• [OBJECTIVE-1] Investigate the programming paradigm of Solidity and understand
Solidity language syntax, semantics, grammar, and special features.

• [OBJECTIVE-2] Investigate and analyse ESBMC to identify:

a. The architecture and the intermediate representations used in ESBMC.

b. The IR data structures in ESBMC

 12

c. The existing encoding schemes for verifying the language constructs in general
programming languages like C and C++.

• [OBJECTIVE-3] Based on the outcomes of [OBJECTIVE-2], extend ESBMC to verify

Solidity, a DSL for writing smart contracts.

1.3 Deliverables

The deliverables of this project are listed in the following:

• [Deliverable-1] Develop a new type checking methodology to enable ESBMC to
verify Solidity smart contracts using the existing SMT encoding schemes.

• [Deliverable-2] Due to the lack of a standard benchmark for Solidity, develop a test

suite that contains vulnerable smart contracts to evaluate the new frontend in
Deliverable-1.

• [Deliverable-3] Final dissertation to summarize the work done for Deliverable-1 and
Deliverable-2.

1.4 Contribution

Over the last few years, several Solidity frameworks were proposed. Except for Mythril [11],
the other frameworks outlined in Section 2.4 do not encode Solidity programs in logic formulae
or use SMT solvers to verify Solidity smart contracts. Instead, some of them just use SMT
solvers to find the satisfiability of path conditions after symbolically executing the program.
Although Mythril uses SMT solver to verify the Solidity smart contracts, it does not always
generate a counterexample. The test results in Section 4 shows that Mythril did not detect the
vulnerability of arithmetic underflow in the test case developed in this project.

The contribution of this project is that it successfully used SMT-based bounded model checking
technique to verify Solidity smart contracts. None of the state-of-the-art Solidity verification
tools uses such technique. The test results in Section 4 show that ESBMC with the new Solidity
frontend detected the vulnerability in all test cases and provided a counterexample in each case.
ESBMC outperforms all other tools.

1.5 Dissertation Structure

This dissertation contains five chapters including the introduction. The layout of the remaining
chapters is as follows. Chapter 2 presents the relevant background knowledge and theories in
programming language theory, compiler design, software verification, bounded model
checking, and Satisfiability Modulo Theories (SMT), which is used to aid in understanding the
design rationale behind the new type checking methodologies in Chapter 3. There are two type
checking methodologies proposed in Chapter 3. These methodologies guide the
implementation of the new Solidity frontend. Chapter 4 discusses the test suite design, and
explains the test results. In addition, Chapter 4 also compares ESBMC to other state-of-the-art
Solidity verification frameworks. Chapter 5 concludes this project and identifies further work
extending ESBMC to cover all Solidity language features.

 13

2 Background and Theory

This chapter will lay the theoretical foundation that will become useful in later chapters. Each
subsection contains an answer to a question “How is … related to this project?”, which explains
the intention of the corresponding literature review.

The architecture of an SMT-based bounded model checker consists of two parts: the frontend
and the backend. This chapter starts with introducing topics in programming language theory
and compiler theory that will help the reader understand the frontend of an SMT-based bounded
model checker. Next, it uses an illustrative example to explain the verification flow of an SMT-
based bounded model checker. This chapter then gives a survey of state-of-the-art verification
frameworks for Solidity. It ends by discussing the existing clang-based frontend of ESBMC.

2.1 Programming Language Theory

This subsection aims to explain some key concepts in programming language theory, which
lay the theoretical foundation for understanding the clang-based frontend in ESBMC, and
designing the new Solidity frontend.

2.1.1 Syntax and Grammar

The syntax of a programming language can be described precisely using formal grammar [12].
The method to formally describe a formal grammar is known as Backus-Naur Form (BNF).
The origin of BNF is the paper published by computer scientists John Backus and Peter Naur
in 1960 [13]. BNF is referred to as a metalanguage used to describe another programming
language. A metalanguage is a language used to describe another language [14]. Hence, the
syntax of a programming language can be described by context-free grammar written in BNF.
The context-free grammar contains production is shown as follows:

The simple grammar above is written in BNF style. <Expr> is known as a non-terminal symbol
because it can be replaced by other symbols. <Identifier>, <BinaryOperator> and
<UnaryOperator> are also non-terminal symbols. ‘a’, ‘b’, ‘c’ and ‘d’ are terminal symbols, so
are the operators ‘+’, ‘-’ and ‘++’.

<Expr> ::= <Identifier> <BinaryOperator> < Identifier >
 | <UnaryOperator> <Identifier>

<Identifier> ::= a | b | c | d

<BinaryOperator> := + | -

<UnaryOperator> := ++

 14

The above grammar can be used to check the validity of the syntax in the following expressions:

𝑎 + 𝑏									(2.1)	
+ + 𝑎								(2.2)
𝑎 + +								(2.3)
−− 𝑎								(2.4)
𝑎 ∗ 	𝑏									(2.5)

The syntax of expression (2.1) is valid, because the sequence of symbols in this expression can
be generated using the production rules as follows:

A production rule is in the form of “<Identifier> → x”. It means that the non-terminal symbol
<Identifier> can be replaced by another symbol “x” as specified by the BNF-style grammar,
where “x” could be a terminal symbol (e.g. “a”) or a sequence of non-terminal symbols (e.g.
as in the rule “<Expr>”).

The syntax of expression (2.2) is valid, because the sequence of symbols in this expression can
be generated using the production rules as follows:

The syntax of expressions (2.3), (2.4) and (2.5) is invalid for the following reasons:

• There is no production rule to replace <Expr> with < Identifier ><UnaryOperator> in
expression “a++”.

• There is no production rule to replace <UnaryOperator> with a terminal symbol “--”
used in the expression “--a”.

• There is no production rule to replace <BinaryOperator> with a terminal symbol “*”

used in the expression “a * b”.

How is it related to this project?
The concept discussed in this subsection will become useful to understand the formal grammar
of the Solidity language [16]. The production rules in Solidity grammar will guide the
development of Grammar-Based Hybrid Conversion Method.

<Expr> → <Identifier> <BinaryOperator> <Identifier>
<Identifier> → a
<BinaryOperator> → +
<Identifier> → b

<Expr> → <UnaryOperator> <Identifier>
<UnaryOperator> → ++
<BinaryOperator> → a

 15

2.1.2 Operational Semantics and Type Checking

While the syntax of a programming language describes the structure of expressions, statements
and language constructs, emantics is the meaning of those expressions, statements, and
language constructs [14]. Type specifies the range of values that a variable can represent and
the set of operations that are defined for these values. Type puts constraints on the operands
and the operator to ensure they fit together properly [15].

Type and semantics are not independent of each other. They can be shown in the same picture
of the processing phases of a programming language. There are two processing phases of a
programming language: one is the static phase of processing, and the other one is the dynamic
phase of processing [15]. There are two goals in the static phase of processing to ensure the
program is well-formed:

1. Make sure the structure is correct. For example, a binary operator “+” expects two
operands in the form of (a + b), which is a well-formed expression. The expression (a
+) is ill-formed because the right-hand-side operand is missing.

2. Make sure the type is compatible. For example, a binary operator “*” expects two
operands of numerical types. (1 + 2) is a well-formed expression. The expression (1 +
“hello”) is ill-formed because the second operand is of the type string and it does not
make sense to add an integer to a string.

The dynamic phase of processing refers to the execution of a well-formed program based on
the semantics. One of the formal ways to describe semantics is to use operational semantics.
There are two types of operational semantics based on the levels of interest [12, 14]:

1. If the interest is in the final result of the execution of a well-formed program, then it is
called natural operational semantics, also known as big-step semantics.

2. If the interest is in the sequence of state changes during the execution, then it can be

described by structural operational semantics, also known as small-step semantics.

An example of structural operational semantics is shown in Figure 1 [12]:

Figure 1: Structural operational semantics example.

As shown in Figure 1, the structural operational semantics of a for loop can be described using
the sequential flow that consists of three terms: if statement, goto statement and the
corresponding labels. The same approach can also be used to describe other non-sequential
control flows, such as do-while loop or while loop. If it’s a function call, the call expression
can be replaced by the body of the function to make it sequential.

 16

The type compatibility is enforced by typing judgements. The typing judgements are rules
described in a similar way to the natural deduction [17]. An example of such judgement is
described below:

First, let 𝜏 represent the types, and let 𝑒 represent expressions defined in Figure 2 [15]:

Figure 2: τ and e definitions.

Next, a typing environment Γ is defined as a set of (𝑒, 𝜏). This pair means 𝑒 is of the type 𝜏,
which is often denoted by 𝑒 ∶ 	𝜏. Γ is sometimes called typing context. Using these notations,
we can define a ternary relation:

Γ ⊢ 𝑒 ∶ 	𝜏

which means that 𝑒 is of the type 𝜏 in the typing environment defined by Γ.

Then, the typing rules can be defined as follows [15]:

Γ	 ⊢ 	𝑎	 ∶ 	𝑛𝑢𝑚									Γ	 ⊢ 	𝑏 ∶ 	𝑛𝑢𝑚
Γ	 ⊢ 𝑝𝑙𝑢𝑠(𝑎, 𝑏) ∶ 	𝑠𝑡𝑟

Γ	 ⊢ 	𝑎	 ∶ 	𝑠𝑡𝑟									Γ	 ⊢ 	𝑏 ∶ 	𝑠𝑡𝑟

Γ	 ⊢ 𝑐𝑎𝑡(𝑎, 𝑏) ∶ 	𝑠𝑡𝑟

Γ	 ⊢ 	𝑎	 ∶ 	𝑠𝑡𝑟		

Γ	 ⊢ 𝑙𝑒𝑛(𝑎) ∶ 	𝑛𝑢𝑚

The relations above the line are premises, and the relation below the line is the conclusion. The
first rule states that if variable a is of the type num in the typing environment Γ, and variable b
is of the type num in the typing environment Γ, then the plus function that operates on these
variables should also be of the type num in the typing environment Γ. Analogously, the second
rule enforces the type compatibility of the concatenation expression, and the third rule enforces
the type compatibility of the length expression.

 A type checker is essentially an algorithm that implements the typing rules given above.

 17

How are structural operational semantics and type checker related to this project?
ESBMC uses GOTO program as the intermediate representation of the original program. The
GOTO program uses only guarded goto and assume statements to model the control flow [18].
The GOTO program essentially describes the structural operational semantics. The frontend of
ESBMC has a type checking phase. In clang-based frontend of ESBMC this type checking
phase is implemented as the clang_c_converter class. This class checks the type of each clang
AST node and transforms it into the equivalent tree-structured irept node.

2.1.3 Taxonomy

Programming paradigm is the style of programming, which can be used to classify
programming languages. A program written in an imperative language consists of a sequence
of commands which modify the memory (or state) [19]. The end of a sequential command is
indicated by the semicolon. The type system imposes constraints on the formation of
expressions [15]. A type system consists of the predefined types and the typing rules as
discussed in the previous section. A program written in a strongly typed (or type safe) language
cannot violate the distinctions between types defined in that language [19]. Object-oriented
programming (OOP) is a programming paradigm with three fundamental features:
Encapsulation, Inheritance and Polymorphism.

How is taxonomy related to this project?
The goal of this project is to verify smart contracts written in Solidity. It would be useful to
know what type Solidity language is. In Solidity a contract is like a class in OOP which
encapsulates the attributes to indicate the state of the contract and methods that defines the way
how a smart contract can be interacted with. The statement (or command) in Solidity is also
ended by a semicolon. Hence, Solidity is:

• An imperative programming language.
• An OOP language.
• A strongly typed language.

2.2 Compiler Theory

A compiler translates a source program to a target program. The translation process consists of
five phases [20]:

1. Lexical Analysis
2. Syntax Analysis
3. Semantic Analysis
4. Optimization
5. Code generation

Lexical Analysis.
In this phase, the characters are aggregated to form a word. This is done by a lexical analyzer,
or sometimes called a scanner, which applies a set of rules to check the validity of the word. If
it is valid, a token will be generated.

 18

Syntax Analysis.
The input to the parser is a stream of tokens (or words). The purpose of the parser is to
understand the structure of the program. The parser verifies the input tokens based on the
formal grammar of the source programming language. The output of the parser is a tree-
structured representation, usually a parse tree or abstract syntax tree (AST) [21]. Parse trees
contain more information than AST. The parse tree usually includes a record of rules used to
recognise the input [22]. In a parse tree a node might be the name of the production rule used.
In an AST the tree is simplified by removing the nodes representing the name of the production
rule. An AST is more concise than the parse tree [20]. The syntax analysis phase ensures a
program to be well-formed (c.f. Section 1.1.2). Both parse tree and AST are considered as
syntax tree. A syntax tree is a tree-structured intermediate representation (IR).

Semantic Analysis.
Semantic analysis is to check the meaning of the program. A semantic analyser uses syntrax
tree (usually AST) as the input. First, the semantic analyser generates a symbol table that
contains the type and scope information of each declaration node in the syntax tree. Next, the
semantic analyser uses the syntax tree and the symbol table to ensure the source program is
semantically consistent with the scopes and language type system [21]. Hence, the semantic
analysis phase contains a type checker (c.f. Section 1.1.2).

How are these concepts related to this project?
Phases 4 and 5 are not related to this project because the goal of this project is not to improve
the performance of a specific compiler or generate code for a specific target. Phases 1, 2 and 3
are related to this project, because the goal of ESBMC frontend is to generate the symbol table.
The type checker traverses the AST and converts each declaration node into ESBM irept node.
The irept parse tree is a tree-structured IR used to represent the syntax structure of the original
program in ESBMC.

2.3 SMT-Based Bounded Model Checking

ESBMC is one of the most powerful SMT-based bounded model checkers to verify software
programs written in C and C++ [23]. ESBMC has won various awards in previous SV-COMP
competitions [24]. The overview of ESBMC is shown in Figure 3.

A finite-state transition system can be modelled by a Kripke structure M which has a set of
states 𝑆 = {𝑠!, 𝑠", … , 𝑠#$"} , where 𝑠!	 ∈ 	𝑆! and 𝑆! represents the set of initial states. A
transition relation R is a subset (not necessarily a proper subset) of the Cartesian product 𝑆 and
𝑆, i.e. 𝑅 ⊆ 𝑆 × 𝑆. A state transition from 𝑠& to 𝑠&'" is denoted by 𝑅?𝑠& , 𝑠&'"@. It means that the
program counter moves forward while taking some actions to update the state. Such actions
can be evaluating an expression and making new assignment to a variable, modifying the
element in a container data structure, or changing the flow of execution by jumping to another
block of statements. Given a Kripke structure M that models a state transition system, Bounded
Model Checking aims to build the verification condition (VC) as the following formula [25]:

𝜓! = 	𝐼(𝑠") ∧	89𝑅;𝑠# , 𝑠#$%<
&'%

#("

	∧ 	¬𝜙(𝑠&)
!

&("

		

where 𝐼 is the set of initial states, 𝑠& 	is	state	variable	and k represents the bound limit, e.g., the
number of loop iterations BMC unwinds. In Eq (2.6), 𝐼(𝑠!) ∧ 	⋀ 𝑅)𝑠" , 𝑠"#$+%&$

"'! means the

(2.6)

 19

execution trace of length 𝑖. ¬𝜙(𝑠%) represents violation of a property in state 𝑠%. If the VC is
satisfiable, it means that there exists a state 𝑠% that violates the safety property. The violation
can be arithmetic over- or underflow, divide by zero, accessing a null pointer, double frees, etc.
The counterexample will be represented by a sequence of states {𝑠!, 𝑠", … , 𝑠#} and the
corresponding transitions 𝑅(𝑠& , 𝑠&$%) where 𝑖 is bounded by 0	 ≤ 𝑖	 < 𝑘 [25].

Figure 3: Overview of ESBMC.

In Eq. (2.6), ¬𝜙(𝑠%) corresponds to the property part, “~P” as in “C ∧ ~P” in Figure 3. The rest
of the equation corresponds the constraint part, “C”. If the verification condition 𝜓 is satisfiable
then it means that there exists a counterexample that violates the property up to a given bound
𝑘. However, BMC is incomplete if 𝑘 is not high enough. It is only able to find a logic error
(also called “falsification”) up to 𝑘 steps [26]. Calculating the completeness threshold (CT) of
BMC is found to be as hard as the BMC itself [25].

Figure 4: Example code to be verified.

 20

The example code in Figure 4 contains an error of array out-of-bound access. To verify the
code in Figure 4, the clang-c frontend generates symbol table, which is used by the GOTO
converter to generate the equivalent GOTO program. Then the program is symbolically
executed to generate the SSA form shown in Figure 5. Although the code in Figure 4 has no
syntax error and can be compiled using GCC or Clang, it contains a run-time error of array out-
of-bound access in line 7. The while loop is unrolled three times according to the value of n.
The operational semantics of the statement in Line 9 in Figure 5 is as following:

Figure 5: SSA form of the code in Figure 4.

The array equality “a1 = a0” is defined as [25, 27, 28]:

𝑎 = 𝑏 ⇐	∀𝑖	 ∙ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖) = 𝑠𝑒𝑙𝑒𝑐𝑡(𝑏, 𝑖)
𝑎 ≠ 𝑏 ⇒	∃𝑖	 ∙ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑎, 𝑖) ≠ 𝑠𝑒𝑙𝑒𝑐𝑡(𝑏, 𝑖)

The if-then-else statement is represented by the ite operation in Figure 6. The array theory of
SMT solver is based on McCarthy axiom [26, 30]. The semantics are as follows:

• store(a, i, v) means to write the value of v in position i of array a. This expression returns
the updated array.

• select(a, i) means to read the value at position i of array a. This expression returns the
value at position i in that array.

if g0 == true:
then:
 a1 = (a0 WITH [0:=100]) ;
else:
 a1 = a0;

 21

Figure 6: C and P formulae of the SSA form in Figure 5.

The store(a, i, v) function can be represented by the WITH operator. “(a0 WITH [0:=100])”
means to write 100 in position 0 of array a0 and return the updated array. The select(a, i)
function can be represented by the equivalent array subscript expression, a[i] [31], [32]. Note
that in Figure 5, the initialization of array a0 is not shown, because arrays are unbounded in the
array theory and we just use a symbolic representation “a0” to denote the initial array.
Compared to the previous work on array encoding [33], Cordeiro .et. al [25] proposed a new
method to check array out-of-bound by adding additional bound checks in each unrolled block
to check the array index against the array bound. Note that ESBMC also applies reduction on
the formulae shown in Figure 6. Therefore, the actual set of formulae solved by the SMT solver
is simpler than the one derived manually in Figure 6.

2.4 State-of-The-Art Solidity Verification Frameworks

This section aims to outline five verification frameworks for Solidity smart contracts –
SolAnalyser, Slither, Oyente, Smartcheck, and Mythril. Additionally, this chapter also
discusses the Remix, most popular Solidity IDE, which also has some functions to assist the
developers to verify a smart contract before deployment on the Ethereum mainnet [34].

SolAnalyser.
SolAnalyser is an automated verification framework for Solidity smart contracts. It uses both
static and dynamic analysis. SolAnalyser framework relies on another code instrumentation
tool called Solidity Instrumentation Framework (SIF). The responsibilities of SIF are [35]:

• Statically analyse the code for vulnerability detection.

• Inject assertions in the source code to specify property checks.

• Generate contract mutants by injecting a single hard-coded vulnerability into the
original smart contract.

To inject assertions, SIF gathers information of each AST node and inject pre- or post-
conditions into the original contracts based on the operands and operators. For example, the
pre-condition for the vulnerability of division by zero of the expression “a = b / c” would be
“c != 0”. The post-condition for the vulnerability of unsigned underflow of the expression “a
= b + c” would be “a >= c && a >= b” [35].

SolAnalyser uses mutation-based blackbox fuzzing as its strategy for dynamic analysis. A
contract mutant generated by SIF will be compiled into EVM bytecode, which contains the

 22

Abstract Binary Interface (ABI) of the mutant. SolAnalyser interacts with the ABI of the
mutant and applies fuzz testing [34]. When the test is complete, SolAnalyser searches the test
logs for a sequence of specific keywords and events that indicate a violation of the property
checks [53].

Slither.
Unlike SolAnalyser, Slither is a verification framework that uses only static analysis [29]. The
static analysis technique used in Slither is taint tracking (not to be confused with taint checking).
First Slither transforms Solidity AST into an intermediate representation called SlithIR and
converts the IR into SSA form, and symbolically execute the SSA form. Next, Slither tracks
the data dependency using tainted tracking. If the data is tainted, it means that the data cannot
be trusted. A tainted variable is an untrusted variable [36]. Slither marks a variable as tainted
if the variable can be influenced by the user. For example, if a variable depends on another
user-controlled variable, Slither will also mark it as tainted [29]. If a protected function depends
on the tainted variable, then a potential vulnerability might be detected. For example, if the
parameter of a function is tainted, the usage of this variable in the function body might be
vulnerable. Slither uses a group of pre-defined bug detectors to make the final verdict. Apart
from detecting vulnerabilities, Slither is also able to suggest code optimizations.

Oyente.
Due to the non-determinism and complexity in Ethereum blockchain, it requires much more
effort to simulate the execution environment of such distributed system input-by-input using
dynamic analysis techniques [37]. Unlike SolAnalyser and Slither that work on Solidity source
code, Oyente works on EVM assembly code to follow the execution model of a smart contract.
As a by-product, the CFG of EVM assembly code can be generated by Oyente [37]. Z3 solver
is used to find the satisfiability of the branch condition for a path, which is explored using
Depth First Search (DFS). When a smart contract makes a function call, Oyente collects the
path condition of the caller and checks the updated states before the callee finishes. If the
updated states still satisfy the path condition for the caller, then it is possible for the callee to
re-enter the caller, and hence, re-executing the caller. This refers to a Re-entrancy vulnerability
[38, 39].

Smartcheck.
Similar to Slither, Smartcheck converts the Solidity source code into XML-based intermediate
representation (IR) [40]. Instead of using symbolic execution as in Slither, Smartcheck uses
XPath queries on the IR to detect vulnerability patterns [41]. Another difference to Slither is
that Smartcheck performs lexical and syntactical analysis on Solidity source code instead of
using the Solidity, while Slither takes the Solidity JSON AST as input generated by Solidity
compiler.

Mythril.
Mythril is a verification tool that works on EVM bytecode [42]. Unlike the other tools
proposed in the research, Mythril is a verification tool developed by the company ConsenSys
[43]. Mythril forms part of the security analysis platform MythX [44]. Mythril uses various
techniques for software verification– symbolic execution, SMT solving and taint analysis.

Table 1 summarizes the verification strategies used in these tools:

 23

Tools SolAnalyser Slither Oyente Smartcheck Mythril
Input Source code ✓ ✓

JSON AST ✓
EBM bytecode ✓ ✓

Techniques Convert to IR ✓
(SlithIR)

 ✓
(XML-
based IR)

Symbolic
Execution

 ✓ ✓ ✓ ✓

Taint analysis ✓ ✓
SMT solver ✓ ✓
Fuzzing ✓
Code
Instrumentation
Or
Other queries

✓
(Code
instrumentation)

 ✓
(XPath
queries)

Table 1: Summary of Solidity verification tools.

How are these frameworks related to this project?
A test suite will be designed in this project to evaluate the new Solidity frontend in ESBMC,
and each of the test case in this suite will be a vulnerable contract. To compare ESBMC with
other state-of-the-art verification tools, the same test suite will be run again all tools discussed
in this section.

2.5 Clang-Based Frontend in ESBMC

A detailed study of the clang-based frontend is conducted to figure out the usage of
ESBMC irept data structures. The clang-based frontend traverses the AST of the input C
program and generates a symbol table. First, the clang AST is converted into another IR
called irept. Then the type checker annotates the irept node based on the information in clang
AST node and generates the corresponding symbol, which is then added to the symbol table.

2.5.1 Clang AST Context

Since this frontend uses a mix of external APIs of the clang compiler infrastructure to facilitate
the conversion of clang AST node into the equivalent IRep tree node in ESBMC, the conversion
process may seem quite intricate to a reader without knowing the specifics of clang.

Clang is the official LLVM frontend for C, C++, Objective-C and Objective-C++ [45]. As of
version 5.0, ESBMC started to use the clang-based frontend [46]. This frontend uses two clang
components: clang::tooling and clang::ASTUnit. The clang::tool class provides utility
functions to perform frontend actions, such as getting the current file name, build AST from
the current file, .etc. The clang::ASTUnit class is also a utility class that provides APIs to
generate the AST context and retrieve each AST node from that context. The AST context can
be obtained using the getter API getASTContext(). A full list of APIs can be found in the
clang::tool and clang::ASTUnit reference manuals, respectively [47, 48].

 24

In a clang AST context, the root is the translation unit declaration shown in Figure 7. The child
nodes of the translation unit represent the user-defined declarations, e.g. variable declaration
nodes or function declaration nodes. Figure 8 shows the text representation of clang AST
context, which is printed by the dump() function. The translation unit declaration is shown as
the root of the tree in line 1 in Figure 8.

Figure 7: Clang AST context structure

Each declaration is represented by different types derived from the declaration based class in
clang::Decl. Table 2 shows the class representations of each declaration node in clang.

The top-level translation unit declaration is represented clang::Decl::TranslationUnit, which
is not a standard language construct but a clang internal data structure to facilitate the compiling
process. This translation unit can be obtained using the getter API getTranslationUnitDecl().

The type of a declaration node can be obtained using the getter API getKind(). For each type
of clang declaration in clang::Decl, there exists a corresponding conversion function that
converts a clang AST node into irept node in ESBMC, which preserves the semantics of the
original clang AST node.

C Language Construct clang Declaration Type clang Class
Label clang::Decl::Label clang::LabelDecl
Var clang::Decl::Var clang::VarDecl

Function clang::Decl::Function clang::FunctionDecl
Field clang::Decl::Field clang::FieldDecl

TypeDef clang::Decl::Typedef clang::TypedefDecl
Table 2: Clang declaration class

 25

Figure 8: Clang AST context in text format

As an example, we consider a variable declaration node shown in Figure 9.

Figure 9: The parse tree of a variable declaration node

The edge between the initial value node and its parent node is represented by a dashed line
because the initial value is optional. A variable declaration without initial value is legal in most
of the languages. If an initial value is provided, e.g. as in ‘int a = 1;’, this variable declaration
node will become an initialisation node. An initialisation node is a variable declaration node
with an additional child representing the initial value.

Therefore, a variable declaration can be represented by a tree that consists of a parent node
denoting the variable declaration and a group of child nodes defining the semantic of the parent
node:

• Name and ID of the variable
• Location of the variable declaration in the source file, e.g. the name of the source file

and the line number in that source file
• Type of the variable
• Storage class that tells the type of variable, e.g. static, global, extern, or local variable

within a function.
• Initial value

A variable declaration node is represented by clang::VarDecl class. Its child nodes are also
represented by the corresponding clang classes. Each child node can be extracted using the
corresponding getter API of the parent node class, clang::Decl. Table 3 summarizes the clang
classes for each type of the child node along with their getter APIs.

Node Type clang class Getter
Name, ID clang::IdentifierInfo getIdentifier()

ID.getName()
Location clang::SourceLocation getSourceRange().getBegin()

Type clang::QualType getTypePtrOrNull()
Storage Class clang::StorageClass getStorageClass()

Init Value clang::Expr getInit()
Table 3: Clang classes for semantics of the child nodes.

 27

2.5.2 ESBMC Intermediate Representation: irept

The purpose of the clang-based frontend is to traverse the AST and generate the symbol table.
This task is performed by the clang_c_converter class located in the “src/clang-c-frontend/”
directory. The converter starts from the translation unit declaration, the root node shown in
Figure 7. When traversing the AST, there is no need to implement the traversal algorithm.
Because clang already provides the APIs to traverse AST tree. Clang provides the decls() API
to return an range expression, llvm::iterator_range<decl_iterator>. All the declarations are
contained in a container data structure bounded by this range iterator. To visit each declaration
node one by one, all we need to do is executing a range-based for loop over that range
expression. The decl_iterator can be dereferenced to the pointer that points to a declaration
node represented by the clang::Decl class.

Now we have the pointer to each declaration node. The goal is to convert each declaration node
into the equivalent irep node and hence the corresponding symbol. However, the declaration
nodes extracted from the range expression might be of different types (cf. Table 2). The type
information of a clang::Decl can be determined using the getter API getKind().The converter
class provides different functions to process different types of declarations as shown in Table
4.

C Language Construct Declaration Conversion Function
Label bool get_decl(const clang::Decl &, exprt &)
Var bool get_var(const clang::VarDecl &, exprt &)

Function bool get_function(const clang::FunctionDecl &, exprt &)
Field bool get_decl(const clang::Decl &, exprt &)

TypeDef No conversion needed
Table 4: Conversion functions for declaration node.

Unlike a variable or function declaration, TypeDef is not considered as an “identifier”. The
converter ignores TypeDef declaration because clang will always give the underlying type
defined by the typedef. The conversion function takes different types of the declaration node
as the first parameter, but the types pointed by the decl_iterator are different.

To illustrate the conversion process of transforming a clang AST node into an irept node and
then into the symbol, let us use the variable declaration node as an example. The structure of a
variable declaration node with its child nodes is shown in Figure 9. Each child node contains
just one piece of semantic information of the variable declarations. For each clang AST node
in Figure 9, there exists an equivalent irept node in ESBMC, which preserves the semantic
information. Table 5 shows the mapping between clang node classes and ESBMC IRep node
classes.

Node Type clang class irept class
Name, ID clang::IdentifierInfo std::string (C++ data type)
Location clang::SourceLocation locationt

Type clang::QualType typet
Storage Class clang::StorageClass Decomposed and represented

by ‘bool’
Init Value (or Function body) clang::Expr exprt

Table 5: Mapping clang classes to ESBMC irept nodes.

 28

For variable name and ID, clang_c_converter uses C++ build-in class std::string. As for the
storage class, it is decomposed and represented by three Boolean variables: static_lifetime,
is_extern, and file_local.

The typet class is a base class that also implements the irept interface. Different C data types
are represented by different derived classes of this base class as shown in Figure 10. A typet
node may contain multiple child nodes to hold the semantic information of a more complex
data structures. For example, the subtye node of an array_typet node represents the type of the
elements stored in an array. The size node represents the size expression. In C language, it is
legal to use an arithmetic expression as the argument of the array subscripting operator. For
this reason, the size node is represented by exprt class. The structure of array_typet node is
shown in Figure 11.

Figure 10: Class inheritance hierarchy of typet

Figure 11: Structure of the array_typet tree

During the conversion process, the clang_c_converter first creates an equivalent irept node
based on the mapping shown in Table 5. Next, the clang_c_converter calls the corresponding
function to complete the conversion. These conversion functions are shown in Table 6.

 29

Node Type Child Node Conversion Function
Name, ID void get_decl_name(const clang::NamedDecl &,

std::string &, std::string &)
Location void get_location_from_decl(const clang::Decl &,

locationt &)
Type bool get_type(const clang::QualType &, typet &)

Storage Class Decomposed and processed by the get_var function in
Table 4

Init Value (or Function body) bool get_expr(const clang::Stmt &, exprt &)
Table 6: Conversion functions for child nodes.

When converting a variable declaration node, function get_var (cf. Table 4) will be called to
process each child node extracted by the getters as listed in Table 3. The irept nodes listed in
Table 5 will be created when calling each corresponding conversion function listed in Table 6.
Each conversion function will annotate the equivalent irept node to preserve the semantic
information held in each child node. Figure 12 shows the transformation of a clang VarDecl
node into an irept node of ESBMC.

Figure 12: Transform clang::VarDecl into code_declt

 30

In Figure 12 each clang class is a generalised data structure to hold an AST node's semantic
information and metadata. They are not exclusive to the clang::VarDecl node but can be used
to represent the semantics of other AST nodes. For example, clang::QualType can be used to
represent the type of another language construct, including:

• The type of a variable
• The type of the operands in a BinaryOperator expression
• The type of a referenced variable in DeclRef expression
• The return type of a function declaration
• The return type of a function call in CallRef expression
• The type of the elements of an array (the subtype as shown in Figure 11)

Similar to clang::QualType, clang::SourceLocation can also be used to represent the location
of any language construct, whether it is a variable declaration, a block of statements, a single
statement, a control statement (e.g. an if statement), or other types. Therefore, the conversion
functions in Table 6 are not only used for the conversion of a VarDecl node conversion, but
also used for other types of nodes, e.g. a function declaration node, a block, or an expression
node, .etc. As shown in Figure 13, the conversion functions are generalised to process the
semantic information and meta data held in each type of child nodes. The parent of these child
nodes can be of any type listed in Table 2.

Figure 13: UML of clang-based frontend for VarDecl and FunctionDecl conversion.

 31

3 Methodology and Implementation

This chapter aims to outline the methodology that guides the implementation of the new
Solidity frontend. Section 3.1 uses an illustrative example to present an overview of the final
methodology implemented, which hopefully helps the reader to grasp the big picture. At the
beginning of the project, two methodologies were proposed: one relies on the Solidity compiler
libraries, and the other one uses Solidity JSON AST. The latter was chosen to implement.
Section 3.2 discusses the design rationale and explains why the second methodology is chosen.
As a result, there two versions of implementation for the second methodology. Section 3.3
describes the limitations of the first version based on Tracker-Based Hybrid Conversion.
Section 3.4 outlines the improved version based on Grammar-Based Hybrid Conversion.

3.1 Illustrative Example

This section gives an overview of the final methodology and implementation, which is referred
to as Grammar-Based Hybrid Conversion. The verification pipeline that uses the new Solidity
frontend is shown in Figure 14.

Figure 14: The new Solidity frontend in ESBMC verification pipeline.

 32

As shown in Figure 14, the new Solidity frontend takes Solidity JSON AST as input. The
ultimate goal is to convert Solidity JSON AST into the quantifier-free formulae C and P. The
conversion steps are a follow:

1. Generate the GOTO program
2. Generate the SSA form
3. Generate the C /\ ~P

We will use the example code in Figure 15 to show the intermediate output and illustrate each
conversion step.

Figure 15: Example code to illustrate conversion steps.

 33

The smart contact shown in Figure 15 contains one state variable x, and three functions:

• nondet: a pure function that does not change the state variable x. This function is used
to assign a non-deterministic value to a variable shown in line 21.

• get_x: a public function that changes value of the state variable x to 253 and returns this
value.

• func_case_study: This is the function to be verified using ESBMC. This function calls
the other two functions.

The Solidity smart contract shown in Figure 15 is syntactically correct. However, the
func_case_study function contains an error of arithmetic overflow. All variables were declared
as uint8, which represents a value within the range from 0 to 255. The final value of sum
depends on the predicate “y > x”. The value of x is 253, but the value of y is non-deterministic:
it can take any value from 0 to 255 returned from the function nondet as shown in line 21. If y
is 254, then the expression “y > x” evaluates to true and the addition expression in line 28 will
become “sum = 253 + 10”. The final value of sum would become 263 but this value is not
within the valid range 0-255 represented by uint8, which leads to the arithmetic overflow error.
The following subsections will walk the reader through the intermediate output of each
conversion step, and finally shows the detection of this error by ESBMC.

3.1.1 GOTO Program

To verify the Solidity smart contract shown in Figure 15, the type checker converts each AST
node into a symbol and generate the symbol table. Then the GOTO converter will use this
symbol table to produce the GOTO program. The GOTO program is the language-independent
IR in ESBMC.

Figure 16, Figure 17, and Figure 18 compare each original Solidity function with the equivalent
GOTO program. The state variable x is shown as the global variable in __ESBMC__main
shown in Figure 19. Each statement is colour coded to show the correspondence.

Figure 16: GOTO program of nondet function.

Figure 17: GOTO program of get_x function.

 34

Figure 18: GOTO program of func_case_study.

 35

Figure 19: Statement variable and function call.

As shown in Figure 18 and Figure 19, the GOTO program of the Solidity smart contract has
three important features:

• New intermediate variables.
It introduces new intermediate variables to facilitate the creation of SSA form by the
symbolic execution engine SymEx in the verification pipeline. For example, the return
value of get_x function is represented by the intermediate variable
return_value$_nondet$1, as shown in line 73 of Figure 18.

• Change of Control Flow.
The GOTO program represents the control flow of the original program using guarded
GOTO statements. For example, the if-then-else statement is represented by the IF-
THEN-GOTO X statement, where X represents the label number. The expression “sum
= x + 1” is represented by its equivalent labelled statement in line 95 of the GOTO
program.

• Statement variable as Global variable.
In the GOTO program the statement variable in a smart contract is represented by the
global variable in __ESBMC__main function.

 36

3.1.2 SSA Form

Figure 20: SSA form of function_case_study shown in Figure 15.

 37

The SSA form is shown in Figure 20. The SSA trace generated by the symbolic execution
engine of ESBMC is shown on the right. The manually simplified SSA is shown on the left.
Each statement is underlined and colour coded to show the correspondence. Compared to the
simplified SSA, the SymEx-generated SSA trace has the following features:

• Naming Convention.
The name of each indexed variable is shown in the front, and the index is shown at the
end. E.g., “x&0#4” where “x” denotes the variable name, and “#4” denotes the index in
SSA form.

• More intermediate assignments.
The SymEx-generated SSA trace contains more intermediate assignments because of
function call. It seems that these intermediate steps could be simplified.

• Guarded GOTO predicate.
This is represented by “goto_symex::guard”. (Line 60 in Figure 20)

• Assertion.
The assertion is shown with a prefix “execution_statet::”. (Line 92 in Figure 20)

A simplified SSA trace can be printed using the option “--ssa-smt-trace”. As shown in Figure
21, when generating the logic formulae, ESBMC uses a simplified SymEx-generated SSA trace.

Figure 21: Simplified SSA trace during SMT encoding.

 38

3.1.3 Logic Formulae and Z3 Representation

Figure 22: C and P formulae.

To use the Z3 solver, ESBMC must extract the logic formulae from the SSA form using Z3
syntax. The C and P formulae that are manually derived are shown in Figure 22. ESBMC-
generated formulae are shown in Figure 23.

Figure 23: ESBMC-generated C /\ ~P formulae

Any string bounded by “|…|” denotes a variable. E.g. in line 65 of Figure 23,
“|goto_symex::guard?0!0&0#1|” represents the guard “g1” as shown in line 4 of Figure 22.

 39

Figure 23 shows the Z3 representation of the formulae in Figure 22. To understand the Z3
representation, we are going to walk through a list of Z3 syntax:

• assert command.
(assert (EXPR)) means “assert EXPR is true”.

• “=” operator.

(= (EXPR_A) (EXPR_B)) means assigning EXPR_B to EXPR_A, where EXPR denotes
a variable, a literal or a more complex expression that uses another Z3 command.

• bvsgt command.
(bvsgt (EXPR_A) (EXPR_B)), the bit-vector signed greater-than, which returns true if
“EXPR_A > EXPR_B”. The default operand is 32 bits width.

• (_ zero_extend 24) command.
This command represents zero extension with bit width 24. Since our example uses
uint8 (Figure 15), ESBMC needs to use (_ BitVec 8) to encode this data type. In order
to match the default operand bit width of 32, this value has to be zero extended with an
additional bit width of 24, i.e. pad 24 zeros to the front.

• not command.
(not EXPR_A) means the negation of EXPR_A.

• ite (if-then-else) command.
(ite (EXPR_A) (VAL_1) (VAL_2)) means “if EXPR_A is true, then returns VAL_1, else
return VAL_2”.

• "=>” (implication) command.

“=>” denotes implication. (=> (EXPR_A) (EXPR_B)) means “EXPR_A à EXPR_B”.

• let command.
(let (IDENTIFIER_A (EXPR_A)) (IDENTIFIER_B (EXPR_B)) …) means
“let IDENTIFIER A denotes EXPR_A, and let IDENTIFIER B denotes EXPR_B”.
The user may declare more identifiers if needed.

The list above explains all the Z3 commands that appear in Figure 23, which enables us to map
the C and P formulae to the corresponding Z3 representations. This mapping is shown in Figure
24.

Note that Z3 representation is a simplified version of the C/\~P formulae. The clause “x1 =
253” is simplified to a hex constant shown in line 64 in Figure 24. “#x00000064” represents
253 in decimal. The same simplification approach also applies to the clauses “sum1 = 253 +
10” and “sum2 = 253 + 1” as shown in line 66 in Figure 24: the former is simplified to a hex
constant “#x07” representing 7 in decimal and the latter is simplified to a hex constant “#xfe”
representing 254. The value of sum1 should be 263, but it wraps around and finally becomes
7 due to the arithmetic overflow error. The verification result in Figure 25 shows that Z3 found
satisfiability with respect to the formulae in Figure 22. ESBMC reported a counterexample that
satisfies the negation of the property “p = [sum3 > 100]”. The counterexample indicates the
presence of the arithmetic overflow error.

 40

Figure 24: Z3-representations of the formulae

 41

Figure 25: Verification result of the illustrative example.

 42

3.2 Tracker-Based Hybrid Conversion

This section aims to explain the reason why the methodology that relies on Solidity JSON AST
was chosen, as well as the implementation of such methodology in ESBMC. This section starts
with a description of generalised frontend actions in ESBMC to verify general programming
language. Given an input Solidity program, our goal is to generate the symbol table using
ESBMC’s internal data structure symbolt, which is used in a later stage to generate the GOTO
program. This section describes the design challenges and outlines a new methodology to
resolve these challenges.

3.2.1 Generalised Frontend Actions

As described in Section 2.2, when verifying programs written in a general programming
language, ESBMC frontend actions can be generalised as follow:

• Pre-processing (pre-processor)
For C and C++, the purpose of this step is to perform speicfic manipulations based on
the preprocessor directives, e.g. substitute or expand macros or removing a code block
if it is bounded by the directives ‘#if 0’ and ‘#endif’ [49].

• Lexical analysis (scanner)
The step aims to understand the “word” of the C or C++ source code. The scanner
groups the characters into lexemes and generate a sequence of tokens [21].

• Syntax analysis (parser)
The purpose of this step is to understand the structure of the input C or C++ source
code. The parser usually generates the AST to diagram the source code.

• Type checking (type checker)
The aim of this step is to convert each AST node into ESBMC’s intermediate
representation irept and generate a symbol table in which each symbol is represented
by ESBMC’s symbolt data structure.

Action #1, #2 and #3 are typical compiler phases. In ESBMC, these steps are handled by the
clang APIs. ESBMC has its type checker for step #4.

These actions lead to the creation of a symbol table. In ESBMC, the symbol table enables the
middle end to perform further actions, including:

• Convert the original program into the equivalent GOTO program
• Symbolically execute the program and generate the SSA form

3.2.2 Design Challenges and Decisions

Unlike general programming languages, Solidity is a domain-specific language (DSL). A DSL
is a programming language for a specific field, and it is designed so that the users can be
particularly productive in that field [22]. Solidity is a DSL with OOP features that are tailored
to smart contracts of the Ethereum blockchain.

 43

Compared with C and C++ languages heavily used in the industry for many years, Solidity is
a relatively new language. To verify a programming language, there are two items to be
considers:

• The language standard
• The toolchain (e.g. compiler, linker and debugger)

The language standard provides a thorough and detailed description of the lexical convention,
formal grammar, and the production rules, e.g. C++11 standard [50] and C99 standard [51].
The toolchain provides libraries and APIs that allow the developers to design a language
verification tool. For C and C++, such libraries and APIS are provided by the clang compiler
suite. Additionally, there exists plenty of publications and online resources to assist the
developers in designing a new language verification tool based on the existing tools, e.g. the
tools in [45, 47, 48]. However, this is not the case for Solidity. Due to the lack of, designing a
new ESBMC frontend to verify smart contracts is a challenging task. The design challenges
are outlined as follows:

Design Challenge #1. Unlike C or C++, there is no officially published document of the
Solidity language standard. The only language documentation available is [16]. There is not
enough information to implement a scanner and a parser from scratch.

Design Challenge #2. Apart from the Github repository of the Solidity compiler1 (solc), there
are no officially published books or papers to help the developers to use the libraries and APIs
provided by Solidity compilers2. To use these libraries and APIs, one has to become a solc
expert.

Design challenge #3. Solidity is a relatively new DSL that keeps evolving. Based on
Solidity's history, there were many breaking changes between two major versions [16]. These
changes are not backwards compatible. For example, it is impossible to use solc version
0.4.20 to compile a Solidity program containing features of solc version 0.X.Y, where X > 4.
The breaking changes are of different types:

• Syntax-only changes
• Semantic-only changes
• Semantic and Syntax changes
• Deprecated elements
• New features
• Explicitness requirements, e.g. mark a function ‘virtual’ explicitly if it is defined

outside an interface without implementation (it is legal to do so in Solidity)
• Interface changes (including the changes in JSON AST)

1 Solidity compiler (solc): https://github.com/ethereum/solidity
2 Having looked at the source code repository and the build directory of solc, there seem to exist some kind of
libraries and the corresponding include files, e.g. liblangutil, libsolc, libsolidity .etc.

 44

The design goals are as following:

Design Goal #1. The new Solidity frontend of ESBMC shall complete lexical analysis and
syntax analysis of the input Solidity source code and generate the AST.

Design Goal #2. The new Solidity frontend of ESBMC shall complete the type checking of the
AST in Design Goal #1. The frontend shall transform the Solidity AST nodes into the
equivalent ESBMC irept nodes whilst preserving the semantic information, and generate the
corresponding ESBMC symbols modelled by symbolt class.

There are two methods to achieve these goals:

Methodology #1. Use Solidity source code as input. This frontend uses the libraries and
include files provided by solc. This methodology requires the integration of ESBMC with solc
libraries. The conversion functions of the new type checker rely on the solc libraries.

Methodology #2. Use JSON representation of Solidity AST as input. The JSON representation
of Solidity AST can be generated using the Solidity compiler option “--ast-compact-json”.
Then the new frontend needs to handle a JSON file. The conversion functions of the new type
checker is based on the high-level language constructs of Solidity.

Both methodologies can achieve Design Goal #1 and #2. Both methodologies obviate the need
to implement a scanner and a parser, and hence both can resolve Design Challenge #1.
However, Design Challenge #2 and #3 cannot be resolved using Methodology #1. For this
reason, we decided to go for Methodology #2 to implement a new Solidity frontend that
processes the JSON representation of Solidity AST.

Figure 26: Methodology #1 and #2.

As shown in Figure 26, the lexical analysis and parsing phases are “outsourced” to the solc
(Solidity compiler), which just leaves the semantic analysis to be implemented. But the new
frontend of Methodology #1 has to handle all three phases. Due to the lack of documentation
of Solidity compiler, the programmable interfaces provided by solc are challenging to use.

 45

The disadvantages of Methodology #1 are as follows:

• As described by Design Challenge #2, due to the lack of publications and learning
resources of solc toolchain, one must become a solc expert to use the libraries and
include files provided by solc. Considering the time limit of this MSc project,
becoming a solc expert is a mission impossible. Having investigated the source code
and include files, using these libraries is as difficult as developing the new frontend
itself.

• Since Solidity keeps evolving (cf. Design Challenge #3), the dependency of the new
type checker on solc libraries is likely to break if there are corresponding changes in
those libraries. Maintaining such dependency will become a Herculean task because
we may need to worry about almost all types of breaking changes as listed in Design
Challenge #3, which may change how a programmable interface is used.

As for Design Challenge #2 and #3, the advantages of Methodology #2 are as follow:

• Methodology #2 does not use solc libraries. Therefore, Design Challenge #2 is
resolved.

• Methodology #2 uses Solidity JSON AST as input. It is less sensitive to the breaking
changes because AST is a tree-structured IR representing the syntactic structure of a
source program [21]. Because we only need to worry about the structural changes with
respect to the JSON AST. Based on the historical records of Solidity breaking changes,
the frequency of such changes is very low. It only occurs once between version 0.5.0
(released in November 2018) and version 0.8.7 (released in July 2021). Therefore,
Methodology #2 is more robust to the breaking changes in as described in Design
Challenge #3.

Table 7 compares Methodology #2 to Methodology #1 with respect to the coverage of Design
Goals and Design Challenges. Table 8 compares these methodologies with respect to the
coverage of the frontend actions as described in Section 3.2.1.

Methodologies Design
Goal #1

Design
Goal #2

Design
Challenge

#1

Design
Challenge

#2

Design
Challenge

#3
Methodology #1 ✓ ✓ ✓ ✕

✕

Methodology #2 ✓ ✓ ✓ ✓ ✓
Table 7: Coverage of Design Goals and Design Challenges

Methodologies Preprocessing Lexical
Analysis

Syntax
Analysis

Type Checking

Methodology #1 N/A to Solidity ✕ ✕

Expected a new
type checker to be

implemented in
both methodologies

Methodology #2 ✓

(bypassed)
✓

(bypassed)
Table 8: Coverage of frontend actions.

 46

The lexical and syntax analysis phases can be bypassed in Methodology #2 because these
phases are handled by the solc compiler whilst generating the Solidity JSON AST.

As a short summary of this subsection, Methodology #2 gives better coverage of the Design
challenges shown in Table 7. It also obviates the need to become a solc expert to use the APIs
and libraries.

Methodology #2 leads us to a roadmap that contains the implementation milestones as
follow:

• Milestone #1. [Implementation of the New Language Mode]
Before adding the new Solidity frontend, ESBMC used to supported C and C++ only.
A new language mode must be added to support Solidity.

• Milestone #2. [Implementation of the New Type Checker]
The new frontend takes the JSON-represent of Solidity AST. A new type checker is
required to work with this format.

• Milestone #3. [Add support for ESBMC and SV-COMP Variables and Function]
The new frontend needs to support all ESBMC and SV-COMP variables and
functions.

Each subsection describes a detailed solution to achieve each milestone as listed above.

3.2.3 Solidity as A New Language Mode in ESBMC

To achieve Milestone #1, ESBMC must be extended to support Solidity as a new language
mode.

The list below summarised all the modifications in ESBMC to support a new language. This
list can also be referenced by other developers to facilitate future extensions, which hopefully
save a developer’s time during the project ramp-up phase.

• Add a new enum entry of the language to be supported in the mode_table initialised in
src/esbmc/globals.cpp.

• Define a new extension in src/langapi/mode.cpp to let ESBMC know about the
extension of the source file name.

• Define a new macro LANGAPI_HAVE_MODE_X in src/langapi/mode.h, where X
denotes the name of the language to be supported.

• Add the new frontend placeholder (usually a new directory) under the source
directory, e.g. “src/solidity-frontend/<source files of the new frontend>” was added to
support the new Solidity mode that was added in the above steps.

• Add the corresponding directives in the CMakeList.txt at various level of the source
code repository to build the new frontend.

 47

Since ESBMC is well-structured, achieving Milesonte #1 is relatively easy compared to the
other milestones. The above list covers most, if not all, major modifications to support a new
language mode in ESBMC.

3.2.4 Tracker-Based Conversion

The new Solidity frontend takes JSON-representation of the AST as input. To generate the
symbol table, a new type checker must transform each AST JSON node into an irept node and
convert the irept node into the corresponding symbolt, a data structure representing a symbol
in ESBMC.

There are various third-party libraries available to work with JSON files in C++. The most
popular one is nlohmann/json library3 developed by Niels Lohmann. This library has been used
by many tools4, including American fuzzy lop, CMake, Doxygen, Valgrind, and Clang that is
used by ESBMC’s clang-based C frontend.

There are three challenges with respect to the implementation of the conversion process to
transform JSON-representation of an AST node to ESBMC irept node:

• Conversion Challenge #1.
To convert each AST node, the new frontend needs to traverse the Solidity AST. AST
is a tree structure. In clang-based frontend, this tree structure is well preserved by clang
and can be traversed using the APIs provided by clang. However, the input JSON file
is flat. Each AST node is a JSON object that just contains key-value pairs.

• Conversion Challenge #2.

The new type checker must have common conversion functions to process the child
nodes that hold the semantic information of a parent declaration node. (cf. Table 3)

• Conversion Challenge #3.

When processing different types in Solidity, the conversion functions must be able to
switch between different types of Solidity language constructs.

An illustrative example of Conversion Challenge #1 is shown in Figure 27 and Figure 28.
Take the expression “sum = get_x() + y + z” as an example, this expression contains nested
binary operation expressions with a function call expression shown in Figure 27. The json
representation of such recursion is shown in Figure 28. The left-hand-side expression is parsed
as “((get_x() + y) + z)”. Table 9 summarizes the solutions to resolve all Conversion
Challenges.

3 nlohmann/json library: https://github.com/nlohmann/json
4 A list of tools that use nlohmann/json library can be found at https://github.com/nlohmann/json#used-third-
party-tools

 48

Figure 27: Recursion - nested BinaryOperation Expressions.

Conversion Challenges Solutions Remarks
#1 Introduce a common data

structure tracker to re-
construct the tree

Implemented in
solidty_decl_tracker.cpp5

#2 Introduce a common data
structure for each type of
child nodes ,
SourceLocationTracker,
NamedDeclTracker, and
QualTypeTracker

#3 Introduce the type
conversion functions

Implemented in
solidity_type.cpp6

Table 9: Solutions to design challenges

5 The source code of solidity_decl_tracker.cpp is available at
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3ba4c7d219cb014483170f75fcd8d/src/solidity-ast-
frontend/solidity_decl_tracker.cpp
6 The source code of solidity_type.cpp is available at
https://github.com/kunjsong01/esbmc/blob/a863663bc9c3ba4c7d219cb014483170f75fcd8d/src/solidity-ast-
frontend/solidity_type.cpp

 49

Figure 28: JSON AST of a nested BinOpExpr.

To resolve all the Conversion Challenges, a tracker-based conversion method was proposed
to transform the AST JSON nodes into the equivalent irept nodes.

 50

When traversing the AST node in the input JSON file, the Tracker-based Conversion
Method uses a common data structure called trackers to represent each AST node. This method
uses different types of trackers to model different types of child nodes shown in Figure 29, for
example:

• NamedDeclTracker to hold the name information
• SourceLocationTracker to hold the location information
• QualTypeTracker to hold the type information

Figure 29: Trackers.

Figure 29 shows different types of semantic trackers to track the information when traversing
the AST node in the input JSON file. Since the new frontend uses a for loop to iterate over the
nodes array in the input JSON file, the corresponding trackers are instantiated on the fly. When
the loop reaches the end of the array, the tree structure will be re-constructed. In a sense, it
“tracks” the progress as the loop moves from one node to another.

 51

As shown in Figure 29, the Tracker-based Conversion Method also uses different types of
declaration trackers to represent different types of the declaration nodes in Solidity AST, for
example:

• A base DeclTracker class to track declaration node with the following derived classes:
o VarDeclTracker represents a variable declaration node.
o FunctionDeclTracker represents a function declaration node.

• A base StmtTracker class to track the statement node with the following derived classes:
o CompoundStmtTracker represents a block of statements.
o DeclRefExprTracker represents a statement node being an expression of

declared variable.
o BinaryOperatorTracker represents a statement node being an expression of

binary operation
o CallExprTracker represents a statement node being an expression of function

call.

Let us use another code example shown in Figure 30. The composition and inheritance relations
are shown in Figure 31.

Figure 30: Example of a Solidity function.

Figure 31: AST of the function body.

 52

In Figure 31 Each node in this tree structure is represented by a tracker as the new frontend
iterates over the “nodes” array in the input JSON file. All expression trackers are derived
classes of the base class StmtTracker. Since a statement node can be a block statement or an
expression statement, and the expression statement can also be a block containing multiple
statements, it can become challenging to deal with such recursions. This challenge can be
resolved by the class inheritance hierarchy shown in Figure 31. The type checker can traverse
each statement node by recursively calling the function get_expr shown in line 229 of Figure
32.

Figure 32: get_expr function.

First, get_expr function checks the type of the statement tracker. Then, depending on the type,
the function converts the statement tracker into an exprt node (the second argument
of get_expr function), where exprt implements the irept interface.

Suppose the tracker represents a compound statement tracker. In that case, it will be statically
casted to a “CompoundStmtTracker” and recursively calls the get_expr function to convert
each individual statement into the equivalent exprt node. Figure 33 shows two more examples
to convert binary operation tracker and declaration reference tracker. The conversion of binary
operation trackers will be handled by get_binary_operator_expr function (Figure 34). The
get_binary_operator_expr function calls back into get_expr function when converting the LHS
and RHS expressions. When converting a binary operator expression, the call stack is shown
in Figure 35.

 53

Figure 33: Conversion of BinOpStmt and DeclRefExor.

Figure 34: get_binary_operator_expr calls back into get_expr.

 54

Figure 35: Call stack usage when converting "a+b"

 55

As a concluding example of this subsection, let us look at a re-constructed tree of the Solidity
function shown in Figure 36, and its conversion to ESBMC irept.

Figure 36: concluding example.

The re-constructed tree of the function_example2 is shown in Figure 37. This tree is converted
into ESBMC tree-structured intermediate representation shown in Figure 38.

Figure 37: Re-constructed tree using trackers.

 56

Figure 38: ESBMC irept parse tree..

After the conversion to irept, the corresponding symbolt can be generated using the standard
function get_default_symbol.

 57

3.2.5 Hybrid Symbol Conversion for Intrinsic Declarations

There are three important functionalities a BMC needs to support:

• assert(). This function enables the user to define properties.

• assume(). This function enables the user to define constraints.

• nondet(). This function enables the user to assign a non-deterministic value to a
variable.

To support these functionalities, the new frontend needs to support ESBMC/SV-COMP
variables and functions shown in Figure 39. As described in Section 3.2.4, the tracker-based
conversion mechanism only works with the JSON representation of the Solidity AST nodes. It
does not work with C-style declarations.

Figure 39: ESBMC intrinsic variable and function declarations.

To support these intrinsic declarations, the new Solidity frontend needs to convert them into
symbols and add them to the symbol table. The final symbol table should contain not only the
symbols of Solidity declarations but also the symbols of ESBMC intrinsic declarations:

𝑠𝑦𝑚𝑏𝑜𝑙	𝑡𝑎𝑏𝑙𝑒 = {𝐼!…𝐼(, 𝑆!…	𝑆(}																																						(3.1)

where 𝐼!…	𝐼(represents the symbols of the intrinsic declarations and 𝑆!…	𝑆(represents the
symbols of Solidity declarations.
There are two methods to generate the symbol table defined in (3.1):

 58

• Method #1. Provide the JSON representations of these variables and functions. For
example, the function declaration, “void __ESBMC_assert(_Bool, const char *)”, can
be converted into the equivalent JSON representation shown in Figure 40.

• Method #2. Use a hybrid conversion mechanism shown in Figure 41:
o Use clang-c-frontend to convert ESBMC/SV-COMP declarations
o Use solidity-frontend to convert Solidity declarations

Figure 40: JSON-representation of __ESBMC_assert

Since there are more than 70 intrinsic declarations, manually converting them into the
equivalent JSON representation is a time-consuming task. If anything changes in the intrinsic
declarations, the developers must change the corresponding JSON representations, which leads
to more maintenance duties. Adding the JSON representations of the intrinsic declarations in
the new frontend appears to be reinventing the wheel. Therefore, Method #2 was chosen to
guide the implementation of the new Solidity frontend.

Hybrid conversion mechanism. The new Solidity frontend contains an instantiation of clang-
c-frontend that add the symbols of intrinsic declarations to the symbol table generated by the
Solidity type checker. Figure 41 illustrates this mechanism. The new Solidity frontend contains
an instantiation of clang-c-frontend to handle the symbol conversion of ESBMC intrinsic
declarations.

Figure 41: Hybrid conversion mechanism.

 59

3.3 Limitations of Trackers

As described in Section 3.2.4, tracker is a data structure used to reconstruct the tree from the
Solidity JSON AST nodes:

• Each node is represented by a tracker object.

• Each edge is represented by the composition relation between two tracker objects, e.g.
A CompoundStmtTracker is not a BinaryOpExprTracker; it may have one. A
BinaryOpExprTracker is not a CallExprTracker (i.e. function call); it may have a
CallExprTracker as the LHS or RHS operand.

Trackers preserve the syntactic structure whilst holding the semantic information of each node
in the original AST. However, trackers are not free to use. This section explains the limitations
of the tracker-based symbol conversion.

3.3.1 Scalability

The new Solidity frontend takes the JSON-representation of the original AST as input. In order
to re-construct the tree, the trackers essentially replicate the semantic information stored in
each JSON object, i.e. the data is duplicated and stored in two places in the memory: the JSON
objects and the tracker objects. The data replication is wasting the memory during the tree
restoration phase.

For the verification of small Solidity programs, the impact of data replication is negligible.
However, the tracker-based conversion mechanism may suffer from scalability and
performance problems when it comes to verify large and complex Solidity programs. Because
there are lots of recursions when converting a tracker node into irept node. Figure 42 shows an
illustrative example of a nested binary operation expression “sum = a + (b * (c * (…)))”.

 60

Figure 42: Trackers of nested BinOpExpr.

As the binary operator express grows, more tracker objects will be created to replicate the data
of the corresponding JSON objects, which will waste more memory. It can become even worse
when verifying multiple complex and large programs.

 61

3.3.2 Maintainability, Extendibility and Readability

Since the first goal of the new Solidity frontend is to reconstruct the tree, the tracker class is a
“helper” data structure. The developers would need to maintain and extend such data structure
in the codebase. Since Solidity keeps evolving, here are the potential issues with respect to
extendibility and maintainability:

• Maintainability.
The structure of the tracker class may change according to changes of the corresponding
JSON objects. However, frequency of such changes is quite low based on the analysis of
the historical records of breaking changes as discussed in Section 3.2.2. To cope with such
changes, the developers may need to update the base tracker class and the corresponding
declaration class that derives the tracker class.

• Extendibility.

If a new type of tracker is required, the developers may also need to update three places
in the code:

i. Add a new tracker class in solidity_decl_tracker.h and solidity_decl_tracker.h

ii. Update the type files (solidity_types.h and solidity_types.cpp) to include the
new type.

iii. Add a new conversion function that converts this type of tracker into the irept

node.

• Readability.
The trackers hold the semantic information of the AST nodes, which facilitate the
conversion of AST nodes into irept nodes. The conversion functions are developed
based on the production rules of the formal grammar of the Solidity programming
language [16]. Using the trackers makes the program more complex to a developer
who does not know about the design rationale behind using the tracker data structure.

The tracker-based conversion mechanism gives rise to performance and scalability problems
and requires more efforts when it comes to maintaining and extending the code base.

 62

3.4 Grammar-Based Hybrid Conversion

A new conversion methodology was proposed to resolve the limitations of the tracker-based
hybrid conversion methodology as previously mentioned. The new methodology is referred to
as the Grammar-Based Hybrid Conversion that was implemented with improvement as follow:

• The scalability problem is resolved.
Completely removed data replication due to the usage of the tracker data structure

• Code readability has been improved.
The implementation of conversion functions reflects the production rules in formal
grammar of the Solidity programming language, i.e. the Solidity grammar
documentation serves as the design specification of the new type checker of the Solidity
frontend in ESBMC. If a developer knows about Solidity grammar, the developer
should be able to observe the mapping of a production rule to the corresponding
conversion function.

• Maintainability and extendibility have also been improved.
Reduced the number of files to be updated in case of a major update of the JSON
structure.

This section starts by investigating the feasibility of tracker removal. The following subsections
outline the design of grammar-based hybrid conversion.

3.4.1 Feasibility of Tracker Removal

As shown in Figure 43, recall that the new Solidity frontend reconstructs the tree whilst
iterating over the elements of JSON array “nodes”. The restored tree is formed of:

• Nodes represented by tracker objects that hold the semantic information

• Edges represented by the composition relations among different types of the tracker
classes

 63

Figure 43: Tree re-constructed from the JSON AST.

In tracker-based conversion methodology, the conversion functions can be implemented so that
each conversion function handles one type of tracker as shown in Table 10.

Original Node Types Conversion Functions irept Nodes
VarDeclTracker get_var code_declt
FunctionDeclTracker get_function code_declt
QualTypeTracker get_type typet
NamedDeclTracker get_decl_name irep_idt
BinaryOperatorExprTracker get_binary_operator_expr exprt
SourceLocationTracker get_location_from_decl location
DeclRefExprTracker get_decl_ref exprt
StmtTracker (the base class
of all other tracker classes)

get_expr N/A

Table 10：Conversion functions for irept nodes.

Note that get_expr by itself does not convert any node, because it is the traversal function that
walks through each node. Depending on the type of the tracker, get_expr calls other functions
to perform the actual conversion.

To remove the trackers, the following conditions must be met:

• Condition #1.
The semantic information of the AST JSON node must be preserved, which will be
used to annotate irept nodes.

• Condition #2.
The composition relation between a declaration node and a child node must be
preserved.

 64

• Condition #3.
The traversal function get_expr can be reused in a recursive manner provided that the
correct order of function calls can be preserved.

As shown in Figure 44, a new conversion methodology, called Grammar-based conversion,
that meets all conditions was proposed to tackle the limitations of the tracker-based hybrid
conversion method. Grammar-based conversion method does not use trackers because all the
conversion functions are re-designed to work with the nlohmann::json objects.

Figure 44: Tracker-based vs. Grammar-based conversion.

3.4.2 Grammar-Based Conversion

A detailed study of the nlohmann JSON library for C++ shows that there exists a base type to
represent all types of JSON objects: the nlohmann::json data type [12]. All JSON value types
can be implicitly converted to nlohmann::json type.

For example, the nodes array, the first element in that array, and typeDescription object can be
implicitly converted into the nlohmann::json data type as shown in Figure 45. The
nlohmann::json data type can be used to represent different JSON objects regardless of the
actual data structure. The JSON objects #2 and #3 can be represented by a constant reference
of the type nlohmann::json shown in Figure 46.

 65

Figure 45: The nlohmann::json data type.

Figure 46: Type casting of AST nodes.

This feature of the nlohmann::json library fulfils the requirements as per Condition #1 and #2
in Section 3.4.1.

To fulfil the requirement as stated in Condition #3, the conversion functions have to be re-
designed to extract the structure of Solidity language construct from nlohmann::json data type
whilst preserving the correct order of functions calls when it comes to annotate the irept nodes.
This is to ensure that all child nodes are visited in the correct order. For example, a function
parameter node must be converted before the function body node. Because the function
parameters may appear in the function body. If a function body node is converted before its
parameter node, the type checker will fail to convert any reference to the parameter.

 66

The grammar-based conversion methodology uses the production rules of the Solidity grammar
to make sure each node is visited in the correct order. The production rule is specified in
Solidity documentation [16]. For example, the init node of the for loop needs to be converted
before the body. Figure 47 (a) shows the production rule of the for loop in Solidity grammar.
Figure 47 (b) shows corresponding conversion steps in get_statement function. The steps
shown in Figure 47 (b) falls within the case of ForStatement as shown in Figure 48.
“SolidityGrammar::StatementT::ForStatement” represents the rule for-statement as part of the
rule statement shown in Figure 47. The colour coding shows the composition relation between
these two rules.

Figure 47: The conversion steps of a for loop.

 67

Figure 48: the conversion function for “rule statement”.

Figure 49: Production rules of Solidity statement.

Figure 47 shows the grammar-based conversion steps that convers a Solidity for loop into
ESBMC IR code_fort shown in Figure 50. Note that the condition part is currently modelled
as exprt as shown in Line 597 of Figure 47. It can be changed to code_t if the for loop contains
empty or multiple conditional expressions.

 68

Figure 50: equivalent ipret node of the Solidity “for” loop.

According to the production rule shown in Figure 47 (a), it is legal to write a for statement that
has empty init, condition and increment, such as “for (; ;)”. The code can be easily extended
to handle such cases. For example, Figure 51 shows a patch with just a few code lines to support
empty init expression.

Figure 51: Patch to support empty init expression.

During the implementation of the grammar-based conversion method, it was found that the
Solidity grammar contains some cyclic but non-ambiguous production rules as shown in Figure
52.

 69

Figure 52: cycle references in Solidity grammar.

As shown in Figure 52, one of the production rules of rule statement generates block; one of
the production rules of block leads back to statement. These rules are unambiguous because
statement is bounded by curly braces in rule block. This relation of mutual inclusion is reflected
in the implementation shown in Figure 53.

 70

Figure 53: cyclic references in Solidity grammar.

3.4.3 Improved Readability, Maintainability and Extendibility

As shown in Figure 47, Figure 48 and Figure 49, the grammar-based conversion method is easy
to follow because the implementation reflects the production rules in the Solidity grammar
specification. The names of different types strictly follow the naming conventions in Solidity
grammar. Compared to the tracker-based conversion, it significantly improves the readability
of the code compared to the tracker method as the trackers may seem confusing to the new
developers who do not necessarily know the specifics and design intentions of the tracker data
structure. The implementation of Solidity grammar production rules and conversion steps were
kept in two separate source files in tracker-based hybrid conversion method:

• The production rules were implemented in the config function of a tracker.

• The conversion steps were implemented in the conversion functions that deals the
tracker.

 71

In contrast, the grammar-based hybrid conversion method has everything contained in one
place. The conversion steps can be directly mapped to the production rules defined in the
Solidity grammar specification. For example, the conversion functions are named after the rule
names; each case statement of a conversion function is named after the corresponding
component names in that production rule. It would be relatively straightforward to locate the
conversion steps for a specific language construct. Therefore, it improves maintainability and
extendibility. To demonstrate the extendibility, Table 11 shows a group of patches to add
additional features.

Commit Patche Description Changes Remarks Link

ad8680a

Add conversion steps of
the binary operators “<”
and “-”

28
additions,
0 deletions

 All patches are
available in
kunjson01/esbmc
Github7.

c80ba64

Add conversion steps of
assume function, as well
as binary operator “!=”

74
additions,
22
deletions

8ff8734

Add support for
__VERIFIER__assume

6
additions,
3 deletions

__VERIFIER__assume
is an important function
defition for SV-COMP

85654eb Add conversion steps of
for loop

113
additions,
3 deletions

Table 11: Extendibility of the new Solidity frontend.

7 Commit history: https://github.com/kunjsong01/esbmc/commits/dev-solidity-support

 72

3.5 Summary of Methodology

This section describes two methodologies to implement the new Solidity frontend:

• Tracker-Based Hybrid Conversion
• Grammar-Based Hybrid Conversion

The implementation of these methodologies is shown in Figure 54 and Figure 55. Compared
to the Tracker-Based Hybrid Conversion method, the Grammar-Based Hybrid Conversion
method is more compact, and has improved readability, maintainability, and extendibility.

Figure 54: Workload of Tracker-Based Hybrid Conversion method

Figure 55 Workload of Grammar-Based Hybrid Conversion method.

 73

4 Evaluation

4.1 Test Suite Design

Since Solidity does not have a standard benchmark, a test suite was created. This test suite
contains t test cases, each of which is for a specific type of vulnerability. The test cases are
shown in Table 12.

Category Test Case ID Description
Pattern-Based
Vulnerability

#1 Authorization Through
Tx.origin in a payable function
in the smart contract

Reasoning-Based
Vulnerability

#2 Arithmetic overflow with
nested binary operator
expression

#3 Arithmetic underflow with
unary expression

#4 Loops. Use incremental-bmc to
detect arithmetic underflow in a
loop.

#5 Array Out-of-Bound exception
in a loop.

#6 Satisfiability test with nondet,
assume and assert

#7 Test __VERIFIER__assume
Table 12: Test suite

The test cases are classified into two groups: pattern-based vulnerability and reasoning-based
vulnerability. For pattern-based vulnerabilities, the new Solidity frontend loops over the AST
nodes and tries to detect a pattern of unsafe code. As for reasoning-based vulnerabilities, the
new Solidity frontend transforms the AST nodes into the irept nodes and generates the symbols
table. Then the rest is handed over to the middle end and backend of ESBMC verification
pipeline.

These test cases are microbenchmarks, which serve three purposes:

• To guide the development of a Solidity type checker. This project employs test-driven
development.

• To test the Solidity verification pipeline in ESBMC
• To test other verification tools and compare the results to ESBMC’s results.

Each subsection describes one test case in Table 12.

 74

4.1.1 TC1: Authorization Through Tx.orgin

This test case is shown in Figure 56. The function transferTo in Line 10 is used to transfer
Ethers to another smart contract. Since this function is used for making payment, it is protected
by the statement “require(tx.origin == owner);”. It means that the payment is authorized if and
only if the caller of this function is the owner of this smart contract. It seems reasonably safe
to authorize a payment by checking the precondition “(tx.origin == owner)”. However, it can
be easily attacked by the malicious contract shown in Figure 57.

Figure 56: TC1 - Authorization using Tx.Origin.8

Figure 57: Attacker smart contract.8

8 This example is taken from: https://medium.com/coinmonks/solidity-tx-origin-attacks-58211ad95514

 75

With the new Solidity frontend, ESBMC can detect this vulnerability by checking an AST
node that contains the pattern as follow:

• A call to the authorization function “require”
• The argument of this function is a “BinaryOperation” expression that uses “==”

operator
• The “leftExpression” is a “MemberAccess” expression referring to the special

identifier “tx” and accessing to the member “origin”.

This pattern is shown in Figure 58.

Figure 59 shows that ESBMC successfully detected the vulnerability “authorization through
Tx.Origin” and identified it as SWC-115 listed in the SWC registry for Smart Contract
Weakness Classification and Test Cases [54].

Figure 58: Pattern of "Autorization through Tx.origin"

Figure 59: ESBMC detects authorization through Tx.origin.

 76

4.1.2 TC2: Arithmetic Overflow

This test demonstrates that ESBMC can detect arithmetic overflow error in a nested binary
operation expression shown in line 15 in Figure 60.

Figure 60: TC2 - arithmetic overflow in a nested binary operation expression.

As shown in Figure 61, the arithmetic overflow error is successfully detected by ESBMC. The
counterexample shows that there exists a state, State 9, that violates the safety property “sum >
100” as specified by the assert statement in line 16 in Figure 60. Because sum was declared as
uint8, which can only represent values from 0 to 255. The expression “x + y + z” evaluates to
100 + 240 + 3 = 343, a value that cannot be represented by uint8.

 77

Figure 61: TC2 result.

 78

4.1.3 TC3: Arithmetic Underflow

This test demonstrates that ESBMC can detect arithmetic underflow in a program that
contains unary operators shown in line 9 and 10 in Figure 62.

Figure 62: TC3 –arithmetic underflow with unary operators

As shown in Figure 63, the arithmetic underflow is successfully detected by ESBMC. The
counterexample shows that there exists a state, State 5, that violates the safety property “x < 5”
as specified by the assert statement in line 11 in Figure 62. Because x was declared as uint8,
which can only represent values from 0 to 255. The expression “--x” in line 9 and 10 decrements
x twice. The result is -1, a value that cannot be represented by uint8. Due to arithmetic
underflow, -1 wraps back to 255.

Figure 63: TC3 result

 79

4.1.4 TC4: Loops

This test case aims to test the verification strategy “--incremental-bmc” in ESMBC. The code
is shown in Figure 64. This test case contains a bug of arithmetic overflow in the 3rd iteration
of the loop.

Figure 64: TC4 – loop

As shown in Figure 65, the bug is successfully detected by ESBM. To show which loop
iteration triggers this bug, TC#4 was tested using “--incremental-bmc” option so that ESBMC
can unwind the loop incrementally with the index k. ESBMC reported “Bug found (k = 3)”,
which means that the bug was found in the 3rd iteration. After the 2nd iteration, x becomes 0. In
the 3rd iteration, x is decremented by 1, which leads to the arithmetic underflow error.

 80

Figure 65: TC4 result

 81

4.1.5 TC5: Array Out-of-Bound Exception in a loop

This test demonstrates that ESBMC can detect out-of-bound exceptions in an array subscript
expression shown in line 10 in Figure 66. Similar to TC4, TC5 was also tested using the option
“--incremental-bmc” to verify array out-of-bound exception in a loop.

Figure 66: TC5 – Array out-of-bound access a loop.

As shown in Figure 67, ESBMC successfully detected the bug. ESBMC reported “Bug found
(k = 2)”, which means that the bug was found in the 2nd iteration of the loop. In this iteration,
the array subscript expression “a[i] = 100” contains an invalid index i = 2, which exceeds the
bound of this array.

Figure 67: TC5 result.

 82

4.1.6 TC6: Satisfiability Test using nondet, assume and assert

ESBMC can find a counterexample to satisfy the negation of the property we would like to
check. This test case aims to show the effect of additional constraints. The test case is shown
in Figure 68. The data type used in this test case is uint8.

Figure 68: TC6 – effect of "assume" on finding satisfiability.

The satisfiability problem is described as follow:

Satisfiability_#1. Given the binary operation expression “sum = x + y” where x = 0, find a
value of y that satisfies the NEGATION of the property “sum % 16 != 0”.

The negation of the property in line 24 is “sum % 16 == 0”. ESBMC finds the answer to
Satisfiability_#1: y = 240 shown in line 357 in Figure 69.

 83

Figure 69: Answer to Satisfiability_#1.

Satisfiability_#2. Given the binary operation expression “sum = x + y” where x = 0 and
220 < y < 255, find a value of y that satisfies the NEGATION of the property “sum % 16 != 0”.

To specify the range “220 < y < 255”, additional constraints are added using the specifical
function “__ESBMC__assume” in line 22 and 23 in Figure 70. In this range, there are two
numbers satisfying the negation of the property in line 26 of Figure 70: {224, 240}. ESBMC
successfully found the answer y = 224 shown in line 389 in Figure 71.

Figure 70: updated TC6 for Satisfiability_#2.

 84

Figure 71: Answer to Satisfiability_#2.

Satisfiability_#3. Given the binary operation expression “sum = x + y” where x = 0 and
220 < y < 255, and y is not 224, find a value of y that satisfies the NEGATION of the property
“sum % 16 != 0”.

To specify the the additional condition “y is not 244”, additional constraint is added to exclude
the number 224 in line 24 in Figure 72. In this range, there are two numbers satisfying the
negation of the property in line 27: {224, 240}. Since the number 224 is excluded, this only
leaves us with the number 240. ESBMC successfully found the answer y = 240 shown in line
399 in Figure 73.

 85

Figure 72: updated TC6 for Satisfiability_#3.

 86

Figure 73: Answer to Satisfiability_#3.

Satisfiability_#4. Given the binary operation expression “sum = x + y” where x = 0 and
220 < y < 255, and y is not 224 or 240, find a value of y that satisfies the NEGATION of the
property “sum % 16 != 0”.

To exclude the number 240, additional constraint is added to exclude the number 240 in line
25 in Figure 74. In this range, there are two numbers that satisfies the negation of the property
in line 28: {224, 240}. Since both 224 and 240 are excluded, this only leaves us with an empty
set ∅. As shown in Figure 75, ESBMC reports “VERIFICATION SUCCESSFULL” because
it cannot find a counterexample to satisfy the negation of the property in line 28 of Figure 74.

 87

Figure 74: updated TC6 for Satisfiability_#4.

Figure 75: Answer to Satisfiability_#4.

 88

4.1.7 TC7: Satisfiability Test using SV-COMP Function

This test case aims to show the effect of additional constraints using __VERIFIER__assume
function. The test case repeats the test of Satisfiability_#3 defined in the previous section. As
shown in Figure 76, TC7 is an updated version of TC6 with the modifications as follow:

• __ESBMC__assume function is replaced by __VERIFIER__assume function in line
15.

• The additional constrains are specified in using __VERIFIER__assume in lines 23, 24
and 25.

As shown in Figure 77, ESBMC can find the answer y = 240, which proves that the new
Solidity frontend also supports __VERIFIER_assume function.

Figure 76: TC7 – effect of "assume" on finding satisfiability.

 89

Figure 77: TC7 result. Answer to Satisfiability_#3.

4.2 Threats to Validity

Internal Validity.

• Each test case was designed to just contain one vulnerability. The vulnerability does
not have dependencies on a second vulnerability. The vulnerability in each test case is
of the type specified by the SWC registry [54]. For example, the Tx.Origin test case is
the vulnerable example from the official Solidity document. Using Tx.Origin for
authorization is considered a pitfall in Solidity document [55]. Remix IDE, Slither,
Mythril and ESBMC were able to detect such vulnerability. However, SmartCheck and
Oyente are not able to detect it.

Generalizability.
The test cases are not tailored SMT-Based Bounded Model Checking. They were designed to
be used as a general case.

• Each test case was a well-formed Solidity program (c.f. Section 2.1.2) because it is
syntactically correct, and can be compiled by Solidity compiler without any errors or
warnings. All language constructs were used according to Solidity grammar rules.

 90

4.3 Findings and Comparison to Other Verification Frameworks

The test cases were also run with other state-of-the-art Solidity verification frameworks. This
section compares ESBMC to other verification frameworks. As shown in Table 13 and Table
14, only ESBMC can verify all tests cases and provide counterexamples for each type of
vulnerability.

Vulnerability
Detection

Remix
IDE

Smartcheck Slither Oyente Mythril *ESBMC* SolAnalyser

Overflow Not
found

Not found Not
found

Not
found

Found Found This
framework

does not work
with Solidity

compiler
version 0.8.26

Underflow Not
found

Not found Not
found

Not
found

Not found Found

TxOrigin Found Not found Found Not
found

Found Found

Array out of
bound access

Not
found

Not found Not
found

Not
found

Found Found

Table 13: Compare ESBMC to other tools.9

Counterexamples Remix

IDE
Smartcheck Slither Oyente Mythril *ESBMC* SolAnalyser

Overflow N/A N/A N/A N/A No counter-
example
provided

Counter-
example
provided

This
framework

does not
work with
Solidity
compiler
version
0.8.26

Underflow N/A N/A N/A N/A N/A Counter-
example
provided

TxOrigin TxOrigin
Identified

N/A TxOrigin
Identified

N/A TxOrigin
Identified

TxOrigin
Identified

Array out of bound
access

N/A N/A N/A N/A Counter-
example
provided

Counter-
example
provided

Table 14: Availability of counterexamples.

The evaluation shows that ESBMC (Solidity frontend) outperforms all other tools.

9 https://github.com/kunjsong01/data_set/tree/main/vulnerability_examples/results_Nedas

 91

5 Conclusion and Further Work

This chapter reviews the deliverables of this project to determine to what extent the objectives
have been met, and reflect on the project to assess what went well and what could be improved.
This chapter ends by discussing limitations and recommending future work.

5.1 Deliverables and Key Achievements

Deliverables.
A new Solidity frontend was developed to enable ESBMC to verify smart contracts written in
Solidity programming language. In this new frontend, the most critical component is the type
checker. Two methods were proposed and implemented to implement the new type checker to
convert Solidity AST nodes into ESBMC irept nodes: Tracker-Based Hybrid
Conversion and Grammar-Based Hybrid Conversion. As a result, two versions of the new
Solidity frontend were developed:

Versions Methodology Workload
f06110810 Tracker-Based

Hybrid Conversion
3629 lines of C++ code

66f36ff10 Grammar-Based
Hybrid Conversion

3087 lines of C++ code

Table 15: Two versions of the new Solidity frontend.

As shown in Table 15, the new Solidity frontend that was implemented using Grammar-Based
Hybrid Conversion is more compact. To integrate the new frontend with existing ESBMC
language infrastructure, the following patches were merged to the dev-solidity-support branch:

Patches Description Workload
Commit d7ac87410

Added Solidity placeholders 144 additions and 1 deletion

Commit 801141310 Fixed linking error in
CMake

5 additions and 5 deletions

Table 16: Integrate the new Solidity frontend with ESBMC.

Table 16 shows that ESBMC is well-structured and can be easily extended to add a new
frontend to support a new language.

Since Solidity does not have a standard benchmark, a test suite was also developed to test the
new Solidity frontend. The Grammar-based Hybrid Conversion method facilitates the
extension and maintainability of code to support the verification of more complex Solidity
programs that contain advanced language constructs and special functions like assume and
nondeterminism.

Key Achievements.
In this project a new Solidity frontend is implemented, which enables ESBMC to verify
Solidity smart contracts using SMT-based Bounded Model Checking. The key component in
this new frontend is the type checker, which was implemented based on the new symbol
conversion methodology Grammar-based Hybrid Conversion. It also supports the main

10 Available at: https://github.com/kunjsong01/esbmc/commits/dev-solidity-support/src

 92

features of a bounded model checker: nondet, assert and assume. Apart from the new Solidity
frontend, three patches were submitted and merged to ESBMC main line:

Patch Description Patch size
Commit 34cfd4a6 Improved building

instructions for macOS
42 additions and 4 deletions

Commit 3f9d3f8b

PR #485 - Fixed symbol
table printing

3 additions and 1 deletions

Commit 39bf25d4 Added test case for PR #485 12 additions and 0 deletions
Table 17: Contributions to ESBMC main line.

5.2 Reflection

This subsection summarizes what went well and what could be improved, which is similar to
Agile Retrospective [56].

What went well?
Due to the lack of a standard benchmark for Solidity smart contracts, this project employs the
test-driven development method [57]. Before extending the code to support a new Solidity
language construct that usually needs some prerequisites to support multiple related production
rules in Solidity grammar, a test case that contains such construct is developed before writing
the code.

What could be improved?
Similar to other software development projects, this project also contains development tasks
that consume more time than the original estimate. Making a precise estimate for each task is
as difficult as the project itself. In this project, a 25% of the buffer time was used, e.g. if the
original estimate for a development task is 2d (i.e. two days in Jira time unit [58]), a buffer
time of 4h (i.e. four hours in Jira time unit) is taken into the overall estimate. However, there
still exists a few tasks that exceed 100% of the original estimate.

For example, the original estimate of adding support for function return was 6 hours, but the
actual time logged was two days. This overflow happened because of the unexpected blocking
task to implement FunctionToPointer decay. A similar case also happened when implementing
the feature to type check array due to ArrayToPointer decay.

 93

5.3 Limitations and Future Work

To support all Solidity features, the new Solidity frontend must be extended to support all
production rules as specified in Solidity grammar.

Solidity is an imperative programming language supporting the objected oriented programming
paradigm. Similar to a class in other OOP programming languages like C++ and Java, a Solidity
contract is a container that includes the data and corresponding methods. Solidity supports:

i. Multiple inheritance as well as polymorphism
ii. Interface that contains function declarations without implementation

iii. Special functions like constructor and destructor (called selfdestruct).
iv. Visibility specifiers, such as public, private, external, and internal.

Apart from these standard OOP features, Solidity also supports some advanced features
including:

i. Cryptographic hash functions, e.g. keccak256, sha256 and ripmd160.
ii. Callable objects,

iii. An unnamed fallback function to be called when no other functions match the callee’s
reference id provided by the caller. Each contract is only allowed to have one
unnamed fallback function

iv. Types with unconventional bit width, such as bytes3, int24, uint56 and int256.
v. Multiple return values

vi. Ethereum Virtual Machine has three types of memory: “storage” to hold the contract
state variables, “memory” to hold temporary values and stack to hold small local
variables. The users can manipulate data in “storage” and “memory” areas using the
keywords storage and memory respectively.

To support the OOP features, advanced data structures and the crypto functions, we might
need to extend the irept class, add new encoding schemes to combine various background
theories in SMT-LIB [59], and add new operational modes [60].

 94

6 Reference

[1]. Bashir, Imran. Mastering Blockchain: A Deep Dive into Distributed Ledgers, Consensus
Protocols, Smart Contracts, DApps, Cryptocurrencies, Ethereum, and More. Third edition,
PACKT, 2020.

[2]. Lantz, Lorne, and Daniel Cawrey. Mastering Blockchain: Unlocking the Power of
Cryptocurrencies, Smart Contracts, and Decentralized Applications. First edition,
O’REILLY, 2020.

[3]. Lexi Brent and Anton Jurisevic and Michael Kong and Eric Liu and Franccois Gauthier
and Vincent Gramoli and Ralph Holz and Bernhard Scholz (2018). Vandal: A Scalable
Security Analysis Framework for Smart Contracts. CoRR, abs/1809.03981.

[4]. Solorio, Kevin, et al. Hands-on Smart Contract Development with Solidity and
Ethereum: From Fundamentals to Deployment. First edition, O’Reilly Media, Inc, 2019.

[5]. Antonopoulos, Andreas M., and Gavin Wood. Mastering Ethereum: Building Smart
Contracts and DApps. First edition, O’Reilly, 2019.

[6]. Bin Hu and Zongyang Zhang and Jianwei Liu and Yizhong Liu and Jiayuan Yin and
Rongxing Lu and Xiaodong Lin (2021). A comprehensive survey on smart contract
construction and execution: paradigms, tools, and systems. Patterns, 2(2), 100179.

[7]. Muhammad Izhar Mehar and Charles Louis Shier and Alana Giambattista and Elgar
Gong and Gabrielle Fletcher and Ryan Sanayhie and Henry M. Kim and Marek Laskowski
(2019). Understanding a Revolutionary and Flawed Grand Experiment in Blockchain: The
DAO Attack. J. Cases Inf. Technol., 21(1), 19–32.

[8]. ‘The DAO Attacked: Code Issue Leads to $60 Million Ether Theft - CoinDesk’.
CoinDesk: Bitcoin, Ethereum, Crypto News and Price Data,
https://www.coindesk.com/markets/2016/06/17/the-dao-attacked-code-issue-leads-to-60-
million-ether-theft/. Accessed 30 Aug. 2021.

[9]. Daniel Perez and Benjamin Livshits (2019). Smart Contract Vulnerabilities: Does
Anyone Care?. CoRR, abs/1902.06710.

[10]. Bounties — 0x Protocol 4.0 Documentation.
https://protocol.0x.org/en/latest/additional/bounties.html. Accessed 30 Aug. 2021.

[11]. Welcome to Mythril’s Documentation! — Mythril v0.22.24 Documentation.
https://mythril-classic.readthedocs.io/en/master/.

[12]. Dowek, Gilles, and Jean-Jacques Lévy. Introduction to the Theory of Programming
Languages. Springer, 2011.

 95

[13]. John W. Backus and Friedrich L. Bauer and Julien Green and C. Katz and John
McCarthy and Alan J. Perlis and Heinz Rutishauser and Klaus Samelson and Bernard
Vauquois and Joseph Henry Wegstein and Adriaan van Wijngaarden and Michael Woodger
(1960). Report on the algorithmic language ALGOL 60. Commun. ACM, 3(5), 299–314.

[14]. Sebesta, Robert W. Concepts of Programming Languages. Eleventh edition, Pearson,
2016.

[15]. Harper, Robert. Practical Foundations for Programming Languages. Cambridge
University Press, 2013.

[16]. Language Grammar — Solidity 0.8.7 Documentation.
https://docs.soliditylang.org/en/v0.8.7/grammar.html.

[17]. Huth, Michael, and Mark Ryan. Logic in Computer Science: Modelling and Reasoning
about Systems. 2nd ed, Cambridge University Press, 2004.

[18]. The CProver user manual, https://www.cprover.org/cbmc/doc/manual.pdf

[19]. Gabbrielli, Maurizio, et al. Programming Languages: Principles and Paradigms.
Springer, 2010.

[20]. Cooper, Keith D., and Linda Torczon. Engineering a Compiler. 2nd ed,
Elsevier/Morgan Kaufmann, 2012.

[21]. Aho, Alfred V., and Alfred V. Aho, editors. Compilers: Principles, Techniques, &
Tools. 2nd ed, Pearson/Addison Wesley, 2007.

[22]. Parr, Terence. Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages. Pragmatic Bookshelf, 2010.

[23]. Dirk Beyer. Second competition on software testing: Test-comp 2020. Fundamental
Approaches to Software Engineering, LNCS, vol. 12076, 2020; 505–519.

[24]. ESBMC. http://www.esbmc.org/.

[25]. Lucas Cordeiro, Bernd Fischer, Joao Marques-Silva. SMT-based bounded model
checking for embedded ANSI-C software. IEEE Transactions on Software Engineering 2012;
38(4):957–974.

[26]. Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan
Zhu (2003). Bounded model checking. Adv. Comput., 58, 117–148.

[27]. C. Barrett and C. Tinelli, “CVC3,” Proc. Int’l Conf. Computer Aided Verification, pp.
298-302, 2007.

[28]. R. Brummayer and A. Biere, “Boolector: An Efficient SMT Solver for Bit-Vectors and
Arrays,” Proc. Int’l Conf. Tools and Algorithms for the Construction and Analysis of
Systems, pp. 174-177, 2009.

 96

[29]. Feist, J., Greico, G., Groce, A.: Slither: A static analysis framework for smart
contracts. In: Proceedings of the 2nd International Workshop on Emerging Trends
in Software Engineering for Blockchain. pp. 8–15. IEEE (2019)

[30]. J. Mccarthy, “Towards a Mathematical Science of Computation,” Proc. Int’l Federation
of Information Processing Congress, pp. 21-28, 1962.

[31]. E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSIC Programs,” Proc.
Int’l Conf. Tools and Algorithms for the Construction and Analysis of Systems, pp. 168-176,
2004.

[32]. D. Gries and G. Levin, “Assignment and Procedure Call Proof Rules,” ACM Trans.
Programming Languages and Systems, vol. 2, no. 4, pp. 564-579, 1980.

[33]. A. Armando, J. Mantovani, and L. Platania, “Bounded Model Checking of Software
Using SMT Solvers Instead of SAT Solvers,” Int’l J. Software Tools Technology Transfer,
vol. 11, no. 1, pp. 69-83, 2009.

[34]. ‘Ethereum Glossary’. Ethereum.Org, https://ethereum.org. Accessed 2 Sept. 2021.

[35]. C. Peng and S. Akca and A. Rajan (2019). SIF: A Framework for Solidity Contract
Instrumentation and Analysis. In 26th Asia-Pacific Software Engineering Conference,
APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019 (pp. 466–473). IEEE.

[36]. Jorgensen, Paul. Software Testing: A Craftsman’s Approach. Fourth edition, CRC Press,
Taylor & Francis Group, 2014.

[37]. Loi Luu and Duc-Hiep Chu and Hrishi Olickel and Prateek Saxena and Aquinas Hobor
(2016). Making Smart Contracts Smarter. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria, October 24-28,
2016 (pp. 254–269). ACM.

[38]. Thomas Durieux and Joao F. Ferreira and Rui Abreu and Pedro Cruz (2020). Empirical
review of automated analysis tools on 47, 587 Ethereum smart contracts. In ICSE '20: 42nd
International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July,
2020 (pp. 530–541). ACM.

[39]. TheDAO smart contract.
http://etherscan:io/address/0xbb9bc244d798123fde783fcc1c72d3bb8c189413#code.

[40]. S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E. Marchenko, and Y.
Alexandrov, ‘‘SmartCheck: Static analysis of ethereum smart contracts,’’ in Proc.
IEEE/ACM 1st Int. Workshop Emerg. Trends Softw. Eng. Blockchain (WETSEB), Jun.
2018, pp. 9–16.

[41]. XML Path Language (XPath) 2.0 (Second Edition). https://www.w3.org/TR/xpath20/.

[42]. Mythril, https://github.com/ConsenSys/mythril

 97

[43]. ‘Blockchain Technology Solutions | Ethereum Solutions’. ConsenSys,
https://consensys.net/.

[44]. MythX: Smart Contract Security Service for Ethereum. https://mythx.io/.

[45]. Lopes, Bruno Cardoso, and Rafael Auler. Getting Started with LLVM Core Libraries:
Get to Grips with LLVM Essentials and Use the Core Libraries to Build Advanced Tools.
Packt Publ, 2014.

[46]. Mikhail Y. R. Gadelha and Felipe R. Monteiro and Jeremy Morse and Lucas C.
Cordeiro and Bernd Fischer and Denis A. Nicole (2018). ESBMC 5.0: an industrial-strength
C model checker. In Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering, ASE 2018, Montpellier, France, September 3-7, 2018 (pp.
888–891). ACM.

[47]. Clang: Clang::Tooling::ClangTool Class Reference.
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1ClangTool.html. Aug. 2021.

[48]. Clang: Clang::ASTUnit Class Reference.
https://clang.llvm.org/doxygen/classclang_1_1ASTUnit.html.

[49]. Deitel, Paul J., and Harvey M. Deitel. C: How to Program; with an Introduction to
C++. 8., ed.Global ed, Pearson, 2016.

[50]. ISO (2012). ISO/IEC 14882:2011 Information technology –- Programming languages –
- C++. International Organization for Standardization.

[51]. ISO/IEC 9899:1999’. ISO,
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/02/92/29237.html.

[52]. JSON for Modern C++: JSON for Modern C++.
https://nlohmann.github.io/json/doxygen/index.html.

[53]. Sefa Akca and Ajitha Rajan and Chao Peng (2019). SolAnalyser: A Framework for
Analysing and Testing Smart Contracts. In 26th Asia-Pacific Software Engineering
Conference, APSEC 2019, Putrajaya, Malaysia, December 2-5, 2019 (pp. 482–489). IEEE.

[54]. Overview · Smart Contract Weakness Classification and Test Cases.
http://swcregistry.io/. Accessed 29 Aug. 2021.

[55]. Security Considerations — Solidity 0.6.2 Documentation.
https://docs.soliditylang.org/en/v0.6.2/security-considerations.html. Accessed 3 Sept. 2021.

[56]. Derby, Esther, and Diana Larsen. Agile Retrospectives: Making Good Teams Great.
Pragmatic Bookshelf, 2006.

[57]. Langr, Jeff, and Michael Swaine. Modern C++ Programming with Test-Driven
Development: Code Better, Sleep Better. The Pragmatic Bookshelf, 2013.

 98

[58]. Macneil, Dean. Cader, Aslam.: A Practical Guide to Strategically Scaling Agile across
Teams, Programs, and Portfolios in Enterprises. PACKT PUBLISHING LIMITED, 2020.

[59]. SMT-LIB The Satisfiability Modulo Theories Library. http://smtlib.cs.uiowa.edu/.
Accessed 30 Aug. 2021.

[60]. Felipe R. Monteiro and Mikhail R. Gadelha and Lucas C. Cordeiro (2021). Model
Checking C++ Programs. CoRR, abs/2107.01093.

