
FEDERAL UNIVERSITY OF AMAZONAS - UFAM

FACULTY OF TECHNOLOGY - FT

POSTGRADUATE PROGRAM IN ELECTRICAL ENGINEERING - PPGEE

LSVerifier: A BMC Approach to Identify Security

Vulnerabilities in C Open-Source Software

Janislley Oliveira de Sousa

Manaus - AM

December 2023

Janislley Oliveira de Sousa

LSVerifier: A BMC Approach to Identify Security

Vulnerabilities in C Open-Source Software

A dissertation submitted to the postgraduate pro-
gram in Electrical Engineering, in the field of Mod-
ern Control and Automation Systems, at the Fed-
eral University of Amazonas, in fulfillment of the
requirements for the Master of Science degree.

Supervisor:

Lucas Carvalho Cordeiro, Dr.

Co-Supervisor:

Eddie Batista de Lima Filho, Dr.

Federal University of Amazonas - UFAM

Faculty of Technology - FT

Manaus - AM

December 2023

Ficha Catalográfica

S725l LSVerifier: a BMC approach to identify security vulnerabilities in C
open-source software / Janislley Oliveira de Sousa . 2023
 94 f.: il.; 31 cm.

 Orientadora: Lucas Carvalho Cordeiro
 Coorientadora: Eddie Batista de Lima Filho
 Dissertação (Mestrado em Engenharia Elétrica) - Universidade
Federal do Amazonas.

 1. Bounded model checking. 2. Software verification. 3. Security
vulnerabilities. 4. Open-source software. 5. Large systems. I.
Cordeiro, Lucas Carvalho. II. Universidade Federal do Amazonas
III. Título

Ficha catalográfica elaborada automaticamente de acordo com os dados fornecidos pelo(a) autor(a).

Sousa, Janislley Oliveira de

Poder Executivo
Ministério da Educação

Universidade Federal do Amazonas
Faculdade de Tecnologia

Programa de Pós graduação em Engenharia Elétrica

Pós-Graduação em Engenharia Elétrica.

Av. General Rodrigo Octávio Jordão Ramos, nº 3.000 - Campus

Universitário, Setor Norte - Coroado, Pavilhão do CETELI.

Fone/Fax (92) 99271-8954 Ramal:2607. E-mail: ppgee@ufam.edu.br

JANISLEY OLIVEIRA DE SOUSA

LSVERIFIER: A BMC APPROACH TO IDENTIFY SECURITY

VULNERABILITIES IN C OPEN-SOURCE SOFTWARE PROJECTS

Dissertação apresentada ao Programa de Pós-
Graduação em Engenharia Elétrica da
Universidade Federal do Amazonas, como
requisito parcial para obtenção do título de Mestre
em Engenharia Elétrica na área de concentração
Controle e Automação de Sistemas.

Aprovada em 20 de dezembro de 2023.

BANCA EXAMINADORA

Prof. Dr. Lucas Carvalho Cordeiro

Presidente
Universidade Federal do Amazonas

Prof. Dr. Leandro Buss Becker, Membro
Universidade Federal de Santa Catarina

Prof. Dr. Raimundo da Silva Barreto, Membro
Universidade Federal do Amazonas

Anexo Folha de Aprovação (1840969) SEI 23105.051553/2023-52 / pg. 1

To all those who have supported me on my journey

as a scientist, this work is dedicated to you.

ACKNOWLEDGEMENTS

I am profoundly grateful for the guidance and support of my supervisor, Dr. Lucas

Cordeiro, over the past three years. His unwavering belief in my abilities and his

expertise has significantly shaped my professional and academic development. Being a

part of Dr. Cordeiro’s research group has been an immense privilege, and his mentorship

has been instrumental in refining my research skills. His dedication and commitment to

excellence have continually served as a source of inspiration.

Additionally, I would like to express my deep appreciation to my co-supervisor,

Dr. Eddie Batista. His expertise and guidance have profoundly influenced my research.

His knowledge in the field has greatly enhanced the quality of my work.

I extend my sincere thanks to Sidia Institute of Science and Technology for their

support. The environment and resources they provided have been fundamental in the

progression of my work. Additionally, I am deeply thankful to my colleagues at Sidia

for their invaluable contributions. Their valuable insights have enriched my research,

and their constant encouragement was a beacon of hope during challenging times.

My deepest gratitude goes to my family, whose love, support, and encourage-

ment have been the foundation of my journey. I am particularly indebted to my parents

for their role in my education and for always believing in me. This dissertation is

dedicated to them, a token of my appreciation and love.

Finally, I want to express my heartfelt thanks to my beloved Vanessa Okawa,

who has been a source of endless love and motivation. Her presence in my life has been

a guiding light, helping me to persevere through every challenge. This work is also a

dedication to her, symbolizing our shared journey and dreams.

Faça o teu melhor, na condição que você tem, enquanto você não tem condições melhores, para

fazer melhor ainda.

Mário Sergio Cortella

LSVerifier: A BMC Approach to Identify Security

Vulnerabilities in C Open-Source Software

Author:

Janislley Oliveira de Sousa

Supervisor:

Lucas Carvalho Cordeiro, Dr.

Co-Supervisor:

Eddie Batista de Lima Filho, Dr.

Abstract

This research advances the field of software vulnerability analysis by highlighting the

critical role of software validation and verification techniques in developing systems

with high dependability and reliability. A particular focus is placed on addressing the

prevalent issue of memory safety properties in C software. We introduce LSVerifier, an

innovative tool that utilizes the bounded model checking technique to uncover security

vulnerabilities within C open-source software efficiently. LSVerifier stands out by not

only identifying vulnerabilities but also producing a comprehensive report that outlines

detected software weaknesses, thereby serving as a resource for developers aiming to

enhance software security. Our experimental evaluation showcases the tool’s effective-

ness in scrutinizing large software systems while maintaining low peak memory usage.

We applied LSVerifier to twelve open-source C projects, successfully detecting real

software vulnerabilities that were later acknowledged and confirmed by the developers.

The findings of this study underscore the potential of LSVerifier as a key instrument in

the ongoing effort to secure open-source software against vulnerabilities.

Keywords: Bounded model checking, Software verification, Security vulnerabilities,

Open-source software, Large systems.

LIST OF FIGURES

Figura 1 – FuSeBMC: White-Box Fuzzing Framework for C Programs 24

Figura 2 – ESBMC architecture . 26

Figura 3 – ESBMC’s Performance in SV-COMP 2023 27

Figura 4 – This study’s literature review examined research from the past decade

on using model checking tools to verify vulnerabilities in open-source

software. 34

Figura 5 – Structural complexities in Open-Source Software for security verifica-

tion . 45

Figura 6 – An overview of the proposed verification process. 46

Figura 7 – Example of counterexample created by LSVerifier. 56

Figura 8 – The LSVerifier’s output during a verification procedure for PuTTY. . 56

Figura 9 – The verification report generated by LSVerifier for PuTTY. 57

LIST OF TABLES

Tabela 1 – Search queries used in different databases for the literature review. . 33

Tabela 2 – Main tools used to check software vulnerabilities using model chec-

king techniques and their applicability on open-source software . . . 35

Tabela 3 – The LSVerifier’s Configuration Parameters 53

Tabela 4 – Open-source software projects verified by LSVerifier. 60

Tabela 5 – Software vulnerabilities detected by LSVerifier, correlating the num-

ber of code-property violations with the amount of C code files, ex-

ternal libraries, lines of code, functions verified, maximum necessary

memory, and verification time . 63

Tabela 6 – Software property violations found, using the chosen dataset, with

LSVerifier and split into the 11 categories recognized by ESBMC . . . 66

Tabela 7 – The vulnerabilities identified by LSVerifier along with the correspon-

ding CWE numbers for each property violation detected 67

Tabela 8 – The reported issues involved code property violations and were sub-

mitted to the repositories of the respective software projects. These

reports were made for the developers to confirm the associated soft-

ware vulnerabilities . 71

LIST OF ABBREVIATIONS AND

ACRONYMS

ABV - Array Bounds Violated

AF - Assertion Failure

ALB - Array Lower Bound

AOOB - Access to Object Out of Bounds

AST - Abstract Syntax Tree

AUB - Array Upper Bound

CBMC - C Bounded Model Checker

CFG - Control-Flow Graph

CTL - Computation Tree Logic

CWE - Common Weakness Enumeration

DZ - Division by Zero

ESBMC - Efficient SMT-Based Context-Bounded Model Checker

GBF - Gray-Box Fuzzing

IDO - Invalidated Dynamic Object

IP - Invalid Pointer

IPF - Invalid Pointer Freed

IR - Intermediate Representation

MC - Bounded Model Checking

NP - NULL Pointer

NaN - Not-a-Number

SAT - Boolean Satisfiability

SMT - Satisfiability Modulo Theories

SOV - Same Object Violation

SSA - Static Single Assignment

SV-COMP - International Competition on Software Verification

LIST OF PUBLICATIONS

1. [SBSeg 2023 - Qualis A4][Conference - Published] de Sousa, J. O., de Farias, B. C.,

da Silva, T. A., de Lima Filho, E. B., & Cordeiro, L. C. LSVerifier: A BMC Approach

to Identify Security Vulnerabilities in C Open-Source Software Projects. In XXIII

Brazilian Symposium on Information and Computational Systems Security. DOI:

<https://doi.org/10.5753/sbseg_estendido.2023.235802>

2. [STTT - Qualis A4][Journal - Submitted] de Sousa, J. O., de Farias, B. C., da Silva,

T. A., & Cordeiro, L. C. (2023). Finding Software Vulnerabilities in Open-Source C

Projects via Bounded Model Checking. ArXiv preprint: <https://arxiv.org/abs/

2311.05281>

3. [SBMF 2023 - AFRiTS][Workshop - Presented] de Sousa, J. O. Memory Safety in

Linux Kernel Drivers: Enhancing Security with Formal Verification. Workshop on

Automated Formal Reasoning for Trustworthy AI Systems.

Awards

LSVerifier received the Best Tool Paper Award at SBSeg 2023.

https://doi.org/10.5753/sbseg_estendido.2023.235802
https://arxiv.org/abs/2311.05281
https://arxiv.org/abs/2311.05281

CONTENTS

1 INTRODUCTION . 14

1.1 Motivation . 15

1.2 Problem Definition . 16

1.3 Objectives . 17

1.4 Contributions . 18

1.5 Outline . 18

2 BACKGROUND THEORY . 20

2.1 Vulnerabilities in Open-Source Software Projects 20

2.2 Formal Verification Techniques . 22

2.2.1 Static Analysis . 22

2.2.2 SMT Solvers . 22

2.2.3 Bounded Model Checking . 23

2.2.4 Fuzzing . 24

2.2.5 Abstract Interpretation . 24

2.3 ESBMC . 25

2.4 Common Software Vulnerabilities in C Programming Language . . . 27

2.5 Summary . 30

3 RELATED WORK . 32

3.1 Review of Literature . 32

3.2 Formal Verification Tools for Analyzing Open-Source Software Secu-

rity Vulnerabilities . 36

3.3 Summary . 42

4 THE PROPOSED VERIFICATION METHODOLOGY 44

4.1 Architectural Patterns of Open-Source Software for Effective Vulnera-

bility Verification . 44

4.2 The Development of Proposed Methodology 46

4.3 Architecture and Main Functionalities 51

4.3.1 The LSVerifier’s Tool Implementation 52

4.3.2 File Listing . 53

4.3.3 Function Listing and Prioritization 53

4.3.4 Exporting results . 54

4.4 An Illustrative Examples of Using LSVerifier 54

4.5 Summary . 57

5 EXPERIMENTAL EVALUATION 59

5.1 Experimental Setup . 59

5.2 Experimental Objectives . 61

5.3 Threats to the Validity of Experiments 61

5.3.1 Benchmark selection . 61

5.3.2 Performance and correctness . 62

5.3.3 Counterexample validation . 62

5.4 Experimental Results . 62

5.5 Violated Properties Analysis . 70

5.6 Summary . 78

6 CONCLUSIONS . 81

6.1 Future Works . 83

Bibliography . 84

14

1

INTRODUCTION

D eveloping software that is both secure and devoid of bugs presents a mul-

tifaceted and highly intricate challenge, especially in the context of an in-

creasingly connected and digitized world (RODRIGUEZ; PIATTINI; EBERT,

2019; CORDEIRO; FILHO; BESSA, 2020). The implications of software vulnerabilities

are not merely confined to technical malfunctions but extend to potentially catastrophic

consequences (CORDEIRO; FILHO, 2016; TIHANYI et al., 2023). Airbus discovered a

software vulnerability in the A400M aircraft, leading to a crash in 2015 (GADELHA;

CORDEIRO; NICOLE, 2020). The fault in the engine control units caused the engines

to power off shortly after take-off. Also, security researchers could remotely exploit

a vulnerability in the Jeep Cherokee’s Uconnect infotainment system (GREENBERG,

2015). By gaining access to the system, they could take over various vehicle functions,

including engine and brakes. These examples highlight the growing importance of

software integrity and security in embedded systems and the Internet of Things (IoT).

Continuous monitoring, rigorous testing, adherence to best practices, and coordinated

vulnerability disclosure are essential to mitigate these issues (MORSE et al., 2011;

GADELHA; MENEZES; CORDEIRO, 2021).

For instance, in the C programming language (KERNIGHAN; RITCHIE, 2006),

widely used to develop critical software, e.g., operating systems and drivers, execution

of unsafe code might lead to undefined behaviors (VOROBYOV; KOSMATOV; SIG-

NOLES, 2018). This is a common cause of memory problems, including buffer overflows

and double-free violations (CORDEIRO; FISCHER; MARQUES-SILVA, 2011; ALSHM-

Chapter 1. Introduction 15

RANY et al., 2022). Furthermore, these errors are some of the main threats to software

security (VEEN et al., 2012) since attackers can exploit them to execute malicious code.

Such an aspect is even worse in open-source software as the same attackers can quickly

read code and easily find vulnerable spots (TAN et al., 2014). In addition, as this kind of

project tends to be widely used by the general public, one can even question its very

nature. Therefore, developers must use the available resources to validate source code

more often. Finally, new advanced tools should be further developed to improve the

associated software security (HOEPMAN; JACOBS, 2007; OHM et al., 2020). For in-

stance, to demonstrate the importance of software validation and verification, one could

mention the case that involved Log4j (DUCKLIN, 2021). In short, data was printed out

or logged into a file that might be used to take over a server. It could be done because

Log4j permitted the injection of external logging text, whose format and content could

be chosen through look-ups. This way, sensitive data could be leaked, or a network

connection could be made to acquire and run malicious code.

Numerous methods have been introduced to detect vulnerabilities in C pro-

grams (ALSHMRANY et al., 2021; GADELHA et al., 2019). For example, fuzzing tech-

niques, such as black-, grey-, or white-box approaches, exploit random program inputs

to identify unexpected behaviors (BÖHME et al., 2017; GODEFROID, 2020). Static anal-

ysis tools, like CPPCheck and Flawfinder, evaluate C programs for safety property

violations (CADAR; DUNBAR; ENGLER, 2008; CORDEIRO; FISCHER, 2011; CLARKE;

KROENING; LERDA, 2004a; GADELHA et al., 2019; PEREIRA; VIEIRA, 2020). Google’s

Address Sanitizer is another notable tool for identifying C program issues. Some strate-

gies even combine static and dynamic verification (CORDEIRO et al., 2009). However,

many of these techniques face challenges when applied to the large-scale software

systems typical of open-source projects.

1.1 Motivation
Vulnerabilities pose significant threats to software security, providing attackers with

opportunities to execute malicious code. It is crucial to assist software developers in

Chapter 1. Introduction 16

identifying subtle bugs within their code, such as array bounds violations, null-pointer

dereferences, arithmetic overflows, and others (MEMARIAN et al., 2019). The open-

source nature of many large-scale software systems amplifies this risk, as potential

attackers can easily access and scrutinize the code to find vulnerabilities. The general

public’s widespread use of these projects highlights the need for developers to validate

source code more frequently and thoroughly. Although modern methodologies like

static and dynamic code analysis mitigate some risks, the unique challenges posed

by the C language and the extensive use of third-party libraries require continuous

vigilance. This context emphasizes the need for a collaborative approach within the

open-source community to promote a culture of security best practices and continuous

improvement. Consequently, developing and implementing advanced tools are essential

for enhancing software security.

1.2 Problem Definition
The Common Weakness Enumeration (CWE) (MITRE, 2023) community often identifies

vulnerabilities in programming languages, including C, and third-party libraries used

across various open-source projects. The C language is known for being powerful but

also tricky to use safely, especially regarding memory management. The C program-

ming language’s low-level nature and absence of safety checks make it susceptible

to vulnerabilities such as buffer overflows, memory leaks, and insecure library usage

(OORSCHOT, 2023). Open-source projects, which may lack regular maintenance or

expert review, are particularly at risk. Modern tools and practices like static and dy-

namic code analysis can mitigate some risks. Still, the complexity of C combined with

the broad use of third-party libraries claims for continuous vigilance in identifying and

rectifying vulnerabilities. The collaborative effort within the open-source community is

crucial to address these issues, highlighting the ongoing need for attention to security

best practices.

One may also notice that large software systems are frequently composed of

many elements declared in several source files, usually split across different directories.

Chapter 1. Introduction 17

This presents a challenge when applying static analysis tools to such systems: software

model checkers typically verify a single file using a predetermined entry point (BEYER,

2022). Therefore, to manage vast software with multiple files, a common scenario in

open-source applications, each file must be verified individually, adjusting the entry

point as needed. Moreover, elements with varying priorities might need to be addressed

appropriately.

1.3 Objectives
This work aims to demonstrate the efficiency and effectiveness of formal verification

techniques to exploit security vulnerability issues in C open-source software projects,

using Bounded Model Checking (BMC) and Satisfiability Modulo Theories (SMT) to

identify security issues. We propose a pragmatic approach to verify large software

systems: state-of-the-art bounded model checkers and parameters to be configured by

users according to the vulnerability classes they want to check. We systematically guide

an underlying verifier through source-code files to recursively explore threats in entire

source-code directories or specific locations, e.g., functions, according to a pre-defined

priority. This general goal is correlated with the following specific ones:

1. Develop a comprehensive review of existing techniques for identifying software

vulnerabilities in C open-source software, highlighting current gaps and laying

the groundwork for our research;

2. Develop a robust methodology that combines the strengths of BMC and SMT

techniques, specifically aimed at detecting and classifying security vulnerabilities

in C open-source software;

3. Develop a novel verification tool that integrates input-code analysis with BMC

techniques, tailored for vulnerability detection in large open-source software

systems;

4. Design a comprehensive evaluation analysis using counterexamples to pinpoint

findings and provide accessible reports for facilitating issue reproduction and

Chapter 1. Introduction 18

correction.

1.4 Contributions
The original contribution of this work is the development of an innovative methodology

that integrates input-code analysis with Bounded Model Checking for identifying and

evaluating software vulnerabilities in large-scale systems, particularly relevant to open-

source C software projects. This methodology has been practically implemented and

tested. The research further contributes:

1. A comprehensive review of techniques for detecting software vulnerabilities

in open-source applications, identifying gaps, and setting the stage for future

research;

2. The development of LSVerifier, a robust verification tool that integrates input-

code analysis, prioritized function analysis, and BMC techniques for detecting

vulnerabilities in extensive software systems;

3. An evaluation structure that assesses findings in a detailed and user-friendly

report, which can be used for problem reproduction and correction;

4. A thorough evaluation of the methodology across a wide range of open-source ap-

plications, demonstrating its efficacy in finding real vulnerabilities like overflows,

array-out-of-bounds, divisions by zero, and pointer-safety issues.

1.5 Outline
The structure of this document unfolds as follows. Chapter 1 briefly introduces BMC

and the ESBMC architecture and describes the essential background theories of the SMT

solvers and software vulnerabilities. Chapter 2 delves into the foundational concepts

pivotal for the LSVerifier, particularly emphasizing state-of-the-art BMC and SMT verifi-

cation tools tailored for C open-source projects. In Chapter 3, we traverse the literature

Chapter 1. Introduction 19

on C-based software verification and the significance of BMC tools in this realm. Chapter

4 is segmented into several sections, detailing our core contributions: the introduction

of our verification methodology for large software systems, the architecture of LSVer-

ifier, and the software organization that inspired its inception. Chapter 5 showcases

our experimental findings, encompassing the setup, objectives, and a comprehensive

discussion on the results. Chapter 6 contains the conclusion and future directions.

20

2

BACKGROUND THEORY

I n this section, we delve into the foundational concepts and technologies essen-

tial for the LSVerifier tool. Specifically, we focus on establishing a systematic

framework for state-of-the-art BMC and SMT verification tools, highlighting

their relevance and optimization for C open-source software projects. Furthermore, we

outline the methodology formulated to leverage these techniques in detecting and clas-

sifying security vulnerabilities, ensuring its alignment with the unique characteristics

and challenges posed by C open-source projects.

2.1 Vulnerabilities in Open-Source Software Projects
Open-source software is characterized by its publicly accessible source code, allowing

anyone to inspect, modify, and distribute it. This model fosters a collaborative environ-

ment where developers worldwide contribute to software projects. Despite its benefits

in innovation and community development, open-source software often faces increased

security risks due to its openness and varied maintenance practices. Developing effec-

tive vulnerability analysis tools has become crucial as such software’s vulnerabilities

have surged (WEN, 2017; PLATE; PONTA; SABETTA, 2015; MUEGGE; MURSHED,

2018; ALHAWI; MUSTAFA; CORDEIRO, 2019; MATULEVICIUS; CORDEIRO, 2021).

Open-source projects are particularly vulnerable due to their collaborative na-

ture, underscoring the need for effective security tools. Research indicates these tools

can help developers create more secure systems. However, challenges remain, such

Chapter 2. Background Theory 21

as ensuring software security throughout the development process and addressing

vulnerabilities that arise from complex dependencies and supply chain issues, in-

cluding manufacturer-reserved backdoors and third-party libraries. Xiao et al. (XIAO;

WITSCHEY; MURPHY-HILL, 2014) highlight that security vulnerabilities pose signif-

icant challenges in open-source software development, influenced by various social

factors. Their research suggests that security tools can aid developers in creating safer

software by identifying and addressing vulnerabilities during the development phase.

However, issues like a lack of regular maintenance and understanding of the conse-

quences of security failures contribute to these vulnerabilities. Zou et al. (ZOU et al.,

2019) emphasize the importance of checking open-source software for supply chain

issues and hidden vulnerabilities in third-party components. They note that despite

developers’ awareness of secure coding practices, ensuring comprehensive security

remains challenging. Moreover, some problems may still exist in the available code as it

is challenging to detect security risks before software deployment (GUEYE et al., 2021).

New tools and methods like static and dynamic analyzers have been developed

to address these challenges (PONTA; PLATE; SABETTA, 2020), underscoring the criti-

cal need for improved security in open-source software development. Palmskog et al.

(PALMSKOG; CELIK; GLIGORIC, 2018) introduced piCoq, a tool for detecting vulnera-

bilities in large-scale projects, focusing on dependency tracking and parallel checking.

Similarly, Ruscio et al. (RUSCIO; PELLICCIONE; PIERANTONIO, 2012) developed

EVOSS, a tool for identifying system configuration inconsistencies, proven effective

in Linux distributions like Debian and Ubuntu. These advancements underscore the

importance of security in open-source development, highlighting the risks associated

with open code access and the potential impacts of vulnerabilities due to code reuse

and dependencies in the software industry (PLATE; PONTA; SABETTA, 2015).

The open nature of these projects, beneficial for rapid development and wide ac-

cess, also significantly increases the risk of intentional and unintentional vulnerabilities

in critical and large-scale open-source software. This scenario highlights the urgent need

for new tools and methods to address and mitigate these emerging security challenges.

Chapter 2. Background Theory 22

2.2 Formal Verification Techniques
Manual inspection of complex software is often error-prone and costly, necessitating

effective tool support. While several tools use test vectors to examine specific software

executions and uncover design flaws, formal verification tools offer a more comprehen-

sive approach. They can check a design’s behavior against all possible inputs, ensuring

a thorough analysis. Additionally, techniques like model checking, fuzzing, abstract

interpretation, and interpolation provide alternative strategies for identifying software

vulnerabilities (CORDEIRO; FILHO; BESSA, 2020), each contributing uniquely to the

reliability and security of software systems.

2.2.1 Static Analysis

Static analysis involves assessing a codebase for potential errors, vulnerabilities, or

deviations and effectively identifying common coding problems before a program’s

release (GADELHA et al., 2019). These tools analyze a program’s code statically, with-

out execution, and work on source code and compiled forms, though decoding the

latter can be challenging. However, early static analysis methods were not recursive,

meaning they couldn’t fully understand the implications of self-calling functions or

procedures (GOSEVA-POPSTOJANOVA; PERHINSCHI, 2015). While static analysis

detects fine-grained bugs and adheres to coding standards, it cannot address every secu-

rity issue or offer design advice. Its limitations became apparent as software complexity

increased, particularly with multi-procedure structures and recursive patterns.

2.2.2 SMT Solvers

Solvers are designed to determine the satisfiability of formulas, broadly categorized

into Boolean satisfiability (SAT) and satisfiability modulo theories (SMT). SAT solvers,

utilizing methods like the Davis-Putnam-Logemann-Loveland (DPLL) and the more

efficient Conflict Driven Clause Learning (CDCL), focus on validating Boolean formulas.

However, translating higher-level system designs into Boolean logic can be resource-

Chapter 2. Background Theory 23

intensive, leading to the development of SMT solvers. These solvers handle more

abstract levels and apply rules from mathematical theories like Equality, Bit-vector,

Linear Arithmetic, and Arrays, representing the field’s evolution.

In this work, various modern SMT solvers are utilized. Yices (DUTERTRE;

MOURA, 2006), developed by SRI International, handles a range of first-order the-

ories useful for both software and hardware representations. It efficiently manages

complex formulas across various theories defined in SMT-LIB. CVC4 (BARRETT et al.,

2011), a collaboration between NYU and the University of Iowa, integrates features

of CVC3 and SMT-LIBv2, benefiting from system architecture and decision procedure

advancements. Z3 (MOURA; BJØRNER, 2008), created by Microsoft Research, is tai-

lored for software verification and analysis, and used in several tools. Lastly, Boolector

(BRUMMAYER; BIERE, 2009) specializes in the quantifier-free theory of bit-vectors and

arrays, employing term rewriting and bit-blasting techniques.

2.2.3 Bounded Model Checking

BMC is a verification technique that detects errors up to a specified depth k by em-

ploying boolean satisfiability (SAT) or SMT. However, without a known upper bound

for k, BMC cannot guarantee complete system correctness. It only explores a limited

state space by unwinding loops and recursive functions to a maximum depth. This

bounded nature of BMC makes it effective for uncovering fundamental errors in applica-

tions (CLARKE; KROENING; LERDA, 2004b; MERZ; FALKE; SINZ, 2012a; GADELHA

et al., 2019; IVANCIC et al., 2005), and properties under verification are defined as

follows:

BMCΦ(k) = I(s1) ∧

(
k−1∧
i=1

T (si, si+1)

)
∧

(
k∨

i=1

¬φ(si)

)
, (2.1)

where, I(s1) is the set of initial states for a system;
∧k−1

i=1 T (si, si+1) is the transition

relation between time steps i and i+1, encompassing the evolution of the system over k

steps; and
∨k

i=1 ¬φ(si) represents the negation of the property φ at state si, indicating a

violation of the given property within a bound k. Together, these components formulate

Chapter 2. Background Theory 24

a problem that is satisfiable if and only if a counterexample of length k or less exists,

implying a violation of the specified property within the given bound.

2.2.4 Fuzzing

Fuzzing is a software testing technique utilized to discover vulnerabilities in software

systems. It involves generating random or semi-random inputs to a C program, exploit-

ing the fact that many critical security flaws arise from inadequate input validation

(ALSHMRANY et al., 2021). The random nature of fuzzing inputs makes it likely they’ll

be unexpected or improper in a target program. If the program fails to reject these

inputs, it may hang or crash, indicating potential security weaknesses. Fuzzing is an

efficient, cost-effective method for identifying security vulnerabilities in C programs,

with software unable to withstand fuzz testing being particularly prone to security

issues. Figure 1 shows the FuSeBMC tool combining fuzzing with the BMC technique.

Figure 1 – FuSeBMC: White-Box Fuzzing Framework for C Programs

2.2.5 Abstract Interpretation

Abstract interpretation is a theory for abstracting and approximating mathematical

structures in programming languages to infer or verify undecidable program properties

(COUSOT, 2012). It begins with formally defining a language’s semantics, formalizing

Chapter 2. Background Theory 25

program properties, and expressing the key property in fixed point form. The theory

provides methods for abstracting properties and fixed points, leading to verified abstract

semantics where only relevant properties are preserved. Verification is done by checking

fixed points inductively, and for property inference in static analyzers, fixed point

approximation with widening/narrowing is used. Since verification for infinite systems

is undecidable, abstractions may be over-approximating, leading to potential false

alarms, which require refinement to distinguish between real and fake executions. The

precision and scalability of abstractions are balanced by refining or coarsening them,

with abstract interpreters and domains adjusting the precision/cost ratio (MENEZES et

al., 2023).

2.3 ESBMC
As employed in this study, the Efficient SMT-based Context-Bounded Model Checker

(ESBMC) (GADELHA; MENEZES; CORDEIRO, 2021) is a robust and openly available

tool that serves as our chosen BMC module for software verification. This mature model

checker is designed to verify programs written in C/C++, Kotlin, and Solidity. ESBMC

is equipped to automatically assess pre-defined safety properties and user-specified

assertions within programs, whose safety properties cover a range of concerns such

as array out-of-bounds, illegal pointer dereferences, integer overflows, and division

by zero. Additionally, ESBMC supports various language frontends, including Clang

for C/C++ and Soot via Jimple for Java/Kotlin, and implements Solidity’s grammar

production rules for Ethereum’s Solidity language. ESBMC is underpinned by state-of-

the-art incremental BMC techniques and k-induction proof-rule algorithms rooted in

SMT and constraint programming (CP) solvers. The ESBMC’s prowess has been demon-

strated in a variety of contexts. Indeed, it is recognized for its successful application

in verifying single and multi-threaded code, effectively identifying intricate bugs in

real-world software (CORDEIRO; FILHO, 2016).

Figure 2 shows the ESBMC architecture. White rectangles represent input and

output and gray rectangles represent the verification steps. ESBMC uses several key

Chapter 2. Background Theory 26

components during the verification process:

1. Control-flow Graph (CFG) Generator: For C++ programs, this component in-

cludes type-checking and static analysis covering various checks. It creates an

Intermediate Representation (IR) for GOTO program generation. For ANSI-C, it

converts AST into a GOTO program, adding various checks and simplifications.

2. Symbolic Execution Engine: This engine symbolically executes the GOTO pro-

gram, unrolling loops, generating Static Single Assignments (SSA) forms, and

deriving safety properties for SMT solvers. It includes pointer safety checks and

simplifies the program using various techniques.

3. SMT Back-end: Supports multiple solvers and is adaptable for encoding quantifier-

free formulas. It encodes the SSA form into a formula to check satisfiability and

generates counterexamples if a bug is detected.

Figure 2 – ESBMC architecture

The fundamental methodology of BMC, as utilized by ESBMC, consists of un-

rolling a target system for a predetermined number of iterations and establishing a

verification condition (VC). If this VC is satisfiable, it signifies the existence of a coun-

terexample for a particular property at a specific depth. While ESBMC has proven

effective in verifying software properties efficiently, the challenge of scaling BMC tools

for extensive software evaluation persists due to resource limitations.

In the realm of software verification, ESBMC has been distinguished as one of the

foremost BMC tools, as corroborated by its commendable performance in the recent edi-

tions of the International Competition on Software Verification (SV-COMP) (GADELHA;

Chapter 2. Background Theory 27

MENEZES; CORDEIRO, 2021). Notably, ESBMC achieved fifth place among 44 state-of-

the-art C software verifiers in the comprehensive ranking of SV-COMP 2023 (BEYER,

2023). Figure 3 illustrates ESBMC’s performance in the competition.

Figure 3 – ESBMC’s Performance in SV-COMP 2023

2.4 Common Software Vulnerabilities in C Programming

Language
As a formal definition, a software vulnerability is a security flaw, glitch, or weak-

ness found in code that could be exploited by an attacker, leading, for instance, to

sensitive-data leak or execution of malicious instructions (DEMPSEY et al., 2020). In ad-

dition, the common weakness enumeration (CWE) community (CORPORATION, 2019)

identifies the most common vulnerabilities associated with the C/C++ programming

language (CORPORATION, 2023). Here, we describe ten vulnerability categories that

we consider in this work.

• Definition 1 - Buffer Overflow: This vulnerability is defined when copying data

from one buffer to another without checking whether the former fits within the lat-

ter, independently of where they are located (i.e., heap, stack, etc.). Consequently,

data in adjacent memory addresses get corrupted, which attackers can use to pro-

Chapter 2. Background Theory 28

mote crash events, incorrect program behavior, information leakage, or execution

of malicious code (CORPORATION, 2023). It is categorized under CWE-120 and

defined as a buffer copy without checking the input size.

• Definition 2 - Arithmetic Overflow: This vulnerability is defined by an arithmetic

operation’s result surpassing the maximum capacity of its assigned data type.

It is triggered when computations yield an integer overflow or wraparound,

contradicting the assumption that the resultant value will invariably exceed the

original. Such miscalculations can expose additional weaknesses, especially when

used for resource allocation or execution control (CORPORATION, 2023). It is

categorized under CWE-190 and defined as integer overflow or wraparound.

• Definition 3 - Invalid Pointer: This vulnerability category includes both deref-

erencing uninitialized (or null pointers) and deallocating memory using unini-

tialized or invalid pointers. In the case of dereferencing, the application accesses

memory that it is not supposed to, often resulting in crashes or unexpected pro-

gram behavior. This is closely related to CWE-476. In the case of deallocating

memory, known as Invalid Pointer Freed, a program attempts to free a memory

location using an uninitialized or invalid pointer, leading to potential corrup-

tion of memory and program instability. This specific issue is often related to

CWE-416, which focuses on use-after-free scenarios. Both these forms of invalid

pointer usage can lead to unpredictable program behavior and may be exploited

by attackers (CORPORATION, 2023).

• Definition 4 - Improper Buffer Access: This vulnerability is defined when soft-

ware uses a sequential operation to read or write a buffer with an incorrect length

value. Consequently, memory outside of a buffer’s bounds is accessed. This way,

an attacker can access sensitive data or execute arbitrary code (CORPORATION,

2023). This software vulnerability falls under CWE-119 and is defined as an im-

proper restriction of operations within the bounds of a memory buffer.

• Definition 5 - Null Pointer Dereference: This vulnerability is defined when an

application dereferences a null pointer, often due to race conditions or program-

Chapter 2. Background Theory 29

ming errors. Usually, it causes a crash or exit. An attack using it can aim at service

denial (CORPORATION, 2023). It is categorized under CWE-476.

• Definition 6 - Double Free: This vulnerability is defined when a program calls

free() twice with the same argument, which typically causes the corruption of

memory management data structures. It happens because the first attempt allows

the related memory space to be used by another part of the same program, and

the second attempt releases something thought to be still in use. An attacker could

access this buffer and execute arbitrary code or cause a crash (CORPORATION,

2023). It is categorized under CWE-415.

• Definition 7 - Division by zero: This vulnerability is defined when an unexpected

value is returned to running code, even due to an undetected error, and then used

in operations. If not handled, it often leads to a hardware trap, then finishing a

given program. Moreover, as handling code is not deeply tested, in general, such

a condition can be used by attackers (CORPORATION, 2023). It is categorized

under CWE-369.

• Definition 8 - Array bounds violated: This vulnerability occurs when a program

attempts to access an array element at an invalid index, either below zero or

beyond an array’s length, leading to data corruption, crashes, or unauthorized

code execution (CORPORATION, 2023). It is categorized under CWE-787 and

defined as modifying an index or performing pointer arithmetic that accesses a

memory location outside a buffer’s boundaries.

• Definition 9 - Pointer arithmetic violation: This vulnerability occurs when a

product employs pointer arithmetic (e.g., subtraction, comparison) to ascertain

size. It can lead to the same object violation when pointers from different memory

blocks are used. In C programming, pointer arithmetic is commonly used to

navigate arrays or compare memory positions, assuming the pointers involved

reference the same allocated memory block. Issues arise when arithmetic operation

is attempted between pointers not pointing to the same memory block, leading to

Chapter 2. Background Theory 30

undefined and unreliable results. It is categorized under CWE-469 and defined as

using pointer subtraction to determine size (CORPORATION, 2023).

• Definition 10 - Assertion violation: This vulnerability occurs when a condition

provided to the function assert is not satisfied during program execution. A reach-

able assertion failure suggests the existence of a program execution path that leads

to the assertion’s location, where the variables’ value does not meet the expected

conditions. Assertions are often used to verify that program variables remain

within user-defined bounds. An assertion failure may reveal logical errors that

could be exploited, resulting in unpredictable behavior or system crashes. This

type of vulnerability is associated with CWE-617, where assertions are expected

to hold during normal execution (CORPORATION, 2023).

2.5 Summary
In this chapter, we have delved into various aspects and challenges of open-source

software development, focusing particularly on the security vulnerabilities inherent

in these projects. The collaborative and open nature of open-source software, while

fostering innovation and community development, also exposes it to increased security

risks. This situation underscores the necessity for effective and sophisticated security

tools to navigate the complexities of open-source software, including issues like code

dependencies and supply chain vulnerabilities.

We have explored various formal verification techniques, such as static analysis,

SMT solvers, bounded model checking, fuzzing, and abstract interpretation. Each of

these methodologies offers unique advantages in identifying and addressing vulner-

abilities within software systems. Particularly, we discussed the ESBMC tool, a state-

of-the-art model checker for C/C++, highlighting its capabilities to verify predefined

safety properties and user-specified assertions in programs automatically. ESBMC’s

performance in the International Competition on Software Verification (SV-COMP)

illustrates its effectiveness and reliability in software verification. It was chosen as the

model checker for this work.

Chapter 2. Background Theory 31

Finally, the chapter outlined ten major categories of software vulnerabilities,

providing a comprehensive view of the security flaws in C/C++ programming environ-

ments. These include buffer overflow, arithmetic overflow, invalid pointer, improper

buffer access, null pointer dereference, double free, division by zero, array bounds

violation, pointer arithmetic violation, and assertion violation. Recognizing and un-

derstanding these vulnerabilities is crucial in developing strategies to mitigate them

effectively. Our proposed methodology will cover all these software vulnerabilities.

In conclusion, studying open-source software vulnerabilities and developing ver-

ification tools are crucial in addressing the security challenges in open-source projects.

The ongoing evolution of verification techniques and tools reflects the growing com-

plexity of software systems and the ever-present need for more robust and efficient

methods to ensure software security and reliability. This chapter sets the stage for the

following sections, where we will apply these concepts and tools to analyze and secure

C open-source software projects, aiming to bridge the gap in current security practices

in open-source development.

32

3

RELATED WORK

T his section reviews the literature on verifying security vulnerabilities in C-

based open-source software and discusses prevalent BMC tools used in verifi-

cation processes. It also outlines the methodology for selecting these studies.

3.1 Review of Literature
The security of C-based open-source software is vulnerable to large-scale attacks that ex-

ploit weaknesses in millions of end-user systems (GADELHA et al., 2018). We reviewed

pivotal and recent studies comprehensively to comprehend the prevailing strategies

addressing these vulnerabilities. These studies adhere to open-source policies and BMC

standards, encompassing public domain and industrial approaches to verifying safety

properties in expansive open-source software. Our literature review was methodically

curated, focusing on articles from prominent publishers and databases such as the

Institute of Electrical and Electronics Engineers (IEEE), the Association for Computing

Machinery (ACM), Science Direct, Springer, Scopus, Web of Science, and Google Scholar.

Our selection was based on specific research criteria, emphasizing papers published

between 2013 and 2023, which include journals, conference proceedings, and periodicals.

The search’s keystring is described in Table 1.

The methodology for our literature review is depicted in Figure 4. From an initial

database search, 3551 studies were identified. After removing duplicates, 3107 studies

were selected for further review. A significant portion, 3043 studies, were excluded

Chapter 3. Related Work 33

after a review of titles and abstracts revealed they were irrelevant to the research in

formal verification, did not meet the search criteria, or the full text was unavailable.

This process resulted in 64 papers being assessed for eligibility. Subsequently, exclusion

criteria were applied to papers not focused on the bounded model checking approach or

not related to the open-source domain. Ultimately, 30 papers were classified as relevant,

with 27 focusing on BMC tools and three on research in open-source software.

Database Search Query
IEEE ("All Metadata":Open Source) AND ("All Metadata":Security OR

"All Metadata":Verification OR "All Metadata":Vulnerabilities OR
"All Metadata":Violation OR "All Metadata":Fault) AND ("All
Metadata":Software OR "All Metadata":Program OR "All Meta-
data":Application OR "All Metadata":Tool) AND ("All Meta-
data":model checking)

ACM [Abstract: open source] AND [Abstract: model checking] AND
[[Abstract: security] OR [Abstract: verification*] OR [Abstract: vul-
nerabilit*] OR [Abstract: violation] OR [Abstract: fault*]] AND
[[Abstract: software] OR [Abstract: program] OR [Abstract: appli-
cation] OR [Abstract: tool]] AND [Publication Date: (01/01/2013
TO 30/06/2023)]

Science Direct Year: 2013-2023 Title, abstract, keywords: (model checking) AND
(Security OR Verification OR Vulnerabilities OR Violation OR
Fault) AND (Software OR Program OR Tool)

Web of Science ALL=(model checking) AND ALL=(open source) AND
ALL=(Security OR Verification OR Vulnerabilities OR Violation
OR Fault) AND ALL=(Software OR Program OR Tool)

Scopus ABS((model checking) AND (open source) AND (Security OR
Verification OR Vulnerabilities OR Violation OR Fault) AND (Soft-
ware OR Program OR Tool)) AND (LIMIT-TO (PUBYEAR,2023)
OR LIMIT-TO (PUBYEAR,2022) OR LIMIT-TO (PUBYEAR,2021)
OR LIMIT-TO (PUBYEAR,2020) OR LIMIT-TO (PUBYEAR,2019)
OR LIMIT-TO (PUBYEAR,2018) OR LIMIT-TO (PUBYEAR,2017)
OR LIMIT-TO (PUBYEAR,2016) OR LIMIT-TO (PUBYEAR,2015)
OR LIMIT-TO (PUBYEAR,2014) OR LIMIT-TO (PUBYEAR,2013)
)

Table 1 – Search queries used in different databases for the literature review.

This review aims to deepen our understanding of bounded model checking

techniques used in open-source software verification. We focus on tools that support

vulnerability exploitation, software security assessment challenges, and future research

directions. Our systematic approach details the stages of data collection from various

studies on bounded model checking and open-source software. Overall, this review

Chapter 3. Related Work 34

Figure 4 – This study’s literature review examined research from the past decade on
using model checking tools to verify vulnerabilities in open-source software.

highlights available bounded model checking tools and current research in the open-

source domain. From our systematic search, we identified 30 papers for evaluation.

By evaluating identified papers and studies, we quantified the effectiveness

of various security methods and pinpointed weaknesses and flaws that pose risks to

C-based open-source software. Our research offers practical solutions to minimize the

threat of large-scale attacks on such software. Our literature review aimed to present a

thorough overview of the existing research on the application of model checking for

the identification and verification of vulnerabilities in open-source software. Although

substantial work has been undertaken in this domain, our findings suggest a continued

need for research, especially in developing tools capable of reducing the likelihood of

software exploits. This underscores the ongoing challenge and necessity for advance-

ments in security measures within open-source software. While various studies have

been conducted, there’s a clear need for more research, especially in creating tools to

reduce software exploit risks.

Table 2 compares the tools described in this section when checking vulnerabilities

in open-source software.

Chapter 3. Related Work 35

Tools Year BMC Open-Source Analysis Report
Chucky (YAMAGUCHI et al., 2013) 2013 7 3 3
VeriFast (PHILIPPAERTS et al., 2014) 2014 3 7 3
CBMC (KROENING; TAUTSCHNIG, 2014) 2014 3 3 7
NuXmv (CAVADA et al., 2014) 2014 3 7 7

SMACK (RAKAMARIĆ; EMMI, 2014) 2014 3 7 7
Lazy-CSeq (INVERSO et al., 2015) 2015 3 7 7
Dsverifier (ISMAIL et al., 2015) 2015 3 7 3
EMCDM (PIRA; RAFE; NIKANJAM, 2016) 2016 3 7 7
MCMAS (LOMUSCIO; QU; RAIMONDI, 2017) 2017 3 7 7

DIVINE (BARANOVÁ et al., 2017) 2017 3 7 3
Vanguard (SITU et al., 2018) 2018 7 3 3
Heaphopper (ECKERT et al., 2018) 2018 3 7 7
CRed (YAN et al., 2018) 2018 3 7 7
UPPAAL (GERKING; SCHUBERT; BODDEN, 2018) 2018 3 7 7

DiVM (ROČKAI et al., 2018) 2018 3 7 7
PeSCo (RICHTER; WEHRHEIM, 2019) 2019 3 7 7
QASan (FIORALDI; D’ELIA; QUERZONI, 2020) 2020 7 3 7
IC3 (LANGE et al., 2020) 2020 3 7 3

QPR Verify (BÜNING; SINZ; FARAGÓ, 2020) 2020 3 7 7

DARTAGNAN (LEÓN et al., 2020) 2020 3 7 7
CPAchecker (BEYER; KEREMOGLU, 2011) 2020 3 3 7
C-SMC (CHENOY et al., 2021) 2021 3 7 7
UAFSan (GUI; SONG; HUANG, 2021) 2021 7 3 7
Pono (MANN et al., 2021) 2021 3 7 7
ESBMC (GADELHA; MENEZES; CORDEIRO, 2021) 2021 3 3 7
Deagle (HE; SUN; FAN, 2022) 2022 3 7 7
CBMC-SSM (FISCHER et al., 2022) 2022 3 7 7
HEAPSTER (GRITTI et al., 2022) 2022 3 7 7

2LS (MALÍK et al., 2023) 2023 3 7 7
LF-checker (GERHOLD; HARTMANNS, 2023) 2023 3 7 7
LSVerifier (SOUSA et al., 2023) 2023 3 3 3

Table 2 – Main tools used to check software vulnerabilities using model checking tech-
niques and their applicability on open-source software

Table 2 reviews the tools developed and actively supported in the past decade.

Researchers have projected automated source code security scanning tools that can be

used to scan C open-source code. It provides clear and actionable feedback over the

last decade to help developers quickly identify and fix security defects in their code.

Nowadays, model-checking techniques have been proven to be more precise and are

thus more widely used. The use of model-checking techniques to check software vulner-

abilities and their applicability to open-source software is growing exponentially. Model

checking automatically verifies software and hardware designs for correct behavior,

generally to avoid design errors, oversights, and vulnerabilities. Therefore, this table

focuses on discussing the advantages of utilizing model-checking techniques to identify

vulnerabilities in open-source software from the perspective of cost-efficiency due to

the transparency of the code, as well as its possible scalability, allowing for verification

to be done on a system-wide scale rather than for a small portion.

Chapter 3. Related Work 36

LSVerifier employs a static code analysis approach based on the BMC technique

that operates independently of executions, enabling the verification of multiple proper-

ties simultaneously. This method is particularly effective in evaluating critical projects

due to its comprehensive analysis capability. Unlike other methodologies and tools

presented in Table 2, LSVerifier stands out by efficiently checking for code property vio-

lations and generating reports based on BMC counterexamples that can help software

developers find issues in open-source projects as a basis for distinguishing between

false positives and true positives. This feature is especially valuable in assessing large

open-source software systems, where the scale and complexity of the code can present

significant challenges. The application of LSVerifier to projects comprising millions of

lines of code demonstrates its capability to handle extensive and complex software en-

vironments, making it a crucial tool for ensuring the integrity and security of significant

software projects.

3.2 Formal Verification Tools for Analyzing Open-Source

Software Security Vulnerabilities
The C programming language is extensively utilized for developing crucial software

applications. Nonetheless, it does not offer built-in protection mechanisms, thereby plac-

ing the responsibility of memory and resource management squarely on the shoulders

of developers. Failures or oversights in these areas can lead to unpredictable program

behavior and security vulnerabilities. In response to these challenges, numerous studies

have focused on employing automatic tools to verify safety properties in C programs,

aiming to mitigate the risks associated with manual memory management and enhance

overall software security (CORDEIRO; FISCHER, 2011; ROCHA et al., 2020). However,

due to verification complexity and applicability, not all memory safety violations can

be covered efficiently using such tools. To solve this problem, there are solutions for

program testing with publicly available frameworks for static techniques, symbolic

execution (BALDONI et al., 2018), dynamic approaches using fuzzing and sanitization

(DINESH et al., 2020), abstract interpretation (RIVAL; YI, 2020), and BMC technique

Chapter 3. Related Work 37

(CLARKE; KROENING; LERDA, 2004a; Cordeiro; Fischer; Marques-Silva, 2012), for in-

stance. Thereby, currently, software developers have many multifaceted solutions for

program testing using static techniques by upstream tools that allow users to cus-

tomize key parameters specific to the desired test scenario during test exploitation

(SITU et al., 2018; FIORALDI; D’ELIA; QUERZONI, 2020; GUI; SONG; HUANG, 2021).

Vorobyov, Kosmatov, and Signoles (VOROBYOV; KOSMATOV; SIGNOLES,

2018) seek to assess state-of-the-art techniques, thus analyzing the performance of differ-

ent automatic vulnerability detection tools for C programs. For this purpose, a database

containing approximately 700 test cases representing security-related vulnerabilities,

previously classified regarding memory safety, was used. The respective results indicate

that verification tools provide adequate support for detecting problems arising from

improper use of memory and undefined behaviors, thus attesting to their reliability

in improving C code. However, the same authors limited their analysis to known test

cases. In contrast, tools like LSVerifier perform static code analysis, which does not

depend on executions and can verify multiple properties in a single run. This approach

proves to be more effective when evaluating critical projects.

Another approach to verify security vulnerabilities in software is using fuzzing

technique (BÖHME et al., 2017). In this matter, the authors in (ROCHA et al., 2020)

present Map2Check, a software verification tool that uses fuzzing techniques, sym-

bolic execution, and inductive invariants to check safety properties in C programs.

Furthermore, it uses the LLVM compiler’s infrastructure to instrument source code and

monitor data from a program’s execution. It then uses an iterative deepening approach

using fuzzes and symbolic execution engines to check such properties (MENEZES et al.,

2018; ROCHA et al., 2020). However, even though their experimental results show that

Map2Check can be helpful to verify pointer safety-related properties, it has only been

evaluated under SV-Comp benchmarks and not in the context of large software systems.

In addition, its evaluation is currently limited to SV-COMP’s benchmarks. In contrast,

our work presents results for many large open-source practical software systems.

Nie, Jiang, and Ma (NIE; JIANG; MA, 2020) introduced an efficient computation

tree logic (CTL) symbolic model-checking algorithm based on fuzzy logic, which ad-

Chapter 3. Related Work 38

dresses the state space explosion problem. Unlike conventional algorithms based on

binary decision diagrams (BDDs), the proposed algorithm uses fuzzy logic to reduce

the complexity of BDD computations by representing CTL formulas as fuzzy sets. It

enhances scalability and efficiency and inherently supports behaviors with probabilistic

and temporal constraints. However, it also demonstrated limitations in representing

counterexamples. Considering LSVerifier, we overcame this limitation by employing a

model checker that generates counterexamples when properties are satisfied.

Alshmrany et al. (ALSHMRANY et al., 2021) introduced FuSeBMC, a method

that combines fuzzing and BMC to find security vulnerabilities in C programs. This

tool is based on ESBMC, providing an efficient test generation framework. They have

demonstrated the effectiveness of their approach by using it to detect SQL injection

bugs in a sample web application implemented in the C language. Given that this tool

introduces a fuzzing component for code analysis, this condition may result in longer

verification times and extra configuration effort compared to LSVerifier, which employs

only BMC and still yields satisfactory results. The waiting time for results can be a

critical factor in large projects.

Aljaafari et al. (ALJAAFARI et al., 2022) introduced Ensembles of Bounded Model

Checking with Fuzzing (EBF). It is a method that combines BMC and Gray-Box Fuzzing

(GBF) to discover software vulnerabilities in concurrent programs. The resulting tool

was capable of producing up to 14.9% more correct verification witnesses compared to

using BMC tools alone. Furthermore, this tool successfully detected a data race bug in

the open-source project wolfMqtt. It was run over the benchmarks used in SV-COMP

2022. However, regarding practical software, its evaluation was limited to wolfMqtt and

three other programs. In contrast, LSverifier was evaluated against various open-source

large projects. Considering the performance gain achieved by adding fuzzing, it may be

interesting to include this technique in future LSVerifier versions as there is potential to

discover more bugs in open-source projects.

Richardson (RICHARDSON, 2020) describes using CHERI to provide memory

safety in C/C++ programs. In particular, they show how to overcome memory errors,

such as spatial safety violations, because the memory bounds of an object are ignored.

Chapter 3. Related Work 39

Moreover, the author presents CHERI sub-object hardening (CheriSH), a technique that

protects against buffer overflows between the same object fields, enabling complete

spatial memory protection in CHERI (RICHARDSON, 2020). Nonetheless, CHERI

should be adopted by developers and industries so that processor architectures can

benefit from such a mechanism. CheriSH primarily focuses on pointer safety, not

tackling other violations, e.g., memory leaks. This method does not address all the

security aspects that LSVerifier does and has not been tested on large open-source

software systems (BRAUSSE et al., 2022).

Regarding tool properties, the available literature shows that BMC has already

been applied successfully to discover flaws in real systems and has also been extended

to support multi-threaded software systems (ROCHA et al., 2012; Barreto; Cordeiro;

Fischer, 2011). Cordeiro, Fischer and Marques-Silva (Cordeiro; Fischer; Marques-Silva,

2012) investigate SMT-based verification of ANSI-C programs, focusing on embedded

software, thereby offering the first SMT-based BMC assessment in industrial applica-

tions. The results reported there conclude that the ESBMC outperforms CBMC and

SMT-CBMC when considering the verification of embedded software. Other studies

have sought to extend or improve existing tools, such as those described in (BOUDJEMA

et al., 2018) and (Cho; D’Silva; Song, 2013). However, this approach does not cover other

security aspects addressed by LSVerifier, nor has it been applied to large open-source

software systems.

Using another model-checking technique, the research realized by Gerking et

al. (GERKING; SCHUBERT; BODDEN, 2018) describes the construction of a tool using

the well-established Uppaal model checker to realize test automata. It introduces a ded-

icated location to identify violations of noninterference whenever it is reachable during

execution. Therefore, this tool can reduce the problem to a reachability test supported

by model-checking techniques used in software engineering practice. However, it was

not applied to open-source software. However, it does not handle other security aspects

addressed by LSVerifier and was not applied to large open-source software systems.

In addition, we can mention LLBMC (MERZ; FALKE; SINZ, 2012b) and DI-

VINE (BARANOVÁ et al., 2017). Both use BMC techniques to verify memory safety

Chapter 3. Related Work 40

properties. LLBMC is an interesting bounded model checker based on SMT solvers;

however, it is limited to bounded analysis and program-dependent restricting tool

scalability for large systems. DIVINE, an explicit-state model checker, is an efficient

and versatile tool for analyzing real-world C and C++ programs. It provides a mod-

ular platform for the verification of real-world programs. However, a recent study

(MONTEIRO; GADELHA; CORDEIRO, 2022) performed an extensive evaluation and

found that DIVINE needs improvement regarding performance and reliability. LSVer-

ifier does not present such limitations. It has already been applied to large software

systems, as shown here, and its reliability finds support in the ESBMC’s results obtained

in many SV-COMP editions.

Choi(CHOI, 2011) introduced a model-checking technique to identify subtle

problems in software safety applied to open-source software. This research reported a

complete experience report with the Trampoline OS software safety analysis using the

model checker SPIN. Trampoline OS is an open-source automotive electronic/electrical

device operating system based on the OSEK/VDX international standard. The authors

converted the Trampoline kernel code into formal models and experiments using an

incremental verification approach. Furthermore, the automated counterexample genera-

tion guaranteed a useful tool for tracing potential safety bugs. This study was the first

successful research case that used model-checking techniques to verify vulnerabilities

in open-source software, indicating a trend in using model-checking tools in large-scale

projects. LSVerifier, in turn, directly checks source code for a broad set of possible

vulnerabilities without explicit manual conversion. In addition, Trampoline has only

4530 code lines, and no scalability assessment was performed. In that sense, LSVerifier

was applied to projects with millions of code lines.

To analyze vulnerabilities in heap implementation, Moritz Eckert et al (ECKERT

et al., 2018) proposed a tool called HEAPHOPPER. This is a novel and fully automated

tool using model checking technique and symbolic execution, to analyze the exploitabil-

ity of heap implementations in open-source. HEAPHOPPER tool has good results

exploiting memory library allocation implementation in the presence of memory cor-

ruption. However, this work is limited to checking only memory allocation issues, which

Chapter 3. Related Work 41

does not happen with LSVerifier. It can not handle large software systems, which is the

focus of our work. The authors also mentioned the need to enhance HEAPHOPPER’s

performance as the number of paths to be analyzed inevitably grows.

Another approach to verify software vulnerabilities is the code browser tech-

nique. Cobra (HOLZMANN, 2017) uses a lexical analyzer to scan source code and create

an uncomplicated linked list of lexical tokens. Structural code analysis and pattern iden-

tification can be assisted by this tool. Patterns for true positive and false positive cases

are carefully defined for every syntax rule or recommendation. If the code context

matches a true positive pattern, the warning is considered a true positive. If the code

context matches a false positive pattern, the checked warning is deemed a false positive.

It will be classified as unknown without a pattern matching in the code context. The

study by Thu-Trang et al. (NGUYEN et al., 2019) showed that Cobra can identify both

true positives and false positives for rules and recommendations about program syntax.

LSVerifier has a more efficient methodology for checking code property violations than

this method by producing counterexamples as a standard for determining whether

property violations are false positives or true positives.

Recently, Cook et al. (COOK et al., 2020) presented the use of model checkers

to triage the severity of security bugs in the cloud service provider at Amazon Web

Services (AWS). The authors tackled the severity of bugs discovered/reported in the

Xen hypervisor, an open-source hypervisor used in industry. In this case study, when

a bug is reported, engineers should evaluate its potential threat and how quickly it

needs to be fixed w.r.t. its severity. To do so, the authors have applied transformations

to the original source code and implemented modifications to the C Bounded Model

Checker (CBMC) (CLARKE; KROENING; LERDA, 2004a), aiming to slice the program

under verification and generate a reduced version of it. As a result, this model checker

can easily verify the resulting program, while the obtained counterexamples can help

engineers write security tests to analyze bugs further. However, several abstractions

performed in the verification approach might cause the model checker to miss traces

and not automatically falsify spurious traces. In this regard, it may be worthwhile to

consider using techniques to simplify the programs analyzed by LSVerifier, making

Chapter 3. Related Work 42

them easier to verify. Moreover, it is worth mentioning that vulnerability severity is

inherently considered in the LSVerifier’s prioritization strategy, which can also be

modified if new severity classes or a different ranking logic must be included.

Despite the surge in formal verification research to enhance model-checking

performance for memory safety properties, most cutting-edge model-checking tools

are tailored for analyzing small to medium-sized programs. A significant limitation

of these tools is their often user-unfriendly outputs and tendency to generate false

positives, particularly when functions undergo redundant analyses. In response, our

work introduces structured log files and spreadsheets to streamline the organization

of analysis results. We have also implemented a prioritization algorithm to help users

systematically identify the most critical issues first. Our study seeks to bridge the

gaps in verifying large software systems by developing a methodology specifically

designed for this purpose. We aim to narrow the divide between research and practical

application by employing a tool, LSVerifier, to evaluate real open-source software based

on this methodology. Notably, LSVerifier distinguishes itself as the novel tool capable

of producing reports derived from BMC counterexamples, thereby aiding software

developers in identifying problems within open-source projects.

3.3 Summary
This literature review delves into the security vulnerabilities of C-based open-source

software and the role of Bounded Model Checking (BMC) tools in verifying these

vulnerabilities. The study is comprehensive, focusing on research from 2013 to 2023,

and includes a systematic methodology for selecting relevant studies from prominent

databases like IEEE, ACM, Science Direct, Springer, Scopus, Web of Science, and Google

Scholar. The review uncovers 30 key papers, highlighting the evolution and applica-

tion of various BMC tools like CBMC, VeriFast, NuXmv, and others. It emphasizes

the increasing precision and popularity of model-checking techniques in open-source

software verification, noting their cost-efficiency and scalability for large systems.

The second part of the review provides a detailed comparison of various tools

Chapter 3. Related Work 43

used in checking vulnerabilities in open-source software, emphasizing the advance-

ments and limitations of each. Special attention is given to LSVerifier, a tool that uses

BMC for static code analysis and can verify multiple properties in a single run. The

review explores various approaches like fuzzing, symbolic execution, and static analy-

sis, highlighting their effectiveness in detecting security vulnerabilities. Tools such as

FuSeBMC, EBF, and CHERI are discussed, underscoring the necessity for efficient and

reliable tools in large-scale software systems and the potential of combining different

techniques like fuzzing with BMC.

The studies above show the importance of pursuing verification techniques for

open-source software due to its intrinsic characteristics: collaborative development and

code disclosure. It encompasses problems caused by the lack of knowledge during

software implementation, given that third-party open-source libraries, components,

utilities, and other open-source software are used in a bundle without further analysis.

Indeed, most efforts focus on new techniques, and only a few initiatives try to efficiently

or effectively tackle the massive amount of associated source code in open-source

projects.

Finally, the review discusses the broader implications of these tools in the context

of open-source software verification. It underscores the challenges of model-checking

tools, such as handling large software systems and producing user-friendly outputs with

minimal false positives. The study highlights LSVerifier’s unique ability to generate ac-

tionable reports based on BMC counterexamples, aiding developers in identifying issues

in open-source projects. The review concludes that despite significant advancements

in formal verification and model-checking tools, there remains a gap in verifying large

software systems efficiently, which LSVerifier aims to address. Due to this clear gap, this

work will investigate and tackle security vulnerabilities in large C open-source code

bases using a novel methodology that provides an automatic verification framework.

44

4

THE PROPOSED VERIFICATION

METHODOLOGY

T his section introduces the proposed verification methodology for large soft-

ware systems and the foundational architecture and key features of LSVerifier.

The software organization that initially inspired its development will be

detailed in the subsequent section, along with the core principles and concepts under-

pinning the implementation approach.

4.1 Architectural Patterns of Open-Source Software for

Effective Vulnerability Verification
The proposed methodology targets the verification of large software systems, focusing

on open-source software due to its prevalence and susceptibility to vulnerabilities. It is

essential to recognize that large open-source software typically consists of a complex

arrangement involving numerous files, diverse folder structures, and occasionally exter-

nal repositories. For instance, notable examples such as PuTTY (PUTTY, 1999) comprise

175 files, OpenSSH (OPENSSH, 1999) includes 276 files, and OpenSSL (OPENSSL, 1998)

contains 1,239 files. These systems are frequently integrated into many new projects

for their crucial communication services, utilizing code that applies across various

domains. The number of files in such software often correlates with its complexity and

Chapter 4. The Proposed Verification Methodology 45

directly reflects the chosen design strategy. Figure 5 shows the representation of the

structural organization in large open-source software systems for security vulnerability

verification.

Figure 5 – Structural complexities in Open-Source Software for security verification

Dividing software into multiple files offers several advantages. It ensures that

each file is manageable for easier editing, leading to improved organization and stream-

lined maintenance. Different software layers might be organized into separate folders,

while distinct components are distributed across various files. This modular design

facilitates code reuse in other software implementations, such as communication buses

and network infrastructure. However, this type of organization also challenges the

verification process: each file requires thorough inspection, and dependencies must be

carefully considered when evaluating applications comprised of multiple components.

Additionally, some files may not contain the ’main’ function, which is often used as an

entry point by software model checkers.

These factors were pivotal in shaping the development of our verification

methodology for large software systems, forming the core requirements for any vi-

able verification scheme.

Chapter 4. The Proposed Verification Methodology 46

4.2 The Development of Proposed Methodology
We have developed a new methodology based on BMC and prioritized search, whose

general idea is shown in Figure 6. It guides an underlying model checker to verify a

C program’s entire code and can even reach third-party libraries. BMC was chosen as

the underlying verification framework due to its performance and flexibility. It can

ultimately provide a trade-off between effort (e.g., explored state space and resources)

and effectiveness.

Figure 6 – An overview of the proposed verification process.

First, as shown in Figure 6, the target source-code directory and the necessary

configuration, e.g., solver, encoding, and verification methods, are fed. Such information

is paramount to match the characteristics of the code to be verified and the goal of the

verification process itself. For instance, one might be interested only in a specific type

of vulnerability, e.g., overflow. Next, all “.c” files and all their respective functions and

methods are listed. Indeed, this is an important step that raises the potential locations

for vulnerabilities.

However, in a verification process, one is undoubtedly interested in finding

the most dangerous vulnerabilities first, which is inherently linked with the structure

of a function or method, e.g., its signature. For instance, it is common sense in the

programming community that elements taking raw pointers as parameters are likely

more prone to errors than those not using them. Consequently, prioritization is also

Chapter 4. The Proposed Verification Methodology 47

performed, which can be used to drive further test and correction phases to handle more

significant problems first. Next, an underlying verifier checks each function according

to its priority and the initial configuration. This way, we ensure that the entire source

code is evaluated in a prioritized fashion.

Finally, the associated verification logs are gathered and processed to create a

spreadsheet with the related outcomes. Information regarding how files are verified,

e.g., way of access and specific vulnerabilities, and how outcomes are displayed, e.g.,

amount of details, could also be fed.

A formal description of the proposed method, which can be used for the develop-

ment of a real implementation of it, is given in Algorithm 1 and is explained as follows.

Given a program P , in the directory D, and the configuration C, it first parses the latter.

Then it lists the “.c” files of interest in D, which can be performed recursively or be

focused on a specific element. As a result, the target files and the input configuration

are stored for use in the following steps.

Suppose a user configures it to analyze program functions individually. In that

case, each source-code file is checked, and a global list F of all functions and methods

declared in them is generated, analyzed, and reorganized according to a prioritization

based on its elements’ structures. Consequently, elements are sorted from the most to

the least priority. Otherwise, the analysis occurs based on the normal program flow,

using the main function as a starting point with no prioritization scheme.

Following that, an underlying BMC checker analyzes each element in F , ver-

ifying violations such as pointer safety, arithmetic overflow, division by zero, and

out-of-bounds arrays. Then, a suitable module generates the respective logs. In that

sense, properties to be checked are passed to a controlling script in the argument configs.

When the associated verification process is concluded, a spreadsheet V with the model

checker’s outcomes (complete report) is produced, and the compound parsed result of

all logs is obtained from a complete execution process.

It is worth noting that our methodology operates file-wise, which is appropriate

and necessary. In other words, a file’s content, e.g., a complete element, service layer, or

interface, is completely verified. This way, we can validate source code by investigating

Chapter 4. The Proposed Verification Methodology 48

building blocks and thus clearing them one by one.

Algorithm 1 The proposed verification approach.
Require: Program P , Directory D, Configuration C
Ensure: Verification Outcome V
configs← get_configs(C)
function_analysis← extract_config(configs)
files← list_files(P,D)
num_files← length(files)
log ← ∅
k, l← 1
while k ≤ num_files do

if function_analysis then
F ← list_functions(files[k])
F ← prioritized_functions_list(F)

else
F ← main_function

end if
num_functions← length(F)
while l ≤ num_functions do
log ← log ∪BMC_Check(files[k], F [l], configs)
l← l + 1

end while
k ← k + 1

end while
V ← spreedsheat_create(log)
return V

At this point, it is important to clarify the prioritization strategy for functions

and methods, i.e., the function prioritized_functions_list in Algorithm 1. Indeed, there

can be elements with different signatures, including return and parameter types, which

give clues regarding their likelihood to present severe errors. Consequently, depending

on them, some components should be evaluated first. For instance, the ones that have

pointers or arrays as parameters present an inherent priority. Pointers may be wrongly

used throughout a given piece of code and cause many problems due to direct memory

manipulation. At the same time, arrays may suffer from improper access and incorrect

use of their parameters.

Moreover, analyzing their bodies is also important as it complements the search

for potential vulnerabilities. In this context, we first check for dynamic memory allo-

cation, which can potentially cause memory leaks if a developer does not deallocate

memory blocks properly. Specifically, we look for the use of functions malloc and free

Chapter 4. The Proposed Verification Methodology 49

to identify this scenario. Next, still within function bodies, we check for the use of

asynchronous processing through threads, which has the potential to lead to concur-

rency issues such as race conditions and deadlocks. In this case, we verify the use of

POSIX threads through functions such as pthread_create and pthread_join (BARNEY,

2009). Finally, the proposed prioritization strategy searches for arithmetic and logical

operations, such as division and bitwise shifting. These may lead to overflow and unde-

fined behaviors due to how compilers handle them and convert them into low-level

instructions.

Consequently, functions are ranked according to a numerical prioritization scale

ranging from grade 5 (the highest priority) to grade 0 (the lowest priority), based on

their contents:

• the presence of pointers as parameters present the maximum priority and leads to

grade 5;

• the use of arrays as parameters indicates grade 4;

• when dynamic memory allocation is present in a function’s body, we tag it with

grade 3;

• thread manipulation code results in grade 2;

• functions containing arithmetic operations or bit shifting are classified as grade 1;

• the remaining ones are considered low-priority functions and are then tagged

with grade 0.

Regarding the prioritization algorithm, it is important to highlight an interesting

point: our methodology also needs to examine the body of each function to look for

other functions called within it. Indeed, if there is a call to another function already

present in the list of elements to be analyzed, this is removed from it. It is necessary

because some elements can be verified more than once since BMC checkers usually

follow a function’s flow and automatically analyze all elements along it without the

need for an explicit request. Consequently, such a removal step inherently reduces

execution times by avoiding redundant analysis procedures.

Chapter 4. The Proposed Verification Methodology 50

Algorithm 2 gives a formal description of the function prioritized_functions_list

used in Algorithm 1. It first reads the initial list of functions F and then removes from it

functions already called inside other elements (remove_from_list). Then, if the current

function is not part of another context, it assigns different grades for each one, which is

done according to the earlier prioritization scheme. Next, a new list F o is assembled

and returned, which is done with the function sort_functions_by_priority. Its content

is sorted in descending order based on the newly assigned priorities.

Algorithm 2 The proposed prioritization algorithm.
Require: Function List F
Ensure: Ordered Function List F o

num_functions← length(F)
k ← 1
while k ≤ num_functions do

if ∀f ∈ F : F [k] ⊃ f then
remove_from_list(F, f)

else if F [k] ⊃ pointers then
F [k].priority ← grade 5

else if F [k] ⊃ array then
F [k].priority ← grade 4

else if F [k] ⊃ (malloc | free) then
F [k].priority ← grade 3

else if F [k] ⊃ threads then
F [k].priority ← grade 2

else if F [k] ⊃ (arithmetic operations | bit− shift operations) then
F [k].priority ← grade 1

else
F [k].priority ← grade 0

end if
k ← k + 1

end while
F o ← sort_functions_by_priority(F)
return F o

The outcomes of a complete verification procedure are exported to a spreadsheet

containing all property violations found by the underlying BMC checker. This report

aims to provide a clear and concise overview of the identified vulnerabilities, including

detailed information on each such as property, file name, function name, and code line

where it was detected. This information allows developers to locate and investigate the

specific code that may be causing a vulnerability and may also estimate its potential

impact.

Chapter 4. The Proposed Verification Methodology 51

4.3 Architecture and Main Functionalities
As our methodology for verifying large software systems had been completely devised,

the next logical step was its implementation as a real tool capable of being run and

evaluated.

LSVerifier, which is the name chosen for this tool, as described in Algorithms 1

and 2, was implemented using the Python programming language (VANROSSUM, 1995).

As the specific underlying BMC checker, ESBMC was chosen, which happened due

to its performance in previous instances of the International Competition on Software

Verification (SV-Comp) (BEYER, 2020; BEYER, 2022). LSVerifier supports all aspects

of C11 (STANDARDIZATION, 2012), the current standard for the C programming lan-

guage, and detects vulnerabilities in software by simulating a finite prefix of program

execution with its possible inputs. Also, an input program is verified by explicitly

exploiting interleavings, where one symbolic execution per interleaving is produced.

By default, LSVerifier can check a range of software vulnerabilities aligned with

MITRE’s “Top 25” CWE list (MITRE, 2023). Its detection suite encompasses but is not

limited to out-of-bounds array access, inappropriate pointer dereferences, arithmetic

underflows and overflows, and dynamic memory allocation problems. Furthermore, by

ESBMC checker, LSVerifier can identify unique anomalies such as not a number (NaN)

in floating-point computations, division by zero errors, and more complex issues like

memory leaks. The tool also recognizes multithreaded concerns including data races,

deadlock, and atomicity violations, offering a holistic approach to software vulnerability

detection. To check software vulnerabilities, it is necessary to specify command-line

options linked to the control core’s and ESBMC’s options. The vulnerability classes that

can be detected include (according to Section 2):

• out-of-bounds array access;

• illegal pointer dereferences (null dereferencing, out-of-bounds dereferencing, dou-

ble free, and misaligned memory access);

• arithmetic under and overflow;

• NaN occurrences in floating-point;

Chapter 4. The Proposed Verification Methodology 52

• division by zero;

• memory leak;

• dynamic memory allocation;

• data races;

• deadlock;

• atomicity violations at visible assignments.

In addition, LSVerifier can prioritize the chosen vulnerability classes according

to the parameters configured in the command line. It is also possible to select specific

vulnerabilities to be checked. Code exploitation can be prioritized based on specific

function types in source code (see Algorithm 2). The following sections will describe,

in detail, the most important implementation modules of the proposed methodology,

including the ESBMC’s operation and the LSVerifier’s configuration.

4.3.1 The LSVerifier’s Tool Implementation

The proposed tool was developed in Python version 3.8. It is released under the Apache

License 2.0 open-source software.

The source code, documentation, usage instructions, and installation information

are available in the LSVerifier’s repository1. Also, Zenodo repository 2 provides all

scripts, benchmarks, tools, and instructions to run tests. LSVerifier can be installed using

the tool pip (Python package installer), with the Linux command in Listing 1.

listing 1 The Linux command to install LSVerifier
$ pip3 install lsverifier

The LSVerifier allows control via command-line options informed in Table 3.

These options control the following processes: file listing, function verification, outcome
1 <https://github.com/janislley/LSVerifier>
2 <https://zenodo.org/records/10077388>

https://github.com/janislley/LSVerifier
https://zenodo.org/records/10077388

Chapter 4. The Proposed Verification Methodology 53

display, ESBMC’s options, and pointer checking control. The latter refers to a flag

responsible for disabling pointer checks during the execution of ESBMC.

Table 3 – The LSVerifier’s Configuration Parameters

Parameter Description
-h, –help Shows the available options.
-e, –esbmc-parameter Defines the parameters to be provided to ESBMC.
-l file Provides a file with paths for including header

files from dependencies.
-f, –function Enables the function verification.
-fp, –function-prioritized Enable Prioritized Functions Verification.
-v, –verbose Enables the verbose mode.
-r, –recursive Enables the recursive verification.
-d dir Sets the directory to be verified.
-p Specifies the vulnerability class to be checked.
-fl file Specifies a single file to be verified.
-dp Disables pointer verification.

LSVerifier methodically verifies various software vulnerabilities and offers cus-

tomization options through -e and -f for exploring specific properties in C source code.

Although initially designed for integration with ESBMC, LSVerifier can be adapted

for use with other software model checkers by modifying its arguments to align with

different verification parameters.

4.3.2 File Listing

File listing in LSVerifier is achievable in three modes: for a single file using -fl, for all

elements in the current directory, or through a recursive search with the -r option. The

single file method focuses on one specific file, typically examining its main function.

The directory and recursive methods employ the glob module for UNIX-style pathname

expansion, allowing for pattern-based file selection, such as ”∗.c” for C source files.

4.3.3 Function Listing and Prioritization

In addition, file listing can be performed in three ways: a single file, all elements in the

current directory, and a recursive search. The parameter -fl must be used to verify a

Chapter 4. The Proposed Verification Methodology 54

single file, informing which element will be handled. This way, it is possible to check all

functions of that file or just the main one, the latter being the usual operation mode for

most model checkers.

Currently, directory and recursive listing are performed with the option -r, using

the glob module, i.e., the UNIX style path name expansion (FOUNDATION, 2021). It is

employed to find a path name with a specific pattern following the Unix shell’s rules.

So, for instance, to list all source files written in C, the pattern “∗.c” is used.

4.3.4 Exporting results

After verifying each function in the target files, LSVerifier generates a verification report

bearing the corresponding verification outcome. It is encapsulated into a spreadsheet of

type comma-separated values (CSV), which allows easy handling and use.

This concise report is employed to analyze an error, understand its root, and

correct either the initial specification or the input software. The following items are

present in every resulting spreadsheet report written by LSVerifier:

• filename;

• verification status (e.g., failed);

• function name in which the violation was found;

• line number in which the function was called;

• violation type (e.g., NULL Pointer).

If a user wants to check specific results, a companion log file is also provided,

which gathers all outputs obtained during an execution.

4.4 An Illustrative Examples of Using LSVerifier
As an illustrative example, this section describes using LSVerifier in a real verification

process executed for PuTTY (PUTTY, 1999), a popular network file transfer application.

Chapter 4. The Proposed Verification Methodology 55

To check a software piece with several files, as with PuTTY, we have to run it in the

directory where its source code is located.

In C language programming, developers often employ header files that contain

declarations of constants, macros, and functions. Compilers typically search for these

resources in default directories and folders specified by the compilation command. In

our case, their paths must be manually listed in a text file, typically named dep.txt, which

is then passed to LSVerifier during its execution using the parameter -l so that it can

map them (e.g., third-party libraries). Listing 2 illustrates an example of such a file for

PuTTY, where each path is included, one per line.

listing 2 The header paths in file (dep.txt)
/usr/include/gtk-3.0/
/usr/include/glib-2.0/
/usr/include/pango-1.0/
/usr/include/cairo/
/usr/include/gdk-pixbuf-2.0/
/usr/include/atk-1.0/

...

After listing the associated dependencies, we can run LSVerifier using the pa-

rameters described in Section 4.3.1. The example in Listing 3 illustrates a verification

process for an entire project, running LSVerifier with arguments configured according

to our previous explanation, which was used for PuTTY.

listing 3 A command that allows the LSVerifier’s function-by-function verification for
an entire project

$ lsverifier -v -r -f -l dep.txt

Figure 7 shows a counterexample for a division-by-zero, which informs file

name, verification status, function name, code-line number, and the type of software

security vulnerability found. This information is in a report file and saved in a directory

“/output”.

During its execution, LSVerifier checks the properties mentioned in the associated

command line, whose progress is informed via logs in the same console. Figure 8

contains the output of LSVerifier for Putty, while Figure 9 illustrates the verification

report (.csv) generated for the same analysis procedure.

Chapter 4. The Proposed Verification Methodology 56

Figure 7 – Example of counterexample created by LSVerifier.

Figure 8 – The LSVerifier’s output during a verification procedure for PuTTY.

There are other options for verification. Moreover, LSVerifier can verify specific

“.c” files as illustrated below. With this command, it will check all functions passed as

an input argument, as described in Listing 4.

listing 4 A command that allows the LSVerifier’s verify specific .c file
$ lsverifier -v -r -f -fl main.c

Chapter 4. The Proposed Verification Methodology 57

Figure 9 – The verification report generated by LSVerifier for PuTTY.

In addition, the tool can verify specific properties, as described in Listing 5.

listing 5 A command that allows the LSVerifier’s verify specific properties
$ lsverifier -v -r -f -p memory-leak-check,overflow-check,

deadlock-check,data-races-check

4.5 Summary
This section presents a comprehensive overview of the proposed methodology for

verifying security vulnerabilities in large software systems, focusing on the architecture

and functionalities of the LSVerifier tool implementation. It highlights the challenges and

strategies for managing the complexities inherent in large-scale open-source software

systems, which often consist of extensive file and folder structures, necessitating a

meticulous verification process.

The methodology is built upon Bounded Model Checking (BMC) and incor-

porates a prioritized search mechanism to systematically evaluate the memory safety

issues in C programs, including their dependencies on third-party libraries. This ap-

proach is designed to balance the verification effort against its effectiveness, ensuring a

thorough examination of potential security vulnerabilities.

Chapter 4. The Proposed Verification Methodology 58

LSVerifier, the tool developed to implement this methodology, supports a com-

prehensive range of software vulnerabilities aligned with MITRE’s "Top 25" Common

Weakness Enumeration (CWE) list. Its capabilities extend to detecting various issues

such as out-of-bounds array access, illegal pointer dereferences, arithmetic overflows,

and dynamic memory allocation problems, among others. The tool prioritizes function

verification, allowing for targeted analysis of code sections more likely to harbor critical

vulnerabilities.

The tool’s implementation, described in Python, leverages the ESBMC model

checker for its underlying verification engine, supporting all aspects of the C11 standard.

LSVerifier operates with flexibility, allowing users to specify a range of command-line

options to tailor the verification process to their specific needs, including file listing,

function verification, outcome display, and the selection of specific vulnerabilities for

checking.

An illustrative example demonstrates the application of LSVerifier in verifying

the PuTTY software, showcasing the tool’s ability to handle real-world software sys-

tems. The verification process involves listing the necessary dependencies, executing

the tool with appropriate configurations, and analyzing the generated counterexample

report for identified potential vulnerabilities. The detailed architecture and functional-

ities of LSVerifier, combined with a practical example of its application, illustrate the

effectiveness of the proposed methodology in addressing the challenges of verifying

security vulnerabilities in large-scale software systems. The tool’s design reflects a

comprehensive approach to vulnerability detection, prioritization, and reporting, mak-

ing it a valuable resource for developers and security analysts working with complex

open-source software projects.

59

5

EXPERIMENTAL EVALUATION

I n this section, we evaluate our approach to verifying large software systems,

specifically focusing on open-source projects in the C language. We first outline

our chosen setup, followed by a definition of our experimental goals. We also

provide resources and guidance on reproducing our experiments, encompassing scripts,

benchmarks, tools, and instructions. Subsequently, we discuss our results, highlighting

identified vulnerabilities, resource allocation, and the acknowledgment and rectification

of issues. Lastly, we address potential threats to the validity of our experiments.

5.1 Experimental Setup
All experiments described in this work, using LSVerifier, were performed on a personal

computer with an Intel(R) Core(R) i7 CPU 9750H processor and the Ubuntu 20.04

operating system. Moreover, it ran under a clock of 2.60 GHz and used 32 GB of random

access memory (RAM).

All execution times presented here are CPU times, i.e., only the elapsed periods

spent in the allocated CPUs, measured with the Linux tool time (PAGE, 2023). LSVerifier

used this procedure to compute the total time consumed when verifying software

vulnerabilities. Additionally, an approach was devised to assess the peak memory

allocation during verification processes. It was achieved using the module tracemalloc

(DEBUGGING; PROFILING, 2023), which traces the allocated memory blocks and

allows efficient and real-time tracking of memory consumption.

Chapter 5. Experimental Evaluation 60

ESBMC v6.7.0 was employed for the verification of C programs. It focused on

code robustness regarding accurate pointer utilization, appropriate access to contiguous

memory blocks, detection of values leading to variable overflow, and identification of

division by zero.

To evaluate our verification methodology, focusing on large software systems,

we selected twelve prominent open-source programs written in the C programming

language: VLC (VLC, 2001), VIM (VIM, 1991), Tmux (TMUX, 2007), RUFUS (RUFUS,

2011), OpenSSH (OPENSSH, 1999), CMake (CMAKE, 2000), Netdata (NETDATA, 2006),

Wireshark (WIRESHARK, 1998), OpenSSL (OPENSSL, 1998), PuTTY (PUTTY, 1999),

SQLite (SQLITE, 2000), and Redis (REDIS, 2009). They are distributed under open-

source licenses, such as the GNU General Public License (GPL), the Apache License,

and the Massachusetts Institute of Technology (MIT) License, and more details for each

can be found in the respective code repositories.

The selected programs for this study were chosen based on three key aspects:

their substantial code size, significant importance to the open-source community, and

extensive use of linked third-party libraries. Table 4 shows each open-source project

and its respective software version used during experimental evaluation.

Software Version
VLC 3.0.18
VIM 9.0.1672
TMUX 3.3a
RUFUS 4.1
OpenSSH 9.3
CMake 3.27.0-rc4
Netdata 1.40.1
Wireshark 4.0.6
OpenSSL 3.1.1
Putty 0.78
SQLite 3.42.0
Redis 7.0.11

Table 4 – Open-source software projects verified by LSVerifier.

Chapter 5. Experimental Evaluation 61

5.2 Experimental Objectives
We have employed LSVerifier to verify the software modules listed in Table 5, where all

C files were individually analyzed by checking each function. We have also used flags

for log plotting and provision of the ESBMC’s configuration.

EG1 (Automation and Scalability) Does our approach yield results in a rea-

sonable timeframe and scale efficiently to handle large software systems

without requiring manual intervention?

EG2 (Practical Use and Effectiveness) Is our methodology capable of identifying

common issues that are corroborated by the developers of the respective

software modules?

EG1 evaluates LSVerifier’s capacity to guide its underlying checker, ESBMC, in

adapting input code for efficient verification via automated reasoning. EG2, conversely,

focuses on LSVerifier’s application in practical software scenarios and its effectiveness

in uncovering complex issues that might otherwise remain undetected.

5.3 Threats to the Validity of Experiments
In this section, we categorize the potential threats to the validity of our experiments into

three distinct areas. This structured approach allows for a clear and focused examination

of each category, enhancing the clarity and depth of our analysis.

5.3.1 Benchmark selection

Our methodology’s assessment utilized a set of open-source C software project bench-

marks to gauge effectiveness and efficiency. However, the scope of this dataset is limited

to the context of this study, and its results may not extend to other benchmarks. Select-

ing representative benchmarks to understand a scenario’s strengths and weaknesses is

crucial. Additionally, it is necessary to recognize the limitations of our results and the

Chapter 5. Experimental Evaluation 62

possibility of variation in different contexts.

5.3.2 Performance and correctness

Our strategy assumes that evaluating each program function can lead to accurate

verification. However, the correctness of our approach might be compromised if the

verification assumptions do not fully capture the program’s behavior, particularly in

scenarios involving complex parallel or concurrent programming. Additionally, the

performance could be affected when dealing with benchmarks influenced by these

factors, as the verification might need to account for all possible function interleavings,

which can be both computationally intensive and time-consuming.

5.3.3 Counterexample validation

Validating counterexamples generated by LSVerifier is critical for verifying program

correctness. However, this validation can be challenging, particularly with complex

software or large projects. Therefore, we have undertaken rigorous testing and analysis

to ensure the accuracy and reliability of these counterexamples. Additionally, it is

important to conduct broader evaluations encompassing various scenarios and error

conditions to uncover any unforeseen issues with our tool.

5.4 Experimental Results
Our study used LSVerifier to verify the software modules detailed in Table 5. This

process involved individual analysis of all C files, focusing on examining each function.

Additionally, we utilized various flags for log plotting and configuring ESBMC’s settings

during the verification process.

The verification process using LSVerifier revealed numerous property viola-

tions, predominantly concerning ’dereference failure’ as outlined in Section 2.4. Table 5

presents this data, including module names and versions, the count of violated proper-

Chapter 5. Experimental Evaluation 63

ties, the quantity of ".c" files, the number of external ".h" inclusions, source-code lines,

verified functions, execution times, and peak memory usage. Key vulnerabilities identi-

fied in the analysis include pointer dereference, division by zero, dynamic object, and

array-bounds violations, all crucial according to the Common Weakness Enumeration

(CWE) standards.

Table 5 – Software vulnerabilities detected by LSVerifier, correlating the number of code-
property violations with the amount of C code files, external libraries, lines of
code, functions verified, maximum necessary memory, and verification time

Software
Project

Software
Version

Property
Violated

Files External
Includes

Source-code
Lines

Functions
Verified

Verification
Time

Memory
Usage

VLC 3.0.18 72 1171 289 421840 13709 1033.79s 20.09MB
VIM 9.0.1672 110 188 95 366775 9611 554.56s 39.83MB
TMUX 3.3a 1788 179 445 61004 2168 52218.45s 43.12MB
RUFUS 4.1 576 144 108 56278 1615 283.95s 6.06MB
OpenSSH 9.3 338 290 63 109791 3183 873.27s 42.58MB
Cmake 3.27.0-rc4 552 1516 1030 324760 11279 934.21s 37.07MB
Netdata 1.40.1 1318 307 160 312530 7352 51471.27s 129.09MB
Wireshark 4.0.6 2141 2330 77 4177163 121567 59952.39s 391.44MB
OpenSSL 3.1.1 3140 1575 616 491632 17168 6046.63s 53.34MB
PuTTY 0.78 2472 403 153 127282 5310 66210.32s 58.54MB
SQLite 3.42.0 3265 340 609 258382 8911 2493.75s 33.22MB
Redis 7.0.11 187 418 556 170673 8211 727.76s 46.57MB

LSVerifier was able to detect potential vulnerabilities in every tested software

project. The lowest number of violations occurred with VLC, which is not necessarily

surprising, considering its development time (20 years) and its importance as one of

the currently-available leading open-source media players. Although VLC has 13709

functions split throughout 1171 files, with 421840 lines of code, its verification time is

relatively short (above 17 minutes) compared with others available in the same table.

For instance, Tmux, which comprises 2168 functions distributed across 179 files, totaling

61004 lines of code, required approximately 14.5 hours for verification.

When applied to other large open-source software such as SQLite, OpenSSL,

Putty, and Wireshark, all with more than 120000 code lines, LSVerifier identified many

property violations: 3265, 3140, 2472, and 2141, respectively, as shown in Table 5. These

high numbers of property violations are primarily a consequence of using multiple

third-party library dependencies to whose implementations LSVerifier does not have

access for verification. It leads to numerous header file inclusion (i.e., ".h" files) in

source code: 609 for SQLite, 616 for OpenSSL, 153 for PuTTy, and 77 for Wireshark. Such

behavior leads to problems not considered in unit tests or tackled during testing rounds.

Chapter 5. Experimental Evaluation 64

The highest peak memory usage was observed with Wireshark, which presents a

complex code organization and the highest number of functions, files, and lines of code.

This project presents 77 header-file inclusions, as already mentioned, and undertakes

the complex task of network traffic analysis. When used as a tool, running on Linux,

Wireshark usually requires more than 500 MB of RAM, which already hints at its high

resource demands. In addition, Wireshark imposes no limit on the number of packets

it can handle, which creates a rich state space to be explored by LSVerifier. Netdata is

another project that requires high memory usage for analysis, which performs media

decoding and presentation. This project is organized in 312530 lines of code and includes

160 different external header files.

In terms of verification duration, PuTTY required the longest time, which was

unexpected given its relatively small codebase, consisting of 127282 lines of code, 5310

functions, and 153 includes. Nevertheless, PuTTY executes complex operations involv-

ing encrypted communications and various protocols. Wireshark accounted for the

second-longest verification time despite having a significantly larger code volume. This

suggests that the analysis complexity is not solely dependent on the size of a program or

the number of its header-file inclusions but rather on the intricacy of its programming

and structures, which its dependencies may also influence.

LSVerifier was able to check programs with sizes ranging from 144 files, 1615

functions, and 56268 code lines, which is the case of RUFUS, to 2330 files, 121567 func-

tions, and 4177163 code lines, which is the case of Wireshark. The obtained figures

clearly show scalability capacity. Furthermore, the peak memory usage ranged from

6.06 to 391.44 MB of RAM, which is an acceptable amount given the typical hardware

capabilities of modern personal computers. This indicates that LSVerifier can maintain

low memory requirements, even with large software. It also significantly differs from

other recent verification tools based on model checking, focusing primarily on execution

speed and CPU usage (MANN et al., 2021; LANGE et al., 2020; CHENOY et al., 2021).

Putty required 18 hours to be verified, representing the longest verification

procedure. In other words, software modules with hundreds of thousands or even

millions of lines of code can be evaluated in less than one day in a completely automated

Chapter 5. Experimental Evaluation 65

manner, which one can even trigger after a code-delivery meeting for nightly execution.

Consequently, the above aspects reinforce the scalability properties of LSVerifier and

integrally answer EG1: the proposed approach produces results in a reasonable period,

and it can be applied to small and very large software systems indistinctly.

Although Table 5 shows the total number of violations, evaluating the preva-

lence of distinct vulnerability classes is also interesting. Table 6 presents the same

verification results in Table 5 but now categorized into eleven different types of property

vulnerabilities detected by LSVerifier, following the ESBMC’s nomenclature:

• Invalid Pointer (IP), which corresponds to null pointer dereferences, as described

in Definition 3;

• Array Bounds Violated (ABV), Array Lower Bound (ALB), and Array Upper

Bound (AUB), which are specific cases where an array is accessed beyond its

allocated boundaries, as detailed in Definition 8, and are intrinsically linked to

buffer overflows, where data overruns the set limits of a buffer, as described in

Definition 1;

• Same Object Violation (SOV), which happens when pointers are compared in

violation of the "same object" rule, i.e., C language allows the comparison of

pointers using relational operators but imposes restrictions on their use when

operands are pointers referring to the same address, as described in Definition 9;

• Invalid Pointer Freed (IPF), which occurs when an uninitialized or invalid pointer

is released using the function free, as described in Definition 9, and is similar but

not the same as IP, focusing on memory deallocation;

• Invalidated Dynamic Object (IDO), which corresponds to objects that become

invalidated, often as a result of deallocation, can arise from various sources, mainly

pointer problems, and is further elaborated in Definitions 3, 5 e 6;

• Null Pointer (NP), which involves the inappropriate use of null pointers, typically

by dereferencing them, as described in Definition 5, and is specifically about null

pointers (IP and IPF may include other types of invalid pointers);

Chapter 5. Experimental Evaluation 66

• Division by Zero (DZ), which refers to cases where a number is divided by zero

and causes undefined behavior, as described in Definition 7, and is also a specific

type of arithmetic operation that can lead to undefined behavior, as described in

Definition 2;

• Assertion Failure (AF), which happens when a condition passed to the function

assert is not met, indicating an error or unexpected behavior, as described in

Definition 10;

• Access to Object Out of Bounds (AOOB), which is a more general term that

could refer to accessing any object (e.g., strings and linked lists), not just arrays,

beyond their allocated boundaries, is primarily described in Definition 4, and is

also associated with several other CWEs;

Table 6 – Software property violations found, using the chosen dataset, with LSVerifier
and split into the 11 categories recognized by ESBMC

.
Software Source Includes IP ABV ALB AUB SOV IPF IDO NP DZ AF AOOB
VLC 421840 9395 57 2 0 0 0 2 0 1 0 10 0
VIM 366775 443 100 3 1 2 0 2 0 2 0 0 0
TMUX 61004 1034 1725 0 12 9 0 21 0 20 0 1 0
RUFUS 56278 1453 513 0 0 4 4 6 0 20 29 0 0
OpenSSH 109791 3919 311 3 4 0 0 4 1 10 5 0 0
Cmake 324760 7710 481 28 5 2 18 7 0 6 2 3 0
Netdata 312530 1516 1045 1 12 5 3 5 0 212 35 0 0
Wireshark 4177163 19513 1940 20 12 17 35 2 0 77 5 27 6
OpenSSL 491632 9892 2753 77 98 22 10 7 2 131 11 29 0
Putty 127282 2041 1996 8 25 26 4 6 0 56 14 337 0
SQLite 258382 1224 2254 36 15 37 16 9 0 540 29 326 3
Redis 170673 2555 150 3 9 3 11 3 0 7 0 0 1

Some identified vulnerabilities were related to conditions that usually lead to

memory corruption or crashes, e.g., accessing invalid pointers or out-of-bounds arrays.

Although these definitions seem to present new and specific conditions, all of them

can be traced back to the basic vulnerabilities in Section 2 as explicitly shown. The

comprehensive list of CWEs supported by LSVerifier can be found in Table 7.

Table 7 maps the Common Weakness Enumeration (CWE) identifiers, as assigned

by MITRE, to the types of vulnerabilities detectable by LSVerifier. This table showcases

LSVerifier’s comprehensive verification capabilities, especially considering that some

vulnerability categories encompass numerous CWE identifiers. These vulnerabilities

Chapter 5. Experimental Evaluation 67

underscore the importance of thorough software testing and validation conducted by

LSVerifier. Employing tools for static analysis, dynamic analysis, and formal verification

methods is essential in the early detection and mitigation of these risks, contributing

significantly to software applications’ robustness, reliability, and security.

Table 7 – The vulnerabilities identified by LSVerifier along with the corresponding CWE
numbers for each property violation detected

Vulnerability type CWE numbers
Invalid pointer (IP) CWE-416, CWE-476, CWE-690,

CWE-822, CWE-824, CWE-908
Array Bounds Violated (ABV),
Array Lower Bound (ALB), Ar-
ray Upper Bound (AUB)

CWE-20, CWE-119, CWE-120,
CWE-121, CWE-125, CWE-129,
CWE-131, CWE-193, CWE-628,
CWE-676, CWE-754, CWE-755,
CWE-787, CWE-788

Same Object Violation (SOV) CWE-125, CWE-170, CWE-193,
CWE-466, CWE-469, CWE-682,
CWE-787

Invalid Pointer Freed CWE-415, CWE-416, CWE-459,
CWE-590, CWE-761, CWE-825

Invalidated Dynamic Object
(IDO)

CWE-415, CWE-416, CWE-476,
CWE-664, CWE-789

NULL pointer dereference CWE-391, CWE-476
Division by zero CWE-369
Assertion violation CWE-190, CWE-191, CWE-389,

CWE-478, CWE-571, CWE-569,
CWE-617, CWE-670, CWE-680,
CWE-681, CWE-682, CWE-685,
CWE-754

Access to Object Out of Bounds
(AOOB)

CWE-119, CWE-125, CWE-170,
CWE-193, CWE-466, CWE-682,
CWE-787, CWE-823

When analyzing Table 6, we can observe that the most prevalent vulnerabilities

were the ones related to violations involving invalid pointers, i.e., IP and NP. Indeed, this

sheds some light on memory corruption as a critical issue in C source code. Our results

showed that overstepping bounds caused most identified pointer safety violations. In

such scenarios, pointers were initialized with memory blocks allocated dynamically,

and programming mistakes led to out-of-bounds errors. The highest number of pointer

violations (IP and NP) was found in OpenSSL, which provides implementations for

the protocols’ secure sockets layer (SSL) and transport layer security (TSL), with basic

Chapter 5. Experimental Evaluation 68

encryption capacity. Indeed, due to data-block encryption, there is a lot of memory

allocation and pointer manipulation (e.g., using function pointers), which explains the

behavior and the associated results.

OpenSSL presented the highest number of bounds violations, i.e., ABV, ALB,

and AUB (197 occurrences). Again, it is also closely related to manipulating memory

buffers, which are processed for subsequent use (BAGUELIN et al., 2022). Mishandling

these buffers can lead to out-of-bounds errors when data is read or written beyond the

allocated memory.

LSVerifier found 35 SOV and 6 AOOB occurrences in Wireshark. The latter deals

with analyzing network packets, where pointers are extensively used to verify data fields

in a unique comparison step, often involving strings and other objects. Consequently, it

is expected that LSVerifier would detect operations comparing pointers that refer to the

same address and access to objects.

Most IPF events were found in Tmux, a terminal multiplexer developed by

various developers. Besides, it relies on external libraries while interacting with an

operating system’s APIs. During these operations, the resulting tasks undoubtedly

require new memory blocks, which must later be freed. These complex routines can

explain the obtained results.

SQLite is an engine for accessing structured query language (SQL) databases

widely used in embedded device projects, which presented 540 errors in the NP cate-

gory. Indeed, SQLite often deals with operation interleaving, corrupted databases, and

statements, which may result in NP occurrences (SECURITY, 2022; SUCKEVIC, 2023).

In other words, its routine tasks are closely related to this kind of fault, which should

inherently lead to more careful coding and testing processes. Moreover, this aspect is

challenging in the C language and requires expertise.

Netdata presented 35 DZ errors. It is a project designed to collect server metrics,

assisting system administrators to take proactive measures. Due to its capability to

retrieve statistics from different sources along with their associated data (e.g., times-

tamps), with subsequent computation involving these via external plugins, there is a

high risk related to this kind of fault (FOUNTOULAKIS, 2020).

Chapter 5. Experimental Evaluation 69

When analyzed by LSVerifier, PuTTY presented 337 AF occurrences. It supports

network protocols and manages user inputs by applying concurrency through multiple

threads. Consequently, issues related to data validation using assertions, which are

usual in this task, can result in assertion failures.

It is worth noticing that some out-of-bounds errors occurred in scenarios where

functions wrongly read data from heap-allocated memory. It can corrupt memory or

induce unpredictable behavior. For instance, it is possible to exploit a bounds violation

to write arbitrary code into specific positions of memory and execute that same code,

which may result in losing control over the specific process, compromising the whole

software module. OpenSSL, SQLite, and Putty presented the highest hits in the out-

of-bounds category, with 197, 88, and 59 failures, respectively. These projects have a

significant number of code lines that have been maintained and modified for a long

time, which can explain their failures.

As a general comment, developers must be aware of potential memory man-

agement issues so they can take measures to prevent them, for instance, implementing

defensive programming practices such as boundary checking on memory access op-

erations. By prioritizing secure memory management practices, developers can help

prevent serious software vulnerabilities in their projects.

Finally, we were able to find DZ vulnerabilities in VLC (LHOMME, 2022), RUFUS

(OLIVEIRA, 2022f; OLIVEIRA, 2022j; OLIVEIRA, 2022d), OpenSSH (OLIVEIRA, 2022b;

OLIVEIRA, 2022a), and Netdata (OLIVEIRA, 2022c; OLIVEIRA, 2022e). This kind of

issue usually occurs when a parameter within a division operation determines the size

of the variable to be created before executing an operation. Often, there is no check to

assure that the divisor is strictly positive, resulting in an integer overflow bug and a

division by zero. The highest threat from this vulnerability regards the system’s integrity.

Moreover, an attacker can easily disrupt its operability by sending an invalid interval

value.

By leveraging LSVerifier’s comprehensive detection capabilities, we can create a

more robust and resilient software vulnerability management and prevention tool. The

enhancement in security achieved through this approach mitigates risks and promotes

Chapter 5. Experimental Evaluation 70

a more reliable, efficient, and secure software ecosystem.

In summary, LSVerifier can find usual problems in real software modules, which

are widely known and understood by the development community. This aspect also

leads to a prompt explanation and faster identification and correction. For instance, a de-

veloper can quickly understand an IP or NP occurrence, which is also mentioned in the

LSVerifier’s final report (spreadsheet). Consequently, this capability begins answering

EG2 because usual and easily understandable problems are found.

However, a deeper discussion regarding problem confirmation is still missing,

which will be tackled in the next section.

5.5 Violated Properties Analysis
The full software verification process includes identifying vulnerabilities, confirming

them, analyzing code, and implementing repairs, such as patch applications or merge

requests. However, this comprehensive approach was not feasible for all programs

listed in Section 5.1 due to constraints like infrastructure availability, time requirements,

or developer availability. Nevertheless, we reported some discovered issues to VLC,

VIM, RUFUS, OpenSSH, CMake, Netdata, Wireshark, OpenSSL, Putty, and Redis code

repositories. These reports, submitted through specialized tools or email, confirmed

vulnerabilities and subsequent application of remedial patches.

In this work, the issues reported were based on counterexample traces from

LSVerifier and discussions with developers and maintainers, who either confirmed

or labeled some as false positives. Table 8 details key property violations and bugs

reported through GitHub or email. Despite the seemingly low number of issues in

repositories, each requires significant time for registration, discussion, and resolution,

often spanning months. Thus, we focused on reporting only the most critical ones, a

decision supported by our prioritization strategy.

In our analysis of RUFUS, we identified property violations such as array

bounds, division by zero, and invalid pointers. We logged three specific issues with

the developers attributed to imported libraries. These issues are detailed in references

Chapter 5. Experimental Evaluation 71

Table 8 – The reported issues involved code property violations and were submitted to
the repositories of the respective software projects. These reports were made
for the developers to confirm the associated software vulnerabilities

Software Issues opened Issues confirmed Issues fixed
VLC 1 (LHOMME, 2022) 1 1
VIM 1 (OLIVEIRA, 2022k) 0 0
TMUX 1 (OLIVEIRA, 2023a) 0 0
RUFUS 2 (OLIVEIRA, 2022j; OLIVEIRA, 2022d) 2 1
OpenSSH 2 (OLIVEIRA, 2022b; OLIVEIRA, 2022a) 0 0
CMake 1 (OLIVEIRA, 2022g) 1 1
Netdata 2 (OLIVEIRA, 2022c; OLIVEIRA, 2022e) 0 0
Wireshark 1 (OLIVEIRA, 2022i) 1 1
OpenSSL 1 (OLIVEIRA, 2022h) 1 0
Putty 1 (E-mail) 0 0
SQLite 2 (OLIVEIRA, 2023b; OLIVEIRA, 2023c) 1 0
Redis 2 (OLIVEIRA, 2023e; OLIVEIRA, 2023d) 1 0

(OLIVEIRA, 2022f; OLIVEIRA, 2022j; OLIVEIRA, 2022d). Each issue highlights specific

code errors and their implications, offering insight into the root causes and potential

fixes for the identified vulnerabilities in RUFUS’s software structure.

Thus far, we have got one bug fix for tiny− regex− c to handle an out-of-bounds

violation (OLIVEIRA, 2022j) related to CWE-787. In Listing 6, which shows real log

information, one can notice that this problem happened in file re.c, one of the two that

this dependence presents (the other is re.h). The value retrieved from the attribute it type

of the object pattern can go beyond the maximum length of the array types.

listing 6 Bounds violation in tiny-regex-c used by Rufus
Building error trace

Counterexample:

State 5 file re.c line 269
In function re_print thread 0

Violated property:
file re.c line 269 function re_print
array bounds violated:
array ‘types’ upper bound
(signed long int)(pattern +
(signed long int)i)->type < 17

VERIFICATION FAILED

To avoid such a condition, a specific check was added, shown in the code excerpt

in Listing 7. It assures that the index passed to types is below its limit, i.e., NOT_-

WHITESPACE, as declared in an enumeration. As one can see, this is a simple measure

Chapter 5. Experimental Evaluation 72

that should always be adopted as common practice. However, it also reveals the careless

coding performed by many developers.

listing 7 Corrected C program for tiny-regex-c
...
if (pattern[i].type <= NOT_WHITESPACE)

printf("type: %s",
types[pattern[i].type]);

else
printf("invalid type: %d",

pattern[i].type);
...

The second issue is a division by zero related to CWE-369. It was found in the

library ext2fs and discussed with its developers (OLIVEIRA, 2022d). They acknowledged

that if a hashmap with size 0 is created, it could cause a program crash. However, this is

considered a bug at the application level based on the assumption that such an operation

should not be performed. Its identification is shown in Listing 8.

listing 8 Divison by zero in ext2fs library used by RUFUS
Building error trace

Counterexample:

State 4 file hashmap.c line 51
In function ext2fs_hashmap_add thread 0

Violated property:
file hashmap.c line 51
in function ext2fs_hashmap_add
division by zero
h->size != 0

VERIFICATION FAILED

This argument holds from a purely functional standpoint. However, from a

security perspective, any unexpected behavior, including crashes, should be considered

a potential vulnerability. Treating such conditions as potential threats is necessary until

they are comprehensively analyzed and discarded or properly registered. A check

should be implemented to confirm that h→size is not 0 before the modulo operation, as

shown in the code excerpt in Listing 9.

Again, this simple correction should be a coding rule and could prevent serious

problems. In summary, we advocate that even if some vulnerability is not likely to

Chapter 5. Experimental Evaluation 73

listing 9 Corrected C program for ext2fs-c
...

int ext2fs_hashmap_add(
struct ext2fs_hashmap *h,
void *data, const void *key,
size_t key_len)

{
// Check if h->size is zero
if (h->size == 0) {

// Handle the error
}

uint32_t hash =
h->hash(key, key_len) % h->size;

...

happen due to a given program’s structure, it must be handled. This way, even intended

bad coding can be reduced, aiming at exploiting known vulnerabilities can be mitigated.

When checking the violated properties for VLC (LHOMME, 2022), some memory-

safety vulnerabilities found during our experiments were reported via email. After their

analyses, double-free errors were confirmed, a type of vulnerability related to CWE-415.

This error occurs when software modules free a memory allocation twice, and doing so

can lead to the modification of unexpected memory blocks, even resulting in a system

crash or potentially allowing an attacker to execute arbitrary code. Specifically, this fix

removed a deprecated Linux framebuffer (Kernel development community, 2023) plu-

gin. Indeed, the Linux fbdev (KNORR; DANZER; UYTTERHOEVEN, 2023) subsystem

has been deprecated for over a decade as better options are currently available.

We have also reported another issue caused by a third-party library in OpenSSL

(OLIVEIRA, 2022h). The developers confirmed that an invalid pointer is dereferenced,

which may likely cause a crash in the caller. Still, they do not consider this a vulnerability,

as many OpenSSL APIs crash if a null pointer is passed to them. Here, we have a bad

practice. Although a problem was found and confirmed, developers often state that a

particular condition may never happen as a specific function or method is never invoked

how it should be to provoke it. Suppose an attacker knows that and manipulates

parameters or even codes to create that unfeasible scenario. In that case, the problem

will happen and may even cause severe loss. Consequently, we also need to encourage

behavior change, where any problem is handled properly and treated as a priority.

Chapter 5. Experimental Evaluation 74

Anyway, such a condition should be monitored as it can be a source for an attack

resulting in a system crash.

Regarding CMake, most of its problems are related to third-party libraries. Specif-

ically, our analysis of its property violations revealed an important issue: a confirmed

dereference failure caused by an invalid pointer. This error was fixed in the Cmake

repository in function cm_utf8_decode_character(...) and was caused by an empty in-

put range local variable resulting in an invalid pointer (OLIVEIRA, 2022g), being related

to CWE-824. Additionally, CMake employs third-party libraries such as cmbzip2 and

cmzstd, each with its upstream software source, and our analysis uncovered issues in

both. Specifically, we identified problems caused by invalid pointers, which lead to

memory corruption and present an opportunity for arbitrary code execution. Further-

more, we could not locate any open-source repositories for cmbzip2 and cmzstd where

we could report these potential vulnerabilities. Here, we highlight another aspect: who

is responsible for a given open-source module? Sometimes, it is difficult to answer such

a question. Alternatively, it could be removed or even treated as a project’s responsibility,

which may generate a fork. It can then be later published and regularly maintained.

LSVerifier identified issues in Wireshark (OLIVEIRA, 2022i) related to array ac-

cess (bounds), invalid pointer, and null pointer, which are associated to CWE-125,

CWE-824, and CWE-476. All these issues were identified in the libraries CMake and

network programming language (NPL), which are project dependencies, where derefer-

ence failures occurred due to out-of-bounds access and NP occurrences. The third-party

library NPL is an ongoing project that has not been prioritized recently. The last signifi-

cant update to this module was approximately nine years ago, with the latest reference

in the commit logs dating back eight years. To maintain the robustness and security of

Wireshark, the development team opted to remove this module.

We have not been able to validate the issues associated with VIM, Netdata, and

OpenSSH. Indeed, some were classified as false positives (OLIVEIRA, 2022k; OLIVEIRA,

2022b; OLIVEIRA, 2022a; OLIVEIRA, 2022e) by developers, and others are still under

discussion (OLIVEIRA, 2022c). However, we must mention that the related problems

exist and suffer from the same problematic practices previously detailed in the OpenSSL

Chapter 5. Experimental Evaluation 75

context.

Another issue involving multiple instances of invalid pointer dereference was

reported for Putty. Numerous memory-related property violations, as detailed in Table

8, were identified. However, since the only communication channel for Putty is email,

we have not received any feedback yet. Consequently, a given weakness may last long

and cause much damage.

In our examination of TMUX, we filed an issue (OLIVEIRA, 2023a) addressing

two distinct violations: null pointer dereference (CWE-476) and array out-of-bounds

(CWE-125). The null pointer dereference was observed in the function, showcasing a crit-

ical vulnerability in the software, cmd_refresh_client_update_subscription(...), where

a null pointer returned by strchr is dereferenced without a prior check. The array

out-of-bounds issue was identified in the function cmd_show_prompt_history_exec(...),

where an index variable type is used to access arrays without validating that it lies

within the permissible range. Both issues can lead to undefined behavior and potential

vulnerabilities within the application.

The analysis conducted for Redis revealed multiple violations (OLIVEIRA, 2023e;

OLIVEIRA, 2023d). They included array bound violated (CWE-787), invalid pointer

dereference (CWE-476), null pointer dereference (CWE-476), and access to object out-

of-bounds (CWE-119). Some were confirmed as false positives (OLIVEIRA, 2023e).

Although, for the current code structure, it is indeed true, other calls to the respective

function may lead to the violation found here. Again, a simple check could avoid any

future problems, even if they are intentional. Moreover, if an attacker tries it directly

into the source code, he should also remove such a check, which would attract the

attention of the respective code maintainers.

Anyway, a null pointer was identified in function completionCallback(ls →

buf,&lc) without confirming the non-nullity of ls and ls → buf (OLIVEIRA, 2023d).

This oversight could lead to the dereferencing of a null pointer. It does pose a risk of

undefined behavior if this function is called with a null pointer. Additionally, it should

be noted that null checks may be adequate for ensuring pointer validity, as a pointer

might seem legitimate but can be exploited to reference an invalid memory address. This

Chapter 5. Experimental Evaluation 76

nuance highlights the importance of comprehensive pointer validation before usage.

The developers dismissed this potential issue by claiming that a function or method

will never be called in a certain way that triggers a problem despite confirmation of the

issue. Consequently, this is a bad practice.

Some property violations were reported to the maintainers of SQLite (OLIVEIRA,

2023b; OLIVEIRA, 2023c). These issues are related to division by zero (CWE-369),

array out-of-bound (CWE-787), same object violation (CWE-469), and null pointer

dereference (CWE-476). The report from LSVerifier indicates a potential vulnerability

in the internal function with signature vdbePmaWriterInit(..., int nBuf, ...), in the file

vdbesort.c, where a division by zero could occur if nBuf is zero. The latter is used in a

modulo operation, which, when its value is zero, results in an undefined behavior in C,

leading to crashes or other unexpected behaviors. While developers might easily assert

that the function vdbePmaWriterInit() is never invoked with nBuf ≤ 0, it’s imperative

to account for and mitigate such edge cases from a rigorous software engineering

standpoint. This not only ensures code robustness but also preemptively addresses

potential vulnerabilities.

It is worth mentioning that when we informed the respective developers that

these results came from an automated analyzer, they started demonstrating disbelief.

Indeed, the SQLite project’s response to this violation reveals another prevalent be-

havior in the software development community. Developers often dismiss the results

from static analyzers, labeling them as false positives. This perspective stems from the

understanding that static analyzers frequently produce inaccurate results, leading to

unnecessary alarms. The SQLite team’s stance is clear: such reports will be disregarded

without concrete evidence, such as an SQL script or specific code that can reproduce

an issue. This approach, while pragmatic, is risky. Relying solely on tangible evidence

might overlook potential vulnerabilities that haven’t manifested yet but could be ex-

ploited. An over-reliance on a codebase’s historical performance, as the SQLite team

mentioned regarding their source tree’s ability to confuse static analyzers, can lead to

complacency.

It is essential to recognize that while static analyzers might produce false posi-

Chapter 5. Experimental Evaluation 77

tives, they can also pinpoint genuine issues that might be overlooked during manual

code reviews. Developers must strike a balance. While it’s unreasonable to expect teams

to act on every report from a static analyzer, completely ignoring them is not the so-

lution. A more collaborative approach, where the reporter and the development team

work together to validate and address potential issues, can lead to more secure and

robust software. After all, the ultimate goal should be to ensure the software’s integrity

and safeguard it from potential threats, regardless of its origin.

Third-party libraries are the biggest problem, as seen in counterexample logs

and bug report validations. Functions from other libraries that are called in software

modules should always be carefully checked by developers before use, as they can be

dangerous. Moreover, given that C programs often use pointers to access arrays, and

those are usually passed as arguments to functions, such a condition can cause serious

security issues.

Moreover, at this point, we have enough information to tackle our research

goals again. As the respective software developers confirmed the problems found by

LSVerifier, we can now completely answer EG2, confirming its feasibility for practical

use.

The results show that LSVerifier is well-positioned in formal verification via BMC

to check software vulnerabilities in large C-based software systems. This perception

is also corroborated by the answers to our two research goals. Also, the prioritization

algorithm enhances code analysis by function type, streamlining the identification of

critical issues for efficient resolution. This verification tool is crucial because, despite

developers’ assurances that certain conditions are unlikely or impossible within the

normal execution flow, our findings suggest otherwise. Confirmed vulnerabilities in-

dicate that an attacker could feasibly trigger these improbable scenarios under certain

manipulations, such as parameter tampering or code modification. Such an eventuality,

previously dismissed by developers, could lead to significant and severe consequences

if exploited. This reinforces the importance of our methodical approach, highlighting

the need for rigorous security practices even in seemingly unlikely situations.

Indeed, LSVerifier successfully verified extensive software systems within a

Chapter 5. Experimental Evaluation 78

reasonable time while avoiding high memory consumption. Nevertheless, the analysis

performed here shows that further work is needed to reinforce and double-check

vulnerabilities so one can have an upfront confirmation of what is presented. One

alternative is to develop counterexample validators that are useful for developers of

open-source applications. Such elements can help mitigate bad practices by showing

that the refuted problems are not false positives. Without such validators, problem

validation will depend solely on extensive analysis to confirm their existence.

Anyway, the LSVerifier’s results may also be used as a mind-changing tool

regarding software development practices. They show a high amount of existing vul-

nerabilities resulting from both careless coding and wrong behavior and practices, thus

highlighting the need for diligent actions.

5.6 Summary
This section discusses the experimental evaluation of LSVerifier, a tool designed for

verifying security vulnerabilities in large software systems written in C. The experi-

ments were conducted on a personal computer with an Intel(R) Core(R) i7 CPU, running

Ubuntu 20.04, to assess LSVerifier’s performance and effectiveness in identifying com-

mon vulnerabilities within open-source software projects.

The experimental setup involved a comprehensive evaluation of LSVerifier us-

ing twelve prominent open-source programs, including VLC, VIM, Tmux, RUFUS,

OpenSSH, CMake, Netdata, Wireshark, OpenSSL, PuTTY, SQLite, and Redis. These pro-

grams were selected based on their extensive code size, importance to the open-source

community, and the use of linked third-party libraries. The experiments focused on

individual analysis of all C files within these projects, checking each function for vulner-

abilities using LSVerifier with specific flags for log plotting and ESBMC configuration.

The experimental evaluation of LSVerifier was driven by two primary objectives

aimed at understanding its scalability and practical utility in the context of verifying

security vulnerabilities in large software systems. The first goal, EG1, focused on eval-

uating the tool’s ability to automate the verification process for extensive codebases

Chapter 5. Experimental Evaluation 79

without the need for manual oversight, aiming to produce accurate results in a timely

manner. This aspect was crucial in determining LSVerifier’s efficiency and its potential

to scale across different sizes of software projects. The second objective, EG2, sought to

assess the tool’s effectiveness in identifying common vulnerabilities that are recognized

and acknowledged by the developers of the tested software modules. This goal aimed

to gauge the practical applicability of LSVerifier in real-world scenarios, measuring

its success in pinpointing issues that align with developers’ experiences and insights,

thereby validating its utility and effectiveness in enhancing software security.

The experimental validation of LSVerifier’s effectiveness in identifying security

vulnerabilities within large software systems faces potential challenges that could affect

the study’s validity, divided into three critical areas. First, the selection of benchmarks,

involving open-source software projects, is pivotal to the evaluation process. Although

the chosen projects represent complex systems widely utilized in the open-source realm,

the results may not be universally applicable across all types of software, highlighting

the need for a diverse range of benchmarks to comprehensively assess a verification

tool’s capability. Secondly, the performance and correctness of LSVerifier are under

scrutiny, as the premise that function-by-function evaluation yields precise verification

may not hold true in scenarios involving complex concurrency or parallelism. This could

impact LSVerifier’s efficiency and the accuracy of its verification process, especially

considering the computational intensity required to examine all possible interactions

between functions. Lastly, the process of counterexample validation presents its own set

of difficulties. The complexity inherent in large software projects makes validating the

identified vulnerabilities a formidable task, requiring meticulous testing and analysis to

confirm the accuracy and reliability of the verification outcomes. Together, these factors

outline the significant challenges in ensuring the experiments’ validity and underscore

the importance of addressing these threats to solidify the findings’ credibility.

The application of LSVerifier to twelve prominent open-source C projects un-

earthed a wide array of vulnerabilities, with ’dereference failure’ being the most com-

mon issue identified. The tool’s ability to detect vulnerabilities, such as pointer deref-

erences, division by zero, dynamic object, and array-bound violations, attests to its

Chapter 5. Experimental Evaluation 80

alignment with CWE standards and underscores its potential in enhancing software

security. The experiments not only showcased LSVerifier’s scalability in handling large

codebases but also its efficiency in doing so within reasonable timeframes and without

excessive memory consumption.

A deeper dive into the violated properties revealed through LSVerifier’s analysis

brought several vulnerabilities to light, some of which were acknowledged and rectified

by the developers of the respective software projects. This process entailed the metic-

ulous reporting of issues based on LSVerifier’s counterexample traces and engaging

with developers for validation. The constructive dialogue between LSVerifier’s team

and software maintainers emphasized the tool’s practical impact in identifying and

addressing real-world vulnerabilities. The commitment to resolving reported issues

reflects the developers’ recognition of LSVerifier’s contributions to software security.

LSVerifier’s experimental evaluation demonstrates its effectiveness in automat-

ing the verification process for large C-based software systems and its proficiency in

identifying a comprehensive range of security vulnerabilities. The analysis of violated

properties and the subsequent confirmation and rectification of issues underscore the

tool’s practical utility and the importance of rigorous security practices. Moving for-

ward, enhancing LSVerifier with features such as counterexample validators could

further bolster its efficacy by facilitating the validation of identified vulnerabilities, thus

bridging the gap between automated verification and manual validation processes. The

continued collaboration between verification tool developers and software maintainers

will be crucial in advancing the state of software security in the open-source ecosystem.

81

6

CONCLUSIONS

M emory safety issues are a critical subset of software vulnerabilities that

pose significant risks to software reliability and security. Memory safety

in C programs pertains to the correct management of memory allocation,

access, and deallocation, ensuring that programs only access memory allocated to them

and preventing unauthorized access or modifications. The absence of inherent memory

safety mechanisms in the C programming language often leads to vulnerabilities such

as buffer overflows, use-after-free errors, and memory leaks. These vulnerabilities can

be exploited by attackers to execute arbitrary code, lead to system crashes, or leak

sensitive information. Addressing memory safety issues is essential for mitigating a

wide range of software vulnerabilities in C, necessitating rigorous verification and

validation techniques to identify and rectify such flaws before they can be exploited.

The delicate balance between the performance benefits provided by direct memory

management in C and the potential security risks highlights the ongoing challenge of

ensuring memory safety while maintaining the efficiency and flexibility that C offers to

developers.

In this research, we introduced LSVerifier, an innovative approach leveraging

bounded model checking to identify security vulnerabilities in C open-source software

projects. This work delineated its core functionalities, provided an in-depth evaluation

of its architecture, and presented empirical results derived from real-world software

applications. LSVerifier stands out by analyzing functions within C files and pinpointing

critical errors such as improper pointer usage and memory access issues. Considering

Chapter 6. Conclusions 82

the escalating security risks associated with third-party libraries in software develop-

ment, this approach is pivotal.

LSVerifier’s architecture is specifically tailored for large-scale systems, capable

of handling extensive codebases like Wireshark, VLC, and CMake. Its methodology

involves transforming code and properties into boolean formulas, which are then

processed by a solver. If a property is violated, LSVerifier generates a counterexample,

providing crucial insights into potential security breaches. The tool’s design focuses on

ease of use and efficiency. It scans project directories and performs individual function

analyses, streamlining the verification process. The generated reports summarize the

software weaknesses, offering a clear view of the violated properties and detailed

logs from the analysis. This feature is particularly beneficial in human-in-the-loop

verification methodologies.

We evaluated our tool and its associated algorithms using a dataset of ten large

practical open-source C projects. In terms of software evaluation, we were able to

find issues in databases with different sizes and target applications, ranging from

tens of thousands to millions of code lines, which were confirmed by their respective

maintainers. Such achievements confirmed our initial research goals and provided

evidence of the efficacy of our methodology.

Furthermore, detailed analyses of counterexample logs and validated issue re-

ports emphasize the imperative for rigorous scrutiny of functions, particularly those

associated with pointers and arrays. These functions often harbor critical limitations,

potentially escalating into significant security threats. Most of these vulnerabilities can

be traced back to memory management discrepancies in third-party libraries, accentu-

ating the pressing need for developers to adopt preventive strategies. By embracing

defensive coding practices, utilizing memory-safe libraries, and ensuring rigorous

boundary checks during memory operations, developers can prioritize secure memory

management, substantially reducing the risk of security breaches in their software.

Chapter 6. Conclusions 83

6.1 Future Works
In upcoming enhancements for LSVerifier, the focus will be on incorporating advanced

technological approaches. The integration of automated parameter selection mecha-

nisms and the application of machine learning techniques, especially Large Language

Models (LLMs), are poised to refine the output analysis process significantly. Addition-

ally, the introduction of functionalities for interrupting and resuming lengthy verifica-

tion processes will add flexibility and efficiency. The utilization of cluster resources will

also be a key aspect, aimed at accelerating the verification tasks. These improvements

are geared towards making LSVerifier a more robust and efficient tool in the realm of

software verification.

The evolution of LSVerifier is set to make substantial contributions to the field

of software security, especially in open-source projects. Its enhanced ability to detect

and report vulnerabilities will be pivotal in maintaining the integrity and reliability

of software systems. As the software development landscape continues to evolve, the

role of tools like LSVerifier becomes increasingly critical. These advancements not only

signify progress in software verification techniques but also underscore the importance

of continuous innovation in the face of growing and complex security challenges in

software development.

84

BIBLIOGRAPHY

ALHAWI, O. M.; MUSTAFA, M. A.; CORDEIRO, L. C. Finding security vulnerabilities
in unmanned aerial vehicles using software verification. In: 2019 International Workshop
on Secure Internet of Things, SIoT 2019, Luxembourg, Luxembourg, September 26, 2019. IEEE,
2019. p. 1–9. Disponível em: <https://doi.org/10.1109/SIOT48044.2019.9637109>. 20

ALJAAFARI, F. K. et al. Combining bmc and fuzzing techniques for finding software
vulnerabilities in concurrent programs. IEEE Access, v. 10, p. 121365–121384, 2022. 38

ALSHMRANY, K. M. et al. Fusebmc: An energy-efficient test generator for finding
security vulnerabilities in c programs. In: SPRINGER. International Conference on Tests
and Proofs. [S.l.], 2021. p. 85–105. 15, 24, 38

ALSHMRANY, K. M. et al. Position paper: Towards a hybrid approach to protect
against memory safety vulnerabilities. In: IEEE Secure Development Conference, SecDev
2022, Atlanta, GA, USA, October 18-20, 2022. IEEE, 2022. p. 52–58. Disponível em:
<https://doi.org/10.1109/SecDev53368.2022.00020>. 14, 15

BAGUELIN, F. et al. The OpenSSL punycode vulnerability (CVE-2022-3602):
Overview, detection, exploitation, and remediation. 2022. Disponível em: <https:
//securitylabs.datadoghq.com/articles/openssl-november-1-vulnerabilities/>. 68

BALDONI, R. et al. A survey of symbolic execution techniques. ACM Computing
Surveys (CSUR), ACM New York, NY, USA, v. 51, n. 3, p. 1–39, 2018. 36

BARANOVÁ, Z. et al. Model checking of c and c++ with divine 4. In: SPRINGER.
International Symposium on Automated Technology for Verification and Analysis. [S.l.], 2017.
p. 201–207. 35, 39

BARNEY, B. Posix threads programming. National Laboratory, v. 5, p. 46, 2009. 49

Barreto, R.; Cordeiro, L.; Fischer, B. Verifying embedded c software with timing
constraints using an untimed bounded model checker. In: 2011 Brazilian Symposium on
Computing System Engineering. [S.l.: s.n.], 2011. p. 46–52. ISSN 2324-7894. 39

BARRETT, C. et al. Cvc4. In: SPRINGER. Computer Aided Verification: 23rd International
Conference, CAV 2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings 23. [S.l.], 2011. p.
171–177. 23

BEYER, D. Advances in Automatic Software Verification: SV-COMP 2020. In: Tools and
Algorithms for the Construction and Analysis of Systems. [S.l.: s.n.], 2020. p. 347–367. ISBN
978-3-030-45237-7. 51

https://doi.org/10.1109/SIOT48044.2019.9637109
https://doi.org/10.1109/SecDev53368.2022.00020
https://securitylabs.datadoghq.com/articles/openssl-november-1-vulnerabilities/
https://securitylabs.datadoghq.com/articles/openssl-november-1-vulnerabilities/

Bibliography 85

BEYER, D. Progress on software verification: Sv-comp 2022. In: SPRINGER. International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. [S.l.], 2022.
p. 375–402. 17, 51

BEYER, D. Competition on software verification and witness validation: Sv-comp 2023.
In: SPRINGER. International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. [S.l.], 2023. p. 495–522. 27

BEYER, D.; KEREMOGLU, M. E. Cpachecker: A tool for configurable software
verification. In: SPRINGER. International Conference on Computer Aided Verification. [S.l.],
2011. p. 184–190. 35

BÖHME, M. et al. Directed Greybox Fuzzing. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. [S.l.: s.n.], 2017. p. 2329–2344. 15, 37

BOUDJEMA, E. H. et al. Detection of security vulnerabilities in c language
applications. Security and Privacy, v. 1, n. 1, p. e8, 2018. Disponível em: <https:
//onlinelibrary.wiley.com/doi/abs/10.1002/spy2.8>. 39

BRAUSSE, F. et al. ESBMC-CHERI: towards verification of C programs for CHERI
platforms with ESBMC. In: RYU, S.; SMARAGDAKIS, Y. (Ed.). ISSTA ’22: 31st
ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual
Event, South Korea, July 18 - 22, 2022. ACM, 2022. p. 773–776. Disponível em:
<https://doi.org/10.1145/3533767.3543289>. 39

BRUMMAYER, R.; BIERE, A. Boolector: An efficient smt solver for bit-vectors and
arrays. In: SPRINGER. Tools and Algorithms for the Construction and Analysis of Systems:
15th International Conference, TACAS 2009, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings 15.
[S.l.], 2009. p. 174–177. 23

BÜNING, M. K.; SINZ, C.; FARAGÓ, D. Qpr verify: a static analysis tool for embedded
software based on bounded model checking. In: SPRINGER. Software Verification: 12th
International Conference, VSTTE 2020, and 13th International Workshop, NSV 2020, Los
Angeles, CA, USA, July 20–21, 2020, Revised Selected Papers 13. [S.l.], 2020. p. 21–32. 35

CADAR, C.; DUNBAR, D.; ENGLER, D. R. KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: 8th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2008. [S.l.: s.n.], 2008. p. 209–224. 15

CAVADA, R. et al. The nuxmv symbolic model checker. In: SPRINGER. International
Conference on Computer Aided Verification. [S.l.], 2014. p. 334–342. 35

CHENOY, A. et al. C-smc: A hybrid statistical model checking and concrete runtime
engine for analyzing c programs. In: SPIN 2021-27th International SPIN Symposium on
Model Checking of Software. [S.l.: s.n.], 2021. 35, 64

Cho, C. Y.; D’Silva, V.; Song, D. Blitz: Compositional bounded model checking for
real-world programs. In: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE). [S.l.: s.n.], 2013. p. 136–146. 39

CHOI, Y. Safety analysis of trampoline os using model checking: an experience report.
In: IEEE. 2011 IEEE 22nd International Symposium on Software Reliability Engineering.
[S.l.], 2011. p. 200–209. 40

https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.8
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.8
https://doi.org/10.1145/3533767.3543289

Bibliography 86

CLARKE, E.; KROENING, D.; LERDA, F. A Tool for Checking ANSI-C Programs.
In: Tools and Algorithms for the Construction and Analysis of Systems. [S.l.: s.n.], 2004. p.
168–176. 15, 37, 41

CLARKE, E.; KROENING, D.; LERDA, F. A tool for checking ansi-c programs. Lecture
Notes in Computer Science, v. 2988, p. 168–176, 01 2004. 23

CMAKE. CMake project. 2000. Disponível em: <https://github.com/Kitware/CMake>.
60

COOK, B. et al. Using Model Checking Tools to Triage the Severity of Security Bugs in
the Xen Hypervisor. In: Formal Methods in Computer-Aided Design. [S.l.: s.n.], 2020. 41

CORDEIRO, L.; FISCHER, B. Verifying multi-threaded software using smt-based
context-bounded model checking. ACM/IEEE 33rd International Conference on Software
Engineering (ICSE), 2011. 15, 36

CORDEIRO, L.; FISCHER, B.; MARQUES-SILVA, J. Smt-based bounded model
checking for embedded ansi-c software. IEEE Transactions on Software Engineering, IEEE,
v. 38, n. 4, p. 957–974, 2011. 14, 15

Cordeiro, L.; Fischer, B.; Marques-Silva, J. Smt-based bounded model checking for
embedded ansi-c software. IEEE Transactions on Software Engineering, v. 38, n. 4, p.
957–974, July 2012. ISSN 1939-3520. 37, 39

CORDEIRO, L. C.; FILHO, E. B. de L. Smt-based context-bounded model checking for
embedded systems: Challenges and future trends. ACM SIGSOFT Software Engineering
Notes, ACM New York, NY, USA, v. 41, n. 3, p. 1–6, 2016. 14, 25

CORDEIRO, L. C.; FILHO, E. B. de L.; BESSA, I. V. de. Survey on automated symbolic
verification and its application for synthesising cyber-physical systems. IET Cyper-Phys.
Syst.: Theory & Appl., v. 5, n. 1, p. 1–24, 2020. 14, 22

CORDEIRO, L. C. et al. Semiformal verification of embedded software in medical
devices considering stringent hardware constraints. In: International Conference on
Embedded Software and Systems, ICESS. [S.l.: s.n.], 2009. p. 396–403. 15

CORPORATION, T. M. Common Weakness Enumeration (CWE). 2019. Accessed:
2023-08-20. Disponível em: <https://cwe.mitre.org/data/definitions/658.html>. 27

CORPORATION, T. M. Common Weakness Enumeration (CWE). 2023. Accessed:
2023-07-10. Disponível em: <https://cwe.mitre.org/data/definitions/658.html>. 27,
28, 29, 30

COUSOT, P. Formal verification by abstract interpretation. In: SPRINGER. NASA
Formal Methods: 4th International Symposium, NFM 2012, Norfolk, VA, USA, April 3-5,
2012. Proceedings 4. [S.l.], 2012. p. 3–7. 24

DEBUGGING, P.; PROFILING. tracemalloc - Trace memory allocations. 2023. Disponível
em: <https://docs.python.org/3/library/tracemalloc.html>. 59

DEMPSEY, K. et al. Automation Support for Security Control Assessments: Software
Vulnerability Management. National Institute of Standards and Technology, 2020.
Disponível em: <https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8011-4.pdf>. 27

https://github.com/Kitware/CMake
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://docs.python.org/3/library/tracemalloc.html
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8011-4.pdf

Bibliography 87

DINESH, S. et al. Retrowrite: Statically instrumenting cots binaries for fuzzing and
sanitization. In: IEEE. 2020 IEEE Symposium on Security and Privacy (SP). [S.l.], 2020. p.
1497–1511. 36

DUCKLIN, P. Log4Shell explained – how it works, why you need to know,
and how to fix it. 2021. <https://nakedsecurity.sophos.com/2021/12/13/
log4shell-explained-how-it-works-why-you-need-to-know-and-how-to-fix-it/>. 15

DUTERTRE, B.; MOURA, L. D. The yices smt solver. Tool paper at http://yices. csl. sri.
com/tool-paper. pdf, v. 2, n. 2, p. 1–2, 2006. 23

ECKERT, M. et al. {HeapHopper}: Bringing bounded model checking to heap
implementation security. In: 27th USENIX Security Symposium (USENIX Security 18).
[S.l.: s.n.], 2018. p. 99–116. 35, 40

FIORALDI, A.; D’ELIA, D. C.; QUERZONI, L. Fuzzing binaries for memory safety
errors with qasan. In: IEEE. 2020 IEEE Secure Development (SecDev). [S.l.], 2020. p. 23–30.
35, 37

FISCHER, B. et al. Cbmc-ssm: Bounded model checking of c programs with symbolic
shadow memory. In: 37th IEEE/ACM International Conference on Automated Software
Engineering. [S.l.: s.n.], 2022. p. 1–5. 35

FOUNDATION, P. S. glob — Unix style pathname pattern expansion. 2021. Disponível em:
<https://docs.python.org/3/library/glob.html>. 54

FOUNTOULAKIS, M. netdata crash during queries #9713. 2020. Disponível em:
<https://github.com/netdata/netdata/issues/9713>. 68

GADELHA, M. et al. ESBMC v6.0: Verifying C Programs Using k-Induction and
Invariant Inference. In: Tools and Algorithms for the Construction and Analysis of Systems.
[S.l.: s.n.], 2019. ISBN 978-3-030-17502-3. 15, 23

GADELHA, M. R.; CORDEIRO, L. C.; NICOLE, D. A. An efficient floating-point
bit-blasting API for verifying C programs. In: CHRISTAKIS, M. et al. (Ed.). Software
Verification - 12th International Conference, VSTTE 2020, and 13th International Workshop,
NSV 2020, Los Angeles, CA, USA, July 20-21, 2020, Revised Selected Papers. Springer,
2020. (Lecture Notes in Computer Science, v. 12549), p. 178–195. Disponível em:
<https://doi.org/10.1007/978-3-030-63618-0_11>. 14

GADELHA, M. R.; MENEZES, R. S.; CORDEIRO, L. C. Esbmc 6.1: automated test case
generation using bounded model checking. International Journal on Software Tools for
Technology Transfer, Springer, v. 23, n. 6, p. 857–861, 2021. 14, 25, 27, 35

GADELHA, M. Y. R. et al. Towards counterexample-guided k-induction for fast bug
detection. In: LEAVENS, G. T.; GARCIA, A.; PASAREANU, C. S. (Ed.). Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake
Buena Vista, FL, USA, November 04-09, 2018. ACM, 2018. p. 765–769. Disponível em:
<https://doi.org/10.1145/3236024.3264840>. 32

https://nakedsecurity.sophos.com/2021/12/13/log4shell-explained-how-it-works-why-you-need-to-know-and-how-to-fix-it/
https://nakedsecurity.sophos.com/2021/12/13/log4shell-explained-how-it-works-why-you-need-to-know-and-how-to-fix-it/
https://docs.python.org/3/library/glob.html
https://github.com/netdata/netdata/issues/9713
https://doi.org/10.1007/978-3-030-63618-0_11
https://doi.org/10.1145/3236024.3264840

Bibliography 88

GADELHA, M. Y. R. et al. Smt-based refutation of spurious bug reports in the clang
static analyzer. In: ATLEE, J. M.; BULTAN, T.; WHITTLE, J. (Ed.). Proceedings of the
41st International Conference on Software Engineering: Companion Proceedings, ICSE 2019,
Montreal, QC, Canada, May 25-31, 2019. IEEE / ACM, 2019. p. 11–14. Disponível em:
<https://doi.org/10.1109/ICSE-Companion.2019.00026>. 22

GERHOLD, M.; HARTMANNS, A. Reproduction report for sv-comp 2023. arXiv
preprint arXiv:2303.06477, 2023. 35

GERKING, C.; SCHUBERT, D.; BODDEN, E. Model checking the information flow
security of real-time systems. In: SPRINGER. International Symposium on Engineering
Secure Software and Systems. [S.l.], 2018. p. 27–43. 35, 39

GODEFROID, P. Fuzzing: hack, art, and science. Commun. ACM, v. 63, n. 2, p. 70–76,
2020. 15

GOSEVA-POPSTOJANOVA, K.; PERHINSCHI, A. On the capability of static code
analysis to detect security vulnerabilities. Information and Software Technology, Elsevier,
v. 68, p. 18–33, 2015. 22

GREENBERG, A. Hackers remotely kill a jeep on the highway.
Wired, July 2015. Disponível em: <https://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/>. 14

GRITTI, F. et al. Heapster: Analyzing the security of dynamic allocators for monolithic
firmware images. In: IEEE. 2022 IEEE Symposium on Security and Privacy (SP). [S.l.], 2022.
p. 1082–1099. 35

GUEYE, A. et al. A decade of reoccurring software weaknesses. IEEE Security & Privacy,
IEEE, v. 19, n. 6, p. 74–82, 2021. 21

GUI, B.; SONG, W.; HUANG, J. Uafsan: an object-identifier-based dynamic approach
for detecting use-after-free vulnerabilities. In: Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis. [S.l.: s.n.], 2021. p. 309–321. 35,
37

HE, F.; SUN, Z.; FAN, H. Deagle: An smt-based verifier for multi-threaded programs
(competition contribution). In: SPRINGER. Tools and Algorithms for the Construction and
Analysis of Systems: 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April
2–7, 2022, Proceedings, Part II. [S.l.], 2022. p. 424–428. 35

HOEPMAN, J.-H.; JACOBS, B. Increased security through open source. Communications
of the ACM, ACM New York, NY, USA, v. 50, n. 1, p. 79–83, 2007. 15

HOLZMANN, G. J. Cobra: a light-weight tool for static and dynamic program analysis.
Innovations in Systems and Software Engineering, Springer, v. 13, n. 1, p. 35–49, 2017. 41

INVERSO, O. et al. Lazy-cseq: A context-bounded model checking tool for
multi-threaded c-programs. In: IEEE. 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). [S.l.], 2015. p. 807–812. 35

https://doi.org/10.1109/ICSE-Companion.2019.00026
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

Bibliography 89

ISMAIL, H. I. et al. Dsverifier: A bounded model checking tool for digital systems.
In: SPRINGER. Model Checking Software: 22nd International Symposium, SPIN 2015,
Stellenbosch, South Africa, August 24-26, 2015, Proceedings 22. [S.l.], 2015. p. 126–131. 35

IVANCIC, F. et al. Model Checking C Programs Using F-SOFT. In: . [S.l.: s.n.], 2005.
v. 2005, p. 297 – 308. ISBN 0-7695-2451-6. 23

Kernel development community. The frame buffer device. [S.l.]: Linux, 2023.
<https://docs.kernel.org/fb/framebuffer.html>. Accessed 15 August 2022. 73

KERNIGHAN, B.; RITCHIE, D. The C Programming Language. [S.l.]: Pearson, 2006. 14

KNORR, G.; DANZER, M.; UYTTERHOEVEN, G. fbdev: video driver for framebuffer device.
[S.l.]: Linux, 2023. <https://linux.die.net/man/4/fbdev>. Accessed 15 August 2022. 73

KROENING, D.; TAUTSCHNIG, M. Cbmc–c bounded model checker. In: SPRINGER.
International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
[S.l.], 2014. p. 389–391. 35

LANGE, T. et al. Ic3 software model checking. International Journal on Software Tools for
Technology Transfer, Springer, v. 22, n. 2, p. 135–161, 2020. 35, 64

LEÓN, H. Ponce-de et al. Dartagnan: Bounded model checking for weak memory
models (competition contribution). In: SPRINGER. Tools and Algorithms for the
Construction and Analysis of Systems: 26th International Conference, TACAS 2020, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25–30, 2020, Proceedings, Part II 26. [S.l.], 2020. p. 378–382. 35

LHOMME, S. fb: remove support. Gitlab, 2022. Disponível em: <https://code.videolan.
org/videolan/vlc/-/pipelines/227531>. 69, 71, 73

LOMUSCIO, A.; QU, H.; RAIMONDI, F. Mcmas: an open-source model checker for the
verification of multi-agent systems. International Journal on Software Tools for Technology
Transfer, Springer, v. 19, n. 1, p. 9–30, 2017. 35

MALÍK, V. et al. 2ls: Arrays and loop unwinding: (competition contribution). In:
SPRINGER. Tools and Algorithms for the Construction and Analysis of Systems: 29th
International Conference, TACAS 2023, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2022, Paris, France, April 22–27, 2023, Proceedings,
Part II. [S.l.], 2023. p. 529–534. 35

MANN, M. et al. Pono: a flexible and extensible smt-based model checker. In:
SPRINGER. International Conference on Computer Aided Verification. [S.l.], 2021. p. 461–474.
35, 64

MATULEVICIUS, N.; CORDEIRO, L. C. Verifying security vulnerabilities for
blockchain-based smart contracts. In: XI Brazilian Symposium on Computing Systems
Engineering, SBESC 2021, Florianopolis, Brazil, November 22-26, 2021. IEEE, 2021. p. 1–8.
Disponível em: <https://doi.org/10.1109/SBESC53686.2021.9628229>. 20

MEMARIAN, K. et al. Exploring c semantics and pointer provenance. Proceedings of the
ACM on Programming Languages, ACM New York, NY, USA, v. 3, n. POPL, p. 1–32, 2019.
16

https://docs.kernel.org/fb/framebuffer.html
https://linux.die.net/man/4/fbdev
https://code.videolan.org/videolan/vlc/-/pipelines/227531
https://code.videolan.org/videolan/vlc/-/pipelines/227531
https://doi.org/10.1109/SBESC53686.2021.9628229

Bibliography 90

MENEZES, R. et al. ESBMC v7.4: Harnessing the power of intervals. CoRR,
abs/2312.14746, 2023. Disponível em: <https://doi.org/10.48550/arXiv.2312.14746>.
25

MENEZES, R. et al. Map2check using LLVM and KLEE - (competition contribution). In:
BEYER, D.; HUISMAN, M. (Ed.). Tools and Algorithms for the Construction and Analysis of
Systems - 24th International Conference, TACAS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April
14-20, 2018, Proceedings, Part II. Springer, 2018. (Lecture Notes in Computer Science, v.
10806), p. 437–441. Disponível em: <https://doi.org/10.1007/978-3-319-89963-3_28>.
37

MERZ, F.; FALKE, S.; SINZ, C. LLBMC: Bounded Model Checking of C and C++
Programs Using a Compiler IR. In: Proceedings of the 4th International Conference on
Verified Software: Theories, Tools, Experiments. [S.l.: s.n.], 2012. (VSTTE’12), p. 146–161.
ISBN 9783642277047. 23

MERZ, F.; FALKE, S.; SINZ, C. Llbmc: Bounded model checking of c and c++ programs
using a compiler ir. In: SPRINGER. International Conference on Verified Software: Tools,
Theories, Experiments. [S.l.], 2012. p. 146–161. 39

MITRE. 2023 CWE Top 25 Most Dangerous Software Weaknesses. 2023. Accessed: 2023-07-10.
Disponível em: <https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html>.
16, 51

MONTEIRO, F. R.; GADELHA, M. R.; CORDEIRO, L. C. Model checking c++ programs.
Software Testing, Verification and Reliability, Wiley Online Library, v. 32, n. 1, p. e1793,
2022. 40

MORSE, J. et al. Context-bounded model checking of LTL properties for ANSI-C
software. In: BARTHE, G.; PARDO, A.; SCHNEIDER, G. (Ed.). Software Engineering and
Formal Methods - 9th International Conference, SEFM 2011, Montevideo, Uruguay, November
14-18, 2011. Proceedings. Springer, 2011. (Lecture Notes in Computer Science, v. 7041), p.
302–317. Disponível em: <https://doi.org/10.1007/978-3-642-24690-6_21>. 14

MOURA, L. D.; BJØRNER, N. Z3: An efficient smt solver. In: SPRINGER. International
conference on Tools and Algorithms for the Construction and Analysis of Systems. [S.l.], 2008.
p. 337–340. 23

MUEGGE, S. M.; MURSHED, S. M. Time to discover and fix software vulnerabilities
in open source software projects: Notes on measurement and data availability. In:
IEEE. 2018 Portland International Conference on Management of Engineering and Technology
(PICMET). [S.l.], 2018. p. 1–10. 20

NETDATA. Netdata project. 2006. Disponível em: <https://github.com/netdata/
netdata>. 60

NGUYEN, T.-T. et al. Multiple program analysis techniques enable precise check for sei
cert c coding standard. In: IEEE. 2019 26th Asia-Pacific Software Engineering Conference
(APSEC). [S.l.], 2019. p. 70–77. 41

https://doi.org/10.48550/arXiv.2312.14746
https://doi.org/10.1007/978-3-319-89963-3_28
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html
https://doi.org/10.1007/978-3-642-24690-6_21
https://github.com/netdata/netdata
https://github.com/netdata/netdata

Bibliography 91

NIE, P.; JIANG, J.; MA, Z. Ctl symbolic model checking based on fuzzy logic. In: 2020
IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive
Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber
Science and Technology Congress (DASC/PiCom/CBDCom/CyberSciTech). [S.l.: s.n.], 2020. p.
380–385. 37

OHM, M. et al. Backstabber’s knife collection: A review of open source software supply
chain attacks. In: SPRINGER. International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. [S.l.], 2020. p. 23–43. 15

OLIVEIRA, J. Bug 3382 - Software vulnerabilities detected using ESBMC-WR tool. Bugzilla,
2022. Disponível em: <https://bugzilla.mindrot.org/show_bug.cgi?id=3382>. 69, 71,
74

OLIVEIRA, J. Bug 3452 - Potential Software vulnerabilities detected using ESBMC-WR tool.
Bugzilla, 2022. Disponível em: <https://bugzilla.mindrot.org/show_bug.cgi?id=3452>.
69, 71, 74

OLIVEIRA, J. [Bug]: Code properties violations found - dereference failure: invalid pointer
#13219. Github, 2022. Disponível em: <https://github.com/netdata/netdata/issues/
13219>. 69, 71, 74

OLIVEIRA, J. e2fsprogs issue. [S.l.]: GitHub, 2022. <https://github.com/tytso/
e2fsprogs/issues/103>. 69, 71, 72

OLIVEIRA, J. Security Vulnerabilities found in sqlite3.c. SQlite, 2022. Disponível em:
<https://www.sqlite.org/forum/forumpost/3ffffb11d0>. 69, 71, 74

OLIVEIRA, J. Software vulnerabilities detected during code analysis with ESBMC-WR #1856.
GitHub, 2022. Disponível em: <https://github.com/pbatard/rufus/issues/1856>. 69,
71

OLIVEIRA, J. Software vulnerabilities detected during code analysis with ESBMC-WR tool.
Gitlab, 2022. Disponível em: <https://gitlab.kitware.com/cmake/cmake/-/issues/
23132>. 71, 74

OLIVEIRA, J. Software vulnerabilities detected during code analysis with ESBMC-WR tool
#17560. GitHub, 2022. Disponível em: <https://github.com/openssl/openssl/issues/
17560>. 71, 73

OLIVEIRA, J. Software vulnerabilities detected in development tools. Gitlab, 2022. Disponível
em: <https://gitlab.com/wireshark/wireshark/-/issues/17897>. 71, 74

OLIVEIRA, J. Tiny-regex issue. [S.l.]: GitHub, 2022. <https://github.com/kokke/
tiny-regex-c/issues/76>. 69, 71

OLIVEIRA, J. VIM issue. Github, 2022. Disponível em: <https://github.com/vim/vim/
issues/9571>. 71, 74

OLIVEIRA, J. Code properties violations during software vulnerabilities investigation. TMUX,
2023. Disponível em: <https://github.com/tmux/tmux/issues/3737>. 71, 75

https://bugzilla.mindrot.org/show_bug.cgi?id=3382
https://bugzilla.mindrot.org/show_bug.cgi?id=3452
https://github.com/netdata/netdata/issues/13219
https://github.com/netdata/netdata/issues/13219
https://github.com/tytso/e2fsprogs/issues/103
https://github.com/tytso/e2fsprogs/issues/103
https://www.sqlite.org/forum/forumpost/3ffffb11d0
https://github.com/pbatard/rufus/issues/1856
https://gitlab.kitware.com/cmake/cmake/-/issues/23132
https://gitlab.kitware.com/cmake/cmake/-/issues/23132
https://github.com/openssl/openssl/issues/17560
https://github.com/openssl/openssl/issues/17560
https://gitlab.com/wireshark/wireshark/-/issues/17897
https://github.com/kokke/tiny-regex-c/issues/76
https://github.com/kokke/tiny-regex-c/issues/76
https://github.com/vim/vim/issues/9571
https://github.com/vim/vim/issues/9571
https://github.com/tmux/tmux/issues/3737

Bibliography 92

OLIVEIRA, J. Code properties violations during software vulnerabilities investigation -
Bug report. SQLite, 2023. Disponível em: <https://sqlite.org/forum/forumpost/
ac645ab114>. 71, 76

OLIVEIRA, J. Code properties violations during software vulnerabilities investigation - Bug
report 2. SQLite, 2023. Disponível em: <https://www.sqlite.org/forum/forumpost/
a2d232d413>. 71, 76

OLIVEIRA, J. Linenoise and lua issues. Github, 2023. Disponível em: <https:
//github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%
20report/Advisory_02.pdf>. 71, 75

OLIVEIRA, J. Redis issue. Github, 2023. Disponível em: <https://github.com/janislley/
lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_01.pdf>.
71, 75

OORSCHOT, P. C. van. Memory errors and memory safety: C as a case study. IEEE
Security & Privacy, IEEE, v. 21, n. 2, p. 70–76, 2023. 16

OPENSSH. OpenSSH project. 1999. Disponível em: <https://github.com/openssh/
openssh-portable>. 44, 60

OPENSSL. OpenSSL project. 1998. Disponível em: <https://github.com/openssl/
openssl>. 44, 60

PAGE, L. manual. 2023. Disponível em: <https://man7.org/linux/man-pages/index.
html>. 59

PALMSKOG, K.; CELIK, A.; GLIGORIC, M. picoq: Parallel regression proving for
large-scale verification projects. In: Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis. [S.l.: s.n.], 2018. p. 344–355. 21

PEREIRA, J. D.; VIEIRA, M. On the use of open-source c/c++ static analysis tools in
large projects. In: 16th European Dependable Computing Conference (EDCC). [S.l.: s.n.],
2020. p. 97–102. 15

PHILIPPAERTS, P. et al. Software verification with verifast: Industrial case studies.
Science of Computer Programming, Elsevier, v. 82, p. 77–97, 2014. 35

PIRA, E.; RAFE, V.; NIKANJAM, A. Emcdm: Efficient model checking by data mining
for verification of complex software systems specified through architectural styles.
Applied Soft Computing, Elsevier, v. 49, p. 1185–1201, 2016. 35

PLATE, H.; PONTA, S. E.; SABETTA, A. Impact assessment for vulnerabilities in
open-source software libraries. In: IEEE. 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME). [S.l.], 2015. p. 411–420. 20, 21

PONTA, S. E.; PLATE, H.; SABETTA, A. Detection, assessment and mitigation of
vulnerabilities in open source dependencies. Empirical Software Engineering, Springer,
v. 25, n. 5, p. 3175–3215, 2020. 21

PUTTY. Xen project. 1999. Disponível em: <https://www.chiark.greenend.org.uk/
~sgtatham/putty/latest.html>. 44, 54, 60

https://sqlite.org/forum/forumpost/ac645ab114
https://sqlite.org/forum/forumpost/ac645ab114
https://www.sqlite.org/forum/forumpost/a2d232d413
https://www.sqlite.org/forum/forumpost/a2d232d413
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_02.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_02.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_02.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_01.pdf
https://github.com/janislley/lsverifier_final_results/blob/main/redis-7.0.11/issue%20report/Advisory_01.pdf
https://github.com/openssh/openssh-portable
https://github.com/openssh/openssh-portable
https://github.com/openssl/openssl
https://github.com/openssl/openssl
https://man7.org/linux/man-pages/index.html
https://man7.org/linux/man-pages/index.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Bibliography 93

RAKAMARIĆ, Z.; EMMI, M. Smack: Decoupling source language details from verifier
implementations. In: SPRINGER. International Conference on Computer Aided Verification.
[S.l.], 2014. p. 106–113. 35

REDIS. Redis project. 2009. Disponível em: <https://github.com/redis/>. 60

RICHARDSON, A. Complete Spatial Safety for C and C++ using CHERI Capabilities. [S.l.],
2020. 38, 39

RICHTER, C.; WEHRHEIM, H. Pesco: Predicting sequential combinations of verifiers.
In: SPRINGER. International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. [S.l.], 2019. p. 229–233. 35

RIVAL, X.; YI, K. Introduction to static analysis: an abstract interpretation perspective. [S.l.]:
Mit Press, 2020. 36

ROCHA, H. et al. Understanding programming bugs in ansi-c software using bounded
model checking counter-examples. In: Integrated Formal Methods. [S.l.: s.n.], 2012. p.
128–142. ISBN 978-3-642-30729-4. 39

ROCHA, H. et al. Map2Check: Using Symbolic Execution and Fuzzing. In: International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. [S.l.: s.n.],
2020. p. 403–407. 36, 37

ROČKAI, P. et al. Divm: model checking with llvm and graph memory. Journal of
Systems and Software, Elsevier, v. 143, p. 1–13, 2018. 35

RODRIGUEZ, M.; PIATTINI, M.; EBERT, C. Software verification and validation
technologies and tools. IEEE Software, IEEE, v. 36, n. 2, p. 13–24, 2019. 14

RUFUS. RUFUS project. 2011. Disponível em: <https://github.com/pbatard/rufus>. 60

RUSCIO, D. D.; PELLICCIONE, P.; PIERANTONIO, A. Evoss: A tool for managing the
evolution of free and open source software systems. In: IEEE. 2012 34th International
Conference on Software Engineering (ICSE). [S.l.], 2012. p. 1415–1418. 21

SECURITY, S. NULL Pointer Dereference. 2022. Disponível em: <https://security.snyk.
io/vuln/SNYK-CENTOS6-SQLITE-3010350>. 68

SITU, L. et al. Vanguard: Detecting missing checks for prognosing potential
vulnerabilities. In: Proceedings of the Tenth Asia-Pacific Symposium on Internetware. [S.l.:
s.n.], 2018. p. 1–10. 35, 37

SOUSA, J. O. de et al. Lsverifier: A bmc approach to identify security vulnerabilities in
c open-source software projects. In: SBC. Anais Estendidos do XXIII Simpósio Brasileiro em
Segurança da Informação e de Sistemas Computacionais. [S.l.], 2023. p. 17–24. 35

SQLITE. SQLite project. 2000. Disponível em: <https://github.com/sqlite/sqlite>. 60

STANDARDIZATION, I. O. for. Iso/iec 9899-2011: Programming languages – c. ISO
Working Group, Geneva, Switzerland, 2012. 51

SUCKEVIC, G. de A. Bug 1841231 (CVE-2020-13435) - CVE-2020-13435 sqlite:
NULL pointer dereference in sqlite3ExprCodeTarget(). 2023. Disponível em: <https:
//bugzilla.redhat.com/show_bug.cgi?id=1841231>. 68

https://github.com/redis/
https://github.com/pbatard/rufus
https://security.snyk.io/vuln/SNYK-CENTOS6-SQLITE-3010350
https://security.snyk.io/vuln/SNYK-CENTOS6-SQLITE-3010350
https://github.com/sqlite/sqlite
https://bugzilla.redhat.com/show_bug.cgi?id=1841231
https://bugzilla.redhat.com/show_bug.cgi?id=1841231

Bibliography 94

TAN, L. et al. Bug characteristics in open source software. Empirical software engineering,
Springer, v. 19, p. 1665–1705, 2014. 15

TIHANYI, N. et al. The formai dataset: Generative AI in software security through
the lens of formal verification. In: MCINTOSH, S.; CHOI, E.; HERBOLD, S. (Ed.).
Proceedings of the 19th International Conference on Predictive Models and Data Analytics in
Software Engineering, PROMISE 2023, San Francisco, CA, USA, 8 December 2023. ACM,
2023. p. 33–43. Disponível em: <https://doi.org/10.1145/3617555.3617874>. 14

TMUX. TMUX project. 2007. Disponível em: <https://github.com/tmux/tmux>. 60

VANROSSUM, G. Python reference manual. [S.l.]: Department of Computer Science [CS],
1995. 51

VEEN, V. van der et al. Memory Errors: The Past, The Present, and The Future.
In: Research in Attacks, Intrusions, and Defenses. [S.l.: s.n.], 2012. p. 86–106. ISBN
978-3-642-33338-5. 15

VIM. VIM project. 1991. Disponível em: <https://github.com/vim/vim>. 60

VLC. VLC project. 2001. Disponível em: <https://github.com/videolan/vlc>. 60

VOROBYOV, K.; KOSMATOV, N.; SIGNOLES, J. Detection of security vulnerabilities in
c code using runtime verification: An experience report. In: Tests and Proofs. [S.l.: s.n.],
2018. p. 139–156. ISBN 978-3-319-92994-1. 14, 37

WEN, S.-F. Software security in open source development: A systematic literature
review. In: IEEE. 2017 21st conference of open innovations association (fruct). [S.l.], 2017. p.
364–373. 20

WIRESHARK. Wireshark project. 1998. Disponível em: <https://gitlab.com/wireshark/
wireshark>. 60

XIAO, S.; WITSCHEY, J.; MURPHY-HILL, E. Social influences on secure development
tool adoption: why security tools spread. In: Proceedings of the 17th ACM conference on
Computer supported cooperative work & social computing. [S.l.: s.n.], 2014. p. 1095–1106. 21

YAMAGUCHI, F. et al. Chucky: Exposing missing checks in source code for
vulnerability discovery. In: Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. [S.l.: s.n.], 2013. p. 499–510. 35

YAN, H. et al. Spatio-temporal context reduction: A pointer-analysis-based static
approach for detecting use-after-free vulnerabilities. In: IEEE. 2018 IEEE/ACM 40th
International Conference on Software Engineering (ICSE). [S.l.], 2018. p. 327–337. 35

ZOU, J. et al. Research on secure stereoscopic self-checking scheme for open source
software. In: Proceedings of the 2019 International Conference on Artificial Intelligence and
Computer Science. [S.l.: s.n.], 2019. p. 158–162. 21

https://doi.org/10.1145/3617555.3617874
https://github.com/tmux/tmux
https://github.com/vim/vim
https://github.com/videolan/vlc
https://gitlab.com/wireshark/wireshark
https://gitlab.com/wireshark/wireshark

	LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software
	Title page

	705114f4ed0d33dbc0bb7dd16fdab37feba3af7736e01e0893cd42e2f7ec0be9.pdf
	LSVerifier: A BMC Approach to Identify Security Vulnerabilities in C Open-Source Software
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	List of abbreviations and acronyms
	List of publications
	Contents
	Introduction
	Motivation
	Problem Definition
	Objectives
	Contributions
	Outline

	Background Theory
	Vulnerabilities in Open-Source Software Projects
	Formal Verification Techniques
	Static Analysis
	SMT Solvers
	Bounded Model Checking
	Fuzzing
	Abstract Interpretation

	ESBMC
	Common Software Vulnerabilities in C Programming Language
	Summary

	Related Work
	Review of Literature
	Formal Verification Tools for Analyzing Open-Source Software Security Vulnerabilities
	Summary

	The Proposed Verification Methodology
	Architectural Patterns of Open-Source Software for Effective Vulnerability Verification
	The Development of Proposed Methodology
	Architecture and Main Functionalities
	The LSVerifier's Tool Implementation
	File Listing
	Function Listing and Prioritization
	Exporting results

	An Illustrative Examples of Using LSVerifier
	Summary

	Experimental Evaluation
	Experimental Setup
	Experimental Objectives
	Threats to the Validity of Experiments
	Benchmark selection
	Performance and correctness
	Counterexample validation

	Experimental Results
	Violated Properties Analysis
	Summary

	Conclusions
	Future Works

	Bibliography

