
INCREMENTAL BOUNDED MODEL
CHECKING USING MACHINE LEARNING

TECHNIQUES

DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF

MASTER OF SCIENCEIN ADVANCED COMPUTER SCIENCE WITH SPECIALIZATION IN

ARTIFICIAL INTELLIGENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

YEAR OF SUBMISSION
2021

HUAJIE HE

10689523

SUPERVISED BY

Lucas Cordeiro

DEPARTMENT OF COMPUTER SCIENCE

Contents

Abstract 7

Declaration 8

Copyright 9

Acknowledgements 10

1 Introduction 11
1.1 Project description . 11

1.2 Problem description . 11

1.3 Aim and Objectives . 12

1.4 Literature review . 13

1.5 The main contribution of our work . 14

1.6 Structure of the Document . 14

2 Background Knowledge 16
2.1 Background overview . 16

2.2 SV-COMP . 16

2.3 Bounded model checking . 17

2.3.1 SAT . 17

2.3.2 SMT . 18

2.3.3 Abstract syntax tree . 18

2.3.4 BMC . 20

2.4 Verification tools based on BMC Theory . 21

2.4.1 LLBMC . 21

2.4.2 CBMC . 22

2.4.3 ESBMC . 22

2.5 Machine learning . 23

2.5.1 Machine learning overview . 23

2.5.1.1 Supervised learning . 23

2.5.1.2 Unsupervised learning . 24

2.5.1.3 Reinforcement learning . 25

2.5.2 Decision tree . 26

2.5.2.1 ID3 algorithm . 26

2.5.2.2 C4.5 algorithm . 27

2.5.2.3 Classification and Regression Tree 28

2.5.3 Support vector machine . 28

2.5.3.1 Linear SVM . 28

2

2.5.3.2 Non-linear SVM . 30

2.5.4 KNN . 31

2.5.5 Neural network . 32

2.5.5.1 Feed-forward neural network . 33

2.5.5.2 Features of neural network . 33

2.5.6 Gradient Descent . 35

2.5.7 Resampling methods . 36

2.5.7.1 Cross validation . 37

2.6 Summary . 37

3 Research Methodology 38
3.1 System overview . 38

3.2 Interface . 39

3.3 Benchmark of this experiment . 42

3.4 Feature engineering . 43

3.4.1 Data preprocessing . 44

3.4.2 Feature selection . 45

3.4.3 Feature extraction . 46

3.4.4 Feature construction . 46

3.5 Preparing data . 46

3.6 Using ESBMC to get the benchmark’ label . 47

3.6.1 Using ESBMC to test a single benchmark 47

3.6.2 Using multi-threading technology to speed up the testing process 48

3.6.3 Categorizing the results of ESBMC . 48

3.7 Machine learning methods . 49

3.7.1 SVM . 49

3.7.2 Decision tree . 49

3.7.3 KNN . 50

3.7.4 Neural network . 50

3.7.5 GridSearch CV . 50

3.8 Automatically predicting optimal parameters . 51

3.9 Summary . 51

4 Result Evaluation and Discussion 52
4.1 Description of the evaluation benchmarks . 52

4.1.1 Accuracy,Precision,Recall,F1-score . 52

4.1.1.1 Common indicators of binary classification models 52

4.1.1.2 Extending these indicators to multi-classification problems 54

4.1.2 Cross-validation . 55

4.2 Setup . 56

4.3 Objectives . 56

3

4.4 Results . 56
4.4.1 Decision Tree for Array sub data set . 56
4.4.2 SVM based on Array sub data set . 57
4.4.3 KNN based on Array sub data set . 57
4.4.4 Neural network based on Array sub data set 57
4.4.5 Decision Tree based on Loop sub data set 58
4.4.6 SVM based on Loop sub data set . 58
4.4.7 KNN based on Loop sub data set . 58
4.4.8 Neural network based on Loop sub-data set 59
4.4.9 Decision Tree based on Floats sub data set 59
4.4.10 SVM based on Floats sub data set . 59
4.4.11 KNN based on Floats sub data set . 60
4.4.12 Neural network based on Floats sub-data set 60

4.5 Threats to validity . 60
4.6 Comparison and evaluation . 61

4.6.1 Result analysis . 61
4.6.2 Reusability . 63
4.6.3 Baseline . 64

4.7 Summary . 65

5 Conclusion & Future Work 66
5.1 Conclusion . 66
5.2 Future work . 67

Bibliography 68

A Code 73
A.1 Use ESBMC to generate verification results . 73
A.2 Feature extraction . 83
A.3 Feature analysis . 86
A.4 Model training and evaluation . 91

Word Count: 17633

4

List of Tables
3.1 Parameter combinations of ESBMC . 43
3.2 Parameter feature code . 46
3.3 Data distribution . 47
3.4 Status code of benchmark . 49

4.1 Binary confusion matrix . 53
4.2 The confusion matrix of three classification problem 54
4.3 Calculate TP, FP, TN, FN of class A . 54
4.4 Confusion matrix of Decision Tree based on Array data set 56
4.5 Confusion matrix of SVM based on Array data set 57
4.6 Confusion matrix of KNN based on Array data set 57
4.7 Confusion matrix of neural network based on Array data set 57
4.8 Confusion matrix of decision tree based on Loop data set 58
4.9 Confusion matrix of SVM based on Loop data set 58
4.10 Confusion matrix of KNN based on Loop data set 58
4.11 Confusion matrix of neural network based on Loop data set 59
4.12 Confusion matrix of decision tree based on floats data set 59
4.13 Confusion matrix of decision tree based on floats data set 59
4.14 Confusion matrix of KNN based on floats data set 60
4.15 Confusion matrix of neural network based on floats data set 60
4.16 Statistics of results of benchmarks . 60
4.17 The scores of the four models on the Array dataset 61
4.18 The scores of the four models on the Loop dataset 62
4.19 The scores of the four models on the Floats dataset 62
4.20 Confusion matrix of Decision tree on combined data set 63
4.21 Decision tree’s ability to generalize across data sets 64
4.22 Time-consuming comparison . 64

5

List of Figures
2.1 Example code[1] . 19
2.2 The AST of example code[1] . 20
2.3 Overview of LLBMC’s approach[2] . 21
2.4 CBMC architecture[3] . 22
2.5 ESBMC workflow[4] . 23

3.1 Pipeline of the system . 39
3.2 The interface of viewing benchmarks . 40
3.3 The interface of viewing details of benchmark . 40
3.4 The interface of adding benchmarks . 41
3.5 The interface of prediction . 42

4.1 Comparison on Array data set . 61
4.2 Comparison on Loop data set . 62
4.3 Comparison on Floats data set . 63

6

Abstract

INCREMENTAL BOUNDED MODEL CHECKING USING MACHINE
LEARNING TECHNIQUES

Huajie He
A dissertation submitted to The University of Manchester

for the degree of Master of Science, 2021

This article mainly studies how to use machine learning technology to help ESBMC achieve better
results in SV-COMP. ESBMC is an SMT-based verification tool. It can adjust the used SMT solvers,
encoding methods and verification methods by selecting different parameters. Different parameter
combinations have different effects when verifying C programs. In this article, we convert the C
source code into AST, and then extract feature vectors from AST as samples. Similarly, we encode
the verification result of ESBMC into the label of the sample. Four machine learning models are
used in the experiment, and the data sets come from three sub-category data sets of SV-COMP. After
a comprehensive evaluation, it is found that the decision tree model is more suitable because its
training time is short and various evaluation benchmarks are better than other models.

In addition to evaluating the ability of a single model, this article also finds that the decision
tree has a good performance on the generalization ability of the cross-category set, which can be
used as a future research direction. Besides, we combined with the trained model and developed an
ESBMC parameter recommender, which performs well in the simulation scenario of the SV-COMP
competition. Compared with the ESBMC using the default parameters, it can help users save nearly
45% of the verification time. That is, it has a certain practical significance.

7

Declaration
No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

8

Copyright
i. The author of this thesis (including any appendices and/or schedules to this thesis) owns cer-

tain copyright or related rights in it (the “Copyright”) and s/he has given The University of
Manchester certain rights to use such Copyright, including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic copy, may
be made only in accordance with the Copyright, Designs and Patents Act 1988 (as amended)
and regulations issued under it or, where appropriate, in accordance with licensing agreements
which the University has from time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intellectual prop-
erty (the “Intellectual Property”) and any reproductions of copyright works in the thesis, for
example graphs and tables (“Reproductions”), which may be described in this thesis, may not
be owned by the author and may be owned by third parties. Such Intellectual Property and Re-
productions cannot and must not be made available for use without the prior written permission
of the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and commercial-
isation of this thesis, the Copyright and any Intellectual Property and/or Reproductions de-
scribed in it may take place is available in the University IP Policy (see http://documents.

manchester.ac.uk/DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction dec-
larations deposited in the University Library, The University Library’s regulations (see http:

//www.library.manchester.ac.uk/about/regulations/) and in The University’s policy
on presentation of Theses

9

Acknowledgements
I want to thank my mentor Lucas for providing very detailed guidance and a lot of help for this article.
He is a patient and experienced scholar, and I am very happy to write this article under his supervision.
In addition, I would also like to thank my parents for their support of my postgraduate studies at the
University of Manchester. Finally, I would also like to thank my girlfriend Ruixiang and my cute
puppy Lemon, who encouraged me to face and solve challenges.

10

Chapter 1

Introduction
1.1 Project description

This project is based on ESBMC and machine learning technology, and the data set comes from the
benchmarks of SV-COMP over the years. ESBMC is a mature C program verification tool, based
on satisfiability theory, can be used to test single-threaded or multi-threaded C/C++ programs[4].
This project mainly uses ESBMC with different parameter combinations to verify the C source files
obtained from SV-COMP, and record the effects and time. Furthermore, we combine the verification
results with the features extracted from the C source file to form a feature vector and label for machine
learning model training.

Feature engineering is an important part of this project, which can be divided into three parts:
feature selection, feature extraction and feature construction. The goal of feature selection is to obtain
the representative attributes of the C source file. The method is to carry out manual screening based
on expert experience. The purpose of feature extraction is to extract the corresponding features from
the C source file. At first, we convert the C source file into an Abstract Syntax Tree(AST). After that,
each child node is obtained from the AST. At last, the number of different types of child nodes is
counted. The purpose of feature construction is to combine feature vectors obtained from C source
files and ESBMC parameters into an overall feature vector for machine learning training.

This project uses three sub-category data sets obtained from SV-COMP, namely “Array”, “Floats”
and “Loop”. For each sub-category data set, different ESBMC parameters must be used to generate
training samples required for machine learning. In order to speed up this process, this experiment
uses Python’s multi-process technology. For machine learning, four models of Support Vector Ma-
chine(SVM), Decision Tree(DT), K-nearest Neighbors(KNN) and Neutral Network(NN) are used.
After testing, the DT’s performance on the three sub-category data sets is significantly better than
the other three models. Therefore, the DT is used as the model of the ESBMC automatic parameter
predictor.

1.2 Problem description

The Competition on Software Verification (SV-COMP) is an annual comparative evaluation of fully-
automatic software verifiers for C and Java programs[5], and ESBMC is a context-bounded model
checker used for the verification of C programs[4]. The purpose of this project is to discuss how to
help ESBMC achieve good results in SV-COMP.

SV-COMP uses the verification time to evaluate the performance of different software verification
tools. Therefore, we need to shorten the ESBMC verification time as much as possible to get a good
result.

For each verification task, we can choose 5 types of SMT solvers, 3 types of encoding methods

11

12 CHAPTER 1. INTRODUCTION

and 3 types of verification methods, so ESBMC can choose more than 40 parameter combinations.
The verification time will also be different when ESBMC uses different parameter combinations.
According to our previous experimental results, the best parameter combination can get the result in
milliseconds, while the worst parameter combination needed more than 1 hour.

Due to the time limitation in SV-COMP, ESBMC users cannot traverse all parameter combina-
tions, they usually choose parameter combinations based on the experience of experts. However,
most of the selected parameter combinations did not have a satisfactory result. Therefore, we need
to develop a parameter prediction model based on machine learning to automatically help ESBMC
users choose the appropriate parameter combination.

In order to build this model, our experiment will be divided into five parts:

1. Interface

We have developed an interface to help users manage data sets visually.

2. Feature engineering

Feature engineering is divided into three parts, they are feature selection, feature extraction, and
feature construction.

3. Preparing and preprocessing data

We obtain the relevant C source files which need to be tested from SV-COMP, and then let
each C program run with different ESBMC parameter combinations, and record the verification
results and verification time.

4. Training model

In this experiment, we use four different machine learning models. After comparing the effects,
we choose a model with excellent effects as the best model.

5. Automatic ESBMC parameter predictor

We combine the model to develop an automatic ESBMC parameter predictor, which can predict
the new C source file and give the ESBMC parameters with the highest execution efficiency.

1.3 Aim and Objectives

The goal of this project is to obtain a prediction program that can automatically match the optimal
ESBMC parameters for different SV-COMP benchmarks. In order to achieve this goal, we have to
complete these steps.

1. Build a data set for machine learning

We extract three sub-category data sets from SV-COMP Each sub-data set has a large amount of
C source files to be verified. In order to obtain the label for machine learning, we use ESBMC
with different parameters to verify the C source file one by one and record the verification

1.4. LITERATURE REVIEW 13

results and time-consuming. Due to a large number of C source files and too many parameter
combinations that need to be matched, we use python’s multi-process technology to speed up
this process.

2. Interface for managing data sets

We develop a visual interface to help manage the SV-COMP data set used in this project. Users
can intuitively observe the verification results and time-consuming of different C source files
with different ESBMC parameters. Moreover, users can expand the data set by adding new C
source files.

3. Feature Engineering

First, we use the python-based pycparser library to convert the C source code into an AST. After
that, we count the types and numbers of representative child nodes in the AST. Next, convert-
ing them into feature vectors. In the end, combining the different parameter combinations of
ESBMC to construct a feature vector for machine learning.

4. Machine learning

We use four machine learning models for training. By evaluating and comparing the perfor-
mance of the four machine learning models on three sub-category data sets, we select the opti-
mal model which used in this experiment.

5. Automatic prediction of ESBMC parameters

For a new C source file to be verified, we use a machine learning model to predict its most
suitable ESBMC parameters, then analyze and evaluate the result as a whole. In addition, we
compare its actual performance to evaluate the effectiveness of the project.

1.4 Literature review

Model-checking[6] technology is normally used by chip design companies to integrate them into their
quality assurance process. The term Model Checking was coined by Clarke and Emerson [7] in the
early eighties. The symbolic model checking [8][9] is the first breakthrough. The combination of
symbolic model checking and Binary Decision Diagrams(BDD) [9][10], makes it possible to verify
a large number of real systems for the first time. Since then, this technology has been greatly de-
veloped recent years with the support of the industry[11]. However, due to the amount of memory
required to store and manipulate BDD, comprehensive verification of many designs is still beyond
the capabilities of BDD-based symbolic model checkers. So in 1994, Biere et al.[12] proposed a
new technology called Bounded Model Checking (BMC). Although it does not solve the complexity
problem of model checking, experiments have proved that it can solve many problems that cannot
be solved based on BDD technology. The BMC problem can be effectively reduced to a proposition
satisfiability problem, so it can be solved by the SAT method instead of BDD. However, the user

14 CHAPTER 1. INTRODUCTION

must provide the number of loop limits k that should be explored. The SAT program will not en-
counter the space explosion problem based on the BDD method. Modern SAT solvers can handle
proposition satisfiability problems with hundreds of thousands or more variables. But with increasing
system complexity, SAT solvers are increasingly being replaced by satisfiable modality theory (SMT)
solvers. Combine these breakthroughs, Mikhail Ramalho et al. improved the k-induction algorithm
and proposed an SMT-based verification tool named ESBMC[13].

1.5 The main contribution of our work

ESBMC, as an SMT-based tool, has been developed by leaps and bounds in recent years. However,
the user is still required to participate in order to determine the appropriate parameters when faced
with a new verification task. As the scale of the verification task grows, frequent user participation in
this process will bring a lot of labour costs. Moreover, the model of relying on expert experience will
bring the risk of more errors as the number of problems increases. We develop an ESBMC parameter
predictor based on machine learning, which can automatically construct a predictive model based on
prior information and complete parameter prediction. The best model has an accuracy rate of 88%.
In addition, in experiments that simulate actual verification scenarios, our parameter predictor can
save nearly 45% of verification time compared to ESBMC using default parameters. This proves that
our predictor can help ESBMC to automatically complete the parameter selection without relying on
expert experience. This predictor can better help ESBMC to approach its performance limit as much
as possible in each verification task.

1.6 Structure of the Document

The overall structure of this article contains five chapters.

1. Introduction

This chapter is mainly an overview of the project, including the project overall introduction, the
project-specific description, the aiming and objectives, and the literature review related to the
project.

2. Background

This chapter is mainly an introduction to some background knowledge involved in the project,
divided into two aspects. The first aspect is bounded model checking, and the second aspect is
machine learning related content. Bounded model checking mainly involves the introduction of
SV-COMP competition and related knowledge of ESBMC. Machine learning mainly involves
an overview and analysis of the principles of four machine learning algorithms used in this
experiment.

3. Research Methodology

1.6. STRUCTURE OF THE DOCUMENT 15

This chapter mainly discusses in detail the overall design, architecture, selected technical solu-
tions and specific technical implementation details of the experiment. The difficulties encoun-
tered in the experiment and the solutions adopted are discussed, and the specific experimental
methods of each part are demonstrated in detail.

4. Results Evaluation and Discussion

This chapter mainly discusses the evaluation plan of the experimental results and further analy-
sis of the experimental results. It introduces in detail the current mainstream evaluation schemes
in the industry and their specific applications in this experiment.

5. Conclusion and Future Work

This chapter mainly summarizes the whole article and gives conclusions. And discussed the
deficiencies in this experiment and the work that can be extended in the future.

Chapter 2

Background Knowledge
2.1 Background overview

Understanding of topic/problems The main goal of this project is to use machine learning to help
ESBMC achieve better results in SV-COMP. ESBMC is a verification tool full of potential. Achieving
better results in SV-COMP means that we can help ESBMC approach its performance limit, which is
very important for a verification tool.

So this chapter will introduce experimental data sources, verification tools and machine learning
algorithms. These introductions can help us better understand the details of the experiment and the
challenges and difficulties that will be encountered.

Awareness of the solutions to the technical challenges

1. This experiment needs to extract C source files from SV-COMP, so we need to understand the
composition and details of SV-COMP.

2. The main verification tool in this article is ESBMC. We will introduce the core theories of
ESBMC, which are bounded model checking and satisfiability modulus theory. In addition, we
also introduced LLBMC and CBMC, which are relatively well-known verification tools in the
industry, for comparison with ESBMC.

3. Feature engineering is a necessary pre-part of machine learning. For this reason, we will intro-
duce a structure that describes C source code, Abstract Syntax Tree, which is mainly used in
feature engineering.

4. In the machine learning part, we respectively introduce the classification of three current main-
stream machine learning methods, supervised learning, unsupervised learning and reinforce-
ment learning. Secondly, we introduce the principles of decision tree, support vector machines,
k-nearest neighbors algorithm and neural network respectively. Finally, we introduce solutions
to the main problems faced by machine learning, stochastic gradient descent and GridSearchCV.

2.2 SV-COMP

The main goal of the International Software Verification Competition (SV-COMP) is to verify the
accuracy and effectiveness of the system. It is currently one of the important standards in the field of
software security verification. It contains a benchmark repository that can be used to verify system
performance. The repository is suitable for loading ANSI C, Java language, and C language in SMT
format. The repository of SV-COMP consists of sets of different questions, each set contains multiple
benchmarks. The problem set contains the specification of the problem as well as the format and

16

2.3. BOUNDED MODEL CHECKING 17

different parameters of the program. category.prp represents the format, the mode of the program
defined by category.set, and category.cfg describes the different parameters in the C program. Each
benchmark includes procedures and parameters. Files with the suffix “.c” are the C programs waiting
to be verified, files with the suffix “.i” are the preprocessed C source files, and files with the suffix
“.yml” are the configuration files used to record the verification attributes and verification results. The
main difference between files with “.c” and “.i” suffixes is that C source files with “.i” suffixes have
been preprocessed. The preprocessing includes but is not limited to deleting comments, unnecessary
blank lines, the value of various types of macro definitions, and storing the preset values of the macro
definitions in relevant variables.[5]

During the verification process, SV-COMP defines terms to represent different sets of questions,
including but not limited to “Arrays”, “Floats”, “Loop”, “Mensafety”, “Recursive” and “Termina-
tion”. The main problem sets involved in this article are “Arrays”, “Floats” and “Loops”.

When the verification process is completed, the benchmark verification results include answers,
witnesses, and time. Answer indicates whether the verification task conforms to the specification.
True means that no counterexamples can be found under the current parameter configuration, which
can be regarded as conforming to the specification. False means that counterexamples can be found
under the current parameter configuration, which can be regarded as not conforming to the specifica-
tion. Unknown means that the current parameter configuration cannot complete the verification task
due to time or memory constraints.

SV-COMP has a great influence on software verification and is regarded as a benchmark in this
field. Currently, SV-COMP can be used to follow the SMT format generated by ANSI C, Java, and C
languages.[5]

In this experiment, we will use three sub-category data sets, “Array”, “Loop” and “Floats”. Each
data set contains multiple benchmarks. We obtain the required C source files by identifying the files
with the suffix ‘.c’.

2.3 Bounded model checking

2.3.1 SAT

Boolean satisfiability (SAT) problem has been continuously improved since the 1990s[14]. This is
a well-known decision-making problem, including determining whether a proposition can satisfy a
logical formula and assigning appropriate values to the variables of the formula[15]. Therefore, all
SAT algorithms require the worst-case exponential time, unless P = NP, which means that none of
the currently known algorithms can solve this problem in the worst case. When the problem exists,
however, modern SAT algorithms are quite productive in dealing with large search spaces by using
the structure of the problem. Many related optimization and decision-making problems have been
extended from SAT, and these problems will be called extensions of SAT. At present, one of the most
promising expansions of SAT is Satisfiability Modulo Theories (SMT)[16]. The expansion of SAT
generally uses the same algorithm technology as SAT or directly uses SAT as the core engine.

A propositional formula is composed of a set of propositional variables, and a single propositional

18 CHAPTER 2. BACKGROUND KNOWLEDGE

variable can be expressed as x, y, z. Variables can be assigned a logical value of 0 or 1, or they can be
unassigned. If all variables are assigned in 0, 1, the propositional formula called a complete assign-
ment. Otherwise, it is a partial assignment. Most SAT algorithms require propositional formulas to be
represented in Conjunctive Normal Form (CNF)[17]. Therefore, SAT mainly solves the satisfiability
problem of CNF formulas. A CNF formula can also be regarded as a set of clauses, and each clause
can be regarded as a set of literals. Given an assignment, clauses and CNF formulas can be expressed
as unsatisfactory, satisfied, or unresolved. When the clause is not satisfied, then all the literals of
the clause should be assigned the value 0. When the clause is satisfied, then the literal of at least
one clause is assigned the value 1. When the clause is not resolved, the clause is not resolved. Not
dissatisfied nor satisfied. A CNF formula is satisfied if all its clauses are satisfied, and when at least
one of its clauses is not satisfied, it is not satisfied. Otherwise it cannot be resolved.[15]

SAT theory is the basic part of SMT theory, and SMT theory can be better understood by under-
standing SAT theory.

2.3.2 SMT

The satisfiability modulus theory (SMT) problem is a decision-making problem about the logic for-
mula of the combination of the theory and the equation expressed in the classical first-order logic.
SMT can be considered as a form of constraint satisfaction problem, therefore it is a formal method
of constraint programming. Formally speaking, an SMT instance is a formula in first-order logic, in
which some functions and predicate symbols have additional explanations, while SMT is a question of
determining whether such formulas are satisfactory. Most SMT solvers only support their quantifier-
less fragment logic. The SMT solver is a tool for solving SMT problems, it is a constraint solver. A
constraint is a statement that specifies the properties of the solution to be found in this context.[18]

SMT works as follows. First of all, for the constraints that must be met, the SMT solver will try
to find a solution that satisfies the formula. If there is a solution, then the formula is satisfactory. If
the solution does not exist, then the formula is unsatisfiable. The SMT solver is an extension of the
SAT solver. It solves the constraints related to (written) propositional logic. In addition, it can resolve
constraints involving (written) predicate logic with quantifiers. Simply put, the SMT solver is a SAT
solver plus a decision program. Generally, SMT solvers are more powerful than SAT solvers.[16]
There are many SMT solvers, such as Z3[19], STP[20], Yices[21], Alt-Ergo[22] and Boolector[23].

The SMT solvers mainly involved in this experiment are Boolector, Z3, Yices, MathSAT[24] and
CVC4[25]. They are implemented based on different architectures. Since the experiment does not
involve the analysis and tuning of specific SMT solvers, we will not introduce them in detail.

2.3.3 Abstract syntax tree

The Abstract Syntax Tree(AST) is a tree constructed to represent the abstract syntax structure of the
source code. Each node of the tree represents a structure of the source code. It has been widely used
by various programming languages and software testing tools. [26]

The nodes of AST correspond to different structures and symbols. Compared with source code,

2.3. BOUNDED MODEL CHECKING 19

AST is more abstract and can represent the structure and characteristics of source code. This is
because it ignores a lot of grammatical details, such as blank lines, punctuation and delimiters. For
example, AST ignores the parentheses, they are not explicitly represented in the AST, so they are not
a single node. However, the if-condition-then structure is represented as a single tree node with three
branches. This is a significant difference between abstract syntax trees and concrete syntax trees. In
this article, AST is mainly used to represent the specific structure of the source code, and it has some
attributes that can significantly help us extract representative information of the source code. First
of all, each node of the AST already contains various attributes, and this information can be further
processed or modified during processing. Secondly, AST does not contain unnecessary symbols, and
there is no need to pre-process them in the experiment. In addition, since the programming language
is a natural language, the language is inherently ambiguous. AST can help us obtain contextual
information to avoid such risks. Finally, the AST is a tree structure, which can be easily retrieved and
traversed.[27]

Compared with parse trees, the height and the element number of AST is small, which means that
its generation speed is very fast, and we don’t need to spend a lot of time obtaining and parsing the
AST tree.

In this experiment, AST is used in the feature engineering part, and feature vectors are constructed
by extracting and counting the number of different types of child nodes in AST. Figure 2.1 is an
example code, and figure 2.2 is the AST generated by code 2.1. This example can clearly tell us the
correspondence between the code structure and the AST.

Figure 2.1: Example code[1]

20 CHAPTER 2. BACKGROUND KNOWLEDGE

Figure 2.2: The AST of example code[1]

It can be seen from the figure 2.1 and figure 2.2 that a function define contains function parameters
and function body. The function body contains specific variable defines and function calls. The
variable define contains the assigned statement, and the function call contains the relevant parameters
used by it.

2.3.4 BMC

The Bounded Model Checking Problem (BMC) based on Boolean Satisfaction (SAT) has been intro-
duced as a technical supplement to the Binary Decision Diagram (BDD), and the main purpose is to
alleviate the state explosion problem[28]. In short, it is a verification method that checks the negation
of a given attribute in a certain step.

The basic idea is: firstly, use the satisfiability of the boolean formula to construct a boolean
formula. Next, verify within the given boundary K. If there are counterexamples at the depth K and
the depth is smaller, we will regard it as satisfiable. In this process, the SAT checker is used to verify
whether it can be satisfied. In the BMC of a software system, the limit k limits the number of loop
iterations and recursive calls in the program.

With the development of SMT technology, the SMT solver can be used as a backend to solve the

2.4. VERIFICATION TOOLS BASED ON BMC THEORY 21

generated verification condition. Unlike SAT, SMT does not use propositional variables to encode
various determinable theoretical predicates but saves them in boolean formulas. These problems are
handled by special decision-making programs. In the BMC given to SMT, it finds the corresponding
non-quantifier formulas from the decidable self of the first-order logic at first, and then use SMT to
check their satisfiability.[29]

2.4 Verification tools based on BMC Theory

2.4.1 LLBMC

LLBMC is a program used to find C\C++ program errors and runtime errors. It uses SMT solver for
the theory of bitvectors and arrays based on BMC, which makes it possible to achieve single bits of
accuracy. It has two notable features. The first is that it can use store and load to support any type of
conversion. This feature comes from its bit-precise memory model. The second is that it operates on a
compiler intermediate representation (IR). This strategy has three advantages: Firstly, the syntax and
semantics of IR are simpler than C\C++ and easier to implement; secondly, IR is closer to the specific
execution compared with source code, this is because the compiler has solved most of the ambiguity
problems; finally, LLBMC can analyze most programming languages as long as the IR generated by
the compiler can be obtained.[2]

Figure 2.3: Overview of LLBMC’s approach[2]

LLBMC runs on the IR[30] of LLVM, and LLVM is an abstract language based on SSA. Figure

22 CHAPTER 2. BACKGROUND KNOWLEDGE

2.3 is the approach of LLBMC. LLBMC does not require a lot of interaction with users, which means
that it can automate the verification process, which saves users time and improves efficiency. In
addition, LLBMC rarely generates false alarms due to its high accuracy.

2.4.2 CBMC

The C Bounded Model Checker (CBMC) currently uses MiniSat 2.2.0. as the backend to verify
whether there is no violation of the assertion under the given loop unrolling boundary. CBMC uses
GOTO programs as intermediate representation. First, CBMC generates a GOTO program for each
C function found in the parse tree. In addition, it adds a new main function, which first calls the
initialization function of the global variables, and then calls the original program entry function. At
this stage, CBMC also converts the GOTO statement into static single assignment (SSA) form. In
addition, CBMC can also supports SMT solver as a backend. The advantage of CBMC is that its
performance is stable and it is suitable for most problem categories.[3] Figure 2.4 is the architecture
of CBMC.[31]

Figure 2.4: CBMC architecture[3]

2.4.3 ESBMC

ESBMC is a context-bounded model checker that can automatically verify the predefined security
properties and user-defined program assertions in C programs. For each verification task, ESBMC
can select different SMT solvers, encoding methods and verification methods. It will has three differ-
ent results: verification success, verification failure and time out. When we use different parameter
combinations to check the C program, the time taken for each parameter combination is different.[4]

When we use ESBMC to verify a C program, there are three parameters that can be configured.
They are SMT solvers, encoding methods and verification methods. ESBMC provides five different
SMT solvers: –z3, –boolector, –yices, –mathsat and –cvc. There are three encoding methods: –
ir, –fixedbv and –floatbv. Verification methods have three types: –k-induction, –falsification and
–incremental-bmc.

A standard ESBMC command line is as follows:

esbmc example.c –z3 –fixedbv –incremental-bmc –max-k-step 10 .

2.5. MACHINE LEARNING 23

In the command line, example.c is the name of the C program that needs to be verified, –z3
represents the type of SMT solver to be called, –fixedbv uses the encoding method, and –incremental-
bmc represents the verification method.

ESBMC currently uses clang[32] as the front-end component, and uses the Control-flow Graph
(CFG) Generator to convert the AST into an equivalent GOTO program. Then ESBMC symbolically
executes the GOTO program. The program can unroll the loop k times, generate the corresponding
static single assignment (SSA) form, and derive all the security attributes to be checked by the SMT
solver. Finally, ESBMC uses five solvers as backends, namely Boolector (default), Z3, MathSAT,
CVC4 and Yices. In addition, ESBMC currently implements a Python API to help developers gain
access to the inside of the verification process.[4] The whole workflow is shown as figure 2.5.

Figure 2.5: ESBMC workflow[4]

2.5 Machine learning

2.5.1 Machine learning overview

Machine learning is an important research part in the field of artificial intelligence, involving many
disciplines such as Probability Theory, Statistics, Approximation Theory, Convex Analysis and Algo-
rithm Complexity Theory. Machine learning is essentially an algorithm that obtains rules by analyzing
data and uses the rules to predict unknown data. It can complete learning, reasoning, and decision-
making without manual interaction. The machine learning algorithm will build a mathematical model
based on sample data, and use the model to predict unknown data.[33]

The field of machine learning has significant changes in the past ten years. It has gone from a
purely academic and research field to a wide range of applications in various fields, such as recom-
mendation systems. Nowadays, companies are collecting user data, such as like types, clicks on links,
responses. After that, they use machine learning to find what may interest their users.[33]

Machine learning is generally divided into supervised learning, unsupervised learning and rein-
forcement learning. The main method used in this experiment is supervised learning.

2.5.1.1 Supervised learning

The main idea of supervised learning is to predict unknown samples based on the knowledge of
existing experience. More specifically, it uses labelled data sets to train models to classify results.

24 CHAPTER 2. BACKGROUND KNOWLEDGE

According to the different types of classification categories, supervised learning tasks are roughly
divided into classification and regression.[34]

Classification is the most common supervised learning problem. Its most basic prototype is a
binary classification problem, that is, the total number of classifications is two, and the model clas-
sifies the prediction results into two categories. When the number of classifications exceeds two, the
problem becomes a multi-classification problem. Commonly used models include naive bayes and
decision trees. The difference between classification and regression is the type of output variable.
Qualitative output is called classification, or discrete variable prediction; quantitative output is called
regression, or continuous variable prediction. Regression is often used for continuity data such as
housing prices and rainfall. Commonly used models include support vector machines and k-nearest
neighbours.

The data used in supervised learning can be divided into three categories: training set, validation
set and test set. The data can be text, image or audio. At first, we need to extract the required features
to form a feature vector. Next, use these feature vectors together with the corresponding labels as
the input of the machine learning algorithm to train a predictive model. The same feature extraction
method is applied to the train data set and test set data. Finally, the prediction model is trained on
the training data set and tested on the test data set. The main purpose of the training set is to train a
model to recognize potential patterns, then it can identify unlabeled samples in the test data set with
the highest possible accuracy. The validation set is to ensure that the model is not overfitting. The
testing process is used to evaluate and tune the effect of the model.[34]

However, supervised learning requires the use of labelled data for training, which places re-
quirements on data acquisition and labelling. If the data is insufficient, it will lead to over-fitting
problems[35].

2.5.1.2 Unsupervised learning

Unsupervised learning is a training method in machine learning. Compared with supervised learning,
the criterion is whether there is supervision (supervised). If the input data has no labels, it is unsu-
pervised learning. It is essentially a statistical method, whose main goal is to discover some potential
structures in unlabeled data[36]. There are two main methods of unsupervised learning. The first
is clustering. Clustering is an automatic classification method. After clustering, there is no obvious
correspondence between the data and the label. The second is data dimensionality reduction. Dimen-
sionality reduction is to reduce the complexity of the data while preserving the relevant structure as
much as possible.[36] The main algorithm is PCA[37].

There are three main characteristics of unsupervised learning:

1. Uncertain training goal

In unsupervised learning, the results cannot be predicted and therefore the training results ob-
tained often deviate from cognition. This means that there is very large uncertainty in the result
set.

2. No label is required for training data

2.5. MACHINE LEARNING 25

Unsupervised learning uses unlabeled categories data and will automatically summarize the
possible hidden patterns in the input data. After that, it will classify and label the original data.
In actual engineering, unsupervised learning often has advantages. This is because the cost of
manually labelling the input data may be very large. In addition, unsupervised learning does
not need to understand the input data, that is, there is no need to do too much preprocessing on
the original data, which greatly reduces the engineering cost.[38]

3. Training effect is harder to evaluate

Firstly, compared with supervised learning, the results produced by unsupervised learning
methods are not very accurate and reliable. This is because that the machine must look for hid-
den patterns in the original data, which may not be understood by humans. Secondly, because
the category in unsupervised learning is unknown, it means that there is no prior knowledge to
help the algorithm make corrections, which means that sometimes it is impossible to determine
the results of the analysis.[36]

Unsupervised learning has a significant advantage, which can be used for real-time learning. Super-
vised learning basically requires offline learning. This gives people involved in machine learning the
opportunity to interact with the machine when analyzing discrete data.[38]

2.5.1.3 Reinforcement learning

The goal of reinforcement learning is to make decisions by training machine learning models. In rein-
forcement learning, computers need to repeatedly experiment with problems to come up with different
solutions. This process is similar to a game. Experimenters can interact with the computer through
rewards or punishments. In this process, the computer will always try to maximize the total reward,
which means that it will continuously optimize itself to meet the requirements of the experimenter.
Similarly, it will learn from your own mistakes. The original model of this method comes from the
human learning process.[39]

In the process of reinforcement learning, the computer will not get any hints and suggestions from
the experimenters. The computer needs to perform a lot of calculations and simulations to optimize
its own strategy to obtain more rewards. The computer will start from a completely randomized
experiment and will continue to improve and expand its own strategy and methods until it obtains a
result that satisfies the experimenter. Reinforcement learning is one of the most powerful algorithms
at present. It can achieve better results when supported by equipment with sufficient computing
power.[39]

The main difference between reinforcement learning and supervised learning is that only partial
feedback about predictions needs to be provided to the computer. At the same time, experimenters
can produce positive results by continuously influencing the future state of experimental results. Re-
inforcement learning technology has broad prospects in-game AI and autonomous driving.

Reinforcement learning also faces some challenges. The first is how to simulate a complex ex-
perimental environment. For game AI, the game scene is very simple and fixed; but for automatic
driving, due to changes in the road environment, the experimental environment has a high degree of

26 CHAPTER 2. BACKGROUND KNOWLEDGE

complexity. Secondly, because the experimenter’s main interaction with the computer is only rewards
and punishments, this means that it cannot interfere with the training process. The computer has to
store and memorize a large amount of information, so when storing new information, it will delete
useful old information. Finally, like most machine learning algorithms, reinforcement learning will
fall into a local optimal problem, which means that the computer will be terminated early before
finding the optimal result.[40]

2.5.2 Decision tree

Decision tree is the simplest machine learning algorithm. It is easy to implement, highly interpretable,
fully in line with human intuitive thinking, and has a wide range of applications. Decision tree is a tree
structure. The internal nodes represent features and the leaf nodes represent labels[41]. A decision
tree can be constructed based on these sample data. When new data are to be predicted, a certain
feature value is used for judgment at the internal node of the tree, and the branch node to be entered
is determined according to the judgment result. This process keeps going down until the leaf node is
reached and the classification result is obtained.[42]

The three steps of decision tree algorithm:

1. Feature selection

Feature selection determines which features are used to make judgments. In the training data
set, there may be many features for each sample, and different features mean different effects.
Therefore, the function of feature selection is to filter out the features that are more relevant to
the classification results, that is, the features with strong classification ability.

2. Decision tree generation

Decision tree generation. After the feature is selected, it is triggered from the root node. The
information gain of all features is calculated for the node and the feature with the largest in-
formation gain is selected as the node feature, and then child nodes are established according
to the different values of the feature. Each child node is generated in the same way until the
information gain is small or there are no features to choose from.

3. Decision tree pruning

The main purpose of pruning is to prevent over-fitting and reduce the risk of over-fitting by
actively removing some branches.

2.5.2.1 ID3 algorithm

The core of the ID3 algorithm is to apply information gain to select features on each node of the
decision tree, and build the decision tree recursively. Information gain indicates the degree to which
the uncertainty of the class information is reduced by knowing the information of the feature. In
information theory and probability statistics, entropy is a measure of the uncertainty of random vari-
ables. The greater the uncertainty, the greater the entropy, the lower the uncertainty, and the smaller

2.5. MACHINE LEARNING 27

the entropy.[43] If X is a discrete random variable with a finite number of values, its probability
distribution is

P(X = xi) = pi, i = 1,2, · · · ,n (2.1)

Then the entropy of the random variable X is defined as

H(X) =−
n

∑
i=1

pi log pi (2.2)

Where n represents n different discrete values of X.
For random variables (X, Y), the joint probability distribution is

P(X = xi,Y = y j) = pi j, i = 1,2, · · · ,n; j = 1,2, · · · ,m (2.3)

The conditional entropy of random variable Y is defined as

H(Y |X) =
n

∑
i=1

piH(Y |X = xi) (2.4)

The difference between entropy H(Y) and conditional entropy H(Y|X) is called information gain.

Gain(Y,X) = H(Y)−H(Y |X) (2.5)

The main steps of the ID3 algorithm:

1. Start from the root node, calculate the information gain of all possible features, and select the
feature A with the largest information gain as the partitioning feature of the node

2. Select different values of feature A to create child nodes

3. Recursively call the above method on the child nodes to build a decision tree until the informa-
tion gain of all features is small or there are no features to choose from

Although ID3 algorithm puts forward new ideas, there are still many areas worthy of improve-
ment. For example, ID3 does not consider continuous features. If the length and density are con-
tinuous values, they cannot be used in ID3, which greatly limits the use of ID3. In addition, the
information gain is used as the criterion for selecting the optimal partition feature, but the information
gain will be biased towards those features with more values[44].

2.5.2.2 C4.5 algorithm

The C4.5 algorithm is an improvement of the ID3 algorithm. Different from ID3, C4.5 uses infor-
mation gain ratio[45] as the feature selection criterion instead of information gain. The information
gain Gain(D, A) of feature A to training data set D is defined as the difference between the empiri-
cal entropy H(D) of data set D and the empirical conditional entropy H(D|A) of D under the given
condition of feature A:

28 CHAPTER 2. BACKGROUND KNOWLEDGE

GainRatio(D,A) =
Gain(D,A)

HA(D)
(2.6)

2.5.2.3 Classification and Regression Tree

Classification and Regression Tree (CART) algorithm uses the Gini index[46] to select features. The
Gini index represents the impurity of the model. The smaller the Gini index, the lower the impurity
and the better the features. For a given sample D, assuming there are K categories and the number of
the k-th category is Ck, then the Gini index of sample D is:

Gini(D) = 1−
n

∑
i=1

p(xi)
2 (2.7)

If D is divided into two parts D1 and D2 according to a certain value a of feature A, then under
the condition of feature A, the Gini index of D is:

GiniIndex(D|A = a) =
|D1|
|D|

Gini(D1)+
|D2|
|D|

Gini(D2) (2.8)

2.5.3 Support vector machine

Support vector machine (SVM) is a supervised machine learning model, which is very fast and reliable
when the amount of data analyzed is limited. SVM is often used for binary classification problems.
After providing a set of labelled training data for each category, the SVM model can effectively
classify the training data. Compared with newer algorithms such as neural networks, SVM has a very
fast training speed when the number of samples is small (thousands), and it tends to be effective.
It makes this type of algorithm often exist as a baseline, which can be used to compare the effects
of other algorithms. Furthermore, SVM can be used for multi-classification problems, but it often
requires a longer training time.[47]

SVM is often used for linear classification, but kernel techniques can be used to make it a sub-
stantial non-linear classifier. The learning strategy of SVM is to maximize the interval, which can
be formalized as a problem of solving convex quadratic programming, and it is also equivalent to the
problem of minimizing the regularized hinge loss function. The learning algorithm of SVM is the
optimal algorithm for solving convex quadratic programming.

2.5.3.1 Linear SVM

Firstly, we need to introduce the linear classifier. We will start with the classic binary classification
problem. When given some data points, they belong to two different classes. Now we need to find
a linear classifier to divide these data into two classes. If x is used to represent data points and y is
used to represent categories (y can be 1 or -1, representing two different classes), the learning goal
of a linear classifier is to find a hyperplane in an n-dimensional data space. The equation of this

2.5. MACHINE LEARNING 29

hyperplane can be expressed as formula 2.9.

wT x+b = 0 (2.9)

We can find a lot of hyperplanes that can classify data by adjusting the values of w and b, then we
need to determine from these hyperplanes a hyperplane that is most suitable for separating the two
types of data. The criterion for judging the “best fit” is that the line has the largest interval between
the data on both sides of the line. Therefore, it is necessary to find the hyperplane with the largest
separation.

When the hyperplane wT x+ b = 0 is determined, we can obtain the distance between the point
x and the hyperplane by calculating

∣∣wT x+b
∣∣. When the point classification is correct, the sign of

wT x+b should be consistent with the sign of the mark y, where
(
y
(
wT x+b

))
can be used to indicate

the correctness of the classification. Among them, we call formula 2.10 as functional margin.

γ =
(
y
(
wT x+b

))
(2.10)

The minimum value of the function margin of the hyperplane (w, b) with respect to all sample
points (xi, yi) in T (where x is the feature, y is the result label, and i represents the i-th sample), it is
the hyperplane (w , b) about the function margin of the training data set T. As formula 2.11.

γ = minγi (i = 1 · · ·n) (2.11)

However, when changing w and b proportionally, the value of the function margin will change
when the hyperplane is unchanged. Therefore, geometrical margin is needed to define the distance
from the point to the hyperplane. Regarding the geometric margin, we denote the point where the
point x is projected vertically onto the hyperplane as x0, and the distance between x and x0 is the
geometric margin of the point x. According to the knowledge of geometric plane, we get the formula
2.12.

x = x0 + γ
w
‖w‖

(2.12)

Where ‖w‖ is the L2-Norm of w and w
‖w‖ is the unit vector. Continuing to derive the formula, we can

get 2.13:

γ =
wT x+b
‖w‖

(2.13)

From the formula 2.13, we can conclude that the geometric margin is the function margin divided
by ‖w‖.

Maximum Margin Classifier The greater the “margin” of the hyperplane from the data point, the
greater the confidence of the classification. Therefore, in order to make the classification confidence
as high as possible, the selected hyperplane needs to be able to maximize this “margin” value. From
the previous analysis, we need to use geometric margins to measure the maximum margin.

30 CHAPTER 2. BACKGROUND KNOWLEDGE

In summary, we need to traverse all the points to find the sum of their geometrical margins to
the hyperplane, and then find the hyperplane with the largest geometrical margin, which is the most
suitable hyperplane.

Support Vector For each data point x, we can find the corresponding vertical projection point x0
on the hyperplane. A vector can be obtained from point x0 to point x. For all vectors, the points with
the smallest absolute value on both sides of the hyperplane are the support vectors.

Hard margin The establishment of the hard-margin SVM model is based on the data being “linearly
separabl”. The so-called linearly separable means that there is no noise and the training data can be
perfectly divided into two categories. The hard-margin SVM model is constructed based on this
assumption, that is, assuming that the correctly classified sample points are on both sides of their
respective support vectors.

Soft margin In the hard margin, it has been assumed that the training data is strictly linearly sep-
arable, that is, there is a hyperplane that can completely separate the two types of data. But the as-
sumption of realistic tasks is often not exist. Therefore, a soft margin SVM is proposed, which allows
SVM to make mistakes on a small number of samples, relaxes the previous hard margin maximization
condition a bit, and allows a small number of samples to not meet the constraints.

2.5.3.2 Non-linear SVM

When the data cannot be linearly separable, we need to use some kernel techniques to implement
nonlinear SVM[48].

Kernel techniques Essentially, the kernel function is an inner product function, which defines an
inner product space. Therefore, the kernel function, like the ordinary inner product, can be regarded
as a function to measure the similarity of two vectors.[49]

For non-linear situations, the processing method of SVM is to select a kernel function k, and solve
the problem of linear inseparability in the original space by mapping the data to a high-dimensional
space.

Specifically, in the case of linear inseparability, the support vector machine first completes the
calculation in the low-dimensional space, then maps the input space to the high-dimensional feature
space through the kernel function, and finally constructs the optimal separation hyperplane in the
high-dimensional feature space. This can separate non-linear data that is not easily distinguishable on
the plane.[49]

The kernel function has polynomial kernel(2.14), gaussian radial basis function kernel(2.15) and
sigmoid kernel(2.16). Generally speaking, the gsaussian radial basis function kernel has a good effect
on most nonlinear data. The main features of using kernel functions are:

1. Long training time

2.5. MACHINE LEARNING 31

2. High accuracy

This is because that the ability to model very complex nonlinear decision boundaries is obtained
through the kernel function SVM and the prediction ability can be improved. However, the calculation
complexity is also increased, and then the time is increased. In addition, it also has a feature, that is,
compared with traditional naive Bayes and decision tree algorithms, SVM can complete numerical
predictions not just category predictions. This is very useful in many scenarios.

K
(
xi,x j

)
=
(
γxT

i x j +b
)d

(2.14)

K
(
xi,x j

)
= exp

(
−γ

∥∥xi− x j
∥∥2
)

(2.15)

K
(
xi,x j

)
= tanh

(
γxT

i x j +b
)

(2.16)

2.5.4 KNN

The KNN algorithm is a classifier. It compares the features of the unknown data with the correspond-
ing features in the training set and finds the top K data which are most similar, then the label of the
unknown data is the most frequent label among these K data.[50]

The description of the algorithm is:

1. Calculate the distance between the unknown data and each training data

2. Sort ascending the distances

3. Select the K points with the smallest distance

4. Count the category frequency of these K points

5. Return the category with the highest frequency among the first K points as the predicted classi-
fication of the unknown data

The shortcomings of the traditional KNN method mainly include[51]:

1. Slow classification

KNN is a lazy learning method. It stores all the training samples at first, and then temporarily
performs calculation processing when classification is required. For high-dimensional samples
or large sample sets, the time and space complexity are relatively high, and the time cost is
O(mn), where m is the spatial feature dimension of the vector space model, and n is the size of
the training sample set.

2. Strong dependence on sample library capacity

The recognition error of KNN is large when there are too many categories. This is because it
needs enough training samples.

32 CHAPTER 2. BACKGROUND KNOWLEDGE

3. Determination of K value

The KNN algorithm must specify the K value. If the K value is incorrectly selected, the clas-
sification accuracy cannot be guaranteed. Choosing a smaller K value is equivalent to using
training examples in a smaller field to make predictions. The “learning” approximation error
will be reduced. In other words, the decrease of the K value means that the overall model
becomes complicated and it is prone to overfitting. Choosing a larger K value is equivalent
to predicting with training examples in a larger field. Its advantage is that it can reduce the
estimation error of learning, but the disadvantage is that the approximate error of learning will
increase. The increase of the K value means that the overall model becomes simple. In addition,
it is completely unacceptable when k is equal to the number of samples.[50]

In terms of the amount of calculation, KNN is much slower than the supervised learning method.
Because it requires a lot of calculations when performing classification. In response to this problem,
most of the solutions so far are based on two considerations: reducing the sample size and speeding
up the search for K nearest neighbours.

In order to change the defection of the same feature in the traditional KNN algorithm, the feature
can be given different weights in the distance formula of similarity. For example, in the Euclidean
distance formula, different weights are assigned to different features. The weight of the feature is
generally set according to the role of each feature in the classification. The weight can be determined
according to the role of the feature in the entire training sample library, and the weight can also be
determined according to the classification role in the partial sample of the training sample.[52]

The training sample library is maintained to meet the needs of the KNN algorithm, including
adding or deleting samples in the training sample library. The maintenance of the sample library is
to use appropriate methods to ensure the size of the sample space. For example, samples that meet a
certain condition can be added to the database. At the same time, the database can also delete samples
when conditions are satisfied. Therefore, it can ensure that the samples in the training sample library
provide the relatively uniform feature space required by the KNN algorithm.

In practical applications, the cross-validation method is used to select the optimal K value. Split-
ting the training data of the sample into different training data set and validation data set, then using
training data set and validation data set to test the accuracy of the model respectively. Next, calculat-
ing the average value of the accuracy, which is the result of this cross-validation. Finally, applying
cross-validation to different hyperparameters, and selecting the hyperparameter with the highest ac-
curacy as the hyperparameter for model creation.[53]

2.5.5 Neural network

A neural network is a computational model with layers of connected nodes, and its hierarchical struc-
ture is similar to the structure of a neuron network in the brain. Due to neural networks can learn from
data, they can be trained to recognize patterns, classify data and predict future events. [54]

The specific method of the neural network is to subdivide the input into multiple abstract layers,
and the recognition pattern can be trained through a large amount of data. The behavior of the neural

2.5. MACHINE LEARNING 33

network is determined by the connection mode of the nodes of each abstraction layer and the weights
of these nodes. During training, the system will automatically adjust the relevant weights according
to the specified learning rules until the neural network normally performs the required tasks.

Inspired by the biological nervous system, neural networks combine multiple processing layers
through the parallel use of simple element operations. It consists of an input layer, one or more hidden
layers and an output layer. The layers are connected to each other by nodes or neurons, and each
layer uses the output of the previous layer as its input. Neural network application scenarios mainly
include supervised learning and unsupervised learning, classification, regression, pattern recognition
and clustering.[55]

2.5.5.1 Feed-forward neural network

A feedforward neural network [56] is a simple example of supervised learning. Neural networks have
three kinds of nodes: input nodes, hidden nodes and output nodes. It has two obvious characteristics:
the first is fully connected, which means that the neuron nodes of each layer use the output of the
previous layer as input. In addition, the nodes of each adjacent layer are connected to each other. The
second is that there is no cyclic connection between nodes, which means that there is no possibility
of interconnection between nodes on the same layer. Moreover, the feedforward neural network can
contain multiple hidden layers.[57] The neural network of this structure is mainly used in this article.

2.5.5.2 Features of neural network

1. High degree of parallelism

The basic unit of the artificial neural network is the neuron. Although the function of the neuron
is single and simple, when many of the same simple neurons are connected in parallel to form
a neural network, the parallel processing capability of the neural network is amazing. Neural
networks imitate the structure of the human brain. They are not only parallel in structure, but
also parallel and synchronized in operation and processing. The processing units of each layer
are operated at the same time. Due to the advantages of this structure, the computing unit of
the neural network can be distributed. The working speed of neural networks with parallel
processing capabilities is significantly higher than that of von Neumann computers with string
structure.

2. Non-linear global action

In a neural network, each neuron will receive input from other neurons. Combined with the
parallel network structure, the neurons can control and influence each other. This process is
essentially a non-linear mapping from the input state to the output state. From a global per-
spective, the overall performance of a neural network is a collective behavior rather than a
superposition of the performance of individual sub-networks. Non-linear relationships are the
reason why the human brain produces thoughts, and neural networks imitate this structure. Each
neuron generally has two states of activation and inhibition. Mathematically, it is a nonlinear

34 CHAPTER 2. BACKGROUND KNOWLEDGE

neural network. At the same time, neurons can store thresholds, and the network composed of
such neurons has better fault tolerance and storage capacity.

3. Associative memory function and good fault tolerance

The artificial neural network can store the processed data in the weights between neurons, and
combine its network structure to make it have associative memory. Additionally, due to this
information is distributed among different neurons in a distributed storage form, which makes
the neural network more fault-tolerant. Therefore, it is often used for feature extraction, cluster
analysis, etc. pattern association, classification and recognition Work.

Artificial neural networks can often learn from imperfect data or pictures. Since the weight
data after training is stored in a distributed manner, when a certain proportion of neurons are
not involved in the calculation, it will not have a particularly large impact on the function of the
system. This feature makes it have good generalization and fault tolerance in the face of noise
and missing data.

Since the overall behavior of the neural network depends on the mutual influence and restriction
of most of the neurons, it can simulate the human associative memory behavior.

4. Adaptive, self-learning function

Artificial neural networks have a structure similar to the human brain, as well as self-learning
and self-adaptive behaviors similar to humans. Self-learning means that as the amount of data
learned by the neural network increases, it can continuously modify the weights between neu-
rons to achieve the optimal strategy. Self-adaptation means that the neural network can find the
hidden association pattern between the input data and the output data, and then start learning.
This kind of learning does not require prior knowledge and pre-settings.

5. Distributed storage of knowledge

The artificial neural network stores knowledge in a distributed manner. Its system does not have
a specific storage structure, but stores information between neurons. Combined with its special
structure, neurons can split and reassemble information. When a neural network needs to extract
a set of information, it often requires multiple neurons to work together, and combined with
the activation signals distributed on different neurons, the neural network can quickly identify
similar patterns.

6. Non-convexity

The neural network depends on the activation function. When the activation function is at the
extreme value, the system will be relatively stable. Non-convexity refers to the existence of
multiple extreme values of a certain function, which can make the system have multiple steady
states and can make the system have good diversity.

2.5. MACHINE LEARNING 35

2.5.6 Gradient Descent

Many machine learning algorithms need to solve optimization problems at the end. Among various
optimization algorithms, the gradient descent method[58] is the simplest and most commonly used.

The essence of the optimization problem is to solve the extreme value of the function, which
may be a maximum value or a minimum value. Combined with calculus, when the derivative of the
function is 0, the extreme point can be found. Therefore, the essential method of gradient descent is
to find the extreme value in combination with calculus.

This process is very similar to the process of descending a mountain. The slope of the slope
is the derivative. In order to find the position of the bottom of the slope faster, we will choose the
steepest position to move forward each time, and then move forward a certain distance each time.
After repeated periods of time, enable reach to slopes. However, since there may be multiple extreme
points, the lowest point we currently find is not necessarily the optimal solution, so there will be a
local optimal problem.

The basic concept of gradient descent:

1. Learning rate: Learning rate is the length of progress in a certain direction in gradient descent.

2. Feature: Feature is the input part of the data sample.

3. Hypothesis function: In supervised learning, in order to fit the input sample, the hypothesis
function is used.

4. Loss function: In order to evaluate the fit of the model, the loss function is usually used to
measure the degree of fit. Minimization of the loss function means that the degree of fit is the
best, and the corresponding model parameters are the optimal parameters. In linear regression,
the loss function is usually the square of the difference between the sample output and the
hypothesis function.

The main methods of gradient descent are algebraic method and matrix method. The specific
tuning methods are:

1. Adjust the learning rate. In a specific algorithm implementation, the learning rate can take
different values. The specific adjustment method depends on the loss function. When increasing
the learning rate loss function becomes larger, we need to reduce the learning rate, and vice
versa. In addition, when the step size is too large, it will cause the iteration to be too fast, and
it may miss the optimal solution. On the contrary, if the step size is set too small, it will cause
the iteration speed to be very slow and the training time will be long.

2. Initialization of parameters. The selection of the initial value of the parameter greatly affects
the final result. Because gradient descent may only select local optimal values. Due to the
risk of a local optimal solution, it is necessary to run the algorithm with different initial values
multiple times and choose the initial value that minimizes the loss function.

36 CHAPTER 2. BACKGROUND KNOWLEDGE

3. Normalization. Because the value range of different features of the sample is different, it may
lead to slow iteration. In order to reduce the impact of feature value, the feature data can be
normalized, that is, for each feature x, its expectation and standard deviation can be calculated.
Subtracting the expectation from x and put the standard deviation at the end. In this way, the
new expectation of the feature is 0 and the new variance is 1, and the iteration speed can be
greatly accelerated.

With the deepening of the research on gradient descent methods, some gradient descent algorithms
have been proposed. The three main gradient descent methods are introduced below.

Batch Gradient Descent The batch gradient descent method is the most commonly used form of
the gradient descent method. The specific method is to use all the samples to update the parameters.

Stochastic Gradient Descent The stochastic gradient[59] descent method is actually similar to the
batch gradient descent method. The difference is that the data of all m samples is not used when
calculating the gradient, but only one sample i is selected to find the gradient. It is at two extremes
to the batch gradient descent method. One uses all data for gradient descent, and the other uses
one sample for gradient descent. Naturally, their respective advantages and disadvantages are very
prominent. Regarding the training speed, the stochastic gradient descent method only uses one sample
to iterate at a time, and the training speed is very fast, while the batch gradient descent method cannot
satisfy the training speed when the sample size is large. For accuracy, the stochastic gradient descent
method is used to determine the direction of the gradient with only one sample, resulting in a solution
that may not be optimal. For the convergence speed, because the stochastic gradient descent method
iterates one sample at a time, the iteration direction changes greatly, and it cannot quickly converge
to the local optimal solution.

Mini-batch Gradient Descent The biggest difference with batch gradient descent is that when
updating parameters, all training samples are not taken into account, and then the sum is divided
by the total. This method combines batch gradient descent and stochastic gradient descent, and can
obtain more accurate results at a faster training speed.[60]

2.5.7 Resampling methods

Because the available sample capacity is limited, different random or non-random sample sets can
be obtained through repeated sampling. Using these different sample sets to train the model can find
the relatively best-performing model in all available training sample sets. Because general machine
training requires a training set to train the best model, and then the test set is used to finally test the
model (the best model in the training set does not mean that the test set has the best experimental
results). At this time, we need to split the sample (generally 75-80% is the training set, and 25-20%
is the test set). The following introduces two concepts that are only available in cross-validation: the
true training set in the training set, which is the data set used to train the model. By continuously
adjusting the parameters, the model fits best and the deviation is minimized. The rest of the training

2.6. SUMMARY 37

set is used as the internal validation set. The test set is finally used to observe the predictive ability
of the trained model. However, because the number of data sets is small in some cases, and the test
set can only be used once. Therefore, the training set is divided into a true training set (for modeling)
and a verification set (for verifying the model), so that the ability of the model can be tested during
model training.[61]

The generalized data set grouping scheme is 3:1 (the training set is 3 times or more of the test
set). Then the filtered training set is further divided into the true training set and the validation set for
finding the best parameters for modeling and finding the best model.

2.5.7.1 Cross validation

The cross-validation family is divided into k-fold cross-validation (K-fold CV), leave-one-out cross-
validation (LOOCV), repeated cross-validation (Repeated CV), and Monte Carlo (LOGCV). K-fold
CV is mainly used in this article. K-fold CV divides the training set into k-parts, each time one
is selected as the validation set, and the remaining k-1 is the true training set. K different training
results are produced (that is, there are k different model parameters); leave-one-out cross-validation
is a special case of k-fold validation, that is, the cross-validation method when k is exactly equal to
the number of samples. Because the number of groups is very large, the operation efficiency is poor;
repeated cross-validation is to repeat the k-fold cross-validation n times. Since it is performed n times
more, the running efficiency is slower, but due to more groupings, the fitting ability and predictive
ability of this model are marginally improved; Monte Carlo sampling is the standard for dividing
the training set and the validation set each time. In the past, K-fold CV used a fixed data set as the
verification set, but the number of groups set aside by Monte Carlo each time as the verification set is
different. For example, a total of ten samples are taken and divided into five groups. The first time is
3:2, then the second set is not reserved, which means all are used for training, and the third time may
be 4:1.[53]

2.6 Summary

In this chapter, we mainly include a brief introduction and development of some technologies in-
volved in this article. It mainly contains four parts, namely SV-COMP, Bounded model checking,
Verification tools based on BMC theory and Machine learning. Since the experiment in this article
is based on SV-COMP, an international competition, we introduce the architecture and content com-
ponents of SV-COMP at first. After that, we introduced the theory of Bounded model checking and
three tools developed based on the theory, LLBMC, CBMC and ESBMC. ESBMC is the software
verification tool used in this article. Finally, we introduced machine learning related technologies and
four algorithms, namely K-nearest neighbours, Support vector machines, Decision Tree and Neural
network. We focus on the basic principles, advantages and disadvantages of these four algorithms,
and some techniques that can be used for optimization.

Chapter 3

Research Methodology
3.1 System overview

In order to discuss the experimental details in a better way, this article will discuss five aspects. In
this project, they are the interface, preparing and preprocessing data set, feature engineering, machine
learning models, and programs that can automatically predict the optimal parameter combinations.
The pipeline of the system is as figure 3.1 shown.

The first part is the interface. The interface uses Java Web, React and Mysql technologies. The
main target is to provide a visual interface to help users track benchmark training. Users can add a new
benchmark as an expansion of the data set at any time. In addition, real-time prediction of the new
benchmark provided by the user can be completed to determine the optimal parameter combination
that matches the benchmark.

The second part is the preparation and preprocessing of the data set. We use the machine learning
model with supervised learning in this experiment, as a result, we need to obtain data with labels. The
main points of the experiment are as follows:

1. For the data in SV-comp, we extract the C source file with the suffix “.c” and use the different
ESBMC parameter combinations in 239 to generate the benchmark for this experiment.

2. Divide the training set and test set. In order to get closer to the real situation, we use the SV-
COMP year 2016-2020 data as the training data set, and SV-COMP year 2021 data as the test
set.

3. For each C source file, we can verify with 239 ESBMC parameters. That is, each C source file
can generate 239 corresponding benchmarks for this experiment.

4. In order to obtain the label, we used a multi-process-based python program, which uses ESBMC
with different parameters to verify the C source file. We classify and record the results returned
by the verification.

The third part is feature engineering. The experimental process is as follows:

1. We use pycparser to generate an AST from the C source file, after that, extracting features from
the AST and convert them into feature vectors.

2. Generate parameter vectors corresponding to 239 different ESBMC parameters.

3. Combine the feature vector and parametric vector as the feature vector of the benchmark.

The fourth part is the machine learning model. This experiment uses four machine learning mod-
els, namely SVM, Decision Tree, KNN and Neural network. And use GridSearchCV technology to

38

3.2. INTERFACE 39

automatically adjust the model parameters. In the end, we use the accuracy of cross-validation as the
evaluation standard.

The fifth part is the program of automatically predicting the optimal parameter combination. The
main idea of this part is to generate the corresponding 239 benchmarks for the C source file to be
predicted, and then use the trained model to predict the verification results of these 239 benchmarks.
At last, taking the best result as the recommended parameter output.

Figure 3.1: Pipeline of the system

As figure 3.1 shown, our system uses an interface to manage SV-COMP benchmarks and extracts
C source files from those. For each C source file, we need to process two steps separately: The first
step is to convert the C source file to AST, and then extract features from AST. At last, we combined
it with ESBMC’s parameter vector to become a feature vector for machine learning. The second step
is to use ESBMC with different parameter combinations to verify the C source file and to classify
the verification result and verification time. Moreover, we use a status code to indicate its specific
classification. After completing these two steps, we use the feature vector obtained in the first step as
the machine learning training sample, and the status code obtained in the second step as the label of
the sample. Finally, the sample and label are used as the input of the machine learning model. After
evaluating the performance of the four models on the three sub-category data sets, we choose the best
performing model as our prediction model and build our parameter predictor.

3.2 Interface

This experiment provides users with an interface to facilitate users to manage all data sets visually.
The main functions are as follows:

1. View the status of each benchmark in current data sets and the actual running results, as picture
3.2 shown:

40 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.2: The interface of viewing benchmarks

Figure 3.3: The interface of viewing details of benchmark

This page displays the C source files corresponding to all the benchmarks. When clicking on a
single line, the user can see the verification results obtained by ESBMC with different ESBMC
parameters for the benchmark, as shown in picture 3.3. The verification results contain two
parts, one is return status, one is the specific running time (unit is seconds).

2. Add a new benchmark to the specific sub-question data set. As picture 3.4 shown:

3.2. INTERFACE 41

Figure 3.4: The interface of adding benchmarks

Users must specify the sub-category to which the uploaded meta-file belongs when uploading;
then they can click the “+” button to add a folder or file locally; when the file is uploaded to the
server, our system can automatically identify all uploaded files with “.c” as the source file suffix
files. After that, adding them to the corresponding sub-category data set; finally, the system will
sequentially verify the C source files with different ESBMC parameter combinations, and store
the verification results into mysql database.

3. Predict the best parameters of the new benchmark, and give all the prediction results and the
corresponding recommended parameters.

42 CHAPTER 3. RESEARCH METHODOLOGY

Figure 3.5: The interface of prediction

As shown in picture 3.5, when the user needs to predict the best parameter of a new C source
file for the ESBMC, the system gives the prediction verification results of the C source file with
different ESBMC parameter combinations after the model prediction. However, the specific
result set will not be given. This is because our system uses a different status code to mark the
possible runtime of the benchmark.

The entire interface project consists of two parts, one is the front-end project and the other is the
back-end project. Their addresses are:

Front-end project: https://github.com/Grassgod/msc-web

Back-end project: https://github.com/Grassgod/backend

3.3 Benchmark of this experiment

For each C source file, ESBMC can generate multiple benchmarks with different parameters. The
main adjustable parameters of ESBMC are divided into three categories:

1. SMT solver.

3.4. FEATURE ENGINEERING 43

ESBMC supports five SMT solvers, namely z3, boolector, yices, mathsat and cvc4. Their
corresponding parameters are “–z3”, “–boolector”, “–yices”, “–mathsat”, “–cvc”.

2. Encoding method.

ESBMC supports three encoding methods, namely ir, fixedbv and floatbv. Their corresponding
parameters are “–ir”, “–fixedbv”, “–floatbv”.

3. Verification method.

ESBMC supports three verification methods, namely k-induction, falsification and incremental-
bmc. Their corresponding parameters are “–k-induction”, “–falsification”, “–incremental-bmc”.

For a C source file, ESBMC can obtain 45 different parameter combinations by traversing these
three types of parameters. For example, “–z3 –fixedbv –falsification” is a parameter combination. A
benchmark in our experiment contains a C source file and a combination of parameters.

However, there is one exception. When the SMT solver of ESBMC is boolector and encoding
mothed is ir, the verification method can only choose falsification. This is because the built-in boolec-
tor in ESBMC cannot support integer encoding mode.

In addition, when the verification method is determined to use k-induction or incremental-bmc,
ESBMC can limit the maximum K rounds that the verification process can reach through the specified
max-k-step, and specify k-step to set the increment limitation of each verification rounds.

In this experiment, in order to complete the verification process faster, 8 sets of max-k-step and
k-step combinations are provided. They are (10, 1), (30, 2), (50, 4), (100, 8), (200, 16), (400, 32),
(800, 64), (1600, 128) . i.e.when max-k-step is set to 10, its k-step will be automatically set to 1.

In summary, for a C source file, as table (3.1) shown, there are 5*3*2*8+5*3*1-1*1*2*8=239
kinds of parameter combinations that can be matched. i.e. for a C source file, 239 benchmarks can be
generated.

Table 3.1: Parameter combinations of ESBMC
SMT solver Encode method Verification method Max-k-step & K-step

z3 ir k-induction (10,1)
boolector fixedbv falsification (30,2)

yices floatbv incremental-bmc (50,4)
mathsat (100,8)

cvc4 (200,16)
(400,32)
(800,64)

(1600,128)

3.4 Feature engineering

In machine learning, data and features determine the upper limit of machine learning, and models
and algorithms only approach this upper limit. It can be seen that feature engineering occupies a

44 CHAPTER 3. RESEARCH METHODOLOGY

very important position in machine learning. This chapter will introduce in detail the method of
feature engineering in this experiment. Feature engineering is divided into three parts, namely feature
selection, feature extraction and feature construction.

3.4.1 Data preprocessing

In this experiment, feature extraction cannot be performed due to the C source file belongs to unstruc-
tured data. Therefore, the C source file must be transformed into a structured data form. The formats
we can choose from are AST (Abstract Syntax Tree), SSA (Static single assignment form), Go-to
program and Symbol list. Considering comprehensively, this experiment uses AST as the conversion
format.

The advantages of AST are:

1. The conversion speed is fast, less than 1 second.

2. It is a tree structure, similar to the code structure. Normally, it can retain the context structure
and is easy to analyze and extract features.

3. It is supported by the python-based pycparser library and is easy to use.

The AST generated after transformation is a tree structure, each node of the tree represents a
specific definition or expression. As listing (1) shown, this is a variable type definition of C, which is
converted into an AST node object as shown in listing (2).

1 double x;

Listing 1: Example code

1 Decl(name='x',
2 quals=[],
3 storage=[],
4 funcspec=[],
5 type=TypeDecl(declname='x',
6 quals=[],
7 type=IdentifierType(names=['double'])
8),
9 init=None,

10 bitsize=None
11)

Listing 2: AST node example

When we analyze the AST node object shown in listing 2, we can see that outside the brackets is
the type of the current node object. In this case, its type is “Decl”, which is the type definition. The
definition of the remaining attributes is shown in listing 3.

3.4. FEATURE ENGINEERING 45

1 # name: the variable being declared
2 # quals: list of qualifiers (const, volatile)
3 # funcspec: list function specifiers (i.e. inline in C99)
4 # storage: list of storage specifiers (extern, register, etc.)
5 # type: declaration type (probably nested with all the modifiers)
6 # init: initialization value, or None
7 # bitsize: bit field size, or None
8 #
9 Decl: [name, quals, storage, funcspec, type*, init*, bitsize*]

Listing 3: The explanation of AST example node

3.4.2 Feature selection

From the pycparser[62] document, there are 47 different AST node object types. After analysis, we
selected 13 more important and common object types as features. They are:

‘Decl’,‘For’,‘While’,‘DoWhile’,‘If’,‘Switch’,‘Assignment’,‘FuncCall’,‘Label’,‘Constant’,‘TypeDecl’,
‘IdentifierType’,‘Goto’.

In order to further reduce the number of features, we carried out two operations to merge features:

1. Since the essence of ‘For’ loop, ‘While’ loop, and ‘DoWhile’ loop are the same, we combine
them into one feature ‘loop’.

2. ‘Switch’ can be regarded as composed of multiple ‘If’, so we merge ‘Switch’ into ‘If’.

In addition, we found that recursion cannot be detected in the AST tree. However, recursion is
an important feature that affects the verification time of ESBMC, so we developed an algorithm to
detect recursion in the AST tree. The specific idea is that when the type of AST node is found to be
‘FuncCall’, which is a function call, we will compare it with the type of its father AST node. If it is
found that the type of its father node is ‘FuncDef’ (function definition) and the naming of the two is
consistent, It will be recognized as a standard recursion. The pseudo-code is shown in the algorithm
(1).

Algorithm 1 Detecting recursion
Input: current node, father node
Output: Whether there is recursion

if current node.class = FuncCall and f ather node.class == FuncDe f and
current node.name == f ather node.name then

return True
else

return False
end if

46 CHAPTER 3. RESEARCH METHODOLOGY

3.4.3 Feature extraction

For feature extraction, the method we adopt is to count the number of different AST node objects in
the AST. i.e. If there are 10 “Decl” objects in the AST, the value of this feature is 10. This method is
relatively simple to use and easy to explain. This is because there is a difference in the time it takes
for ESBMC to parse different AST node objects, so quantitative statistics are helpful for us to analyze
the time consumed by ESBMC for different C source codes.

3.4.4 Feature construction

When we traverse and parse the AST, we will obtain a feature vector of the C source file, but the
feature vector represents only the current C source file. In order to generate the feature vector of the
benchmark for our experiment, we also need to add parameter features.

As can be seen from the foregoing, a benchmark consists of a C source file and ESBMC parame-
ters, then what we need is to convert the parameters into parameter features. In this experiment, we
use different feature codes to represent different parameters. The specific parameters and correspond-
ing feature codes are shown in the table (3.2)

Table 3.2: Parameter feature code
SMT solver code Encode method code Verification method code Max-k-step & K-step code

z3 0 ir 0 k-induction 0 (10,1) 10
boolector 1 fixedbv 1 falsification 1 (30,2) 30

yices 2 floatbv 2 incremental-bmc 2 (50,4) 50
mathsat 3 (100,8) 100

cvc4 4 (200,16) 200
(400,32) 400
(800,64) 800

(1600,128) 1600

When the feature vector of the C source file and the parameter feature vector of the benchmark
are obtained, we splice them together to form the feature vector of the benchmark. At this point, we
have completed the feature construction.

3.5 Preparing data

SV-comp has been held in 2012. So far, there have been more than 10 years of data sets and more than
10 sub-categories. The purpose of this experiment is to predict the performance of ESBMC in SV-
COMP, so our data set uses the SV-COMP competition data set. Taking into account the performance
of the existing experimental equipment and the training time of the machine learning model, we select
the data set from 2016 to 2021, and the sub-categories select “array”, “loop” and “floats’ ’.

For each SV-COMP benchmark, it contains a C source file with suffix “.c” and a configuration file
with suffix “.yml”. For this experiment, we only need the C source code files, so we extract all the
C source files. The number of each sub-category data set is shown in the table (3.3). As mentioned

3.6. USING ESBMC TO GET THE BENCHMARK’ LABEL 47

above, each C source file can generate 239 benchmarks for this experiment, so we can calculate the
number of benchmarks for each sub-category. In order to simulate the actual situation, we use 16-20
years of data as the training set and 21 years of data as the test set. As shown in the table (3.3).

Table 3.3: Data distribution
array loop floats

file number 622 627 1027
benchmark 148658 149853 245453

train file 422 427 727
benchmark 422*239 427*239 727*239

test file 200 200 300

3.6 Using ESBMC to get the benchmark’ label

For each generated benchmark, we need to generate a sample for the machine learning model. A
sample contains feature vectors and classes. For the feature vector, as mentioned above, we need to
combine the feature vector of the C source file contained in it and the corresponding parameter vector
to generate the feature vector of the benchmark.

For classes, we need to use ESBMC to complete the benchmark verification process to obtain
actual verification results.

3.6.1 Using ESBMC to test a single benchmark

For ESBMC, it can support command line for testing. A standard ESBMC command is shown in the
code (4).

1 esbmc c_filename.c --boolector --fixedbv --incremental-bmc
2 --max-k-step 400 --k-step 32 --timeout 15m

Listing 4: The example of ESBMC command

Among them, “esbmc” represents the actual address of esbmc after installation, and can also be
replaced by a soft link which set in the shell; “c filename.c” represents the address of the C source
file that needs to be verified; “–boolector” represents the selected SMT solver parameter; “–fixedbv”
represents the selected encoding method; “–incremental-bmc” represents the selected verification
method; “—max-k-step” and “—k-step” represent the maximum number of iterations and the number
of rounds added in each iteration, respectively. This parameter is only available when the verification
method is k-induction or incremental-bmc. Finally, in order to ensure that ESBMC will not take too
long to verify a single benchmark, we use “—timeout 15m” to limit the maximum running time of
ESBMC. The result will be regarded as a timeout when a single test time exceeds 15 minutes.

48 CHAPTER 3. RESEARCH METHODOLOGY

3.6.2 Using multi-threading technology to speed up the testing process

Since the number of benchmarks to be completed is close to 450,000, we cannot simply process
linearly and need to use some skills to speed up the verification process. In this experiment, we use
multithreading to speed up the entire testing process. It is worth mentioning that due to the Global
Interpreter Lock mechanism of the multi-threading technology supported by python itself, each CPU
can only execute one thread at the same time, which is very unfriendly to CPU-intensive code. So we
use python’s multi-process mechanism, that is, open a separate python process for each benchmark,
and an independent CPU completes the test. Finally, these python processes are managed through the
process pool.

In this experiment, we used three Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz servers, each
with 32 logical CPUs. This allows us to verify 32 benchmarks at the same time, which greatly speeds
up the entire testing process.

3.6.3 Categorizing the results of ESBMC

For benchmarks, we need to classify the verification results they may return to facilitate classification
in the machine learning process later.

After completing all benchmark tests, we found that the test results returned the following status
codes:

1. ERROR: This means that there was an error in the verification process. This error is relatively
rare. The main reason is that the ESBMC cannot complete the verification process during the
process. In this experiment, the main reason is that the ESBMC version installed on the server
cannot support the smt solver of the mathsat type. Since it has little impact on the experimental
results and does not affect the evaluation process of the model, this type of result is retained.

2. VERIFICATION UNKNOWN: This means that ESBMC cannot complete the test process
within the specified number of iterations, and the result is a normal result.

3. Timed out: This means that ESBMC cannot complete the verification process within 15 min-
utes.

4. VERIFICATION FAILED: This means that ESBMC failed to verify the test result against the
current benchmark, which is actually a valid result.

5. VERIFICATION SUCCESS: This means that ESBMC has successfully verified the test result
with the current benchmark, which is also a valid result.

When the return result of ESBMC is VERIFICATION FAILED or VERIFICATION SUCCESS,
it means that they are valid conclusions, and the ESBMC verification time is also obtained. Therefore,
we divide five-time intervals to define their test speeds. This step is mainly to facilitate the application
of benchmark results to machine learning. The specific time interval definitions and corresponding
speed states are shown in the table (3.4):

3.7. MACHINE LEARNING METHODS 49

Table 3.4: Status code of benchmark
VERIFICATION FAILED
or
VERIFICATION SUCCESS

Timed out
VERIFICATION
UNKNOWN ERROR

Really Fast Fast Normal Slow
Time interval
(seconds) [0, 1) [1, 60) [60, 300) [300, 900)

Status code 0 1 2 3 4 5 6

Similarly, we also need to set a status code for other types of test results. As shown in the table 3.4,
the status code of Timed out is 4, VERIFICATION UNKNOWN is 5, and ERROR is 6.The purpose
of setting the status code in this way is that we hope that the smaller the value of the status code can
represent a more optimized result.

3.7 Machine learning methods

In machine learning, the choice of model is very important. Different models will get significantly
different results because they are based on different principles. When selecting a model, in addition to
the accuracy of model prediction, we also need to consider the difficulty and speed of model training,
as well as the use of the model in actual scenarios. The following will introduce the tuning method of
the model’s hyperparameters and the detailed implementation of each model.

3.7.1 SVM

For SVM, we use sklearn.svm.SVC provided in sklearn as the model basis, and the main adjustment
parameters are “C”, “kernel”, “gamma”. “C” stands for regularization paramete, the strength of the
regularization is inversely proportional to C, and it must be positive. “kernel” represents the kernel
function selected by the SVM model, which can be ‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’, ‘precomputed’.
“gamma” represents the kernel function parameters when the kernel function is ‘poly’, ‘rbf’, ‘sig-
moid’, and ‘auto’ and ‘scale’ can be selected.

3.7.2 Decision tree

For the decision tree, we use the sklearn.tree.DecisionTreeClassifier provided in sklearn as the model
basis. The main adjustment parameters are ‘criterion’, ‘splitter’, and ‘max features’.‘criterion’ can
choose ‘gini’ or ‘entropy’, the former is the gini coefficient, The latter is information entropy, which
represents the selection of different decision tree categories. ‘Splitter’ represents how to split the
feature. You can choose ‘best’ and ‘random’. When ‘best’ is selected, time-consuming may increase.
‘Max features’ represents the maximum number of features, and the options are ‘auto’, ‘log2’, and
‘sqrt’.

50 CHAPTER 3. RESEARCH METHODOLOGY

3.7.3 KNN

For KNN, we use sklearn.neighbors.KNeighborsClassifier in sklearn as the model basis, and the main
adjusted parameters are ‘n neighbors’ and ‘weights’. ‘N neighbors’ represents the number of selected
neighbours. ‘Weights’ represents how to set the weight of the distance, you can choose ‘uniform’
and ‘distance’, ‘uniform’ means that the hyperparameter of distance weight is not considered, and
‘distance’ means that the distance weight is considered. When ‘weights’ is set to ‘distance’, the
parameter ‘P’ can be set to specify which distance measurement method to use. When p = 1, this is
equivalent to using manhattan distance (L1), and euclidean distance (L2) for p = 2. For arbitrary p,
minkowski distance (L p) is used.

3.7.4 Neural network

For Neural network, we use sklearn.neural network in sklearn as the model basis, and the main param-
eters adjusted are ‘learning rate init’ and ‘max iter’. ‘learning rate init’ represents the initial learning
rate. And ‘max iter’ represents the maximum number of iterations. The larger the value, the higher
the probability of model convergence.

3.7.5 GridSearch CV

The purpose of GridSearchCV is to tune parameters automatically. The essential method is a greedy
algorithm. Its idea is to tune the parameters that currently have the greatest impact on the model until
the optimization, then take the next parameter tuning that has the most impact, and so on, until all
parameters have been adjusted. The disadvantage of this method is that it may be adjusted to the local
optimum instead of the global optimum, but it can save time. This experiment uses the GridSearchCV
method in sklearn to systematically traverse multiple parameter combinations and determine the best
effect parameters through cross-validation.

The following explains how to use GridSearchCV by introducing how to adapt GridSearchCV to
the SVM model.

As shown in the code (5), we can set the value range of different parameters in the SVM by setting
param grid, and use it as an input to GridSearchCV. In addition, “accuracy’” is designated as the main
indicator for evaluating the effect of the model, which means that GridSearchCV will automatically
use the “accuracy” method of cross-validation to select the best model. The “cv” parameter specifies
that the data set is divided into 5 groups for cross-validation.

1 param_grid = {'C': [0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000],
2 'gamma': ['scale', 'auto']}
3 grid = GridSearchCV(clf, param_grid, cv=5, scoring='accuracy')

Listing 5: The example of GridSearch CV

3.8. AUTOMATICALLY PREDICTING OPTIMAL PARAMETERS 51

3.8 Automatically predicting optimal parameters

This experiment uses the benchmark in the train data set to complete the training of the model, and
four models can be obtained, which are based on SVM, Decision Tree, KNN and Neutral network
models. Next, we need to predict the data in the test data set. Each piece of data in the test data set
represents a C source file. As we can see from the foregoing, each C source file can be matched with
239 different ESBMC parameters. The specific process is as follows:

1. Perform feature extraction on the C source file to generate feature vectors.

2. Generate 239 benchmark feature vectors with the parameter vectors generated by 239 different
ESBMC parameters combinations.

3. Use the model to predict 239 feature vectors, and obtain their prediction result status codes.

4. Traverse 239 types of status codes, select the smallest status code as the optimal prediction
result and record the ESBMC parameters corresponding to the status code.

5. Output the parameter.

3.9 Summary

This chapter specifically elaborates the specific details and key content of the experiment. First, we
develop a visual interface to manage all benchmarks from SV-CPMP. Then, we extracted the required
C source files from the benchmarks of SV-COMP and combined the different parameters of ESBMC
to form the benchmark for this experiment.

For each set of benchmarks used in this experiment, we need to perform feature engineering and
label acquisition respectively. In the feature engineering part, we convert the C source file into AST
and perform feature engineering from the AST to obtain the corresponding feature vector. Combined
with the parameter vector formed by the ESBMC parameter combination corresponding to the bench-
mark, we can obtain the feature vector of the benchmark as a sample. For the label part, we combined
Python’s multi-process technology to use ESBMC with the benchmark’s ESBMC parameter combi-
nation to verify the C source file to obtain the verification time and verification result. Finally, we use
status codes to correspond to different verification results and times, which is the label.

So far, we have obtained samples and labels. After that, we used GridSeachCV technology to
automatically tune the four models. Training, verification and testing are performed on three sub-
classification data sets, and a total of 12 results can be obtained.

Chapter 4

Result Evaluation and Discussion

4.1 Description of the evaluation benchmarks

This experiment is a multi-classification problem. Compared with a simple binary classification prob-
lem, the corresponding evaluation scheme will be changed. The following will first discuss the com-
monly used indicators in the binary classification problem, and then we will extend these indicators
to the multi-classification problem.

Before discussing these issues, let us first review the shortcomings of the most common indicator
“Accuracy”. Accuracy is the most commonly used indicator in binary classification problems, it cal-
culates the ratio of the number of correct predictions to the total number of predictions. However, for
unbalanced data sets (multi-classification problems), accuracy is not a good indicator. For example,
suppose we have 100 pictures, of which 91 pictures are “dogs”, 5 are “cats”, and 4 are “pigs”, we
hope to train a three-classifier that can correctly identify the types of animals in the pictures. Among
them, the dog category is the majority class. When the number of samples (dogs) in most classes far
exceeds that of other classes (cats, pigs), if accuracy is used to evaluate the quality of the classifier,
then even if the model performance is poor (for example, no matter what picture is input, it will be
predicted as “Dogs”), we can also get a higher accuracy score (such as 91%). At this time, although
the accuracy score is very high, it is of little significance. When the data is abnormally unbalanced,
the flaws of the Accuracy evaluation method are particularly significant.

Therefore, we need to introduce Precision, Recall and F1-score evaluation indicators. Considering
that the calculation methods of the evaluation indicators are slightly different in the two-class and
multi-class models, we will discuss them separately.

4.1.1 Accuracy,Precision,Recall,F1-score

4.1.1.1 Common indicators of binary classification models

In the binary classification problem, suppose the sample has two categories: Positive and Negative.
When the classifier’s prediction is over, we can draw a confusion matrix. As shown in figure 4.1, the
classification results are divided into the following categories:

52

4.1. DESCRIPTION OF THE EVALUATION BENCHMARKS 53

Actual
value

Prediction outcome

p n total

p′
True
Positive

False
Negative

P′

n′
False
Positive

True
Negative

N′

total P N

• True Positive (TP): The positive sample is successfully predicted as positive.

• True Negative (TN): Successfully predict negative samples as negative.

• False Positive (FP): falsely predict negative samples as positive.

• False Negative (FN): The false prediction of positive samples is negative.

Table 4.1: Binary confusion matrix

In the binary classification model, the definitions of Accuracy (4.1), Precision (4.2), Recall (4.3)
and F1 score(4.4) are shown in the below:

Accuracy =
T P+T F

T P+T F +FP+FN
(4.1)

Precision =
T P

T P+FP
(4.2)

Recall =
T P

T P+FN
(4.3)

F1 =
2∗Precision∗Recall

Precision+Recall
=

2∗T P
2∗T P+FP+FN

(4.4)

Among them, precision focuses on assessing how much real positive data occupies among all the
data predicted to be positive. Recall focuses on evaluating all the positive data, that is to tell us how
many data have been successfully predicted as positive. It should be noted here that we need to focus
on different indicators according to different situations.

When the cost of False Negative (FN) is very high (the consequences are serious) and we want
to avoid generating FN as much as possible, we should focus on improving the recall indicator. And
when the cost of False Positive (FP) is very high (the consequences are serious), that is, when you
want to avoid FP as much as possible, we should focus on improving the Precision index.

54 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

Take the spam blocking system as an example. Spam is positive, normal email is negative, and
false positive is to identify normal email as spam. This situation should be avoided (we cannot tolerate
an important work email directly into the spam box). We would rather mark spam as normal mail (FN)
than let normal mail go directly to the trash can (FP). Here, the goal of the spam blocking system is
to increase the Precision value as much as possible even at the expense of part of the recall. And
F1-score is a combination of precision and recall.

4.1.1.2 Extending these indicators to multi-classification problems

Here we take the three classification problems as an example, as shown in figure 4.2, to see how to
calculate the value of each indicator based on the confusion matrix.

Confusion
Matrix

Prediction
Class A Class B Class C

Actual
Class A a b c
Class B d e f
Class C g h i

Table 4.2: The confusion matrix of three classification problem

First, let’s define TP, TN, FP and FN. At this time, we need to deal with each class separately. For
class A, as shown in the table 4.3:

label = A label = B or label = C

predict = A TP(A) FP(A)

predict = B or predict = C FN(A) TN(A)

Table 4.3: Calculate TP, FP, TN, FN of class A

The calculations for other classes are very similar, and the details are not described here.
In the confusion matrix, the correct classification samples (Actual label = Predicted label) are

distributed on the diagonal from the upper left to the lower right. Among them, accuracy is defined
as the ratio of the number of samples correctly classified (on the diagonal) to the total number of
samples. Accuracy measures the global sample prediction situation. For Precision and Recall, each
class needs to calculate its Precision and Recall separately. Among them, the precision rate and recall
rate of category A are as shown in formula 4.5 and 4.6, and the calculations of other classes are
similar.

Precision(ClassA) =
a

a+d +g
(4.5)

Recall(ClassA) =
a

a+b+ c
(4.6)

If we want to evaluate the overall function of the recognition system, we must consider the compre-
hensive predictive performance of the three classes. Generally speaking, we can use the following
three methods:

4.1. DESCRIPTION OF THE EVALUATION BENCHMARKS 55

1. Macro-average

This method is the simplest. It directly adds up the evaluation indicators of different categories
(Precision/ Recall/ F1-score) and averages them, giving all categories the same weight. This
method can treat each category equally, but its value will be affected by the rare category.

Macro−Precision =
P(A)+P(B)+P(C)

3
(4.7)

Macro−Recall =
R(A)+R(B)+R(C)

3
(4.8)

2. Weighted-average

This method gives different weights to different categories (the weight is determined according
to the true distribution ratio of the category), and each category is multiplied by the weight and
then added. This method takes into account the imbalance of categories, and its value is more
susceptible to the influence of the majority class.

Weighted−Precision = P(A)×W (A)+P(B)×W (B)+P(C)×W (C) (4.9)

Weighted−Recall = R(A)×W (A)+R(B)×W (B)+R(C)×W (C) (4.10)

3. Micro-average

This method adds up the TP, FP, and FN of each category, and then calculates it according to
the two-category formula.

Micro−Precision =
T P(A)+T P(B)+T P(C)

T P(A)+T P(B)+T P(C)+FP(A)+FP(B)+FP(C)
(4.11)

Micro−Recall =
T P(A)+T P(B)+T P(C)

T P(A)+T P(B)+T P(C)+FN(A)+FN(B)+FN(C)
(4.12)

4.1.2 Cross-validation

Cross-validation is a common method used in machine learning to build models and optimize model
parameters. The main method is to use the data repeatedly, divide the obtained sample data into
different training sets and test sets, use the training set to train the model, and use the test set to
evaluate the prediction of the model. On this basis, multiple sets of different training sets and test sets
can be obtained. A sample in a certain training set may become a sample in the test set next time,
so-called “crossover”. In this experiment, we use S-Folder Cross Validation. S-fold cross-validation
will randomly divide the sample data into S parts, each time S-1 part is randomly selected as the
training set, and the remaining 1 part is used as the test set. When this round is completed, randomly

56 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

select S-1 copies to train the data. After several rounds (less than S), the loss function is selected to
evaluate the optimal model and parameters. In this experiment, S is 5, that is, 5-fold cross-validation.

4.2 Setup

For the software part, the visualization system is based on Java Web, Html, Javascript and CSS tech-
nology; python3 and pycparser are used in feature extraction to parse C source files and obtain feature
vectors; In order to generate a data set that can be used for machine learning, we develop a multi-
process python3 programs based on Linux. Its main function is to call ESBMC to verify different C
source files. In the end, we use MySQL to store the verification results; Machine learning uses four
models based on sklearn and uses cross-validation for evaluation. Optimization uses GridSearchCV
technology to optimize the model. For the hardware part, we set up the visualization system on the
Google Cloud server, the operating system is Linux, and Jenkins is used to implementing CI auto-
matic release. The machine learning model runs on three Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10
GHz linux servers.

4.3 Objectives

Our goal is to comprehensively evaluate the performance of the four models on the three sub-categories
data sets through Accuracy, Precision, Recall, and F1-score, and select a better model as our predic-
tion model. In addition, the real training time is also under our consideration.

4.4 Results

In this experiment, we used four machine learning methods to build 12 models for three sub-category
data sets. We will discuss them in detail separately.

4.4.1 Decision Tree for Array sub data set

Predict

0 1 2 3 4 5 6

Actual

0 8615 39 0 1 108 48 63
1 40 74 0 0 15 47 1
2 0 0 1 0 18 5 0
3 0 0 0 1 0 0 0
4 93 29 10 0 6064 379 81
5 75 19 5 3 286 7604 69
6 55 2 0 0 104 73 10389

Table 4.4: Confusion matrix of Decision Tree based on Array data set

4.4. RESULTS 57

4.4.2 SVM based on Array sub data set

Predict

0 1 2 3 4 5 6

Actual

0 4966 0 0 0 889 560 2455
1 7 0 0 0 5 33 156
2 0 0 0 0 5 2 12
3 0 0 0 0 0 0 2
4 526 0 0 0 3467 891 1782
5 510 0 0 0 591 5685 1381
6 1596 0 0 0 1162 1788 5945

Table 4.5: Confusion matrix of SVM based on Array data set

4.4.3 KNN based on Array sub data set

Predict

0 1 2 3 4 5 6

Actual

0 7971 28 0 1 121 99 617
1 27 56 2 0 23 44 19
2 0 0 1 0 20 6 1
3 0 0 0 1 0 0 0
4 96 37 8 1 5632 259 691
5 44 16 1 0 258 7111 535
6 576 8 0 0 792 829 8485

Table 4.6: Confusion matrix of KNN based on Array data set

4.4.4 Neural network based on Array sub data set

Predict

0 1 2 3 4 5 6

Actual

0 7543 15 0 0 713 281 285
1 42 32 0 0 57 37 3
2 4 4 0 0 18 2 0
3 0 0 0 0 1 0 0
4 446 20 13 0 5643 536 66
5 205 2 0 0 752 6927 79
6 474 0 0 0 543 323 9350

Table 4.7: Confusion matrix of neural network based on Array data set

58 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

4.4.5 Decision Tree based on Loop sub data set

Predict

0 1 2 3 4 5 6

Actual

0 3532 117 14 3 195 1003 52
1 140 868 14 6 28 99 9
2 23 11 82 3 7 9 1
3 3 4 0 104 6 6 3
4 289 46 13 9 2276 285 39
5 1041 63 7 0 303 6599 72
6 46 13 1 5 47 116 5332

Table 4.8: Confusion matrix of decision tree based on Loop data set

4.4.6 SVM based on Loop sub data set

Predict

0 1 2 3 4 5 6

Actual

0 510 38 0 0 244 2704 1320
1 163 349 0 0 68 229 354
2 34 7 0 0 33 28 31
3 10 0 0 0 46 11 70
4 411 47 0 0 721 783 1081
5 460 3 0 0 115 5578 1981
6 50 109 0 0 133 1618 3605

Table 4.9: Confusion matrix of SVM based on Loop data set

4.4.7 KNN based on Loop sub data set

Predict

0 1 2 3 4 5 6

Actual

0 2922 112 14 11 240 1077 540
1 190 717 2 2 41 87 125
2 28 14 51 4 17 5 17
3 3 8 6 60 11 1 37
4 270 40 16 13 1993 212 413
5 977 55 4 0 185 6430 434
6 631 147 11 20 492 745 3514

Table 4.10: Confusion matrix of KNN based on Loop data set

4.4. RESULTS 59

4.4.8 Neural network based on Loop sub-data set

Predict

0 1 2 3 4 5 6

Actual

0 1722 59 1 15 953 2146 20
1 267 503 2 0 242 117 33
2 44 19 8 3 39 17 6
3 8 27 3 38 41 9 0
4 630 80 0 18 1667 481 81
5 1146 16 0 0 835 6034 54
6 158 16 0 0 110 243 5033

Table 4.11: Confusion matrix of neural network based on Loop data set

4.4.9 Decision Tree based on Floats sub data set

Predict

0 1 2 3 4 5 6

Actual

0 9947 201 3 6 62 97 218
1 305 1666 54 2 147 20 38
2 0 63 231 10 59 0 8
3 10 19 23 76 49 0 5
4 109 201 39 23 1454 52 26
5 112 19 4 0 53 784 54
6 235 39 5 0 21 46 16530

Table 4.12: Confusion matrix of decision tree based on floats data set

4.4.10 SVM based on Floats sub data set

Predict

0 1 2 3 4 5 6

Actual

0 6100 0 0 0 11 1 4199
1 1106 0 0 0 25 1 1217
2 176 0 0 0 21 0 190
3 116 0 0 0 4 0 39
4 949 0 0 0 132 1 783
5 600 0 0 0 21 5 464
6 3157 0 0 0 37 0 13770

Table 4.13: Confusion matrix of decision tree based on floats data set

60 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

4.4.11 KNN based on Floats sub data set

Predict

0 1 2 3 4 5 6

Actual

0 9116 272 7 15 53 79 992
1 477 1252 54 2 126 3 318
2 24 94 131 13 68 0 41
3 16 26 38 25 52 0 25
4 113 274 61 36 1110 47 263
5 103 7 2 0 34 763 117
6 1825 280 22 9 320 157 14263

Table 4.14: Confusion matrix of KNN based on floats data set

4.4.12 Neural network based on Floats sub-data set

Predict

0 1 2 3 4 5 6

Actual

0 8632 420 21 2 210 149 1100
1 777 1036 31 2 274 16 96
2 77 174 27 4 79 7 3
3 28 49 18 0 87 0 0
4 188 363 35 1 1046 45 226
5 86 37 5 0 136 555 207
6 190 9 1 0 53 40 16583

Table 4.15: Confusion matrix of neural network based on floats data set

4.5 Threats to validity

Based on the overall experimental results, we found that there are two factors that may threaten the
validity of the experimental results.

1. Let’s discuss our data below. As shown in table 4.16, the following are the statistical data of the
returned results which come from our three data sets:

array loop floats

VERIFICATION UNKNOWN 42879 49945 8264

Timed out 6687 5237 3179

ERROR 7214 6322 22094

VERIFICATION SUCCESS 216 3166 7057

VERIFICATION FAILED 5406 4516 7613

Table 4.16: Statistics of results of benchmarks

4.6. COMPARISON AND EVALUATION 61

We will find that the number of different returned results is not very average, and there are large
categories with very prominent sample numbers, so we need to use the value of macro-average.

2. As table 4.16 shows,the number of results classified as ERROR is very large. Considering that
ERROR is not a valid result (because it is often caused by a mismatch between the verification
tool and the input C source file), it will affect the actual prediction result. However, considering
that the causes of ERROR are very diverse, so it is important whether a model can classify
ERROR well. In the end, we do not choose to exclude this type of data.

In addition, in order to eliminate as much as possible the threat of such results to the validity of
the model, we will use the verification results and time obtained by using the default parameters
of ESBMC as the baseline. That is, we can compare the baseline with the results generated by
our parameter predictor. If we can save a certain amount of verification time compared to the
baseline, it means that our model is effective.

4.6 Comparison and evaluation

4.6.1 Result analysis

Decision Tree SVM KNN Neural network

Best Cross validation
Score

0.8838 0.5591 0.7554 0.7962

Micro F1 score 0.9403 0.5829 0.8501 0.8570

Macro F1 score 0.7245 0.3348 0.6173 0.5254

Weighted F1 score 0.9399 0.5810 0.8495 0.8578

Accuracy 0.9403 0.5829 0.8501 0.8570

Micro recall 0.9403 0.5829 0.8501 0.8570

Macro recall 0.7401 0.3346 0.6841 0.5177

Weighted recall 0.9403 0.5829 0.8501 0.8570

Training time(seconds) 3 5828 107 323

Table 4.17: The scores of the four models on the Array dataset

Figure 4.1: Comparison on Array data set

62 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

Decision Tree SVM KNN Neural network

Best Cross validation
Score

0.6584 0.4401 0.5230 0.5829

Micro F1 score 0.8190 0.4690 0.6837 0.6539

Macro F1 score 0.7790 0.2847 0.6088 0.5046

Weighted F1 score 0.8194 0.4286 0.6824 0.6499

Accuracy 0.8190 0.4690 0.6837 0.6539

Micro recall 0.8190 0.4690 0.6837 0.6539

Macro recall 0.7767 0.2831 0.5946 0.4797

Weighted recall 0.8190 0.4690 0.6837 0.6539

Training time(seconds) 4 7714 95 381.1

Table 4.18: The scores of the four models on the Loop dataset

Figure 4.2: Comparison on Loop data set

Decision Tree SVM KNN Neural network

Best Cross validation
Score

0.8234 0.5864 0.6991 0.7466

Micro F1 score 0.9264 0.6039 0.8048 0.8416

Macro F1 score 0.7653 0.2010 0.5932 0.5040

Weighted F1 score 0.9256 0.5508 0.8037 0.8331

Accuracy 0.9264 0.6039 0.8048 0.8416

Micro recall 0.9264 0.6039 0.8048 0.8416

Macro recall 0.7483 0.2112 0.5840 0.4899

Weighted recall 0.9264 0.6039 0.8048 0.8416

Training time(seconds) 6 22987 188.5 594.4

Table 4.19: The scores of the four models on the Floats dataset

4.6. COMPARISON AND EVALUATION 63

Figure 4.3: Comparison on Floats data set

Combining figure (4.1)(4.2)(4.3), we can intuitively see the scores of the four models on the three
sub-categories data sets.

From the scores of the four models on three different data sets (4.17) (4.18) and (4.19), it can be
seen that the scores of the decision tree are better than those of the other three models. So next we
mainly discuss the decision tree. Considering the actual situation, we choose the decision tree as our
optimal model. This is because it not only has good results but also can complete the training and
prediction of the model in a short time, which is more in line with our usage scenarios.

4.6.2 Reusability

In addition to the performance of the model on a single data set, we also want to test the generalization
ability of the model across data sets. If the model can have good generalization ability across data
sets (that is, the model trained on the Array sub-data set can predict the data of the Loop sub-data set
well), we can no longer consider the differences between the various sub-problems. This means we
only need to combine all the data sets to form a super-large data set, and then complete the training
of the model on this super-large data set to predict the benchmarks of all sub-categories.There is no
doubt that this will be more convenient.

The details of the experiment we designed are as follows. First, we merge the data sets of Array
and Loop, then use the decision tree algorithm to train on the new data set and finally use the data set
of floats as the test set to test the effect.

Predict

0 1 2 3 4 5 6

0 21023 518 23 8 189 208 699
1 635 4048 100 16 463 38 114
2 27 189 427 41 146 8 11
3 36 45 25 215 127 0 7
4 279 423 98 59 3776 83 89
5 252 34 6 2 99 1953 135

Actual

6 764 124 12 13 134 214 35701

Table 4.20: Confusion matrix of Decision tree on combined data set

64 CHAPTER 4. RESULT EVALUATION AND DISCUSSION

Decision Tree

Best Cross validation
Score

0.6029612265209618

Micro F1 score 0.9118230213482535

Macro F1 score 0.7548317227763748

Weighted F1 score 0.9113396267656486

Accuracy 0.9118230213482535

Micro recall 0.9118230213482535

Macro recall 0.7413116581624051

Weighted recall 0.9118230213482535

Training time(seconds) 15

Table 4.21: Decision tree’s ability to generalize across data sets

As can be seen from table 4.21, we can see that the performance of some models of the decision
tree is very good, such as the Micro F1 score, but this does not mean that the generalization ability
of the model is very good. This is because there are a large number of errors in the merged data set
(category 6) (table 4.20). Due to a large number of error categories, the score of the entire model is
improved. So we need to pay attention to Macro F1 score and Cross-validation score. We can see that
these two scores are at a relatively average level, so we can conclude that the decision tree model has
a certain generalization ability.

4.6.3 Baseline

In order to understand the application of the decision tree model in practice better, we compare the
predicted results with the actual ESBMC verification time to determine whether our prediction pro-
gram can help users save time and how much time has been saved.

The details of the experiment are as follows. For the C source files in the Array and Loop data
sets, we use the test set (SV-comp2021 data) as the data used in this test. First, we have to establish a
baseline, that is, to obtain the verification time and results of the C source file using ESBMC without
any parameters (using the default parameters of ESBMC). After that, we use our automatic parameter
prediction program to get the best parameter for each C source file and records the test time and test
results. It is worth noting that when the running time exceeds 15 minutes, we will default the test time
for the result to 15 minutes.

The results are shown in the table 4.22:

Array Loop

Baseline(seconds) 535958 407456

Automatically select parameters(seconds) 301287 223730

Total time saved(seconds) 234671 183726

Table 4.22: Time-consuming comparison

4.7. SUMMARY 65

We can see that compared to the baseline, our program can save 43.7% of the time on the Array
data set and 45% of the time on the Loop data set. This is a very good result, which means that our
program can select more excellent parameters on most of the benchmarks.

4.7 Summary

After evaluation, we found that the decision tree model is better than the other three models in four
important scores: Cross-validation score, Macro F1 score, Accuracy, and Macro recall. So we choose
decision tree as our prediction model.

In addition, we also tested the generalization ability of the decision tree model on cross-subcategory
data sets and its actual performance compared with the baseline. We found that the decision tree model
has a certain generalization ability, and it can save nearly 45% of the verification time compared to
the baseline.

Chapter 5

Conclusion & Future Work
5.1 Conclusion

In this experiment, we constructed the feature vector by manually selecting features, combined with
python’s multi-process technology to use ESBMC to verify all the benchmarks of the three sub-
category data sets of Array, Loop and Floats and recorded their verification results and time. In
addition, a corresponding interface is provided to help users manage the data set visually. For machine
learning, we compared the predictive abilities of the four models decision tree, KNN, SVM, and
neural network on three sub-category data sets.

Summary of achievements As a result, we believe that the decision tree model with the shortest
training time and excellent effect is the most suitable model. In order to test the generalization ability
of the decision tree model across category data sets, we trained the model on the combined dataset
of Array and Loop, then tested the model on the Floats dataset. The conclusion is that the decision
tree model has a certain generalization ability and can be used as an extended research direction. In
addition, we tested the effect of this system in actual scenarios, that is, comparing verification time
of the ESBMC default parameters with the verification time of the system automatically selecting the
optimal parameters, we found that when using the recommended parameters of this system, it can
save nearly 45% of the total test time. This is a very good result, which proves that the system is
effective and has practical value.

Reflection, identification of improvements For this experiment, we believe that there are deficien-
cies in four aspects and can be further improved:

1. Feature Engineering

The feature analysis designed in this experiment is relatively intuitive and simple, and there
are other feasible feature engineering schemas. For example, using Static Single Assignment
form or Goto program as the internal representation of C source code instead of abstract syntax
tree. In coming experiments, corresponding comparative experiments should be designed to
demonstrate the advantages and disadvantages of different feature engineering schemas.

2. Neural Network

As a current popular machine learning algorithm, the neural network has great potential. The
neural network used in this article is a relatively basic feedforward neural network, and the
structure is relatively simple. In the future, we can consider expanding the complexity of neural
networks to improve the performance of this type of model.

3. The number of sub-category data sets

66

5.2. FUTURE WORK 67

This experiment only conducts experiments on three sub-category data sets. However, the sub-
categories included in SV-COMP are much more than that. Adding more sub-category data sets
or even using all SV-COMP data sets is a potential solution to further evaluate the effectiveness
of the model.

4. Model evaluation

For model evaluation, this experiment can achieve a more refined evaluation by filtering out
some useless classifications. In addition, we found that the data set of SV-COMP over the
years have a certain overlap with the data set of SV-COMP in 2021, which may lead to cer-
tain over-fitting problems. In further plans, this situation should be avoided to ensure that the
experimental results are more precise.

5.2 Future work

We believe that the work that can be continued in the future includes:

1. Expand the data set

At present, we are working on three sub-category data sets from SV-COMP, but there are still
a large number of other category data sets that have not been considered and discussed. We
should complete the testing and discussion of all sub-category data sets in the future.

2. Verify the cross-problem generalization ability of the decision tree

We proved that the decision tree has a certain generalization ability, but it is also limited to the
three sub-category data sets that this article focuses on.

3. Optimize feature engineering

The feature engineering scheme adopted in this paper is to select features artificially and does
not take all the candidate features into consideration, so in the future, we should expand the
selected feature set and add more features to test whether it can have a better effect. In addition,
we should also consider selecting features automatically by using deep learning.

Bibliography
[1] B. Cui, J. Li, T. Guo, J. Wang, and D. Ma, “Code comparison system based on abstract syn-

tax tree,” in 2010 3rd IEEE International Conference on Broadband Network and Multimedia

Technology (IC-BNMT), 2010, pp. 668–673.

[2] S. Falke, F. Merz, and C. Sinz, “The bounded model checker llbmc,” in 2013 28th IEEE/ACM

International Conference on Automated Software Engineering (ASE). IEEE, 2013, pp. 706–
709.

[3] D. Kroening and M. Tautschnig, “Cbmc–c bounded model checker,” in International Conference

on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2014, pp.
389–391.

[4] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A. Nicole,
“Esbmc 5.0: An industrial-strength c model checker,” in Proceedings of the 33rd ACM/IEEE

International Conference on Automated Software Engineering, ser. ASE 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 888–891. [Online]. Available:
https://doi.org/10.1145/3238147.3240481

[5] D. Beyer, “Software verification: 10th comparative evaluation (sv-comp 2021),” Tools and Al-

gorithms for the Construction and Analysis of Systems, vol. 12652, p. 401, 2021.

[6] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, Model checking. MIT
press, 2018.

[7] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons using
branching time temporal logic,” in Workshop on Logic of Programs. Springer, 1981, pp. 52–
71.

[8] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L.-J. Hwang, “Symbolic model
checking: 1020 states and beyond,” Information and computation, vol. 98, no. 2, pp. 142–170,
1992.

[9] O. Coudert and J. C. Madre, “A unified framework for the formal verification of sequential
circuits,” in The Best of ICCAD. Springer, 2003, pp. 39–50.

[10] K. L. McMillan, “Symbolic model checking,” in Symbolic Model Checking. Springer, 1993,
pp. 25–60.

[11] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model checking,” 2003.

[12] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without bdds,” in In-

ternational conference on tools and algorithms for the construction and analysis of systems.
Springer, 1999, pp. 193–207.

68

BIBLIOGRAPHY 69

[13] M. R. Gadelha, F. R. Monteiro, J. Morse, L. C. Cordeiro, B. Fischer, and D. A. Nicole, “Esbmc
5.0: an industrial-strength c model checker,” in Proceedings of the 33rd ACM/IEEE Interna-

tional Conference on Automated Software Engineering, 2018, pp. 888–891.

[14] J. Marques-Silva, “Practical applications of boolean satisfiability,” in 2008 9th International

Workshop on Discrete Event Systems. IEEE, 2008, pp. 74–80.

[15] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the third annual

ACM symposium on Theory of computing, 1971, pp. 151–158.

[16] G. Audemard, P. Bertoli, A. Cimatti, A. Korniłowicz, and R. Sebastiani, “A sat based approach
for solving formulas over boolean and linear mathematical propositions,” in International Con-

ference on Automated Deduction. Springer, 2002, pp. 195–210.

[17] J. P. Warners, “A linear-time transformation of linear inequalities into conjunctive normal form,”
Information Processing Letters, vol. 68, no. 2, pp. 63–69, 1998.

[18] L. De Moura and N. Bjørner, “Satisfiability modulo theories: introduction and applications,”
Communications of the ACM, vol. 54, no. 9, pp. 69–77, 2011.

[19] ——, “Z3: An efficient smt solver,” in International conference on Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 2008, pp. 337–340.

[20] V. Ganesh and D. L. Dill, “A decision procedure for bit-vectors and arrays,” in International

conference on computer aided verification. Springer, 2007, pp. 519–531.

[21] B. Dutertre, “Yices 2.2,” in International Conference on Computer Aided Verification. Springer,
2014, pp. 737–744.

[22] S. Conchon, A. Coquereau, M. Iguernlala, and A. Mebsout, “Alt-ergo 2.2,” in SMT Workshop:

International Workshop on Satisfiability Modulo Theories, 2018.

[23] R. Brummayer and A. Biere, “Boolector: An efficient smt solver for bit-vectors and arrays,” in
International Conference on Tools and Algorithms for the Construction and Analysis of Systems.
Springer, 2009, pp. 174–177.

[24] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani, “The mathsat 4 smt
solver,” in International Conference on Computer Aided Verification. Springer, 2008, pp. 299–
303.

[25] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds, and
C. Tinelli, “Cvc4,” in International Conference on Computer Aided Verification. Springer,
2011, pp. 171–177.

[26] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, and X. Liu, “A novel neural source code
representation based on abstract syntax tree,” in 2019 IEEE/ACM 41st International Conference

on Software Engineering (ICSE). IEEE, 2019, pp. 783–794.

70 BIBLIOGRAPHY

[27] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code evolution using abstract
syntax tree matching,” in Proceedings of the 2005 international workshop on Mining software

repositories, 2005, pp. 1–5.

[28] A. Biere, M. Heule, and H. van Maaren, Handbook of satisfiability. IOS press, 2009, vol. 185.

[29] J. Stevenson, “The treatment of the long-term sequelae of child abuse,” The Journal of Child

Psychology and Psychiatry and Allied Disciplines, vol. 40, no. 1, pp. 89–111, 1999.

[30] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong program analysis &
transformation,” in International Symposium on Code Generation and Optimization, 2004. CGO

2004. IEEE, 2004, pp. 75–86.

[31] E. Clarke, D. Kroening, and F. Lerda, “A tool for checking ansi-c programs,” in International

Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer,
2004, pp. 168–176.

[32] B. C. Lopes and R. Auler, Getting started with LLVM core libraries. Packt Publishing Ltd,
2014.

[33] T. O. Ayodele, “Machine learning overview,” New Advances in Machine Learning, vol. 2, 2010.

[34] S. B. Kotsiantis, I. Zaharakis, P. Pintelas et al., “Supervised machine learning: A review of clas-
sification techniques,” Emerging artificial intelligence applications in computer engineering,
vol. 160, no. 1, pp. 3–24, 2007.

[35] S. O’Hara, Y. M. Lui, and B. A. Draper, “Unsupervised learning of human expressions, gestures,
and actions,” in 2011 IEEE International Conference on Automatic Face & Gesture Recognition

(FG). IEEE, 2011, pp. 1–8.

[36] H. B. Barlow, “Unsupervised learning,” Neural computation, vol. 1, no. 3, pp. 295–311, 1989.

[37] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint arXiv:1404.1100, 2014.

[38] Z. Ghahramani, “Unsupervised learning,” in Summer School on Machine Learning. Springer,
2003, pp. 72–112.

[39] S. B. Thrun, “Efficient exploration in reinforcement learning,” 1992.

[40] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.

[41] S. R. Safavian and D. Landgrebe, “A survey of decision tree classifier methodology,” IEEE

transactions on systems, man, and cybernetics, vol. 21, no. 3, pp. 660–674, 1991.

[42] A. J. Myles, R. N. Feudale, Y. Liu, N. A. Woody, and S. D. Brown, “An introduction to decision
tree modeling,” Journal of Chemometrics: A Journal of the Chemometrics Society, vol. 18, no. 6,
pp. 275–285, 2004.

BIBLIOGRAPHY 71

[43] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.

[44] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques. Elsevier, 2011.

[45] M. Bramer, Principles of data mining. Springer, 2007, vol. 180.

[46] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Classification and regression trees.
Routledge, 2017.

[47] S. Suthaharan, “Support vector machine,” in Machine learning models and algorithms for big

data classification. Springer, 2016, pp. 207–235.

[48] J. A. Suykens, “Nonlinear modelling and support vector machines,” in IMTC 2001. proceedings

of the 18th IEEE instrumentation and measurement technology conference. Rediscovering mea-

surement in the age of informatics (Cat. No. 01CH 37188), vol. 1. IEEE, 2001, pp. 287–294.

[49] R. Schaback and H. Wendland, “Kernel techniques: from machine learning to meshless meth-
ods,” Acta numerica, vol. 15, pp. 543–639, 2006.

[50] T. Cover and P. Hart, “Nearest neighbor pattern classification,” IEEE transactions on informa-

tion theory, vol. 13, no. 1, pp. 21–27, 1967.

[51] H. Parvin, H. Alizadeh, and B. Minaei-Bidgoli, “Mknn: Modified k-nearest neighbor,” in Pro-

ceedings of the world congress on engineering and computer science, vol. 1. Citeseer, 2008.

[52] D. Wettschereck, D. W. Aha, and T. Mohri, “A review and empirical evaluation of feature
weighting methods for a class of lazy learning algorithms,” Artificial Intelligence Review,
vol. 11, no. 1, pp. 273–314, 1997.

[53] M. W. Browne, “Cross-validation methods,” Journal of mathematical psychology, vol. 44, no. 1,
pp. 108–132, 2000.

[54] S.-C. Wang, “Artificial neural network,” in Interdisciplinary computing in java programming.
Springer, 2003, pp. 81–100.

[55] K. Gurney, An introduction to neural networks. CRC press, 2018.

[56] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” IEEE Potentials, vol. 13,
no. 4, pp. 27–31, 1994.

[57] D. Jurafsky, Speech & language processing. Pearson Education India, 2000.

[58] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint

arXiv:1609.04747, 2016.

[59] L. Bottou, “Stochastic gradient descent tricks,” in Neural networks: Tricks of the trade.
Springer, 2012, pp. 421–436.

72 BIBLIOGRAPHY

[60] S. Khirirat, H. R. Feyzmahdavian, and M. Johansson, “Mini-batch gradient descent: Faster con-
vergence under data sparsity,” in 2017 IEEE 56th Annual Conference on Decision and Control

(CDC). IEEE, 2017, pp. 2880–2887.

[61] P. I. Good, Resampling methods. Springer, 2006.

[62] E. Bendersky, “Pycparser ast nodes,” [EB/OL], https://github.com/eliben/pycparser/blob/
master/pycparser/ c ast.cfg Accessed August 1, 2021.

Appendix A

Code
A.1 Use ESBMC to generate verification results

1

! / u s r / b i n / env py thon
3 # c od in g : u t f −8

5 # In [1] :

7

i m p o r t os
9 i m p o r t t ime

i m p o r t s u b p r o c e s s , d a t e t i m e , s i g n a l
11 i m p o r t m u l t i p r o c e s s i n g

from m u l t i p r o c e s s i n g i m p o r t P r o c e s s , Pool
13 from d b u t i l s . p o o l e d d b i m p o r t PooledDB

from d b u t i l s . p e r s i s t e n t d b i m p o r t P e r s i s t e n t D B
15 i m p o r t random

i m p o r t MySQLdb
17

19 # In [2 8] :

21

e s b m c d i r = ” / home / h u a j i e . he / esbmc / b i n / esbmc ”
23 s o u r c e d i r = ” / home / h u a j i e . he / s o u r c e F i l e / l oop / ”

d a t a b a s e d i r = ” / home / h u a j i e . he / esbmc . db ”
25

c o r e s = 30
27

e s b m c d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 /
ESBMC Project / r e l e a s e / b i n / esbmc ”

29 # s o u r c e d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / s o u r c e F i l e /
Array / ”

d a t a b a s e d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / esbmc . db ”
31

SMT = [”−−z3 ” , ”−− b o o l e c t o r ” , ”−− y i c e s ” , ”−− m a t h s a t ” , ”−−cvc ”]
33 Encode = [”−− i r ” , ”−− f i x e d b v ” , ”−− f l o a t b v ”]

V e r i f i c a t i o n = [”−−k− i n d u c t i o n ” , ”−− f a l s i f i c a t i o n ” , ”−− i n c r e m e n t a l −bmc”]
35

m a x s t e p s = [1 0 , 3 0 , 5 0 , 1 0 0 , 2 0 0 , 4 0 0 , 8 0 0 , 1 6 0 0]
37 s t e p s = [1 , 2 , 4 , 8 , 16 , 32 , 64 , 128]

39 VERIFICATION FAILED = ”VERIFICATION FAILED”

73

74 APPENDIX A. CODE

41 VERIFICATION UNKNOWN = ”VERIFICATION UNKNOWN”

43 VERIFICATION SUCCESS = ”VERIFICATION SUCCESS”

45 Timed out = ” Timed o u t ”

47 ERROR = ”ERROR”

49 # Lucas
s t a t u s c o d e = [” unknown ” , ” e r r o r ” , ” t i m e o u t ” , ” s u c c e s s ” , ”VERIFICATION FAILED”]

51

t i m e o u t t i m e = 15 * 60
53

poolDB = P e r s i s t e n t D B (MySQLdb , h o s t = ' l o c a l h o s t ' , u s e r = ' r o o t ' , passwd= ' ESbmc 2021 ' ,
db= ' esbmc ' , p o r t =3306)

55

57 # In [6] :

59

d e f i n s e r t d b (s q l) :
61 conn = poolDB . c o n n e c t i o n ()

t r y :
63 c = conn . c u r s o r ()

c . e x e c u t e (s q l)
65 conn . commit ()

e x c e p t E x c e p t i o n as ex :
67 conn . r o l l b a c k ()

p r i n t (ex)
69 conn . c l o s e ()

71

In [7] :
73

75 d e f s e l e c t d b (s q l) :
conn = poolDB . c o n n e c t i o n ()

77 t r y :
c = conn . c u r s o r ()

79 c . e x e c u t e (s q l)
conn . commit ()

81 r e s u l t s = c . f e t c h a l l ()
e x c e p t E x c e p t i o n as ex :

83 conn . r o l l b a c k ()
p r i n t (ex)

85 conn . c l o s e ()
r e t u r n r e s u l t s

87

A.1. USE ESBMC TO GENERATE VERIFICATION RESULTS 75

89 # In [8] :

91

d e f c h e c k f i l e e x i s t (f i l eName) :
93 r e s u l t s = s e l e c t d b (” s e l e c t * from programC p where p . f i l eName = '{} ' ” .

f o r m a t (f i l eName))
i f l e n (r e s u l t s) == 1 :

95 r e t u r n F a l s e
r e t u r n True

97

99 # In [9] :

101

d e f c h e c k t a s k e x i s t (command) :
103 r e s u l t s = s e l e c t d b (” s e l e c t * from t a s k t where t . command = '{} ' ” . f o r m a t (

command))
i f l e n (r e s u l t s) == 1 :

105 r e t u r n F a l s e
r e t u r n True

107

109 # In [1 0] :

111

d e f i n s e r t t a s k o u t p u t (t a skID , s t a t u s , t ime , o u t p u t) :
113 i n s e r t d b (”UPDATE t a s k SET s t a t u s = ' { } ' , t ime = {} , o u t p u t = '{} ' where

t a s k I D = {} ” . f o r m a t (s t a t u s , t ime , o u t p u t , t a s k I D))

115

In [3 8] :
117

119 d e f c r e a t e p r o g r a m C () :
i n s e r t d b (' ' 'CREATE TABLE programC (

121 f i l e I D INT a u t o i n c r e m e n t NOT NULL,
f i l eName v a r c h a r (1 0 0) NOT NULL unique ,

123 f i l e A d d r e s s v a r c h a r (3 0 0) NOT NULL,
KEY(f i l e I D) ,

125 CONSTRAINT programC PK PRIMARY KEY (f i l e I D))ENGINE=InnoDB DEFAULT CHARSET=
u t f 8 COLLATE= u t f 8 g e n e r a l c i ; ' ' ')

127 d e f c r e a t e t a s k () :
i n s e r t d b (' ' 'CREATE TABLE t a s k (

129 t a s k I D INT a u t o i n c r e m e n t NOT NULL,
f i l e I D INT NOT NULL,

131 command TEXT NOT NULL,
s o l v e r v a r c h a r (5 0) NOT NULL,

76 APPENDIX A. CODE

133 encode v a r c h a r (5 0) NOT NULL,
v e r i f i c a t e v a r c h a r (5 0) NOT NULL,

135 max k INT NOT NULL,
k INT NOT NULL,

137 t ime DOUBLE,
s t a t u s v a r c h a r (1 0 0) NOT NULL,

139 o u t p u t TEXT,
KEY(t a s k I D) ,

141 CONSTRAINT task PK PRIMARY KEY (f i l e I D , s o l v e r , encode , v e r i f i c a t e , k))ENGINE=
InnoDB DEFAULT CHARSET= u t f 8 COLLATE= u t f 8 g e n e r a l c i ; ' ' ')

143 d e f c r e a t e b a s e () :
i n s e r t d b (' ' 'CREATE TABLE base (

145 f i l e I D INT NOT NULL,
f i l eName v a r c h a r (1 0 0) NOT NULL unique ,

147 f i l e A d d r e s s v a r c h a r (3 0 0) NOT NULL,
t ime DOUBLE,

149 s t a t u s v a r c h a r (1 0 0) NOT NULL,
o u t p u t TEXT,

151 PRIMARY KEY (f i l e I D))ENGINE=InnoDB DEFAULT CHARSET= u t f 8 COLLATE=
u t f 8 g e n e r a l c i ; ' ' ')

153

In [1 2] :
155

157 d e f g e t a l l f i l e (f i l e d i r) :
n a m e l i s t = []

159 f o r r o o t , d i r s , f i l e s i n os . walk (f i l e d i r) :
f o r f i l e i n f i l e s :

161 i f os . p a t h . s p l i t e x t (f i l e) [1] == ” . c ” :
n a m e l i s t . append ({ ” p r e f i x ” : r o o t , ”name” : os . p a t h . s p l i t e x t (f i l e)

[0] + ” . c ” })
163

r e t u r n n a m e l i s t
165

167 # In [1 3] :

169

” unknown ” , ” e r r o r ” , ” t i m e o u t ” , ” s u c c e s s ”
171 d e f f i l e t o t a s k s (f i l e) :

c m d l i s t = []
173 f o r s o l v e r i n r a n g e (l e n (SMT)) :

f o r e n c o d e r i n r a n g e (l e n (Encode)) :
175 f o r v e r i f i c a t e i n r a n g e (l e n (V e r i f i c a t i o n)) :

i f SMT[s o l v e r]== ”−− b o o l e c t o r ” and Encode [e n c o d e r]== ”−− i r ” and (
V e r i f i c a t i o n [v e r i f i c a t e]== ”−− i n c r e m e n t a l −bmc” or V e r i f i c a t i o n
[v e r i f i c a t e]== ”−−k− i n d u c t i o n ”) :

A.1. USE ESBMC TO GENERATE VERIFICATION RESULTS 77

177 c o n t i n u e
row = {”command” : ” ” , ” s o l v e r ” : ” ” , ” encode ” : ” ” , ” v e r i f i c a t e ” : ” ” , ”max

−k ” : 0 , ” s t a t u s ” : ” ” , ' k ' : 0}
179 row [' s t a t u s '] = ” unknown ”

esbmc
181 cmd = e s b m c d i r + ” ”

#
183 cmd += f i l e [' p r e f i x '] + ” / ” + f i l e [' name '] + ” ”

solver
185 cmd += SMT[s o l v e r] + ” ”

row [” s o l v e r ”] = SMT[s o l v e r]
187 # encode

cmd += Encode [e n c o d e r] + ” ”
189 row [” encode ”] = Encode [e n c o d e r]

i f V e r i f i c a t i o n [v e r i f i c a t e] == ”−− f a l s i f i c a t i o n ” :
191 cmd += V e r i f i c a t i o n [v e r i f i c a t e]

row [” v e r i f i c a t e ”] = V e r i f i c a t i o n [v e r i f i c a t e]
193 row [' max−k '] = 0

row [' k '] = 0
195 row [”command”] = cmd

c m d l i s t . append (row)
197 e l s e :

row = d i c t (row)
199 row [” v e r i f i c a t e ”] = V e r i f i c a t i o n [v e r i f i c a t e]

row [' max−k '] = m a x s t e p s [0]
201 row [' k '] = s t e p s [0]

row [”command”] = cmd + V e r i f i c a t i o n [v e r i f i c a t e] + ” −−max−k−
s t e p ” + s t r (row [' max−k ']) +” −−k− s t e p ” + s t r (row [' k '])

203 c m d l i s t . append (row)
r e t u r n c m d l i s t

205 # l e n (f i l e t o t a s k s (g e t a l l f i l e (s o u r c e d i r) [0]))

207

In [1 4] :
209

211 d e f produce command (f i l e I D , s o l v e r , encode , v e r i f i c a t e , max k , k) :
cmd = e s b m c d i r + ” ”

213 cmd += s e l e c t d b (” s e l e c t p . f i l e A d d r e s s from programC p where p . f i l e I D = {} ” .
f o r m a t (f i l e I D)) [0] [0] + ” ”

cmd += s o l v e r + ” ” + encode + ” ” + v e r i f i c a t e + ” ”
215 i f v e r i f i c a t e != ”−− f a l s i f i c a t i o n ” :

i n d e x k = 0
217 f o r k i n r a n g e (l e n (m a x s t e p s)) :

i f m a x s t e p s [k] == max k :
219 i n d e x k = k

i f i n d e x k == l e n (m a x s t e p s) −1:
221 r e t u r n None , None , None

e l s e :

78 APPENDIX A. CODE

223 cmd += ” −−max−k− s t e p ” + s t r (m a x s t e p s [i n d e x k + 1]) +” −−k− s t e p ” +
s t r (s t e p s [i n d e x k + 1])

r e t u r n cmd , m a x s t e p s [i n d e x k + 1] , s t e p s [i n d e x k +1]
225 e l s e :

r e t u r n cmd
227

d e f c r e a t e n e w t a s k (f i l e I D , command , s o l v e r , encode , v e r i f i c a t e , max k , k) :
229 i f c h e c k t a s k e x i s t (command) :

i n s e r t d b (”INSERT INTO t a s k (f i l e I D , command , s o l v e r , encode , v e r i f i c a t e ,
max k , k , s t a t u s) VALUES ({ } , ' { } ' , ' { } ' , ' { } ' , ' { } ' , { } , { } , ' unknown ') ” .
f o r m a t (f i l e I D , command , s o l v e r , encode , v e r i f i c a t e , max k , k))

231

233

d e f c r e a t e n e w f i l e (f i l e P r e f i x , f i l eName) :
235 i f c h e c k f i l e e x i s t (f i l eName) :

i n s e r t d b (”INSERT INTO programC (f i leName , f i l e A d d r e s s) VALUES (' { } ' ,
' { } ') ” . f o r m a t (f i leName , f i l e P r e f i x +” / ”+ f i l eName))

237

r e s u l t s = s e l e c t d b (”SELECT f i l e I D from programC where programC . f i l eName =
'{} ' ” . f o r m a t (f i l eName))

239 f i l e I D = r e s u l t s [0] [0]
r e t u r n f i l e I D

241

243

d e f g e t u n k n o w n t a k s () :
245 r e s u l t s = s e l e c t d b (”SELECT t . t a sk ID , t . command from t a s k t where t . s t a t u s = '

unknown ' ”)
r e t u r n r e s u l t s

247

249

d e f f i l e m a n a g e (f i l e l i s t) :
251 f o r f i l e i n f i l e l i s t :

f i l e I D = c r e a t e n e w f i l e (f i l e [' p r e f i x '] , f i l e [' name '])
253

255 d e f t a s k m a n a g e (f i l e) :
f i l e I D = c r e a t e n e w f i l e (f i l e [' p r e f i x '] , f i l e [' name '])

257 t a s k l i s t = f i l e t o t a s k s (f i l e)
f o r t a s k i n t a s k l i s t :

259 i f c h e c k t a s k e x i s t (t a s k [' command ']) :
c r e a t e n e w t a s k (f i l e I D , t a s k [' command '] , t a s k [' s o l v e r '] , t a s k ['

encode '] , t a s k [' v e r i f i c a t e '] , t a s k [' max−k '] , t a s k [' k '])
261

263

A.1. USE ESBMC TO GENERATE VERIFICATION RESULTS 79

265 d e f run cmd (t a s k) :

267 t a s k i d = t a s k [0]
cmd = t a s k [1]

269

cmd = cmd + ” −− t i m e o u t 15m”
271

p r i n t (” Task %d s t a r t s ! ”%(t a s k i d))
273

s t a r t T i m e = t ime . t ime ()
275 r e s u l t = None

277 p r o c e s s = s u b p r o c e s s . Popen (cmd , s h e l l =True , s t d o u t = s u b p r o c e s s . PIPE , s t d e r r =
s u b p r o c e s s . PIPE)

279 w h i l e p r o c e s s . p o l l () i s None :
l i n e = p r o c e s s . s t d o u t . r e a d l i n e ()

281 l i n e = l i n e . s t r i p () . decode ()
i f T imed out i n l i n e :

283 r e s u l t = Timed out
i f VERIFICATION FAILED i n l i n e :

285 r e s u l t = VERIFICATION FAILED
i f VERIFICATION SUCCESS i n l i n e :

287 r e s u l t = VERIFICATION SUCCESS
i f VERIFICATION UNKNOWN i n l i n e :

289 r e s u l t = VERIFICATION UNKNOWN

291 r u n t i m e = t ime . t ime () − s t a r t T i m e

293 i f T imed out == r e s u l t o r run t ime >888:
i n s e r t t a s k o u t p u t (t a s k i d , Timed out , run t ime , ” ”)

295 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime , Timed out))
r e t u r n

297

i f VERIFICATION FAILED == r e s u l t :
299 i n s e r t t a s k o u t p u t (t a s k i d , VERIFICATION FAILED , run t ime , ” ”)

p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION FAILED))

301 r e t u r n

303 i f VERIFICATION SUCCESS == r e s u l t :
i n s e r t t a s k o u t p u t (t a s k i d , VERIFICATION SUCCESS , run t ime , ” ”)

305 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION SUCCESS))

r e t u r n
307

i f VERIFICATION UNKNOWN == r e s u l t :
309 i n s e r t t a s k o u t p u t (t a s k i d , VERIFICATION UNKNOWN, run t ime , ” ”)

80 APPENDIX A. CODE

p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION UNKNOWN))

311 t a s k = s e l e c t d b (” s e l e c t f i l e I D , s o l v e r , encode , v e r i f i c a t e , max k , k from
t a s k t where t . t a s k I D ={} ” . f o r m a t (t a s k i d)) [0]

i f t a s k [4] == 0 :
313 r e t u r n

e l s e :
315 new command , new max k , new k = produce command (t a s k [0] , t a s k [1] ,

t a s k [2] , t a s k [3] , t a s k [4] , t a s k [5])
i f new command == None :

317 r e t u r n
e l s e :

319 c r e a t e n e w t a s k (t a s k [0] , new command , t a s k [1] , t a s k [2] , t a s k [3] ,
new max k , new k)

n e w t a s k i d = s e l e c t d b (”SELECT t a s k I D from t a s k where t a s k .
command = '{} ' ” . f o r m a t (new command)) [0] [0]

321 run cmd ([n e w t a s k i d , new command])
r e t u r n

323

i n s e r t t a s k o u t p u t (t a s k i d , ERROR, run t ime , ” ”)
325 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,ERROR))

r e t u r n
327

329

d e f i n s e r t b a s e o u t p u t (t a sk ID , s t a t u s , t ime , o u t p u t) :
331 i n s e r t d b (”UPDATE base SET s t a t u s = ' { } ' , t ime = {} , o u t p u t = '{} ' where

f i l e I D = {} ” . f o r m a t (s t a t u s , t ime , o u t p u t , t a s k I D))

333

335 d e f r u n c m d b a s e (f i l e I D , cmd) :

337 t a s k i d = f i l e I D

339 cmd = cmd + ” −− t i m e o u t 15m”

341 p r i n t (cmd)

343 p r i n t (” Task %d s t a r t s ! ”%(t a s k i d))

345 s t a r t T i m e = t ime . t ime ()
r e s u l t = None

347

p r o c e s s = s u b p r o c e s s . Popen (cmd , s h e l l =True , s t d o u t = s u b p r o c e s s . PIPE , s t d e r r =
s u b p r o c e s s . PIPE)

349

w h i l e p r o c e s s . p o l l () i s None :
351 l i n e = p r o c e s s . s t d o u t . r e a d l i n e ()

A.1. USE ESBMC TO GENERATE VERIFICATION RESULTS 81

l i n e = l i n e . s t r i p () . decode ()
353 i f T imed out i n l i n e :

r e s u l t = Timed out
355 i f VERIFICATION FAILED i n l i n e :

r e s u l t = VERIFICATION FAILED
357 i f VERIFICATION SUCCESS i n l i n e :

r e s u l t = VERIFICATION SUCCESS
359 i f VERIFICATION UNKNOWN i n l i n e :

r e s u l t = VERIFICATION UNKNOWN
361

r u n t i m e = t ime . t ime () − s t a r t T i m e
363

i f T imed out == r e s u l t o r run t ime >898:
365 i n s e r t b a s e o u t p u t (t a s k i d , Timed out , run t ime , ” ”)

p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime , Timed out))
367 r e t u r n

369 i f VERIFICATION FAILED == r e s u l t :
i n s e r t b a s e o u t p u t (t a s k i d , VERIFICATION FAILED , run t ime , ” ”)

371 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION FAILED))

r e t u r n
373

i f VERIFICATION SUCCESS == r e s u l t :
375 i n s e r t b a s e o u t p u t (t a s k i d , VERIFICATION SUCCESS , run t ime , ” ”)

p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION SUCCESS))

377 r e t u r n

379 i f VERIFICATION UNKNOWN == r e s u l t :
i n s e r t b a s e o u t p u t (t a s k i d , VERIFICATION UNKNOWN, run t ime , ” ”)

381 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,
VERIFICATION UNKNOWN))

r e t u r n
383

i n s e r t b a s e o u t p u t (t a s k i d , ERROR, run t ime , ” ”)
385 p r i n t (” Task %d f i n i s h e d , %f , %s ! ! ! ! ! ! ”%(t a s k i d , run t ime ,ERROR))

r e t u r n
387

389

d e f main () :
391 p r i n t (c o r e s)

393 c r e a t e p r o g r a m C ()
c r e a t e t a s k ()

395

s t = t ime . t ime ()
397

82 APPENDIX A. CODE

f i l e l i s t = g e t a l l f i l e (s o u r c e d i r)
399 poo l = Pool (c o r e s)

p r i n t (”We have %d f i l e s ”%l e n (f i l e l i s t))
401

f o r f i l e i n f i l e l i s t [: 1 0] :
403 poo l . a p p l y a s y n c (func = task manage , a r g s =(f i l e ,))

405 f o r f i l e i n f i l e l i s t :
poo l . a p p l y a s y n c (func = task manage , a r g s =(f i l e ,))

407

poo l . c l o s e ()
409 poo l . j o i n ()

411 p r i n t (t ime . t ime () − s t)
p r i n t (” Al ready g o t a l l t a s k s , r e a d y t o run ! ! ! ”)

413

poo l = Pool (c o r e s)
415

t a s k p o o l = g e t u n k n o w n t a k s ()
417

p r i n t (” S t a r t i n g esbmc ”)
419 f o r i i n t a s k p o o l :

poo l . a p p l y a s y n c (func =run cmd , a r g s =(i ,))
421

poo l . c l o s e ()
423 poo l . j o i n ()

425 d e f b a s e l i n e () :
c r e a t e b a s e ()

427 s q l = ” s e l e c t * from programC ”
programs = s e l e c t d b (s q l)

429 f o r program i n programs :
f i l e I D = program [0]

431 f i l eName = program [1]
f i l e A d d r e s s = program [2]

433 i n s e r t d b (”INSERT INTO base (f i l e I D , f i leName , f i l e A d d r e s s , s t a t u s) VALUES
({ } , ' { } ' , ' { } ' , ' unknown ') ” . f o r m a t (f i l e I D , f i leName , f i l e A d d r e s s))

r u n c m d b a s e (f i l e I D , e s b m c d i r +” ”+ f i l e A d d r e s s + ” ”)
435

poo l = Pool (c o r e s)
437 f o r program i n programs :

f i l e I D = program [0]
439 f i l eName = program [1]

f i l e A d d r e s s = program [2]
441 cmd = e s b m c d i r + ” ” + f i l e A d d r e s s

poo l . a p p l y a s y n c (func = run cmd base , a r g s =(f i l e I D , cmd + ” ” ,))
443

poo l . c l o s e ()
445 poo l . j o i n ()

A.2. FEATURE EXTRACTION 83

447 i f n a m e == ' m a i n ' :
main ()

449 b a s e l i n e ()

A.2 Feature extraction

2 from f u t u r e i m p o r t p r i n t f u n c t i o n

4 i m p o r t j s o n
i m p o r t s y s

6 i m p o r t r e

8 # Th i s i s n o t r e q u i r e d i f you ' ve i n s t a l l e d p y c p a r s e r i n t o
your s i t e − p a c k a g e s / w i th s e t u p . py

10 #
s y s . p a t h . e x t e n d ([' . ' , ' . . '])

12

from p y c p a r s e r i m p o r t p a r s e f i l e , c a s t
14 from p y c p a r s e r . p l y p a r s e r i m p o r t Coord

16

RE CHILD ARRAY = r e . compi l e (r ' (. *) \ [(. *) \] ')
18 RE INTERNAL ATTR = r e . compi l e (' . * ')

20

c l a s s C J s o n E r r o r (E x c e p t i o n) :
22 p a s s

24

d e f memodict (fn) :
26 ” ” ” F a s t memoiza t ion d e c o r a t o r f o r a f u n c t i o n t a k i n g a s i n g l e a rgument ” ” ”

c l a s s memodict (d i c t) :
28 d e f m i s s i n g (s e l f , key) :

r e t = s e l f [key] = fn (key)
30 r e t u r n r e t

r e t u r n memodict () . g e t i t e m
32

34 @memodict
d e f c h i l d a t t r s o f (k l a s s) :

36 ” ” ”
Given a Node c l a s s , g e t a s e t o f c h i l d a t t r s .

38 Memoized t o a v o i d h i g h l y r e p e t i t i v e s t r i n g m a n i p u l a t i o n

84 APPENDIX A. CODE

” ” ”
40 n o n c h i l d a t t r s = s e t (k l a s s . a t t r n a m e s)

a l l a t t r s = s e t ([i f o r i i n k l a s s . s l o t s i f n o t RE INTERNAL ATTR . match (i)
])

42 r e t u r n a l l a t t r s − n o n c h i l d a t t r s

44

d e f t o d i c t (node) :
46 ” ” ” R e c u r s i v e l y c o n v e r t an a s t i n t o d i c t r e p r e s e n t a t i o n . ” ” ”

k l a s s = node . c l a s s
48

r e s u l t = {}
50

Metada ta
52 r e s u l t [' n o d e t y p e '] = k l a s s . n a m e

54 # Loca l node a t t r i b u t e s
f o r a t t r i n k l a s s . a t t r n a m e s :

56 r e s u l t [a t t r] = g e t a t t r (node , a t t r)

58 # Coord o b j e c t
i f node . coord :

60 r e s u l t [' coo rd '] = s t r (node . coord)
e l s e :

62 r e s u l t [' coo rd '] = None

64 # C h i l d a t t r i b u t e s
f o r ch i ld name , c h i l d i n node . c h i l d r e n () :

66 # C h i l d s t r i n g s a r e e i t h e r s i m p l e (e . g . ' va lue ') o r a r r a y s (e . g . '
b l o c k i t e m s [1] ')

match = RE CHILD ARRAY . match (c h i l d n a m e)
68 i f match :

a r ray name , a r r a y i n d e x = match . g r ou ps ()
70 a r r a y i n d e x = i n t (a r r a y i n d e x)

a r r a y s come i n o r d e r , so we v e r i f y and append .
72 r e s u l t [a r r a y n a m e] = r e s u l t . g e t (a r ray name , [])

i f a r r a y i n d e x != l e n (r e s u l t [a r r a y n a m e]) :
74 r a i s e C J s o n E r r o r (' I n t e r n a l a s t e r r o r . Array {} o u t o f o r d e r . '

' Expec ted i n d e x {} , g o t {} ' . f o r m a t (
76 a r ray name , l e n (r e s u l t [a r r a y n a m e]) , a r r a y i n d e x))

r e s u l t [a r r a y n a m e] . append (t o d i c t (c h i l d))
78 e l s e :

r e s u l t [c h i l d n a m e] = t o d i c t (c h i l d)
80

Any c h i l d a t t r i b u t e s t h a t were m i s s i n g need ”None” v a l u e s i n t h e j s o n .
82 f o r c h i l d a t t r i n c h i l d a t t r s o f (k l a s s) :

i f c h i l d a t t r n o t i n r e s u l t :
84 r e s u l t [c h i l d a t t r] = None

A.2. FEATURE EXTRACTION 85

86 r e t u r n r e s u l t

88

d e f t o j s o n (node , ** kwargs) :
90 ” ” ” Conve r t a s t node t o j s o n s t r i n g ” ” ”

r e t u r n j s o n . dumps (t o d i c t (node) , ** kwargs)
92

94 d e f f i l e t o d i c t (f i l e n a m e) :
” ” ” Load C f i l e i n t o d i c t r e p r e s e n t a t i o n o f a s t ” ” ”

96 # a s t = p a r s e f i l e (f i l e n a m e , u s e c p p =True)
a s t = p a r s e f i l e (f i l e n a m e , u s e c p p =True ,

98 c p p p a t h = ' gcc ' ,
c p p a r g s =[' −E ' , r ' − I / Use r s / g r a s s g o d / o p t / anaconda3 / envs / bmc / l i b /

py thon3 . 7 / s i t e − p a c k a g e s / p y c p a r s e r / u t i l s / f a k e l i b c i n c l u d e '])
100 r e t u r n t o d i c t (a s t)

102

d e f f i l e t o j s o n (f i l e n a m e , ** kwargs) :
104 ” ” ” Load C f i l e i n t o j s o n s t r i n g r e p r e s e n t a t i o n o f a s t ” ” ”

a s t = p a r s e f i l e (f i l e n a m e , u s e c p p =True)
106 r e t u r n t o j s o n (a s t , ** kwargs)

108

d e f p a r s e c o o r d (c o o r d s t r) :
110 ” ” ” P a r s e coord s t r i n g (f i l e : l i n e [: column]) i n t o Coord o b j e c t . ” ” ”

i f c o o r d s t r i s None :
112 r e t u r n None

114 v a l s = c o o r d s t r . s p l i t (' : ')
v a l s . e x t e n d ([None] * 3)

116 f i l e n a m e , l i n e , column = v a l s [: 3]
r e t u r n Coord (f i l e n a m e , l i n e , column)

118

120 d e f c o n v e r t t o o b j (v a l u e) :
” ” ”

122 Conver t an o b j e c t i n t h e d i c t r e p r e s e n t a t i o n i n t o an o b j e c t .
Note : M u tu a l l y r e c u r s i v e wi th f r o m d i c t .

124 ” ” ”
v a l u e t y p e = t y p e (v a l u e)

126 i f v a l u e t y p e == d i c t :
r e t u r n f r o m d i c t (v a l u e)

128 e l i f v a l u e t y p e == l i s t :
r e t u r n [c o n v e r t t o o b j (i t em) f o r i t em i n v a l u e]

130 e l s e :
S t r i n g

132 r e t u r n v a l u e

86 APPENDIX A. CODE

134

d e f f r o m d i c t (n o d e d i c t) :
136 ” ” ” R e c u r s i v e l y b u i l d an a s t from d i c t r e p r e s e n t a t i o n ” ” ”

c l a s s n a m e = n o d e d i c t . pop (' n o d e t y p e ')
138

k l a s s = g e t a t t r (c a s t , c l a s s n a m e)
140

C r e a t e a new d i c t c o n t a i n i n g t h e key − v a l u e p a i r s which we can p a s s
142 # t o node c o n s t r u c t o r s .

o b j s = {}
144 f o r key , v a l u e i n n o d e d i c t . i t e m s () :

i f key == ' coord ' :
146 o b j s [key] = p a r s e c o o r d (v a l u e)

e l s e :
148 o b j s [key] = c o n v e r t t o o b j (v a l u e)

150 # Use keyword p a r a m e t e r s , which works t h a n k s t o b e a u t i f u l l y c o n s i s t e n t
a s t Node i n i t i a l i z e r s .

152 r e t u r n k l a s s (** o b j s)

154

d e f f r o m j s o n (a s t j s o n) :
156 ” ” ” B u i l d an a s t from j s o n s t r i n g r e p r e s e n t a t i o n ” ” ”

r e t u r n f r o m d i c t (j s o n . l o a d s (a s t j s o n))

A.3 Feature analysis

2 c o n s t f e a t u r e n a m e = [' Decl ' , ' Loop ' , ' R e c u r s i o n ' , ' I f ' , ' Ass ignment ' , ' F un c C a l l ' , '
Labe l ' , ' C o n s t a n t ' , ' TypeDecl ' , ' I d e n t i f i e r T y p e ' , ' Goto ' , ' s o l v e r ' , ' encode ' , '
v e r i f i c a t o r ' , ' max k ' , ' c l a s s ']

f e a t u r e l i s t = { i : 0 f o r i i n c o n s t f e a t u r e n a m e }
4

d e f g e t o b j e c t n a m e (o b j) :
6 r e t u r n o b j . c l a s s . n a m e

8 d e f f o r n o d e (nodes , f a t h e r) :
f o r node i n nodes :

10 e x t r a c t f e a t u r e v e c (node , f a t h e r)

12 d e f FileAST (a s t n o d e , f a t h e r) :
f o r n o d e (a s t n o d e . ex t , f a t h e r)

14

d e f FuncDef (a s t n o d e , f a t h e r) :
16 f o r d e c l i n a s t n o d e . d e c l :

A.3. FEATURE ANALYSIS 87

Decl (dec l , a s t n o d e . d e c l . name)
18 i f a s t n o d e . p a r a m d e c l s :

f o r d e c l i n a s t n o d e . p a r a m d e c l s :
20 Decl (dec l , a s t n o d e . d e c l . name)

f o r n o d e (a s t n o d e . body , a s t n o d e . d e c l . name)
22

d e f F u n c C a l l (a s t n o d e , f a t h e r) :
24 i f a s t n o d e . name . name== f a t h e r :

f e a t u r e l i s t [' R e c u r s i o n ']+=1
26 f e a t u r e l i s t [' F u n c C a l l ']+=1

28 d e f Decl (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' Decl ']+=1

30

d e f I f (a s t n o d e , f a t h e r) :
32 f e a t u r e l i s t [' I f ']+=1

i f a s t n o d e . i f t r u e :
34 f o r n o d e (a s t n o d e . i f t r u e , f a t h e r)

i f a s t n o d e . i f f a l s e :
36 f o r n o d e (a s t n o d e . i f f a l s e , f a t h e r)

38 d e f Labe l (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' Labe l ']+=1

40 i f a s t n o d e . s t m t :
f o r n o d e (a s t n o d e . s tmt , f a t h e r)

42

d e f For (a s t n o d e , f a t h e r) :
44 f e a t u r e l i s t [' Loop ']+=1

i f a s t n o d e . s t m t :
46 f o r n o d e (a s t n o d e . s tmt , f a t h e r)

48 d e f Compound (a s t n o d e , f a t h e r) :
i f a s t n o d e . b l o c k i t e m s :

50 f o r n o d e (a s t n o d e . b l o c k i t e m s , f a t h e r)

52 d e f Ass ignment (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' Ass ignment ']+=1

54 i f a s t n o d e . l v a l u e :
f o r n o d e (a s t n o d e . l v a l u e , f a t h e r)

56 i f a s t n o d e . r v a l u e :
f o r n o d e (a s t n o d e . r v a l u e , f a t h e r)

58

d e f Re tu r n (a s t n o d e , f a t h e r) :
60 f e a t u r e l i s t [' Re t u r n ']+=1

62 d e f C o n s t a n t (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' C o n s t a n t ']+=1

64

d e f Typename (a s t n o d e , f a t h e r) :

88 APPENDIX A. CODE

66 i f a s t n o d e . t y p e :
f o r n o d e (a s t n o d e . type , f a t h e r)

68

d e f TypeDecl (a s t n o d e , f a t h e r) :
70 f e a t u r e l i s t [' TypeDecl ']+=1

i f a s t n o d e . t y p e :
72 f o r n o d e (a s t n o d e . type , f a t h e r)

74 d e f Typedef (a s t n o d e , f a t h e r) :
i f a s t n o d e . t y p e :

76 f o r n o d e (a s t n o d e . type , f a t h e r)

78 d e f While (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' Loop ']+=1

80 i f a s t n o d e . s t m t :
f o r n o d e (a s t n o d e . s tmt , f a t h e r)

82

d e f Cas t (a s t n o d e , f a t h e r) :
84 i f a s t n o d e . t o t y p e :

f o r n o d e (a s t n o d e . t o t y p e , f a t h e r)
86 i f a s t n o d e . exp r :

f o r n o d e (a s t n o d e . expr , f a t h e r)
88

d e f I d e n t i f i e r T y p e (a s t n o d e , f a t h e r) :
90 f e a t u r e l i s t [' I d e n t i f i e r T y p e ']+=1

92 d e f Goto (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' Goto ']+=1

94

d e f DoWhile (a s t n o d e , f a t h e r) :
96 f e a t u r e l i s t [' Loop ']+=1

i f a s t n o d e . s t m t :
98 f o r n o d e (a s t n o d e . s tmt , f a t h e r)

100 d e f Swi tch (a s t n o d e , f a t h e r) :
i f a s t n o d e . s t m t :

102 f o r n o d e (a s t n o d e . s tmt , f a t h e r)

104 d e f Case (a s t n o d e , f a t h e r) :
f e a t u r e l i s t [' I f ']+=1

106 i f a s t n o d e . s t m t s :
f o r n o d e (a s t n o d e . s t m t s , f a t h e r)

108

110 d e f e x t r a c t f e a t u r e v e c (a s t n o d e , f a t h e r) :

112 g l o b a l f e a t u r e l i s t
” ” ” E x t r a c t f e a t u r e from a s t ” ” ”

114 node name = g e t o b j e c t n a m e (a s t n o d e)

A.3. FEATURE ANALYSIS 89

i f node name == ' FileAST ' :
116 FileAST (a s t n o d e , f a t h e r)

r e t u r n
118

i f node name == ' Decl ' :
120 Decl (a s t n o d e , f a t h e r)

r e t u r n
122

i f node name == ' FuncDef ' :
124 FuncDef (a s t n o d e , f a t h e r)

r e t u r n
126

i f node name == ” I f ” :
128 I f (a s t n o d e , f a t h e r)

r e t u r n
130

i f node name == ” Labe l ” :
132 Labe l (a s t n o d e , f a t h e r)

r e t u r n
134

i f node name == ” For ” :
136 For (a s t n o d e , f a t h e r)

r e t u r n
138

i f node name == ”Compound” :
140 Compound (a s t n o d e , f a t h e r)

r e t u r n
142

i f node name == ” Ass ignment ” :
144 Assignment (a s t n o d e , f a t h e r)

r e t u r n
146

i f node name == ” ID ” :
148 r e t u r n

150 i f node name == ” F u n c Ca l l ” :
F u n c C a l l (a s t n o d e , f a t h e r)

152 r e t u r n

154 i f node name == ” R e t u r n ” :
Re t u r n (a s t n o d e , f a t h e r)

156 r e t u r n

158 i f node name == ” BinaryOp ” :
r e t u r n

160

i f node name == ” UnaryOp ” :
162 r e t u r n

90 APPENDIX A. CODE

164 i f node name == ” ArrayRef ” :
r e t u r n

166

i f node name == ” C o n s t a n t ” :
168 C o n s t a n t (a s t n o d e , f a t h e r)

r e t u r n
170

i f node name == ” Typename ” :
172 Typename (a s t n o d e , f a t h e r)

r e t u r n
174

i f node name == ” While ” :
176 While (a s t n o d e , f a t h e r)

r e t u r n
178

i f node name == ” Cas t ” :
180 Cas t (a s t n o d e , f a t h e r)

r e t u r n
182

i f node name == ” TypeDecl ” :
184 TypeDecl (a s t n o d e , f a t h e r)

r e t u r n
186

i f node name == ” I d e n t i f i e r T y p e ” :
188 I d e n t i f i e r T y p e (a s t n o d e , f a t h e r)

r e t u r n
190

i f node name == ' E x p r L i s t ' :
192 r e t u r n

194 i f node name == ' Goto ' :
Goto (a s t n o d e , f a t h e r)

196 r e t u r n

198 i f node name == ' Typedef ' :
Typedef (a s t n o d e , f a t h e r)

200 r e t u r n

202 i f node name == ' Break ' :
r e t u r n

204

i f node name == ' DoWhile ' :
206 DoWhile (a s t n o d e , f a t h e r)

r e t u r n
208

i f node name == ' Swi tch ' :
210 Swi tch (a s t n o d e , f a t h e r)

r e t u r n
212

A.4. MODEL TRAINING AND EVALUATION 91

i f node name == ' Case ' :
214 Case (a s t n o d e , f a t h e r)

r e t u r n
216

p r i n t (g e t o b j e c t n a m e (a s t n o d e))
218

d e f e x t r a c t f e a t u r e f u n c (a s t) :
220 g l o b a l f e a t u r e l i s t

f e a t u r e l i s t = { i : 0 f o r i i n c o n s t f e a t u r e n a m e }
222 e x t r a c t f e a t u r e v e c (a s t , None)

r e t u r n f e a t u r e l i s t

A.4 Model training and evaluation

1

! / u s r / b i n / env py thon
3 # c od in g : u t f −8

5 # In [1] :

7

from d b u t i l s . p o o l e d d b i m p o r t PooledDB
9 from d b u t i l s . p e r s i s t e n t d b i m p o r t P e r s i s t e n t D B

i m p o r t MySQLdb
11

i m p o r t os
13 i m p o r t pandas as pd

i m p o r t r e
15

from s k l e a r n i m p o r t svm
17 from s k l e a r n . m o d e l s e l e c t i o n i m p o r t GridSearchCV

i m p o r t numpy as np
19 from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x

from s k l e a r n . m e t r i c s i m p o r t p r e c i s i o n r e c a l l f s c o r e s u p p o r t
21 from s k l e a r n . t r e e i m p o r t D e c i s i o n T r e e C l a s s i f i e r

from s k l e a r n . n e i g h b o r s i m p o r t K N e i g h b o r s C l a s s i f i e r
23 from pycm i m p o r t *

25 from s k l e a r n . n e u r a l n e t w o r k i m p o r t M L P C l a s s i f i e r

27

p r e p a r e db c o n n e c t i o n
29

In [2] :
31

92 APPENDIX A. CODE

33 a r r ay poo lDB = P e r s i s t e n t D B (MySQLdb , h o s t = ' l o c a l h o s t ' , u s e r = ' r o o t ' , passwd= '
ESbmc 2021 ' , db= ' e s b m c a r r a y ' , p o r t =3306)

loop poolDB = P e r s i s t e n t D B (MySQLdb , h o s t = ' l o c a l h o s t ' , u s e r = ' r o o t ' , passwd= '
ESbmc 2021 ' , db= ' e sbmc loop ' , p o r t =3306)

35 f l o a t p o o l D B = P e r s i s t e n t D B (MySQLdb , h o s t = ' l o c a l h o s t ' , u s e r = ' r o o t ' , passwd= '
ESbmc 2021 ' , db= ' e s b m c f l o a t s ' , p o r t =3306)

37

d b u t i l s
39

In [3] :
41

43 d e f i n s e r t d b (poolDb , s q l) :
conn = poolDB . c o n n e c t i o n ()

45 t r y :
c = conn . c u r s o r ()

47 c . e x e c u t e (s q l)
conn . commit ()

49 e x c e p t E x c e p t i o n as ex :
conn . r o l l b a c k ()

51 p r i n t (ex)
conn . c l o s e ()

53

55 # In [4] :

57

d e f s e l e c t d b (poolDB , s q l) :
59 conn = poolDB . c o n n e c t i o n ()

t r y :
61 c = conn . c u r s o r ()

c . e x e c u t e (s q l)
63 conn . commit ()

r e s u l t s = c . f e t c h a l l ()
65 e x c e p t E x c e p t i o n as ex :

conn . r o l l b a c k ()
67 p r i n t (ex)

conn . c l o s e ()
69 r e t u r n r e s u l t s

71

s e t f i l e l o c a t i o n
73

In [5] :
75

77 d e f s e a r c h f i l e (f i l e d i r , f i l e n a m e) :

A.4. MODEL TRAINING AND EVALUATION 93

f o r r o o t , d i r s , f i l e s i n os . walk (f i l e d i r) :
79 f o r f i l e i n f i l e s :

i f f i l e == f i l e n a m e :
81 r e t u r n True

r e t u r n F a l s e
83

85 # In [6] :

87

d e f g e t a l l f i l e N a m e s (poolDB) :
89 f i l e s = []

i t e m s = s e l e c t d b (poolDB , ” s e l e c t * from programC ”)
91 f o r f i l e i n i t e m s :

f i l e s . append (f i l e [1])
93 r e t u r n f i l e s

95

In [7] :
97

99 d e f s p l i t f i l e s (f i l e d i r , f i l e L i s t) :
svcomp21 d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /

e v a l u a t i o n / d a t a s e t / Da taSource / svcomp21 / ”
101 t r a i n = []

t e s t = []
103 f o r f i l e i n f i l e L i s t :

i f s e a r c h f i l e (f i l e d i r , f i l e) :
105 t e s t . append (f i l e)

e l s e :
107 t r a i n . append (f i l e)

r e t u r n t r a i n , t e s t
109

111 # #### a l l f i l e s

113 # In [8] :

115

f o r b i d d e n l i s t = []
117

a r r a y d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / a r r a y / ”

119 l o o p d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / l oop / ”

f l o a t d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / f l o a t / ”

121

arrayfiles

94 APPENDIX A. CODE

123 a r r a y f i l e s = g e t a l l f i l e N a m e s (a r r ay poo lDB)

125 # loopfiles
l o o p f i l e s = g e t a l l f i l e N a m e s (loop poolDB)

127

floatfiles
129 f l o a t f i l e s = g e t a l l f i l e N a m e s (f l o a t p o o l D B)

131

In [9] :
133

135 p r i n t (l e n (a r r a y f i l e s))

137

s p l i t t r a i n f i l e s and t e s t f i l e s
139

In [1 0] :
141

143 d a t a d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code / e v a l u a t i o n
/ d a t a s e t / Da taSource / ”

145 a r r a y s v c o m p 2 1 d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / svcomp21 / a r r a y / ”

l o o p s v c o m p 2 1 d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / svcomp21 / loop / ”

147 f l o a t s v c o m p 2 1 d i r = ” / Use r s / g r a s s g o d / Documents / Manches t e r / MSCProject / 2 0 2 1 / Code /
e v a l u a t i o n / d a t a s e t / svcomp21 / f l o a t / ”

149 # train

151 t r a i n a r r a y f i l e s , t e s t a r r a y f i l e s = s p l i t f i l e s (a r r a y s v c o m p 2 1 d i r ,
a r r a y f i l e s)

153 t r a i n l o o p f i l e s , t e s t l o o p f i l e s = s p l i t f i l e s (l o o p s v c o m p 2 1 d i r , l o o p f i l e s)

155 t r a i n f l o a t f i l e s , t e s t f l o a t f i l e s = s p l i t f i l e s (f l o a t s v c o m p 2 1 d i r ,
f l o a t f i l e s)

157

1 . e x t r a c t f e a t u r e s
159

In [1 1] :
161

163 d e f a l e r t f i l e (f i l e a d d r e s s) :
w i th open (f i l e a d d r e s s , ' r ' , e n c o d i n g = ' u t f −8 ') a s f :

165 c = f . r e a d ()

A.4. MODEL TRAINING AND EVALUATION 95

167 wi th open (f i l e a d d r e s s , ' r ' , e n c o d i n g = ' u t f −8 ') a s f :
c l i n e = f . r e a d l i n e s ()

169 i f ” a t t r i b u t e ” i n c and ” # d e f i n e a t t r i b u t e (x) ” n o t i n c :
c l i n e . i n s e r t (0 , ” # d e f i n e a t t r i b u t e (x) \n ”)

171

i f ” e x t e n s i o n ” i n c and ” # d e f i n e e x t e n s i o n ” n o t i n c :
173 c l i n e . i n s e r t (0 , ” # d e f i n e e x t e n s i o n \n ”)

175 # i f ” s i z e t ” i n c and ” t y p e d e f u n s i g n e d long s i z e t ; ” n o t i n c :
c l i n e . i n s e r t (0 , ” t y p e d e f u n s i g n e d long s i z e t ;\ n ”)

177

comments = F a l s e
179 f o r l i n e i n r a n g e (l e n (c l i n e)) :

i f ” / * ” i n c l i n e [l i n e] and ” * / ” n o t i n c l i n e [l i n e] :
181 comments = True

i f ” / * ” n o t i n c l i n e [l i n e] and ” * / ” i n c l i n e [l i n e] :
183 comments = F a l s e

i f ” a t t r i b u t e ” i n c l i n e [l i n e] :
185 c l i n e [l i n e] = r e . sub (” a t t r i b u t e \ s+” , ” a t t r i b u t e ” , c l i n e [l i n e

])
i f ”# i n c l u d e ” i n c l i n e [l i n e] and ” / * ” n o t i n c l i n e [l i n e] :

187 # c l i n e [l i n e] = ” / * ” + r e . sub (”\ n ” , ” ” , c l i n e [l i n e]) + ” * /\ n ”
i f ” / / ” i n c l i n e [l i n e] and ” / * ” n o t i n c l i n e [l i n e] and ” h t t p ” n o t i n

c l i n e [l i n e] and n o t comments :
189 i n d e x = c l i n e [l i n e] . f i n d (” / / ”)

c l i n e [l i n e] = c l i n e [l i n e] [: i n d e x] + ”\n / * ” + c l i n e [l i n e] [i n d e x
:] + ” * /\ n ”

191 i f c l i n e [l i n e] . s t r i p () . s t a r t s w i t h (” / / ”) and n o t comments :
c l i n e [l i n e] = ” / * ” + r e . sub (”\n ” , ” ” , c l i n e [l i n e]) + ” * /\ n ”

193

wi th open (f i l e a d d r e s s , 'w ' , e n c o d i n g = ' u t f −8 ') a s f :
195 f . w r i t e l i n e s (c l i n e)

197

In [1 2] :
199

201 c o n s t f e a t u r e n a m e = [' Decl ' , ' Loop ' , ' R e c u r s i o n ' , ' I f ' , ' Ass ignment ' , ' F un c C a l l ' , '
Labe l ' , ' C o n s t a n t ' , ' TypeDecl ' , ' I d e n t i f i e r T y p e ' , ' Goto ' , ' s o l v e r ' , ' encode ' , '
v e r i f i c a t o r ' , ' max k ' , ' c l a s s ']

f e a t u r e l i s t = { i : 0 f o r i i n c o n s t f e a t u r e n a m e }
203

205 # In [1 3] :

207

d e f g e t f i l e a d d r e s s (f i l e d i r , f i l e n a m e) :
209 f o r r o o t , d i r s , f i l e s i n os . walk (f i l e d i r) :

96 APPENDIX A. CODE

f o r f i l e i n f i l e s :
211 i f f i l e == f i l e n a m e :

r e t u r n r o o t +” / ”+ f i l e
213

215 # In [1 4] :

217

g e t i p y t h o n () . r u n l i n e m a g i c (' run ' , ' e x t r a c t f e a t u r e . py ')
219 g e t i p y t h o n () . r u n l i n e m a g i c (' run ' , ' a n a l y s i s f e a t u r e . py ')

221

In [1 5] :
223

225 from imp i m p o r t r e l o a d
i m p o r t e x t r a c t f e a t u r e

227 r e l o a d (e x t r a c t f e a t u r e)

229 i m p o r t a n a l y s i s f e a t u r e
r e l o a d (a n a l y s i s f e a t u r e)

231

233 # In [1 6] :

235

d e f g e t f e a t u r e s (f i l e a d d r e s s) :
237 f e a t u r e l i s t = { i : 0 f o r i i n c o n s t f e a t u r e n a m e }

a s t d i c t = f i l e t o d i c t (f i l e a d d r e s s)
239 a s t = f r o m d i c t (a s t d i c t)

241 r e t u r n e x t r a c t f e a t u r e f u n c (a s t)

243

In [1 7] :
245

247 f o r b i d d e n l i s t = []

249

In [1 8] :
251

253 d e f g e t d a t e s e t f e a t u r e s (f i l e d i r , n a m e l i s t) :
f e a t u r e s e t = {}

255 f o r f i l e i n n a m e l i s t :
i f f i l e i n f o r b i d d e n l i s t :

257 c o n t i n u e
f i l e a d d r e s s = g e t f i l e a d d r e s s (f i l e d i r , f i l e)

A.4. MODEL TRAINING AND EVALUATION 97

259 # a l e r t f i l e (f i l e a d d r e s s)
t r y :

261 f e a t u r e l i s t = g e t f e a t u r e s (f i l e a d d r e s s)
f e a t u r e s e t [f i l e] = f e a t u r e l i s t

263 e x c e p t E x c e p t i o n as ex :
p r i n t (ex)

265 f o r b i d d e n l i s t . append (f i l e)
r e t u r n f e a t u r e s e t

267

269 # In [1 9] :

271

a r r a y f e a t u r e = g e t d a t e s e t f e a t u r e s (d a t a d i r , a r r a y f i l e s)
273

275 # In [2 0] :

277

l o o p f e a t u r e = g e t d a t e s e t f e a t u r e s (d a t a d i r , l o o p f i l e s)
279

281 # In [2 1] :

283

f l o a t f e a t u r e = g e t d a t e s e t f e a t u r e s (d a t a d i r , f l o a t f i l e s)
285

287 # ### 2 f o r m a t f e a t u r e csv

289 # In [2 2] :

291

SMT = [”−−z3 ” , ”−− b o o l e c t o r ” , ”−− y i c e s ” , ”−− m a t h s a t ” , ”−−cvc ”]
293 Encode = [”−− i r ” , ”−− f i x e d b v ” , ”−− f l o a t b v ”]

V e r i f i c a t i o n = [”−−k− i n d u c t i o n ” , ”−− f a l s i f i c a t i o n ” , ”−− i n c r e m e n t a l −bmc”]
295

m a x s t e p s = [1 0 , 3 0 , 5 0 , 1 0 0 , 2 0 0 , 4 0 0 , 8 0 0 , 1 6 0 0]
297 s t e p s = [1 , 2 , 4 , 8 , 16 , 32 , 64 , 128]

299 VERIFICATION FAILED = ”VERIFICATION FAILED”

301 VERIFICATION UNKNOWN = ”VERIFICATION UNKNOWN”

303 VERIFICATION SUCCESS = ”VERIFICATION SUCCESS”

305 Timed out = ” Timed o u t ”

307 ERROR = ”ERROR”

98 APPENDIX A. CODE

309

In [2 3] :
311

313 d e f i d e n t i f y s t a t u s (t ime , s t a t u s) :
i f s t a t u s == ERROR:

315 r e t u r n 6

317 i f s t a t u s == VERIFICATION UNKNOWN :
r e t u r n 5

319

i f s t a t u s == Timed out :
321 r e t u r n 4

323 i f s t a t u s == VERIFICATION FAILED or s t a t u s == VERIFICATION SUCCESS :
i f t ime <2:

325 r e t u r n 0
i f t ime <60:

327 r e t u r n 1
i f t ime <300:

329 r e t u r n 2
i f t ime <900:

331 r e t u r n 3

333

In [2 4] :
335

337 d e f i d e n t i f y p a r a m e t e r s (parm) :
SMT = [”−−z3 ” , ”−− b o o l e c t o r ” , ”−− y i c e s ” , ”−− m a t h s a t ” , ”−−cvc ”]

339 Encode = [”−− i r ” , ”−− f i x e d b v ” , ”−− f l o a t b v ”]
V e r i f i c a t i o n = [”−−k− i n d u c t i o n ” , ”−− f a l s i f i c a t i o n ” , ”−− i n c r e m e n t a l −bmc”]

341 f o r i i n r a n g e (l e n (SMT)) :
i f SMT[i] == parm :

343 r e t u r n i
f o r i i n r a n g e (l e n (Encode)) :

345 i f Encode [i] == parm :
r e t u r n i

347 f o r i i n r a n g e (l e n (SMT)) :
i f V e r i f i c a t i o n [i] == parm :

349 r e t u r n i

351

In [2 5] :
353

355 d e f p r o c e s s f e a t u r e (poolDB , f e a t u r e b a s e , s o l v e r , encode , v e r i f i c a t e , max k ,
f i l e) :

A.4. MODEL TRAINING AND EVALUATION 99

f e a t u r e l i s t = f e a t u r e b a s e
357

f i l e I D = s e l e c t d b (poolDB , ” s e l e c t * from programC where f i l eName = '{} ' ” .
f o r m a t (f i l e)) [0] [0]

359 t a s k = s e l e c t d b (poolDB , ” s e l e c t * from t a s k where f i l e I D = {} and s o l v e r =
'{} ' and encode = '{} ' and v e r i f i c a t e = '{} ' and max k = {} ” . f o r m a t (
f i l e I D , s o l v e r , encode , v e r i f i c a t e , max k))

i f l e n (t a s k) == 0 :
361 r e t u r n F a l s e

363 f e a t u r e l i s t [' s o l v e r '] = i d e n t i f y p a r a m e t e r s (s o l v e r)
f e a t u r e l i s t [' encode '] = i d e n t i f y p a r a m e t e r s (encode)

365 f e a t u r e l i s t [' v e r i f i c a t o r '] = i d e n t i f y p a r a m e t e r s (v e r i f i c a t e)
f e a t u r e l i s t [' max k '] = max k

367

f e a t u r e l i s t [' c l a s s '] = i d e n t i f y s t a t u s (t a s k [0] [8] , t a s k [0] [9])
369

r e t u r n f e a t u r e l i s t
371

373 # In [2 6] :

375

d e f r o l l b a c k (poolDB , f e a t u r e b a s e , s o l v e r , encode , v e r i f i c a t e , max k , f i l e) :
377 f e a t u r e l i s t = f e a t u r e b a s e

379 f i l e I D = s e l e c t d b (poolDB , ” s e l e c t * from programC where f i l eName = '{} ' ” .
f o r m a t (f i l e)) [0] [0]

381 f o r k i n r a n g e (7 , −1 , −1) :
temp k = m a x s t e p s [k]

383

i f temp k>= max k :
385 c o n t i n u e

e l s e :
387 t a s k = s e l e c t d b (poolDB , ” s e l e c t * from t a s k where f i l e I D = {} and

s o l v e r = '{} ' and encode = '{} ' and v e r i f i c a t e = '{} ' and max k =
{} ” . f o r m a t (f i l e I D , s o l v e r , encode , v e r i f i c a t e , temp k))

i f l e n (t a s k) == 0 :
389 c o n t i n u e

391 f e a t u r e l i s t [' s o l v e r '] = i d e n t i f y p a r a m e t e r s (s o l v e r)
f e a t u r e l i s t [' encode '] = i d e n t i f y p a r a m e t e r s (encode)

393 f e a t u r e l i s t [' v e r i f i c a t o r '] = i d e n t i f y p a r a m e t e r s (v e r i f i c a t e)
f e a t u r e l i s t [' max k '] = max k

395

f e a t u r e l i s t [' c l a s s '] = i d e n t i f y s t a t u s (t a s k [0] [8] , t a s k [0] [9])
397 r e t u r n f e a t u r e l i s t

100 APPENDIX A. CODE

399

In [2 7] :
401

403 c o n s t f e a t u r e n a m e = [' Decl ' , ' Loop ' , ' R e c u r s i o n ' , ' I f ' , ' Ass ignment ' , ' F un c C a l l ' , '
Labe l ' , ' C o n s t a n t ' , ' TypeDecl ' , ' I d e n t i f i e r T y p e ' , ' Goto ' , ' s o l v e r ' , ' encode ' , '
v e r i f i c a t o r ' , ' max k ' , ' c l a s s ']

d e f g e t a l l f e a t u r e (poolDB , f e a t u r e s e t , f i l e l i s t) :
405 df = pd . DataFrame (columns = c o n s t f e a t u r e n a m e)

f o r f i l e i n f i l e l i s t :
407 i f f i l e i n f o r b i d d e n l i s t :

c o n t i n u e
409 f o r smt i n SMT:

f o r encode i n Encode :
411 f o r v e r i f i c a t e i n V e r i f i c a t i o n :

i f smt==”−− b o o l e c t o r ” and encode ==”−− i r ” and (v e r i f i c a t e ==”
−− i n c r e m e n t a l −bmc” or v e r i f i c a t e ==”−−k− i n d u c t i o n ”) :

413 c o n t i n u e
i f v e r i f i c a t e == ' −− f a l s i f i c a t i o n ' :

415 f e a t u r e b a s e = f e a t u r e s e t [f i l e]

417 f e a t u r e l i s t = p r o c e s s f e a t u r e (poolDB , f e a t u r e b a s e , smt
, encode , v e r i f i c a t e , 0 , f i l e)

419 f e a t u r e l i s t = pd . S e r i e s (f e a t u r e l i s t , name= f i l e +” ”+
s t r (i d e n t i f y p a r a m e t e r s (smt)) +” ”+ s t r (
i d e n t i f y p a r a m e t e r s (encode)) +” ”+ s t r (
i d e n t i f y p a r a m e t e r s (v e r i f i c a t e)) +” ”+ s t r (0))

421 df = df . append (f e a t u r e l i s t)
e l s e :

423 f o r k i n r a n g e (8) :
f e a t u r e b a s e = f e a t u r e s e t [f i l e]

425

f e a t u r e l i s t = p r o c e s s f e a t u r e (poolDB , f e a t u r e b a s e ,
smt , encode , v e r i f i c a t e , m a x s t e p s [k] , f i l e)

427

i f f e a t u r e l i s t == F a l s e :
429 f e a t u r e l i s t = r o l l b a c k (poolDB , f e a t u r e b a s e ,

smt , encode , v e r i f i c a t e , m a x s t e p s [k] , f i l e)

431 f e a t u r e l i s t = pd . S e r i e s (f e a t u r e l i s t , name= f i l e +”
”+ s t r (i d e n t i f y p a r a m e t e r s (smt)) +” ”+ s t r (
i d e n t i f y p a r a m e t e r s (encode)) +” ”+ s t r (
i d e n t i f y p a r a m e t e r s (v e r i f i c a t e)) +” ”+ s t r (
m a x s t e p s [k]))

433 df = df . append (f e a t u r e l i s t)
r e t u r n d f

A.4. MODEL TRAINING AND EVALUATION 101

435

437 # In [2 8] :

439

d f t r a i n a r r a y = g e t a l l f e a t u r e (a r ray poo lDB , a r r a y f e a t u r e ,
t r a i n a r r a y f i l e s)

441 # d f t r a i n a r r a y . t o c s v (” d f t r a i n a r r a y . csv ”)

443 # d f t e s t a r r a y = g e t a l l f e a t u r e (a r ray poo lDB , a r r a y f e a t u r e , t e s t a r r a y f i l e s)
d f t e s t a r r a y . t o c s v (” d f t e s t a r r a y . csv ”)

445

447 # In [2 9] :

449

d f t r a i n l o o p = g e t a l l f e a t u r e (loop poolDB , l o o p f e a t u r e , t r a i n l o o p f i l e s)
451 # d f t r a i n l o o p . t o c s v (” d f t r a i n l o o p . csv ”)

453 # d f t e s t l o o p = g e t a l l f e a t u r e (loop poolDB , l o o p f e a t u r e , t e s t l o o p f i l e s)
d f t e s t l o o p . t o c s v (” d f t e s t l o o p . csv ”)

455

457 # In [3 0] :

459

d f t r a i n f l o a t = g e t a l l f e a t u r e (f l o a t p o o l D B , f l o a t f e a t u r e ,
t r a i n f l o a t f i l e s)

461 # d f t r a i n f l o a t . t o c s v (” d f t r a i n f l o a t . c sv ”)

463 # d f t e s t f l o a t = g e t a l l f e a t u r e (f l o a t p o o l D B , f l o a t f e a t u r e , t e s t f l o a t f i l e s)
d f t e s t f l o a t . t o c s v (” d f t e s t f l o a t . c sv ”)

465

467 # In [3 1] :

469

d f t r a i n a r r a y = pd . r e a d c s v (” d f t r a i n a r r a y . csv ” , i n d e x c o l =0)
471

d f t e s t a r r a y = pd . r e a d c s v (” d f t e s t a r r a y . csv ” , i n d e x c o l =0)
473

d f t r a i n l o o p = pd . r e a d c s v (” d f t r a i n l o o p . csv ” , i n d e x c o l =0)
475

d f t e s t l o o p = pd . r e a d c s v (” d f t e s t l o o p . csv ” , i n d e x c o l =0)
477

d f t r a i n f l o a t = pd . r e a d c s v (” d f t r a i n f l o a t . c sv ” , i n d e x c o l =0)
479

d f t e s t f l o a t = pd . r e a d c s v (” d f t e s t f l o a t . c sv ” , i n d e x c o l =0)
481

102 APPENDIX A. CODE

483 # ### 2 E v a l u a t i o n

485 # ### 2 . 1 b u i l d model

487 # In [4 3] :

489

d e f SVM model (t r a i n d a t a , t r a i n l a b e l , t e s t d a t a , t e s t l a b e l) :
491 # SVM

c l f = svm . SVC ()
493

p a r a m g r i d = { 'C ' : [0 . 1 , 1 , 1 0 , 1 0 0]}
495 g r i d = GridSearchCV (c l f , p a r a m g r i d , cv =5 , s c o r i n g = ' a c c u r a c y ')

g r i d . f i t (t r a i n d a t a , t r a i n l a b e l)
497

p r i n t (' −− ')
499 p r i n t ('SVM: ')

p r i n t (' Bes t c r o s s − v a l i d a t i o n s c o r e : ' , g r i d . b e s t s c o r e)
501 p r i n t (' Bes t p a r a m e t e r s : ' , g r i d . b e s t p a r a m s)

c l f = g r i d . b e s t e s t i m a t o r
503 y p r e d = c l f . p r e d i c t (t e s t d a t a)

505 cm = C o n f u s i o n M a t r i x (a c t u a l v e c t o r = t e s t l a b e l . v a l u e s , p r e d i c t v e c t o r = y p r e d)
cm2 = c o n f u s i o n m a t r i x (t e s t l a b e l , y p r e d)

507 p r i n t (cm)
p r i n t (c l a s s i f i c a t i o n r e p o r t (t e s t l a b e l , y p red , t a r g e t n a m e s =[” R e a l l y f a s t ” , ”

F a s t ” , ” Normal ” , ” Slow ” , ” Timed o u t ” , ”Unknown” , ”ERROR”] , d i g i t s =2))
509 p r i n t (”−−−−−−−−−−−−−−−−”)

511 p r i n t (” a c c u r a c y s c o r e ” , a c c u r a c y s c o r e (t e s t l a b e l , y p r e d))
p r i n t (” c o r r e c t number ” , a c c u r a c y s c o r e (t e s t l a b e l , y p red , n o r m a l i z e = F a l s e))

513 p r i n t (”−−−−−−−−−−−−−−−−−−−”)

515

p r i n t (” m i c r o f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
517 p r i n t (” mac ro f1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

p r i n t (” w e i g h t e d f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))
519

p r i n t (” m i c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
521 p r i n t (” m a c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

p r i n t (” w e i g h t e d r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))
523

525 r e t u r n c l f

527

In [3 3] :
529

A.4. MODEL TRAINING AND EVALUATION 103

531 d e f DT model (t r a i n d a t a , t r a i n l a b e l , t e s t d a t a , t e s t l a b e l) :
c l f = D e c i s i o n T r e e C l a s s i f i e r ()

533

p a r a m g r i d = { ' c r i t e r i o n ' : [' g i n i ' , ' e n t r o p y '] ,
535 ' s p l i t t e r ' : [' b e s t ' , ' random '] ,

' m a x f e a t u r e s ' : [' a u t o ' , ' s q r t ' , ' l og2 ']}
537 g r i d = GridSearchCV (c l f , p a r a m g r i d , cv =5 , s c o r i n g = ' a c c u r a c y ')

g r i d . f i t (t r a i n d a t a , t r a i n l a b e l)
539

p r i n t (' −− ')
541 p r i n t ('DT: ')

p r i n t (' Bes t c r o s s − v a l i d a t i o n s c o r e : ' , g r i d . b e s t s c o r e)
543 p r i n t (' Bes t p a r a m e t e r s : ' , g r i d . b e s t p a r a m s)

545 c l f = g r i d . b e s t e s t i m a t o r
y p r e d = c l f . p r e d i c t (t e s t d a t a)

547

cm = C o n f u s i o n M a t r i x (a c t u a l v e c t o r = t e s t l a b e l . v a l u e s , p r e d i c t v e c t o r = y p r e d)
549 cm2 = c o n f u s i o n m a t r i x (t e s t l a b e l , y p r e d)

p r i n t (cm)
551 p r i n t (c l a s s i f i c a t i o n r e p o r t (t e s t l a b e l , y p red , t a r g e t n a m e s =[” R e a l l y f a s t ” , ”

F a s t ” , ” Normal ” , ” Slow ” , ” Timed o u t ” , ”Unknown” , ”ERROR”] , d i g i t s =2))

553 p r i n t (”−−−−−−−−−−−−−−−−”)

555 p r i n t (” a c c u r a c y s c o r e ” , a c c u r a c y s c o r e (t e s t l a b e l , y p r e d))

557 p r i n t (” c o r r e c t number ” , a c c u r a c y s c o r e (t e s t l a b e l , y p red , n o r m a l i z e = F a l s e))
p r i n t (”−−−−−−−−−−−−−−−−−−−”)

559

561 p r i n t (” m i c r o f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” mac ro f1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

563 p r i n t (” w e i g h t e d f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

565 p r i n t (” m i c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” m a c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

567 p r i n t (” w e i g h t e d r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

569

p r i n t (cm)
571

r e t u r n c l f
573

575 # In [3 4] :

577

104 APPENDIX A. CODE

d e f KNN model (t r a i n d a t a , t r a i n l a b e l , t e s t d a t a , t e s t l a b e l) :
579 # KNN

c l f = K N e i g h b o r s C l a s s i f i e r ()
581

p a r a m g r i d = { ' n n e i g h b o r s ' : [1 , 2 , 3 , 4 , 5] ,
583 ' w e i g h t s ' : [' un i fo rm ' , ' d i s t a n c e ']}

g r i d = GridSearchCV (c l f , p a r a m g r i d , cv =5 , s c o r i n g = ' a c c u r a c y ')
585 g r i d . f i t (t r a i n d a t a , t r a i n l a b e l)

587 p r i n t (' −− ')
p r i n t ('KNN: ')

589 p r i n t (' Bes t c r o s s − v a l i d a t i o n s c o r e : ' , g r i d . b e s t s c o r e)
p r i n t (' Bes t p a r a m e t e r s : ' , g r i d . b e s t p a r a m s)

591 c l f = g r i d . b e s t e s t i m a t o r
y p r e d = c l f . p r e d i c t (t e s t d a t a)

593

cm = C o n f u s i o n M a t r i x (a c t u a l v e c t o r = t e s t l a b e l . v a l u e s , p r e d i c t v e c t o r = y p r e d)
595 cm2 = c o n f u s i o n m a t r i x (t e s t l a b e l , y p r e d)

p r i n t (cm)
597

p r i n t (c l a s s i f i c a t i o n r e p o r t (t e s t l a b e l , y p red , t a r g e t n a m e s =[” R e a l l y f a s t ” , ”
F a s t ” , ” Normal ” , ” Slow ” , ” Timed o u t ” , ”Unknown” , ”ERROR”] , d i g i t s =2))

599

p r i n t (”−−−−−−−−−−−−−−−−”)
601

p r i n t (” a c c u r a c y s c o r e ” , a c c u r a c y s c o r e (t e s t l a b e l , y p r e d))
603

p r i n t (” c o r r e c t number ” , a c c u r a c y s c o r e (t e s t l a b e l , y p red , n o r m a l i z e = F a l s e))
605 p r i n t (”−−−−−−−−−−−−−−−−−−−”)

607 p r i n t (” m i c r o f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” mac ro f1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

609 p r i n t (” w e i g h t e d f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

611 p r i n t (” m i c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” m a c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

613 p r i n t (” w e i g h t e d r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

615 r e t u r n c l f

617

In [3 5] :
619

621 d e f NN model (t r a i n d a t a , t r a i n l a b e l , t e s t d a t a , t e s t l a b e l) :
n e u r a l ne twork

623 c l f = M L P C l a s s i f i e r (a l p h a =1e −5 , m a x i t e r = 1000)

625 p a r a m g r i d = { ' l e a r n i n g r a t e i n i t ' : [0 . 0 1 , 0 . 0 2 , 0 . 0 5 , 0 . 1 , 0 . 2 , 0 . 5] }

A.4. MODEL TRAINING AND EVALUATION 105

g r i d = GridSearchCV (c l f , p a r a m g r i d , cv =5 , s c o r i n g = ' a c c u r a c y ')
627 g r i d . f i t (t r a i n d a t a , t r a i n l a b e l)

629 p r i n t (' −− ')
p r i n t ('NN: ')

631 p r i n t (' Bes t c r o s s − v a l i d a t i o n s c o r e : ' , g r i d . b e s t s c o r e)
p r i n t (' Bes t p a r a m e t e r s : ' , g r i d . b e s t p a r a m s)

633 c l f = g r i d . b e s t e s t i m a t o r
y p r e d = c l f . p r e d i c t (t e s t d a t a)

635

cm = C o n f u s i o n M a t r i x (a c t u a l v e c t o r = t e s t l a b e l . v a l u e s , p r e d i c t v e c t o r = y p r e d)
637 cm2 = c o n f u s i o n m a t r i x (t e s t l a b e l , y p r e d)

p r i n t (cm)
639 p r i n t (c l a s s i f i c a t i o n r e p o r t (t e s t l a b e l , y p red , t a r g e t n a m e s =[” R e a l l y f a s t ” , ”

F a s t ” , ” Normal ” , ” Slow ” , ” Timed o u t ” , ”Unknown” , ”ERROR”] , d i g i t s =2))

641 p r i n t (”−−−−−−−−−−−−−−−−”)

643 p r i n t (” a c c u r a c y s c o r e ” , a c c u r a c y s c o r e (t e s t l a b e l , y p r e d))

645 p r i n t (” c o r r e c t number ” , a c c u r a c y s c o r e (t e s t l a b e l , y p red , n o r m a l i z e = F a l s e))
p r i n t (”−−−−−−−−−−−−−−−−−−−”)

647

649 p r i n t (” m i c r o f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” mac ro f1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

651 p r i n t (” w e i g h t e d f 1 ” , f 1 s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

653 p r i n t (” m i c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' micro '))
p r i n t (” m a c r o r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' macro '))

655 p r i n t (” w e i g h t e d r e c a l l ” , r e c a l l s c o r e (t e s t l a b e l , y p red , a v e r a g e = ' w e i g h t e d '))

657 r e t u r n c l f

659

p r e p a r e t h e d a t a
661

In [3 6] :
663

665 d e f b a l a n c e d a t a (d f t r a i n , d f t e s t , f r a c) :
temp = d f t e s t . sample (f r a c = 0 . 7)

667 t r a i n d a t a = pd . c o n c a t ([d f t r a i n , temp] , a x i s = 0)
t e s t d a t a = d f t e s t [˜ d f t e s t . i n d e x . i s i n (temp . i n d e x)]

669

t r a i n l a b e l = t r a i n d a t a [' c l a s s ']
671 t e s t l a b e l = t e s t d a t a [' c l a s s ']

673 t r a i n d a t a = t r a i n d a t a . d rop (columns =[' c l a s s '])

106 APPENDIX A. CODE

t e s t d a t a = t e s t d a t a . d rop (columns =[' c l a s s '])
675

t r a i n l a b e l = t r a i n l a b e l . a s t y p e (' i n t ')
677 t e s t l a b e l = t e s t l a b e l . a s t y p e (' i n t ')

679 r e t u r n t r a i n d a t a , t e s t d a t a , t r a i n l a b e l , t e s t l a b e l

681

In [3 7] :
683

685 t r a i n d a t a a r r a y , t e s t d a t a a r r a y , t r a i n l a b e l a r r a y , t e s t l a b e l a r r a y =
b a l a n c e d a t a (d f t r a i n a r r a y , d f t e s t a r r a y , 0 . 2)

687 t r a i n d a t a l o o p , t e s t d a t a l o o p , t r a i n l a b e l l o o p , t e s t l a b e l l o o p =
b a l a n c e d a t a (d f t r a i n l o o p , d f t e s t l o o p , 0 . 2)

689 t r a i n d a t a f l o a t , t e s t d a t a f l o a t , t r a i n l a b e l f l o a t , t e s t l a b e l f l o a t =
b a l a n c e d a t a (d f t r a i n f l o a t , d f t e s t f l o a t , 0 . 4)

691

2 . 2 T e s t model i n d i v i d u a l l y
693

In [3 8] :
695

697 i m p o r t t ime
from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n m a t r i x , c l a s s i f i c a t i o n r e p o r t ,

a c c u r a c y s c o r e , p r e c i s i o n s c o r e , r e c a l l s c o r e , f 1 s c o r e , r o c a u c s c o r e
699

701 # In [3 9] :

703

s t a r t t i m e = t ime . t ime ()
705 DT ar ray = DT model (t r a i n d a t a a r r a y , t r a i n l a b e l a r r a y , t e s t d a t a a r r a y ,

t e s t l a b e l a r r a y)
p r i n t (t ime . t ime () − s t a r t t i m e)

707

709 # In [4 0] :

711

s t a r t t i m e = t ime . t ime ()
713 DT loop = DT model (t r a i n d a t a l o o p , t r a i n l a b e l l o o p , t e s t d a t a l o o p ,

t e s t l a b e l l o o p)
p r i n t (t ime . t ime () − s t a r t t i m e)

715

A.4. MODEL TRAINING AND EVALUATION 107

717 # In [4 1] :

719

s t a r t t i m e = t ime . t ime ()
721 D T f l o a t = DT model (t r a i n d a t a f l o a t , t r a i n l a b e l f l o a t , t e s t d a t a f l o a t ,

t e s t l a b e l f l o a t)
p r i n t (t ime . t ime () − s t a r t t i m e)

723

725 # In [4 2] :

727

s t a r t t i m e = t ime . t ime ()
729 KNN array = KNN model (t r a i n d a t a a r r a y , t r a i n l a b e l a r r a y , t e s t d a t a a r r a y ,

t e s t l a b e l a r r a y)
p r i n t (t ime . t ime () − s t a r t t i m e)

731

733 # In [4 3] :

735

s t a r t t i m e = t ime . t ime ()
737 KNN loop = KNN model (t r a i n d a t a l o o p , t r a i n l a b e l l o o p , t e s t d a t a l o o p ,

t e s t l a b e l l o o p)
p r i n t (t ime . t ime () − s t a r t t i m e)

739

741 # In [4 4] :

743

s t a r t t i m e = t ime . t ime ()
745 KNN float = KNN model (t r a i n d a t a f l o a t , t r a i n l a b e l f l o a t , t e s t d a t a f l o a t ,

t e s t l a b e l f l o a t)
p r i n t (t ime . t ime () − s t a r t t i m e)

747

749 # In [4 0] :

751

s t a r t t i m e = t ime . t ime ()
753 SVM array = SVM model (t r a i n d a t a a r r a y , t r a i n l a b e l a r r a y , t e s t d a t a a r r a y ,

t e s t l a b e l a r r a y)
p r i n t (t ime . t ime () − s t a r t t i m e)

755

757 # In [4 1] :

759

s t a r t t i m e = t ime . t ime ()

108 APPENDIX A. CODE

761 SVM loop = SVM model (t r a i n d a t a l o o p , t r a i n l a b e l l o o p , t e s t d a t a l o o p ,
t e s t l a b e l l o o p)

p r i n t (t ime . t ime () − s t a r t t i m e)
763

765 # In [4 2] :

767

s t a r t t i m e = t ime . t ime ()
769 SVM float = SVM model (t r a i n d a t a f l o a t , t r a i n l a b e l f l o a t , t e s t d a t a f l o a t ,

t e s t l a b e l f l o a t)
p r i n t (t ime . t ime () − s t a r t t i m e)

771

773 # In [4 5] :

775

s t a r t t i m e = t ime . t ime ()
777 NN array = NN model (t r a i n d a t a a r r a y , t r a i n l a b e l a r r a y , t e s t d a t a a r r a y ,

t e s t l a b e l a r r a y)
p r i n t (t ime . t ime () − s t a r t t i m e)

779

781 # In [4 6] :

783

s t a r t t i m e = t ime . t ime ()
785 NN loop = NN model (t r a i n d a t a l o o p , t r a i n l a b e l l o o p , t e s t d a t a l o o p ,

t e s t l a b e l l o o p)
p r i n t (t ime . t ime () − s t a r t t i m e)

787

789 # In [4 7] :

791

s t a r t t i m e = t ime . t ime ()
793 N N f l o a t = NN model (t r a i n d a t a f l o a t , t r a i n l a b e l f l o a t , t e s t d a t a f l o a t ,

t e s t l a b e l f l o a t)
p r i n t (t ime . t ime () − s t a r t t i m e)

795

797 # ### 2 . 3 Combine t h e models o f a r r a y and loop t o f l o a t t o t e s t t h e r e u s a b i l i t y
o f t h e model

799 # In [3 9] :

801

t r a i n d a t a m e r g e = pd . c o n c a t ([d f t r a i n a r r a y , d f t e s t a r r a y , d f t r a i n l o o p ,
d f t e s t l o o p] , a x i s = 0)

A.4. MODEL TRAINING AND EVALUATION 109

803

t e s t d a t a m e r g e = pd . c o n c a t ([d f t r a i n f l o a t , d f t e s t f l o a t] , a x i s = 0)
805

t r a i n d a t a 2 , t e s t d a t a 2 , t r a i n l a b e l 2 , t e s t l a b e l 2 = b a l a n c e d a t a (
t r a i n d a t a m e r g e , t e s t d a t a m e r g e , 0)

807

809 # In [4 0] :

811

s t a r t t i m e = t ime . t ime ()
813 DT model (t r a i n d a t a 2 , t r a i n l a b e l 2 , t e s t d a t a 2 , t e s t l a b e l 2)

p r i n t (t ime . t ime () − s t a r t t i m e)
815

817 # ### 2 . 4 S e t a b a s e l i n e , compared t o a u t o m a t i c a l l y c h o o s i n g p a r a m e t e r s . (T r a i n
wi th t h e d a t a s e t o f p r e v i o u s y e a r s and p r e d i c t on SV−comp2021)

819 # In [9 9] :

821

d e f g e t p a r a m s (num) :
823 c o u n t = −1

f o r smt i n SMT:
825 f o r encode i n Encode :

f o r v e r i f i c a t e i n V e r i f i c a t i o n :
827 i f smt==”−− b o o l e c t o r ” and encode ==”−− i r ” and (v e r i f i c a t e ==”−−

i n c r e m e n t a l −bmc” or v e r i f i c a t e ==”−−k− i n d u c t i o n ”) :
c o n t i n u e

829 i f v e r i f i c a t e == ' −− f a l s i f i c a t i o n ' :
c o u n t += 1

831 i f c o u n t == num :
r e t u r n smt , encode , v e r i f i c a t e , 0

833 e l s e :
f o r k i n r a n g e (8) :

835 c o u n t += 1
i f c o u n t == num :

837 r e t u r n smt , encode , v e r i f i c a t e , m a x s t e p s [k]

839

In [1 0 0] :
841

843 d e f r o l l b a c k t i m e (poolDB , s o l v e r , encode , v e r i f i c a t e , max k , f i l e I D) :

845 f o r k i n r a n g e (7 , −1 , −1) :
temp k = m a x s t e p s [k]

847

i f temp k>= max k :

110 APPENDIX A. CODE

849 c o n t i n u e
e l s e :

851 t a s k = s e l e c t d b (poolDB , ” s e l e c t * from t a s k where f i l e I D = {} and
s o l v e r = '{} ' and encode = '{} ' and v e r i f i c a t e = '{} ' and max k =
{} ” . f o r m a t (f i l e I D , s o l v e r , encode , v e r i f i c a t e , temp k))

i f l e n (t a s k) == 0 :
853 c o n t i n u e

r e t u r n t a s k [0] [8]
855

857 # In [1 0 1] :

859

d e f p r e d i c t (poolDB , model , f i l e , f e a t u r e s e t) :
861 t e s t d a t a = g e t a l l f e a t u r e (poolDB , f e a t u r e s e t , [f i l e])

t e s t l a b e l = t e s t d a t a [' c l a s s ']
863 t e s t d a t a = t e s t d a t a . d rop (columns =[' c l a s s '])

y p r e d = model . p r e d i c t (t e s t d a t a)
865

s t a t u s = 8
867 r e c o r d = −1

f o r i i n r a n g e (l e n (y p r e d)) :
869 i f s t a t u s >y p r e d [i] :

s t a t u s = y p r e d [i]
871 r e c o r d = i

873 s q l = ” s e l e c t * from base where f i l eName = '{} ' ” . f o r m a t (f i l e)
d e f a u l t s t a t u s = i d e n t i f y s t a t u s (s e l e c t d b (poolDB , s q l) [0] [3] , s e l e c t d b (

poolDB , s q l) [0] [4])
875 d e f a u l t t i m e = s e l e c t d b (poolDB , s q l) [0] [3]

877 s o l v e r , encode , v e r i f i c a t e , max k = g e t p a r a m s (r e c o r d)

879 f i l e I D = s e l e c t d b (poolDB , ” s e l e c t * from programC where f i l eName = '{} ' ” .
f o r m a t (f i l e)) [0] [0]

s q l = ” s e l e c t * from t a s k where f i l e I D = '{} ' and s o l v e r = '{} ' and encode =
'{} ' and v e r i f i c a t e = '{} ' and max k = {} ” . f o r m a t (f i l e I D , s o l v e r , encode ,

v e r i f i c a t e , max k)
881 r e s u l t s = s e l e c t d b (poolDB , s q l)

i f l e n (r e s u l t s) != 0 :
883 t ime = r e s u l t s [0] [8]

e l s e :
885 t ime = r o l l b a c k t i m e (poolDB , s o l v e r , encode , v e r i f i c a t e , max k , f i l e I D)

887

p r i n t ('−−−')
889 # p r i n t (f i l e)

p r i n t (” d e f a u l t s t a t u s i s %s ”%(d e f a u l t s t a t u s))
891 # p r i n t (” p r e d i c t s t a t u s i s %d”%(s t a t u s))

A.4. MODEL TRAINING AND EVALUATION 111

p r i n t (g e t p a r a m s (r e c o r d))
893 r e t u r n d e f a u l t s t a t u s , s t a t u s , d e f a u l t t i m e , t ime

895

In [1 0 2] :
897

899 p r e d i c t (a r ray poo lDB , DT array , a r r a y f i l e s [0] , a r r a y f e a t u r e)

901

In [1 0 3] :
903

905 d e f p r o c e s s p r e d i c t (poolDB , f i l e l i s t , model , f e a t u r e s e t) :
t o t a l s a v e = 0

907 t o t a l i n c r e a s e = 0
m i s p r e d i c t = 0

909

p r e d i c t s u c c e s s = 0
911 f o r f i l e i n f i l e l i s t :

i f f i l e i n f o r b i d d e n l i s t :
913 c o n t i n u e

d e f a l u t s t a t u s , s t a t u s , d e f a u l t t i m e , t ime = p r e d i c t (poolDB , model , f i l e ,
f e a t u r e s e t)

915 i f d e f a l u t s t a t u s == 4 :
i f s t a t u s >4:

917 p r i n t (” p r e d i c t i o n e r r o r ! ! ! ! ”)
m i s p r e d i c t += 1

919 i f s t a t u s <4:
t o t a l s a v e += 900 − t ime

921 e l i f d e f a l u t s t a t u s <4:
i f s t a t u s >4:

923 p r i n t (” p r e d i c t i o n e r r o r ! ! ! ! ”)
m i s p r e d i c t += 1

925 i f t ime<d e f a u l t t i m e :
t o t a l s a v e += d e f a u l t t i m e − t ime

927 e l s e :
t o t a l i n c r e a s e += abs (d e f a u l t t i m e − t ime)

929 e l i f d e f a l u t s t a t u s == 6 :
i f s t a t u s ! = 6 :

931 p r i n t (” p r e d i c t s u c c e s s ”)
p r e d i c t s u c c e s s += 1

933 # p r i n t ('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−')
p r i n t (” t o t a l s a v e ” , t o t a l s a v e)

935 # p r i n t (” t o t a l i n c r e a s e ” , t o t a l i n c r e a s e)
p r i n t (d e f a l u t s t a t u s , s t a t u s)

937 p r i n t (” m i s p r e d i c t ” , m i s p r e d i c t)
p r i n t (” change e r r o r ” , p r e d i c t s u c c e s s)

939 p r i n t (” t o t a l s a v e ” , t o t a l s a v e)

112 APPENDIX A. CODE

p r i n t (” t o t a l i n c r e a s e ” , t o t a l i n c r e a s e)
941 p r i n t (” True save ” , t o t a l s a v e − t o t a l i n c r e a s e)

943

In [1 0 4] :
945

947 p r o c e s s p r e d i c t (a r ray poo lDB , t e s t a r r a y f i l e s , DT array , a r r a y f e a t u r e)

949

In [1 0 5] :
951

953 p r o c e s s p r e d i c t (loop poolDB , t e s t l o o p f i l e s , DT loop , l o o p f e a t u r e)

955

In [] :

