
FUZZING A SOFTWARE VERIFIER

A DISSERTATION SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF MASTER OF SCIENCE

IN THE FACULTY OF SCIENCE AND ENGINEERING

2022

Student id: 10844993

Department of Computer Science

Contents

Abstract 7

Declaration 8

Copyright 9

Acknowledgements 10

1 Introduction 11
1.1 Motivation . 11
1.2 Research Question, Aim and Objectives 12
1.3 Contribution. 13
1.4 Dissertation Structure. 13

2 Background and Theory 15
2.1 SAT and SMT Solver . 15
2.2 Bounded Model Checking . 17

2.2.1 Incremental Bounded Model Checking 18
2.2.2 Bounded Model Checker . 18

2.3 Fuzzing . 28
2.3.1 Black-box, White-box and Grey-box Fuzzing 28
2.3.2 Generation-based, Mutation-based and Hybrid Fuzzing 29

3 Methodology and Implementation 36
3.1 Entry Point . 36
3.2 Goto Grammar . 38
3.3 Intial version of GotoFuzz . 44
3.4 Improved version of GotoFuzz . 51
3.5 Summary . 55

2

4 Evaluation 58
4.0.1 Vulnerability Detection . 58
4.0.2 Coverage Improvement . 63
4.0.3 Summary . 71

5 Conclusion and Further Work 72
5.1 Deliverables and Key Achievements 72
5.2 Reflection . 73
5.3 Limitations and Future Work . 74

Bibliography 75

Word Count: 12353

3

List of Tables

3.1 Coverage Data with PRNG-based Mutator 55

4.1 Sample with the Most Coverage Improvement 66
4.2 Average Improvement Based on Individual Sample 66
4.3 Accumulated Improvement of Line Coverage 67
4.4 Accumulated Improvement of Function Coverage 67
4.5 Improvement with Extra Unwinding Times 70

4

List of Figures

2.1 Inference Rules for Arithmetic Resolution 17

2.2 Examples of using Linear Arithmetic Theory Solver 17

2.3 Example of Constraint and Property 20

2.4 ESBMC Commands . 21

2.5 Example of Using ESBMC in incremental mode 22

2.6 The Overview of ESBMC . 23

2.7 Example of Symbol Table . 24

2.8 Example of Control Flow Chart . 25

2.9 Example of Loop Unwinding . 26

2.10 Example C Code . 27

2.11 Goto Program . 27

2.12 Program in SSA Form . 27

2.13 Examples of Using Csmith . 30

2.14 Examples of Using LibFuzzer . 33

2.15 Example of Hybrid Fuzzing for Zlib Compress Library 35

3.1 The Grammar of Goto Program . 43

3.2 Examples of a Goto Program . 44

3.3 Mutation on Sequentional and Non-Sequentional Structure 46

3.4 Example of CFG Mutation. The mutated blocks/edges are illustrated
in red. 47

3.5 Mutation algorithm for Sequential code structure 48

3.6 Mutation algorithm for Non-Sequential code structure 49

3.7 Result of mutation execution . 50

3.8 The Overview of Initial GotoFuzz. White rectangles represent the
components of ESBMC; grey rectangles represent the components of
the GotoFuzz . 51

3.9 The Result of the GotoFuzz . 52

5

3.10 Mutation algorithm for Non-Sequential code structure 54
3.11 The Overview of Improved GotoFuzz. White rectangles represent the

components of ESBMC; grey rectangles represent the components of
the GotoFuzz . 56

3.12 The Length of The Seeds Grows Rapidly 56

4.1 Unwinding is Not Terminated . 59
4.2 The Difference Between Goto Programs Before and After Output . . . 61
4.3 The Difference when Using Incremental BMC Mode 62
4.4 Example of Coverage Report . 65
4.5 Example of Reaching Maximal Line/Function Coverage Improvement 68
4.6 Example of PRNG Generated Corpus 69
4.7 Example of Running Out of Memory 70

5.1 The Commitment to ESBMC . 73

6

Abstract

FUZZING A SOFTWARE VERIFIER

Chenfeng Wei
A dissertation submitted to The University of Manchester

for the degree of Master of Science, 2022

The complexity of dynamic testing increases with the growth of the project. This
results in the increasing usage of static analysis tools, such as bounded model checkers,
which do not require compilation and act automatically. As a Satisfiability modulo the-
ories(SMT) based bounded model checker, ESBMC has been successfully applied into
a variety of areas due to its high efficiency and adaptability to multi-programming lan-
guage and multi-platform. However, the construction of a coverage-guided mutation-
based fuzzer for this verifier is a challenge, as directly generated random input cannot
be “understood” by ESBMC and will be excluded beyond validating. Despite mod-
ern fuzzers such as Csmith and libFuzzer having been applied to ESBMC, in-depth
exploration of uncovered codes and vulnerabilities is still a challenge.

In this paper, we present the GotoFuzz, a coverage-guided hybrid fuzzer that gen-
erates inputs according to the pre-defined grammar of the ESBMC’s intermediate rep-
resentation(IR). The goal is to perform structure mutation on this IR. To demonstrate
the design and improvement, two different implementations are proposed: an initial
version based on the combination of libFuzzer and Csmith, and the second version
with an additional pseudo-random number generator introduced. The comparison and
testing result confirms that our GotoFuzz has the ability to dig out in-depth implemen-
tation and more improvement in the code coverage and vulnerabilities. At last, we will
discuss the limitation of current work and the potential of extending our GotoFuzz to
other verifier.

7

Declaration

No portion of the work referred to in this dissertation has
been submitted in support of an application for another de-
gree or qualification of this or any other university or other
institute of learning.

8

Copyright

i. The author of this thesis (including any appendices and/or schedules to this the-
sis) owns certain copyright or related rights in it (the “Copyright”) and s/he has
given The University of Manchester certain rights to use such Copyright, includ-
ing for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic
copy, may be made only in accordance with the Copyright, Designs and Patents
Act 1988 (as amended) and regulations issued under it or, where appropriate,
in accordance with licensing agreements which the University has from time to
time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”), which
may be described in this thesis, may not be owned by the author and may be
owned by third parties. Such Intellectual Property and Reproductions cannot
and must not be made available for use without the prior written permission of
the owner(s) of the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and
commercialisation of this thesis, the Copyright and any Intellectual Property
and/or Reproductions described in it may take place is available in the Univer-
sity IP Policy (see http://documents.manchester.ac.uk/DocuInfo.aspx?
DocID=24420), in any relevant Thesis restriction declarations deposited in the
University Library, The University Library’s regulations (see http://www.library.
manchester.ac.uk/about/regulations/) and in The University’s policy on
presentation of Theses

9

Acknowledgements

I would like to thank my supervisor Dr Lucas Cordeiro. He gave me very detailed
guidance throughout the research of the project. With his encouragement, I managed
to contribute code to ESBMC. I would also like to thank PhD student Rafael Menezes.
Whenever I encountered problems with coding, he will offer some help, guiding me
step by step through the design of the final program. ESBMC has opened up a new
world for me, I can’t wait to continue to use it to explore the field of security.

10

Chapter 1

Introduction

1.1 Motivation

The bounded model checking(BMC) technique has been widely used in practice to de-
tect software vulnerabilities due to its ability to handle projects with high complexity.
As a state-of-art BMC tool, ESBMC [1] has shown high efficiency and extraordinary
error detection ability by winning first place in the ReachSafety-XCSP subcategory and
second place in the SoftwareSystems-AWS-C-Common-ReachSafety, ReachSafety-
ECA, and ReachSafety-Arrays subcategories [2]. In contrast to other model check-
ers, according to Fink’s study [3], ESBMC has generally less CPU time consump-
tion than other modern verifiers, including CPAchecker[4], PeSCo[5], Symbiotic[6]
Ultimate Automizer[7], only second to 2LS[8]. However, despite being an efficient
verifier, there are problems regarding the ESBMC robustness. This can be reflected
by the ”Filler Code” and ”Variable Wrapping” benchmarks set in Fink’s work, where
ESBMC could be ”buggy” when all global variables in the executed program got ran-
domly wrapped during fuzzing. Numerous reports of ESBMC errors are another piece
of evidence. According to ESBMC’s GitHub repository, [9], approximately 30 vul-
nerabilities were claimed in 2021. Among these vulnerabilities three of which were
formally confirmed and corrected by developers. Common vulnerabilities are segmen-
tation overflows and undefined behaviour.

11

12 CHAPTER 1. INTRODUCTION

1.2 Research Question, Aim and Objectives

Research Question.

Given that fuzzers like Csmith[10] and libFuzzer[11] have already been applied to
ESBMC, a natural thought is whether it is possible to construct a fuzzer based on a
hybrid combination of these two fuzzers.

Aim.

This project aims to answer this question by using ESBMC as a vehicle for research.
The goal is to construct a hybrid grey-box fuzzer which can

1. generate random test cases that not violating the grammatical rules of IR which
is called Goto program. This can be done by the combination of Csmith and
ESBMC’s frontend parser.

2. perform mutation on the Goto programs based on the its grammar with the help
of libFuzzer. These will only alter its semantic property while keeping syntacti-
cal correction.

3. fuzz ESBMC by performing symbolic execution and verification on mutated
Goto programs. The result will be reflected by the coverage information and the
error messages.

Objectives.

The objectives of this project are listed in the following:

1. summarise the principle workflow of ESBMC and the syntax grammar of its
Goto program.

2. study the working principle of the fuzzer. Csmith and libFuzzer will be used as
typical research subjects. The advantages and disadvantages of these mainstream
generation-based and mutation-based fuzzer will be demonstrated.

3. based on 2, propose our structure-aware coverage-guided fuzzer GotoFuzz.

1.3. CONTRIBUTION. 13

Deliverables.

Our work makes three major deliverables, which can be listed as follows:

1. A summary of the syntax grammar associated with Goto programs. Despite
the slight differences in overall language feature supported. This can be useful
for understanding the inner workings of the BMC black box. In addition, the
summary can be valuable for understanding other CProver-based[12] BMC tools
like ESBMC, including CBMC[13] and JBMC[14].

2. Our proposed structure-aware coverage-guided GotoFuzz.

3. Final dissertation to summarize the work done for deliverables 1 and 2.

1.3 Contribution.

The hybrid combination of generation-based and mutation fuzzer has been explored
and introduced to various areas. For example, CONFUZZION [15] is the first fuzzer
able to detect Java Virtual Machine(JVM) type confusion vulnerabilities. This mutation-
based feedback-guided black-box performs on the syntactically valid Java programs
generated by other JVM fuzzer. Zest [16] is another hybrid fuzzer which automat-
ically guides random input generators to better explore the semantic analysis stage
of the test program, leveraging program feedback via code coverage and performing
feedback-directed parameter search. Despite having many successful cases, this hy-
brid approach has not yet been used for fuzzing bounded model checkers. To the best
of our knowledge, GotoFuzz could be the first fuzzer that applies this hybrid fuzzing
approach into this area. GotoFuzz demonstrates its feasibility and performance ben-
efits through the results, including the expected improvement in code coverage and
the discovery of some unintended vulnerabilities. In addition, hybrid fuzzers like zest
focus on the mutation of the variable’s value, whereas our implementation, focuses on
structural mutation. This gives a new way of thinking about the variation approach.

1.4 Dissertation Structure.

This dissertation contains five chapters including the introduction. The layout of the
remaining sections can be shown as follows. In chapter 2, we first introduce the

14 CHAPTER 1. INTRODUCTION

background knowledge related to the model checker and satisfiability modulo theo-
ries (SMT), leading to an SMT-based bounded model checker. In addition, ESBMC
will be used as a use case to explain the working principles and software architecture
of this type of verifier, including its frontend, middleware and backend, which is use-
ful for understanding the design rationale of the new fuzzer construction in chapter 3.
In addition, we categorise the mainstream fuzzer into different types and present their
respective advantages and disadvantages. In chapter 3, we propose the GotoFuzz. The
syntatical grammar of Goto language will first be summarised. The entry point and
the format of the generated inputs will then be demonstrated. Next, two approaches
for constructing the fuzzer will be proposed. The implementation based directly on
libFuzeer and Csmith is presented firstly. The benefit and drawbacks of this prototype
will be demonstrated, leading to the improved version where a pseudo-random number
generator (PRNG) will be introduced to. In chapter 4, we discuss the design of the test
suite and explain the test results. Chapter 5 summarises the project’s deliverables and
key achievements, ending with the dissuasion of the limitation and the possibility of
applying out GotoFuzz to a wider area.

Chapter 2

Background and Theory

This chapter lays the theoretical foundation that will become essential in later chap-
ters. Firstly, this chapter introduces the background to SAT and SMT solvers and
lists the tools that are based on these theoretical implementations. This provides the
theoretical foundation that will become essential in the later description of the BMC
technique. Next, we will introduce the general model checking technique, followed by
the bounded model checking and the incremental bounded model checking which can
handle programs with higher complexity. Depending on the type of solver on which
their backend is based, we introduce an SMT-based BMC called ESBMC. The demon-
stration of the software architecture of ESBMC will be divided into four components
and illustrative examples will be provided to explain its workflow. Finally, this section
will describe the background of fuzzing. Depending on the principle of operation, the
fuzzer will be categorised and the basis for the categorisation, the principles of opera-
tion, and the advantages and disadvantages will be discussed in turn. This will inform
us when designing our fuzzer GotoFuzz in the next chapter.

2.1 SAT and SMT Solver

A solver is used to solve the formula satisfiability problem. Broadly speaking, these
problems can be divided into two categories: Boolean satisfiability problems(SAT) and
satisfiability modulo theories(SMT) problems. The SAT problem asks whether a given
Boolean formula is satisfiable and the tool used to solve such problems is called SAT
solver. The two decision procedure algorithms used by SAT solvers to determine the
satisfiability of formulas are Davis-Putnam-Logemann-Loveland (DPLL) and Conflict
Driven Clause Learning (CDCL), the latter of which is widely used for its lower time

15

16 CHAPTER 2. BACKGROUND AND THEORY

complexity.
SAT solvers are automatic and efficient. However, systems are usually designed

and modelled at a higher level than the Boolean level and the translation to Boolean
logic can be expensive. SMT solver is, therefore, introduce to create verification en-
gines that can reason natively at a higher level of abstraction, while still retaining the
speed and automation of today’s Boolean engines. An SMT solver can be seen as a
combination of the theories solver and the CDCL-based SAT solver. In mathemat-
ics, A theory is a consistent set of first-order formulas, including theories of Equality,
Bit-vector, Linear-arithmetic, Arrays, etc. The theory provides inference rules for rea-
soning and simplifying complex sets of formulas. Figure 2.1 shows inference rule AR

based on the Theory of Linear Arithmetic, where x is maximal inax+ t and −bx+ s;
a,b,g,h > 0, h ∈ N and ga = hb. Figure 2.2 provides an example of the application
of the inference rule to a first-order formula, where the set of inequalities yields an
unsatisfiable result after inference. After conversion by theories solver, the high order
formulae are transformed into Boolean formulae and can therefore be further processed
by SAT solver. Examples of the modern SMT solver can be listed as follows:

1. Z3 [17] is an SMT solver developed by Microsoft Research. It supports a wide
range of theories, including several non-standard extensions, such as tuples, lists,
sets, and recursively defined sorts.

2. Yices[18] is an SMT solver developed at SRI international. It supports several
theories, including e decides the satisfiability of formulas containing uninter-
preted function symbols with equality, real and integer arithmetic, bit-vectors,
scalar types, and tuples while not supporting floating-point.

3. MathSAT [19] is a general-purpose SMT solver developed by FBK-IRST and
the University of Trento. The solver supports several SMT theories, including
floating-points, but also supports the creation of Craig-interpolants [20] and par-
tial assignment enumeration. It is available under a non-commercial, academic,
free license.

4. CVC4 [21] is a theorem prover with support for for satisfiability modulo theories
(SMT) problems. It can be used to prove the validity of first-order formulas in
a large number of built-in logical theories and their combination. The theorem
prover is a collaboration between the New York University and the University of
Iowa, and it is released under a BSD license.CVC4 is an efficient open-source
automatic theorem prover

2.2. BOUNDED MODEL CHECKING 17

Figure 2.1: Inference Rules for Arithmetic Resolution

Figure 2.2: Examples of using Linear Arithmetic Theory Solver

5. Boolector[22] is an SMT solver for quantifier-free theories of bit-vectors and
arrays. The solver uses bit-blasting for bit-vectors and lemmas on demand for
arrays, converting the formulae to SAT formulae; it supports several SAT solvers
as back-ends, including PicoSAT[23], MiniSAT, and CryptoMiniSAT[24]. The
solver, however, does not support floating-point. Boolector focuses on continu-
ous refinement of an initial abstraction of the SMT formula, based on the SAT
solver’s satisfying assignments. It is released under an MIT-like license with
non-commercial and no-competition-use clauses

2.2 Bounded Model Checking

Model checking or property checking is a technique for automatically verifying cor-
rectness properties of finite-state systems, abstracting concrete procedures into clauses
and using SAT/SMT solver for verification [25]. Model checking algorithms explicitly

18 CHAPTER 2. BACKGROUND AND THEORY

enumerated the reachable states of the system to check the correctness of a given spec-
ification. This restricted the capacity of model checkers to systems with a few million
states. Since the number of states can fill dramatically in the number of variables, early
implementations were simply ready to deal with projects of small size and didn’t scale
to models with industrial complexity. Bounded model checking is, therefore, proposed.
Instead of checking for all states, this technique only checks if a property holds for a
subset of states. Bounded model checking does not solve the complexity problem of
model checking, since it still relies on an exponential procedure and hence is limited
in its capacity. But experiments have shown that it can solve many cases that cannot
be solved by BDD-based techniques. The basic idea is to search for a counterexam-
ple in executions whose length is bounded by some integer k. If no bug is found then
one increases k until either a bug is found, the problem becomes intractable, or some
pre-defined upper bound is reached.

2.2.1 Incremental Bounded Model Checking

Incremental Bounded Model Checking was proposed to solve the incremental satis-
fiability problem. This technique aims to verify if satisfiability is preserved for a set
of formulas that are satisfiable when a new set is inserted. During an incremental
BMC process, the program is unstoppably unrolled until the completeness threshold
is reached, or any error and bugs are reported. This ensures that smaller problems
are solved sequentially instead of guessing an upper bound for the verification. This
method maximises his value by finding counterexamples to the property while addi-
tionally proving the correctness of the procedure. In addition, Incremental Bounded
Model Checking proved to be especially efficient in the presence of incremental SAT-
solvers [26].

2.2.2 Bounded Model Checker

Traditionally, Bounded Model Checkers were based on Boolean Satisfiability (SAT).
A typical example of an SAT solver is CBMC. CBMC implements BMC for ANSI-
C/C++ programs using SAT solvers like MiniSat, verifying the absence of violated
assertions under a given loop unwinding bound. CBMC was created over a decade ago
and has been maintained ever since. Many BMCs have been developed on this basis.
In fact, the SMT-based verifier ESBMC described below was first developed based on
CBMC v2.9 (2008)[2]. After several iterations, the CBMC backend now also adds

2.2. BOUNDED MODEL CHECKING 19

support for some SMT solvers[27].

To cope with increasing software complexity, the SMT (Satisfiability Modulo The-
ories) solvers have to be used as back-ends for solving the generated verification con-
ditions. A typical example of an SAT solver is ESBMC. ESBMC is an SMT-based
contextual boundary model checker that has been widely used to verify multi-language
programs, including C/C++, Java and Solidity. ESBMC can automatically find mem-
ory safety and assertion violations. The basic working principle of an SMT-based
bounded model checker begins with a transition system M, a property φ, and a bound
k. ESBMC unwinds the system k times and converts it into a verification condition
(VC) ψ. [28] ESBMC checks the negation of this VC so that ψ is satisfiable if and
only if φ has a counterexample of depth k or less. To cope with increasing software
complexity, sorts of SMT (Satisfiability Modulo Theories) solvers have been used as
the back-end of ESBMC for solving the generated VCs. The VC ψ is a quantifier-free
formula in a decidable subset of first-order logic, which is then checked for satisfia-
bility by an SMT solver. model checking problem is formulated by constructing the
following logical formula ψk = I(s0)∧

∨k
i=0

∧i−1
j=0 γ(s j,s j+1)∧¬φ(si), where I is the

set of initial states of M and γ(s j,s j+1) represents the transition relation of M between
time steps j and j+1. If the formula is satisfiable, the SMT solver will provide a sat-
isfying assignment, from which we can extract the values of the program variables to
construct a counter-example. If it is unsatisfiable, we can conclude that no error state is
reachable in k steps or less. Note that this approach can be used only to find violations
of the property up to the bound k.

Figure 2.3 provides an example of this transformation. store(a, i,v) means to write
the value of v in position i of array a. select(a, i) means to read the value at position
i of array a. C corresponds to the constraint part I(s0)∧

∨k
i=0

∧i−1
j=0 γ(s j,s j+1) and P

represents the property φ(si). ESBMC performs satisfiability check of formula C∧¬P.

ESBMC is used as a command-line tool as shown in Figure 2.4. Despite being a
general BMC, ESBMC also implements the k-induction algorithm to add support for
the incremental bounded model checking. Figure 2.5 provides a working example with
incremental BMC, where the option ”–k-induction” is used to select the k-induction
proof rule. For this particular C program test1.c, ESBMC provides the ”VERIFICA-
TION SUCCESSFUL” prints as the result, meaning in this situation ESBMC does not
find any bugs.

Next, we will take a deeper look at the software architecture of ESBMC, which can
be helpful for understanding the robustness and potential vulnerability within ESBMC.

20 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.3: Example of Constraint and Property

Figure 2.6 provides a general overview, where ESBMC has been divided into four
components: the front-end, the Goto Converter, the Symbolic Engine and the back-
end. Given that ESBMC supports a variety of front-ends, for the sake of the discussion
that follows, the Clang-based C/C++ front-end has been used as our case study.

Frontend

The frontend is an important piece of technology which facilitates the transition be-
tween the program under verification and a format the tool can work upon. The main
goal is to translate source code into the control flow chart(CFG) representation called
the symbol table, an auxiliary data structure storing the meaning and range of variable
names. Despite several parsers having been constructed corresponding to different pro-
gramming languages in ESBMC, the result will always be this uniform intermediate
representation. This conversion is achieved by a front-end. This component shares
mostly the same structure with a typical compiler including a pre-processor, scanner,
parser and type checker. Pre-processor handles special operations that will be per-
formed according to the preprocessor instructions, such as replacement or expansion
macros. A lexical analysis of the scanner and a syntax score of the parser resulted in
the Abstract Syntax Tree (AST). To simplify the analysis, ASTs have been converted
into a simpler form, called an intermediate representation (IR), by a type checker in
which a symbol table is generated simultaneously. At this point, the source code as
input is converted into symbol tables[12]. Figure 2.7 shows an example of a symbol
table. The symbol table interprets the parsed program as symbol information and stores
it, including the name, type and value of each symbol.

2.2. BOUNDED MODEL CHECKING 21

Figure 2.4: ESBMC Commands

22 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.5: Example of Using ESBMC in incremental mode

2.2. BOUNDED MODEL CHECKING 23

Figure 2.6: The Overview of ESBMC

Another implementation of this conversion is achieved through special compilers
like goto-cc for CBMC or c2goto for ESBMC. These compilers work as a substitu-
tion for common C compilers like GCC and, on top of having the same functionality,
compile programs given in C and C++ into Goto programs. Functionally, this type
of compiler is more like an integrated convertor for Goto programs on top of the ex-
isting compilers, resulting in files stored in the goto program in binary format. The
Goto-binaries are not meant to be executable but are typically given to the verifier.

Goto Generator

The Goto Converter converts symbol table to the Goto programs. Goto programs are
the intermediate representation of the ESBMC tool chain. This representation is sim-
ilar to the control flow graph (CFG) representation used by conventional compilers.
Figure 2.8 provides a example of a CFG generated from a C program.

During this process, the Goto program is simplified, and new property checks and
instructions can be added. The Goto program is a simplified version of the program:
a branch and a backward Goto replace for and while loops. It is very similar to a C
program, containing assignments, function calls and returns, and location information.
Depending on the ESBMC option directive set, some additional code may be inserted.

24 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.7: Example of Symbol Table

2.2. BOUNDED MODEL CHECKING 25

Figure 2.8: Example of Control Flow Chart

For example, concurrency instructions can be inserted if the program is multi-threaded,
and k-induction specific instructions are introduced if k-induction verification is en-
abled.

Symbolic Engine

The parsing stage translates the raw input into an internal data structure or abstract
syntax tree that can be easily processed by the rest of the program. Next, the semantic
analysis driven by the symbolic engine checks if an input satisfies certain semantic
constraints (e.g. if an XML input fits a specific schema), and executes the core logic of
the program. The symbolic engine unwinds the GOTO program from the previous step,
symbolically executed, unwinding loops and unfolding recursive function calls up to a
given bound. Specifically, the Symbolic Engine will firstly convert the variables from
program text to a single static assignment (SSA) form. New variables are created to
identify branch and loop entry conditions. These variables will guard the assignments
based on the branch taken. Symbolic execution will be performed after the conversion
to perform semantic analysis, including dynamic memory checks (bounds, memory
alignment, offset pointer-free, and double-free) and unwinding assertions. The point
of this step is to make sure each assignment is independent[1]. An illustrative example

26 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.9: Example of Loop Unwinding

of loop unwinding is provided in Figure 2.9. After unrolling the loop two times, the
cycle count changed from 60 to 58 while two expressions are added to the loop block.

Figures 2.10 to 2.12 show the differences between a source C program and its Goto
program and SSA form. This can be reflected by the Goto program the original for-
loop structure is replaced by an IF-THEN-GOTO structure. This representation makes
it very easy to interpret the program, keeping just two pieces of state: the current
position which basic block and which line, and the values of all variables. Meanwhile,
in the SSA form program, the expression gets unwinded and variables get cloned and
renamed. This ensures that each variable appearing in the resulting program is written
to exactly once. In this way, we can refer to earlier values of the variable by just
referencing the name of an older incarnation of the variable.

2.2. BOUNDED MODEL CHECKING 27

unsigned long f a c t o r i a l (unsigned n) {
unsigned long f a c = 1 ;
f o r (unsigned i n t i = 1 ; i <= n ; i ++) {

f a c *= i ;
}
re turn f a c ;

}

Figure 2.10: Example C Code

u n s i g n e d long f a c . 1 = 1 ;
u n s i g n e d i n t i . 1 = 1 ;

f o r l o o p s t a r t :
i f (i . 1 <= n . 1) go to f o r l o o p e n t r y e l s e go to

f o r l o o p e n d ;
f o r l o o p e n t r y :

f a c . 1 *= i . 1 ;
i . 1 + + ;
go to f o r l o o p s t a r t ;

f o r l o o p e n d :
r e t u r n f a c . 1 ;

Figure 2.11: Goto Program

u n s i g n e d long f a c . 1 = 1 ;
u n s i g n e d i n t i . 1 = 1 ;

f o r l o o p s t a r t :
i f (i . 1 <= n . 1) go to f o r l o o p e n t r y e l s e go to

f o r l o o p e n d ;
f o r l o o p e n t r y :

f a c . 1 . 2 = f a c 1 . 1 * i . 1 . 1 ;
i . 1 . 2 = i . 1 . 1 + 1 ;
go to f o r l o o p s t a r t ;

f o r l o o p e n d :
r e t u r n f a c . 1 ;

Figure 2.12: Program in SSA Form

28 CHAPTER 2. BACKGROUND AND THEORY

Backend

After the SSA formula is generated, the next step is to encode every non-sliced as-
signment in SMT and check for satisfiability. During this workflow, two sets of SMT
formulae are created based on the SSA expressions. We denote C for the constraints
and P for the properties. These quantifier-free formulae will be used as input for the
SMT solver, a counterexample will be created if there exists a violation of a given
property, or an unsatisfiable answer if the property holds. In ESBMC, Several SMT
solvers are currently supported, including Z3, Bitwuzla, Boolector, MathSAT, CVC4
and Yices.

2.3 Fuzzing

Fuzz, also known as fuzz testing, is a method that focuses on finding software secu-
rity vulnerabilities. A typical fuzzing process involves repeatedly driving the target
software through an automated or semi-automated method, providing it with specially
constructed input data. During the process, any security vulnerabilities or slow units
will be monitored and recorded based on the anomaly results and input data [29]. This
technique has been proven to be straightforward, yet successful. With the decrease
in computational expenses, fuzzing has become progressively helpful for both pro-
grammers and testers, who use it to find new bugs/weaknesses in programming.[30]
Companies such as Google, Microsoft and Cisco all use fuzz testing as part of their
software security development process.

2.3.1 Black-box, White-box and Grey-box Fuzzing

In terms of knowledge of the test subject‘s internal structure, there are white box, black
box and in-between grey box testing. White Box Fuzz usually analyses the application
before testing to obtain certain information to assist in the creation of inputs that will
find crashes in the application[31]. The internal structure of the program is analysed to
assist in the generation of appropriate input values. The primary systematic white-box
fuzzing technique is a dynamic symbolic execution. The key idea is that by turning the
input into a symbolic value, the program computes an output value that is a function
of the symbolic input value, the fuzzer can make sure that these input values will drive
the program to a different execution path, thus improving coverage. Unlike the white-
box approach, black-box Fuzz does not care about the state of program execution and

2.3. FUZZING 29

considers the program to be a black box. It generates input directly and then tries to
find the result. Black-box Fuzz is also often referred to as data-driven Fuzz, and the
most traditional Fuzzer is black-box. The generation of values depends on the program
input/output behaviour, and not on its internal structure. In contrast to the white-box
and black-box, grey-box Fuzz combines both black-box and white-box approaches.
This most popular fuzzing strategy combines a black-box fuzzer for execution while
using a lightweight white-box approach to provide feedback to the black-box[32].

2.3.2 Generation-based, Mutation-based and Hybrid Fuzzing

In terms of generation strategies for new test inputs, fuzzers can be divided into generation-
based and mutation-based and the hybrid fuzzer, which combines the first two modes
of operation.

Generation-based Fuzzing

Generation-based fuzzers usually target a single input type, generating inputs accord-
ing to a pre-defined grammar. Good examples of such fuzzers include Csmith, which
generates valid C programs, and Peach, which generates inputs of any type, but re-
quires such a type to be expressed as a grammar definition[33]. Csmith is a tool that
can generate random C programs that statically and dynamically conform to the C99
standard. It is useful for stress-testing compilers, static analyzers, and other tools that
process C code. Csmith developer team claims to have found bugs in every tool that
it has tested, and we have used it to find and report more than 400 previously un-
known compiler bugs[10]. As An expressive generator, Csmith has also maximised
his expressiveness, supporting many language features and combinations of features.
Considering that the C++-based frontend ESBMC is essentially a translation of c++
programs into SMT formulas, more language features will improve code coverage.

Csmith is used as a command-line tool. Figure 2.13 illustrates its basic command
to create a random C file random1.c, along with the content of the generated program.

Mutation-based Fuzzing

Mutation-based fuzzer creates inputs by randomly mutating analyst-provided or randomly-
generated seeds. Guided strategies such as coverage-based or patch-Based are often
used to enable more efficient Fuzzing during mutation. Guided Fuzz was first proposed
by AFL[34], which counts the coverage of samples after execution, finds the bytes that

30 CHAPTER 2. BACKGROUND AND THEORY

Figure 2.13: Examples of Using Csmith

2.3. FUZZING 31

have a greater impact on coverage after mutation, and tests them more often to achieve
more efficient mutation. LibFuzzer is a fuzzing tool which comes from LLVM[35]
compiler infrastructure which to fuzz each function separately. It has acquired a gi-
gantic measure of popularity nowadays for its viability in tracking down basic bugs
and security weaknesses in broadly programming frameworks[16]. Next, the fuzzer
keeps track of which code regions have been tested and then performs variants on the
corpus of input data to maximise code coverage, whose information is provided by
LLVM’s SanitizerCoverage instrumentation. The Mutations algorithm includes oper-
ations such as flipping randomly chosen bits or inserting/deleting random chunks of
bytes. The mutated input is saved if and only if it results in the coverage of a program
branch that was not covered by any previously saved input. If any generated input leads
to the program crashing, then the input is recorded as a potentially new bug to triage
[36]. LibFuzzer can generate entirely random input and work without any initial seeds
but will be less efficient if the library under test accepts complex, structured inputs. a
corpus of sample inputs can significantly improve efficiency. This implies practically
no code coverage at the start, and many hours of work before the first input passing
initial integrity checks is produced. Therefore, it is worth having even a few/odd test
cases to start with. It has acquired a gigantic measure of popularity nowadays for its
viability in tracking down basic bugs and security weaknesses in broadly programming
frameworks.

Figure 2.14 shows an example of libFuzzer. In this case, fuzz.c is a C source
code containing bugs. LibFuzzer is already built into LLVM. In order to work, it
needs to be compiled with the source code and enabled with ”-fsanitize=fuzzer”. ”-
fsanitize=address” is an optional parameter to enable the AddressSanitier in LLVM,
which will help libFuzzer to find bugs. LibFuzzer prints the run to the command line.
Take the output line of the second round ”#19” for example, where each of the param-
eters is explained below:

1. ”#19” is used to mark the current round

2. ”NEW” indicates that the fuzzer has created a test input that covers new areas of
the code under test

3. ”cov” shows otal number of code blocks or edges covered

4. ”ft” stands for ”feature(s)”, meaning the evaluation of the current code coverage.

32 CHAPTER 2. BACKGROUND AND THEORY

5. ”corp” represents the number of entries in the current in-memory test corpus and
its size in bytes

6. ”lim” represents the current limit on the length of new entries

7. ”exec/s” stands for the run speed, in particular, the number of fuzzer iterations
per second

8. ”rss” represents the current memory consumption

9. ”L” represents the size of the new input in byte. This signal is only seen in
”NEW” and ”REDUCE” events

10. ”MS” represents the count and list of the mutation operations used to generate
the input

After 6 rounds of testing, libFuzzer finds the bug and prints an error message. This
error message is also simultaneously recorded as a crash log file.

Hybrid Fuzzing

Both generation-based and mutation-based fuzzers are considered to have inherent
flaws. On one hand, a generation-based fuzzer lacks a coverage-guided trace-feedback
mechanism, which leads to possible duplication of the generated test cases. Another
common flaw in generation-based testing occurs when the input is required to fulfil
sophisticated semantic validity criteria that are not explicitly evaluated by the gener-
ator. On the other hand, a mutation-based fuzzing lacks a generator’s understanding
of which inputs are well-formed, thus the lack of an input grammar can also result in
inefficient fuzzing for complicated input types, where any traditional mutation (e.g. bit
flipping) leads to an invalid input rejected by the target API in the early stage of pars-
ing. For instance, they may struggle with checks against magic numbers, whose value
is unlikely to be generated with random mutations. As these checks may appear early
in the execution, fuzzers may soon get stuck and stop producing interesting inputs.

For these reason, works[37] [16] [30] [38] have explored the hybrid fuzzing method.
The general goal is to combine both fuzzer to perform together, generating random
samples while performing mutation accordingly to obtain better Fuzz efficiency. The
hybrid fuzzer is more of a grey-box fuzzer than the two previously mentioned black-
box fuzzer, leveraging knowledge about the fuzz target to generate inputs that are more

2.3. FUZZING 33

Figure 2.14: Examples of Using LibFuzzer

34 CHAPTER 2. BACKGROUND AND THEORY

likely to be interesting. A simple implementation would be to interpret the bytes pro-
vided by mutation-based, stored in the buffer as required, without using any other
source, and apply them to either variable or structural mutation, where a structural pa-
rameter sequence to be consumed by structural choice points, and a value parameter
sequence to be consumed by value choice points.[38]

Take the CFG in Figure 2.8 as an example. the nodes (rectangular blocks) rep-
resent the values and the edges (arrows) represent the structures. We can construct
parameterised sequences based on the random bytes: (1) A structural parameter se-
quence to be consumed by structural choice points. (2) A value parameter sequence to
be consumed by value choice points. Mutating the structural parameters changes the
boolean decisions on the generation of child nodes. On the other hand, by mutating
the value parameters only, the control-flow behaviour of the generator is preserved, yet
different value choices are sampled. In the case of the CFG generator, mutating value
parameters results in mutated choices for the node values, while keeping the shape of
the binary tree unmodified. Overall, access to these structure-changing and structure-
preserving mutations allows us to explore the input space in a more controlled manner.

Figure 2.15 demonstrates an example of a libFuzzer-based hybrid fuzzer for the
Zlib compress library. The fuzzer accepts every random data and tries to uncompress
it. The program crashes if the first two bytes of the uncompressed input are ’F’ and ’U’.
To avoid corruption of the original compression format due to mutations, a custom mu-
tator (LLVMFuzzerCustomMutator) is added to provide a user-defined function with a
fixed signature. Thus, the input data will be according to the specified language gram-
mar and if it fails, return a syntactically correct input which, in this case, is ’H’ and ’I’.
The inputs then get mutated and compressed. Hence, every input that is received by the
target function (LLVMFuzzerTestOneInput) is valid compressed data and successfully
uncompressed.

2.3. FUZZING 35

e x t er n ”C” i n t LLVMFuzzerTestOneInput (c o n s t u i n t 8 t * Data
, s i z e t S i z e)

{
u i n t 8 t Uncompressed [1 0 0] ;
s i z e t UncompressedLen = s i z e o f (Uncompressed) ;
i f (Z OK != uncompress (Uncompressed , &UncompressedLen ,

Data , S i z e))
re turn 0 ;

i f (UncompressedLen < 2) re turn 0 ;
i f (Uncompressed [0] == ’F ’ && Uncompressed [1] == ’U’)

a b o r t () ; / / Error T r i g g e r e d
re turn 0 ;

}

e x t er n ”C” s i z e t LLVMFuzzerCustomMutator (u i n t 8 t * Data ,
s i z e t S ize ,
s i z e t MaxSize ,
u i n t 8 t Seed)

{
u i n t 8 t Uncompressed [1 0 0] ;
s i z e t UncompressedLen = s i z e o f (Uncompressed) ;
s i z e t CompressedLen = MaxSize ;
i f (Z OK != uncompress (Uncompressed , &UncompressedLen ,

Data , S i z e)) {
}
UncompressedLen =

LLVMFuzzerMutate (Uncompressed , UncompressedLen ,
s i z e o f (Uncompressed)) ;

i f (Z OK != compress (Data , &CompressedLen , Uncompressed ,
UncompressedLen))

re turn 0 ;
re turn CompressedLen ;

}

Figure 2.15: Example of Hybrid Fuzzing for Zlib Compress Library

Chapter 3

Methodology and Implementation

The aim of this Section is to provide an overview of the methods guiding the imple-
mentation of the new hybrid fuzzer. In Section 3.1, We will briefly explain the reasons
for the construction of GotoFuzz by analysing the structure of ESBMC, in other words,
using the ESBMC intermediate language Goto program as the object of fuzz tests. In
order to maintain the correctness of the syntax of the Goto program when mutating
it, in the following section 3.2, the features and syntax of the Goto language will be
introduced and summarised. A visual example of a Goto program will be provided to
explain the specific interpretation of the Goto instructions. In section 3.3, two method-
ologies are presented: the initial approach simply combines libFuzzer with Csmith.
This will be the starting point of our design. The refined approach additionally in-
troduces an improved version of the pseudo-random number generator. The design
principles of both will be discussed and the limitations of the first approach will be
illustrated, explaining why the second was chosen, which will be evidenced later by
the benchmark in chapter 4.

3.1 Entry Point

As a first step in constructing a fuzzer, we first consider its possible outputs. Theo-
retically, this output can be any temporary variable passed in the ESBMC workflow.
According to the structure we have described above, Although there is a variety of
options for ESBMC’s frontend, the parsers for different languages are all based on
the APIs provided by the respective compilers. For example, ESBMC-Solidity which
parses the smart contracts in the blockchain is constructed on the Solidity compiler,
and the ESBMC-Java frontend uses the JVM. In addition, according to section 2.2.2,

36

3.1. ENTRY POINT 37

c2Goto, which is another customised frontend parser, is also based on extensions to
existing compilers clang. It is the same situation for the backend which also directly
makes use of the existing and mature tool–SMT solvers. Both components are widely
used and tested, which can be assumed to a certain extent of robustness. The mid-
dleware, however, appears to be the least tested part. This is due to several reasons.
Firstly, middleware is seen as a black box and the complexity of its operational logic
makes it difficult to design a white box fuzzer to test it. Secondly, because the variables
input and output to the middleware have specific formatting requirements, it is tedious
and difficult to summarise the syntax before constructing the input directly or perform-
ing mutation. Finally, as most of the work performed by the middleware is translation
and transformation, its errors may be masked and left to the backend, where they are
erroneous during execution, which can be misleading in terms of discovering the true
source of the errors.

Therefore, we propose the GotoFuzz. We have chosen the Goto program as the
output for several reasons:

1. Given the target of our fuzzing is the middleware, and the start of the internal
passing process of the middleware is the Goto program, it is natural to construct
a Goto-objective fuzzer.

2. The Goto program is both context-free and language-independent, reflected in
no dependency on the front-end

3. Goto program is a demarcation between syntax and semantics. As described in
Section 2.1.2, symbolic execution represents the input to a program symboli-
cally, based on constraints obtained by analysing the semantics of the program,
whilst the semantics in the program will be translated and executed. The cor-
rectness of both syntax and semantics is required in and beyond this component,
yet previously only the syntax was required.

4. It’s much easier to perform mutation on intermediate representation than on
source code, as the code has already been parsed and stored in the uniform unit
of symbol table/ Goto instructions. The vulnerable point is therefore the mid-
dleware, that is, the Goto converter and the symbolic engine. The main goal,
therefore, is to create semantically arbitrary, in most cases incorrect, but syntac-
tically correct Goto programs.

38 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

5. ESBMC provides internal development instructions to output intermediate ex-
pressions such as the Goto program and SSA formula, which allows the running
progress to be easily traced.

3.2 Goto Grammar

To introduce a hybrid fuzzer to these component, the syntax grammar of the Goto
program in ESBMC should firstly be summarised. The Goto program is a list of in-
structions, each of which has the type of instruction (one of 19 instructions), a code
expression, a protection expression and possibly some target for the next instruction.
A Goto instruction is defined by three properties, as the meaning of an instruction de-
pends on the ”instruction type” field while different kinds of instructions make use of
the fields ”guard” and ”code” for different purposes. Instruction type describes the
action performed by this instruction. Specifically speacking, the Instructions Type is
an enum value describing the action performed by this instruction. Guard is an (arbi-
trarily complex) expression (usually an expert) of Boolean type. And Code represents
a code statement, which can be seen as a unit in the symbol table. These are the prop-
erties that need to be considered when initialising a Goto-instruction data structure,
any other property could be set default or generated afterwards. The type field deter-
mines the meaning of an instruction node, while the guard and code fields are used for
a variety of purposes by different types of instructions [12]. Most importantly, Goto
language is a context-free language, as no matter which symbols surround it, the single
nonterminal on the left-hand side can always be replaced by the right-hand side. This
is what distinguishes it from context-sensitive grammar, allowing to mutate it without
violating its syntax.

The formal grammar of the Goto program language used in ESBMC can be shown
in Figure 3.1. For simplification, we use the ”id” of an expression directly to represent
the corresponding expression, and ”*” is denoted to represent a list of expressions/
instructions.

1. NO INSTRUCTION TYPE: Instruction will be set to. NO INSTRUCTION TYPE
if it is not explicitly defined.

2. GOTO: GOTO targets if and only if guard is true. The guard will be set to TRUE
if it is not explicitly given.

3.2. GOTO GRAMMAR 39

3. ASSUME: This thread of execution waits for guard to evaluate to TRUE, which
performs a non-failing guarded self loop.

4. ASSERT: An assertion is TRUE / safe if guard is TRUE in all possible exe-
cutions, otherwise it is FALSE / unsafe. This instructions is used to express
properties to be verified

5. OTHER: Represents an expression that gets evaluated, but does not have any
other effect on execution, i.e. doesn’t contain a call or assignment.

6. SKIP: Just advance the PC.

7. LOCATION: Semantically like SKIP.

8. ATOMIC BEGIN,ATOMIC END: Marks/ Ends a block without interleavings.
When a thread executes ATOMIC BEGIN, no thread other will be able to exe-
cute any Instruction until the same thread executes ATOMIC END.

9. RETURN: Set the value returned by code (which shall be either nil or an instance
of code return id) and then jump to the end of the function.

10. ASSIGN: Update the left-hand side of code (an instance of code assign id) to
the value of the right-hand side.

11. DECL: Introduces a symbol denoted by the field code (an instance of code decl id).
Semantically, the life-time of which is bounded by a corresponding DEAD in-
struction.

12. DEAD: Ends the life of the symbol denoted by the field code.

13. FUNCTION CALL: Invoke the function denoted by field code (an instance of
code function call id).

14. THROW: Throw an exception. Throw exception 1, ...,exception N where the
list of exceptions is extracted from the code field

15. CATCH: Catch an exception.

16. THROW DECL: List of throws that a function can throw.

17. THROW DECL END: End of throw declaration.

40 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

An example of a simple Goto program is shown in Figure 3.2, where we can make
the assignment to x precede its definition by changing the order between instructions;
in addition, we can break the contextual relationship between the target of the Goto
instruction and the LABEL instruction by making their values no longer equal, thus
changing the semantics without violating the syntax grammar rules. that the changes
of names or values of variables would predictably be unhelpful.

3.2. GOTO GRAMMAR 41

Program ::= Instruction∗+END FUNCT ION

Instruction ::=

| (instruction type)

| (instruction type,guard)

| (instruction type,code)

Instruction type ::=

| NO INST RUCT ION TY PE

| GOTO

| ASSUME

| ASSERT

| OT HER

| SKIP

| LOCAT ION

| END FUNCT ION

| ATOMIC BEGIN

| ATOMIC END

| RETURN

| ASSIGN

| DECL

| DEAD

| FUNCT ION CALL

| T HROW

| CATCH

| T HROW DECL

| T HROW DECL END

42 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Code ::=

| code block id

| code assign id

| code init id

| code decl id

| code dead id

| code print f id

| code expression id

| code return id

| code skip id

| code f ree id

| code goto id

| code asm id

| code f unctioncall id

| code comma id

| code cpp del array id

| code cpp delete id

| code cpp catch id

| code cpp throw id

| code cpp throwdecl id

| code cpp throwdeclend id

Guard ::=

| constant bool id

| constant int id

| constant f loatbv id

| constant f ixedbv id

3.2. GOTO GRAMMAR 43

Instruction ::=
| NO INST RUCT ION TY PE
| GOTO
| GOTO+guard
| ASSUME +guard
| ASSERT +guard
| OT HER+ code expression id
| OT HER+ code f ree id
| OT HER+ code print f id
| OT HER+ code asm id
| OT HER+ code cpp del array id
| OT HER+ code cpp delete id
| SKIP
| LOCAT ION
| ATOMIC BEGIN + Instruction∗+ATOMIC END
| RETURN
| RETURN + code return id
| ASSIGN + code assign id
| DECL+ code decl id
| DEAD+ code dead id
| FUNCT ION CALL+ code f unction call id
| T HROW + code cpp throw id∗
| CATCH + code cpp catch id∗
| T HROW DECL+ code cpp throw decl id∗
| T HROW DECL END+ code cpp throw decl end id∗

Figure 3.1: The Grammar of Goto Program

44 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.2: Examples of a Goto Program

3.3 Intial version of GotoFuzz

We first consider the construction of the GotoFuzz prototype. According to our pre-
vious description of the hybrid fuzzer, structure-aware mutations look for interesting
input structures in the space of valid inputs, which is mirrored in the Goto program’s
randomization of the structure between instructions. We also use structure-preserving
mutations to create distinct mutations of the same input structure to investigate alter-
native execution trails. This is accomplished by altering the values of context-sensitive
variables[38].

In order to refer the random numbers generated by libFuzzer to the Goto program
in a structural mutation, we first introduce the Durstenfeld Shuffle algorithm. It’s a
modern version of Knuth shuffle aka Fisher-Yates shuffle. The original algorithm ef-
fectively puts all the elements into a hat; it continually determines the next element by
randomly drawing an element from the hat until no elements remain, producing an un-
biased permutation: every permutation is equally likely. The modern version has some
slight improvement which reduces the algorithm’s time complexity to O(n) compared
to O(n2). The procedure can be demonstrated in the Algorithm. Function Rand(i, j)

randomly creates number between i and j−1. Array target stored the mutation object.
Based on Durstenfeld’s method, we proposed our mutation algorithm for GotoFuzz
shown in Algorithm 2. To cope with the seeds generated by libFuzzer, we replace
function Rand() by array seeds[], such that the seeds can be used for structure-aware
mutation.

3.3. INTIAL VERSION OF GOTOFUZZ 45

Algorithm 1 Durstenfeld Shuffle Algorithm
Require: target

for i← 0 to n−2 do
j← Rand(i,n) ▷ j is a random integer such that i≤ j < n
(target[j], target[i])← (target[i], target[j]) ▷ exchange a[j] and a[i]

end for

Algorithm 2 GotoFuzz Mutation Algorithm
Require: seeds, target

for i← 0 to n−2 do
j← (seeds[i]%(n−2)) ▷ replace function Rand() by array seeds[]
(target[j], target[i])← (target[i], target[j])

end for

Next, we describe the implementation in detail. Given that Csmith and libFuzzer
have been successfully used in the ESBMC project, it is natural to consider combining
the two to construct our GotoFuzz.

Csmith acts as a generator of Goto programs, although this generation works in-
directly. As Csmith claims to have comprehensive support for the language features
under the C99 standard, there is almost no need to add extra code to ensure that all
features of the Goto program are covered–If it is really necessary, we can simply add
some manually-written test cases. In addition, Since the values of the variables in the
C code generated by Csmith are randomised, we do not need to think about mutating
them.

LibFuzzer acts as a mutator of Goto programs. Figure 3.3 shows the mutation
workflow of sequential and non-sequential (branch) structures. First, libFuzzer takes
the generated random data and stores it as the byte variable Data. Then we interpret and
transform Data and store it as an 16-bit unsigned integer array. These random numbers
are then used in a mutation on the structure of the Goto program, or CFG, which can
be divided into Sequential and Non-Sequential (branch) structures depending on the
type of structure between its instructions/nodes. The main difference between these
two is the presence or absence of a selective branch structure, which is reflected in
the actual code as a node containing a collection of IF-THEN-GO instructions. Dur-
ing the transformation from source code to the instruction GOTO, the Goto converter
creates a variables ”target” to indicate to target instruction after the instruction GOTO
is performed. In Figure 3.3, the Goto program in main.goto uses the target number
1 to mark the instruction to be executed when the guard holds, otherwise, the next
instruction will be executed in sequence. In the flowchart on the right, this selection

46 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.3: Mutation on Sequentional and Non-Sequentional Structure

structure is illustrated by the red edge. Therefore, in addition to considering changes to
the order between nodes, extra mutation on the target needs to be considered. Figure
3.4 provides a detailed example which shows how the CFG changed after mutation
in a round. For the reason of simplification, only one exchange occurs for each mu-
tation. The mutated blocks/edges are illustrated in red. For a start, the Sequential
mutation performed, resulting in the order of two blocks, indicating two instructions,
got swapped. During the later branch mutation, the order of the two edge’s targets got
swapped. This performs a complete round of our GotoFuzz’s mutation.

Figures 3.5 and 3.6 show the code implementations of the mutation for these two
different structures. The first step common to both algorithms is to find the main func-
tion where the aimed Goto program is located. Once found, the sequence of random
numbers used to guide the mutation is checked to see if it has been initialised. If not the
randomly generated Data array from libFuzzer will be read. With the random number
seed array in hand, we also need to extract the object array for the mutation algorithm.
For sequential mutations, the object array will be the set of all instructions in the Goto
program except END FUNCTION. For non-sequential variants, the object array will
be the set of target instructions. After the initialisation of the random number array
and the object array have been completed, both functions will perform the actual mu-
tation operation by the GotoFuzz mutation algorithm. The result of the mutated Goto

3.3. INTIAL VERSION OF GOTOFUZZ 47

Figure 3.4: Example of CFG Mutation. The mutated blocks/edges are illustrated in
red.

Program will be printed out.

Figure 3.7 provides an example result of these mutations in GotoFuzz, where Goto-
Fuzz performed one round of sequential and non-sequential mutation on the Goto
program. In the first transformation, the instructions ”float y;” and ”dead x;” were
swapped randomly, while in the second transformation, the order of Goto’s target la-
bels changed from [1,2,3,4] to [3,1,2,4], and the target numbers in the Goto instruc-
tions changed accordingly.

Based on the discussion above, the construction for GotoFuzz can now be de-
scribed. The general architecture has shown in Figure 3.8. Before testing. To start
testing, GotoFuzz will first generate one or several random C/C++ files using Csmith
(or provide its own test cases if required). These files will then be passed through
the parser (in this case, clang) and goto converter or directly through c2goto to obtain
the goto program. The Goto program will be read by the mutator. A random seed
is needed in order to work. Hence, libFuzzer will generate a random length string of
bytes and store it in a buffer. We will mutate the target with the help of the mutation
algorithm and the byte string will be interpreted as a uint16 t array. Considering that
the maximum value of uint 16 reaches 65535, this is sufficient in the case of structure
mutation. The mutations are performed by first performing a round of sequential struc-
tural mutations followed by a round of non-sequential structural mutations, as shown
in Figures 3.5 and 3.6.The generated and mutated Goto program will be further fed
into the subsequent components for symbolic execution, loop expansion, the addition
of safety properties and SMT solving. We will print the goto program in the process

48 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

bool muta t eSequence (
m e s s a g e t &msg ,
g o t o f u n c t i o n s t &func) / / c o n s t u i n t 8 t * data , s i z e t

s i z e ,
{

s t d : : o s t r i n g s t r e a m os ;
i f (m i t != func . f u n c t i o n m a p . end ())
{

g o t o p r o g r a m t &mmain = m i t −>second . body ;
i n t p r o g r a m l e n = mmain . i n s t r u c t i o n s . s i z e () ;
i f (! h a s S e e d s ())
{

i f (Data == NULL)
{

s e t P s e u d o S e e d s (mmain) ;
}
e l s e
{

s e t S e e d s (mmain) ;
}

}
s t d : : v e c t o r <g o t o p r o g r a m t : : i n s t r u c t i o n t : : t a r g e t t >

i n s t r u c t i o n s ;
os << ”Show o r i g i n a l s t r u c t u r e . \n ” ;
o u t p u t (mmain , os , msg) ;
F o r a l l g o t o p r o g r a m i n s t r u c t i o n s (i t , mmain)
{

i f ((* i t) . t y p e == END FUNCTION)
{

c o n t in u e ;
}
i n s t r u c t i o n s . p u s h b a c k (i t) ;

}
S h u f f l e (i n s t r u c t i o n s , s e e d s) ;

os << ”Show muta t ed s e q u e n c e s t r u c t u r e . \n ” ;
o u t p u t (mmain , os , msg) ;

}

msg . s t a t u s (os . s t r ()) ;
re turn f a l s e ;

}

Figure 3.5: Mutation algorithm for Sequential code structure

3.3. INTIAL VERSION OF GOTOFUZZ 49

bool mutateNonSequence (m e s s a g e t &msg , g o t o f u n c t i o n s t &
func)

{
s t d : : o s t r i n g s t r e a m os ;
i f (m i t != func . f u n c t i o n m a p . end ())
{

g o t o p r o g r a m t &mmain = m i t −>second . body ;
i n t p r o g r a m l e n = mmain . i n s t r u c t i o n s . s i z e () ;
i f (! h a s S e e d s ())
{

i f (Data == NULL)
{

s e t P s e u d o S e e d s (mmain) ;
}
e l s e
{

s e t S e e d s (mmain) ;
}

}
s t d : : v e c t o r <g o t o p r o g r a m t : : i n s t r u c t i o n t : : t a r g e t t >

t a r g e t s ;
F o r a l l g o t o p r o g r a m i n s t r u c t i o n s (i t , mmain)
{

i f ((* i t) . h a s t a r g e t ())
{

t a r g e t s . p u s h b a c k ((* i t) . g e t t a r g e t ()) ;
}

}
S h u f f l e (t a r g e t s , s e e d s) ;
os << ”Show muta t ed non − s e q u e n c e s t r u c t u r e . \n ” ;
o u t p u t (mmain , os , msg) ;

}

msg . s t a t u s (os . s t r ()) ;
re turn f a l s e ;

}

Figure 3.6: Mutation algorithm for Non-Sequential code structure

50 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.7: Result of mutation execution

3.4. IMPROVED VERSION OF GOTOFUZZ 51

Figure 3.8: The Overview of Initial GotoFuzz. White rectangles represent the compo-
nents of ESBMC; grey rectangles represent the components of the GotoFuzz

and monitor whether it works as expected, such as whether it remains syntactically
correct.

We will then discuss how to stabilise and reproduce the results. First, as the Csmith
generated C file is naturally preserved, we can generate the same initial Goto program.
We then fix the initial seed of libFuzzer, which in our implementation has a value of
1. Since libFuzzer will only keep the seeds it finds interesting samples based on code
coverage improvement, some seeds that might also be potentially valuable are ignored.
Therefore, after each round of mutation, GotoFuzz needs to output the Goto program
as a binary (this is in the same file format as the Goto binaries output by c2goto).
When the same environment needs to be reproduced, the goto binary file can simply
be re-read. This also tests the Goto input and output modules of ESBMC at the same
time. Finally, we will save the seeds that are automatically output by libFuzzer as well
as those whose output causes errors or blocking. These seeds can be imported into
libFuzzer and the results reproduced.

Figure 3.9 shows the results of GotoFuzz’s procedure. Here we set the maximum
run time of GotoFuzz’s internal libFuzzer to 30 seconds. The fuzzer will loop through
the process of ”generating a mutated Goto program and sending it to ESBMC for exe-
cution”. At the end of the run (and without any errors causing termination), GotoFuzz
will output the interesting seeds of the round and print a short summary, including the
run time 31 seconds and the number of rounds executed which is 5368.

3.4 Improved version of GotoFuzz

The previous design seemed to work fine, but an important issue was overlooked, as
there was no corpus provided for the initialization of libFuzzer. For the general case,
libFuzzer can still find interesting inputs quickly with the help of coverage bootstrap-
ping when not provided with test samples, which, however, is not the case for fuzzing

52 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.9: The Result of the GotoFuzz

3.4. IMPROVED VERSION OF GOTOFUZZ 53

ESBMC. In fact, after testing, libFuzzer’s seed values only increased slowly and lin-
early when working with ESBMC. This results in that, although libFuzzer inside Goto-
Fuzz still kept finding new seeds, they failed to reach the length of the sample Goto
program, leading to no improvement of the general code coverage. This makes the
seed less capable of mutation when its length is significantly less than the goto program
length. Besides, this problem cannot be simply sovled by padding or repeating, as both
strategies do not work for swap-based mutation algorithms. What’s even worse, con-
structing corpus directly for libFuzzer is difficult, as the sample of seeds corresponds
to a specific C-source or Goto program, and providing large seeds to smaller programs
would compromise efficiency while providing small seeds to larger programs limits
the ability of fuzzer mutation.

Based on the discussion above, two improvement strategies are proposed:

Strategy-1. We introduce a filter. Since libFuzzer only provides the option to set the maxi-
mum length of the seed and not the minimum length, our algorithm sets a mini-
mum threshold for the length of libFuzzer and will return directly when the seed
length is less than the number of instructions in the Goto program (the number of
targets is always less than or equal to the number of instructions). Skipping the
code execution of the section allows libFuzzer to avoid the effort of exploring on
small seeds.

Strategy-2. We introduce a pseudo-random number generator. A pseudo-random number
generator(PRNG) is an algorithm that generates sequences of numbers with
properties that approximate those of a sequence of random numbers. The idea
is to generate corpora with the required size via PRNG so that libFuzzer can
generate seeds with similar lengths based on these corpora.

The code implementation of PSNR is shown in Figure 3.10. First the length of the
Goto program, in other words, the number of Goto instructions it contains, is counted.
Based on the program length, the data array with length programlen+ 1 is declared,
which will play the role of a random rand array in the mutation algorithm. Next, since
the END FUNCTION instruction is excluded, the subscript of the array of exchanged
instructions has a maximum value of programlen− 1. The initialisation of the data
array is completed by randomly assigning each cell of the data array a value in the
range from 0 to programlen−1.

The PRNG is thought to have the advantage of high generation speed. In addition,
the PRNG works independently, meaning that the results of the last round of fuzzing do

54 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

void g o t o m u t a t i o n t : : s e t P s e u d o S e e d s (g o t o p r o g r a m t &mmain)
{

i n t p r o g r a m l e n = mmain . i n s t r u c t i o n s . s i z e () ;
u i n t 1 6 t d a t a [p r o g r a m l e n + 1] ;
s t d : : r a n d o m d e v i c e o s s e e d ;
c o n s t u32 seed = o s s e e d () ;

e n g i n e g e n e r a t o r (s eed) ;
s t d : : u n i f o r m i n t d i s t r i b u t i o n <u32> d i s t r i b u t e (0 ,

p r o g r a m l e n − 1) ;
f o r (auto d : d a t a)
{

d = u i n t 1 6 t (d i s t r i b u t e (g e n e r a t o r)) ;
}
s e e d s = d a t a ;

}

Figure 3.10: Mutation algorithm for Non-Sequential code structure

not affect the next. However, the random generation of the seed performed by PRNG
cannot be guided by coverage information. To check its differences with libFuzzer,
we ran tests specifically to allow PRNG to fully initialise GotoFuzz’s random arrays to
test whether it could replace the role of libFuzzer. The steps can be listed as follows:

• We generated 10 random C programs via Csmith

• we repeatedly performed 100 rounds of fuzzing via GotoFuzz based on each C
program

• Given that the results of each execution are random, and to increase statistical
validity and readability of the statistics, we counted the impact on code coverage
in groups of 10

• We take the average of the data from the 10 programs as the final result

The result has been shown in Table 3.1. The average code coverage from mutation-
based fuzzing increases at the beginning, yet this growth soon stopped after 30 rounds.
This is because the PRNG-based mutator runs completely in a black box, without
tracking and sensing the running state of the test software, making it impossible to find
new interesting seeds in the later stages of mutation. Several conclusions can be drawn
shown as below. Based on the conclusions above, we had the idea of using PRNG to
generate seeds for the corpus sample.

3.5. SUMMARY 55

0 10 20 30 40 50 ... 100
Lines 40.30% 42.00% 42.00% 42.10% 42.10% 42.10% ... 42.10%
Functions 43.60% 44.40% 44.40% 44.50% 44.50% 44.50% ... 44.50%

Table 3.1: Coverage Data with PRNG-based Mutator

• PRNG cannot be a replacement for libFuzzer

• PRNG-based seeds produce a significant increase in code coverage with only a
few initial mutations

• Although the initial mutation based on PRNG can quickly lead to an increase in
code coverage, such an increase is bottlenecked within a few rounds of execu-
tion.

Figure 3.11 shows the architecture of the improved version of GotoFuzz. Based
on the first version, two new components, PRNG and Corpus, have been introduced.
Compared to the previous approach, After the C program has been transformed into
a Goto program by parser and generator, the PRNG-Mutator additionally performs
10 rounds of loops. The resulting pseudo-random numbers are seeded and output as
integers to Corpus. With the help of Corpus, the length of the seeds generated by the
fuzzer grows rapidly, as shown in Figure 3.12. After the first 10 rounds of corpus
execution, libFuzzer started initialization in round 11, and in round 12 created a test
input that covers new areas of the code under test. Note that the length of the seed
is directly close to the set ”max-len” limit and not filtered according to the Strategy
1 mentioned above (if filtered libFuzzer will print ”pulse” indicating an empty round,
rather than ”New”). Finally, libFuzzer-Mutator reads the seed sample and performs
structure-aware coverage-guided mutation. The mutated Goto program is then re-fed
to ESBMC for the following operations.

3.5 Summary

This section describes two methodologies to implement the GotoFuzz. The first method
simply combines libFuzzer with Csmith. The drawbacks of this implementation were
discussed and an additional enhancement component PRNG was introduced. We also
examined the possibility of PRNG as a mutator, and it proved difficult for PRNG-based

56 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

Figure 3.11: The Overview of Improved GotoFuzz. White rectangles represent the
components of ESBMC; grey rectangles represent the components of the GotoFuzz

Figure 3.12: The Length of The Seeds Grows Rapidly

3.5. SUMMARY 57

GotoFuzz to consistently find new interesting seeds. Therefore, an improved fuzzer is
proposed and significantly more efficient than the former, as the generated seeds have
a closer length required by the mutator.

Chapter 4

Evaluation

This section summarizes our benchmarks and deliverables. The project can be eval-
uated from the two aspects. First, as the primary purpose of fuzzing is to use it to
find hidden vulnerabilities in the program, thus the ability of error detection should be
evaluated. One possible approach is to quantify the statistics of distinct crash errors
found, rates of the crash and wrong-code errors from different versions of ESBMC,
as well as the statistics of Bug-Finding Performance as a function of test-case size.
Secondely, the improvement of code coverage will be measured. Tools for statistical
code coverage are provided in ESBMC and can be output visually.

The information of the experiment environment can be listed as follows:

• System: Ubuntu 22.04

• Clang: version 14.0.0-1 Ubuntu

• ESBMC: version 6.10.0, 64-bit, x86 64

• CPU: AMD 5800H

4.0.1 Vulnerability Detection

A potential vulnerability was discovered when ESBMC was stress tested with Goto-
Fuzz. The mutated Goto program was verified by ESBMC with unterminated unwind-
ing, as shown in Figure 4.1. This means that there is an infinite loop in the source
program and no limit on the number of unwinds is set, resulting in an infinite number
of times of loop unwinding. Hence we manually limit the unwinding times by option
”–unwind 10”, as shown in Figure 4.1. After 9 iterations, the message ”Not unwind-
ing” appears on the 10th and the loop starts again with another round. This means that

58

59

Figure 4.1: Unwinding is Not Terminated

60 CHAPTER 4. EVALUATION

unwinding is not working correctly. To exclude the effects of the different backend,
we repeated our test in various SMT solvers, including Boolector, Z3 and CVC4, yet
showed the same results. This error will cause the ESBMC verification process to get
stuck until GotoFuzz reaches the timeout set by GotoFuzz.

Another abnormal phenomenon was observed. As described in section 3.2, a Goto
binary file will be outputing during the mutation. After re-reading this binary file into
ESBMC, we found that the Goto program was not identical to the previous Goto pro-
gram. Specifically speaking, some instructions were ”missing” from the Goto program
after input. Figure 4.2 shows an example of this phenomenon. We have set the option
”–unwind 10” to limit the times of unwinding. The Goto program on the left stands
for the original mutated program and the the right represents the re-read program. Ig-
noring the difference in the positional information in the annotations, we can see that
the program on the right is missing some instructions compared to the program on the
left, including the ASSIGN and DEAD instructions. Another important difference is
that the program on the right can be verified by ESBMC and get the correct result,
compared to the program on the left which will block ESBMC.

To exclude the effect of the different operating modes, we also tested in incremen-
tal BMC mode with the ”–k-induction” option enabled. The result has been shown in
Figure 4.3. Compared to the original mutated program, it can be seen that the re-read
program is also missing some instructions, including an IF-Then-GOTO instruction.
Similarly, the procedure on the right can be verified by ESBMC with no error oc-
cured. Comparing this to Figure 4.2, it appears that these instructions are missing at
random. Furthermore, we find that in both Figures 4.2 and 4.3 there is an infinite loop
structure in the program on the left. For example, in Figure 4.3 there is a loop of
”3:NONDET(signed int)” (which is additionally inserted by ESBMC in Incremental
BMC mode) and ”GOTO 3”. This loop is not unwinding correctly and this leads to the
error in Figure 4.1. A final observation is that the probability of such errors occurring
in actual testing is quite low.

The reasons for this exception were analysed. Firstly, we analyse whether the er-
ror is caused by a bug in GotoFuzz itself. The original parts of GotoFuzz include the
mutator that drives the fuzzer and the PRNG that generates random seeds for corpus
database. Moreover, both Csmith and libFuzzer can be considered robust. The rest
of the feather, including the instruction swapping and Goto binary I/O, are all imple-
mented by using the API provided by ESBMC. Therefore, this is largely possible to
rule out a bug in GotoFuzz itself. Secondly, we deduce that the problem is related to

61

Figure 4.2: The Difference Between Goto Programs Before and After Output

the symbol table, which exported at the same time as the Goto program is exported as
a binary file. Although the mutator is not expected to make any changes to the symbol
table, it is possible that changes are actually made, resulting in symbols in some in-
structions not being recognised and ignored. This is consistent with the previously de-
scribed ”instructions missing” scenario. The danger of this vulnerability is that it may
cause ESBMC to run out of memory and report errors in endless unwinding. In prac-
tice, it is unlikely that the structure of a Goto program will be modified directly in the
way that Fuzzer is. However, the potential triggers can be the insertion of code when
adding security verification attributes, or parallel execution. Furthermore, we find that
in both Figures 4.2 and 4.3 there is an infinite loop structure in the program on the
left. For example, in Figure 4.3 there is a inifinite loop from ”3:NONDET(signed int)”
(which is additionally inserted by ESBMC) to ”GOTO 3”. This loop is not unwinding
correctly, leading to the error in Figure 4.1.

The effectiveness of the GotoFuzz can also be demonstrated by comparing it to
other structured mutation approaches. A similar test method was used in Fink’s study
of the BMC performance benchmark, where the structure of the sample’s code was
mutated, more specifically, ”functionalizing post-processor randomly replaces arbi-
trary sub-expressions by function calls to newly created functions encapsulating the
cut sub-expression, where constants and variables within are randomly either used as

62 CHAPTER 4. EVALUATION

Figure 4.3: The Difference when Using Incremental BMC Mode

function parameters or kept as is”[3]. It can be seen that their approach to structural
changes differs from our design, but both affect the structure of the code while ensur-
ing that the syntax is correct and the values of the variables remain the same. The fact
that no error was found in Finks’ research demonstrates the superiority of GotoFuzz,
which does better in following aspect:

1. The Goto program outputs the mutation process and the result in its entirety,
which not only facilitates our observation but also facilitates reproduction.

2. In Fink’s benchmark, ”Error” and ”TimeOut” is divided into two separate cate-
gories. This division led to potential vulnerabilities being obscured, as timeouts
can be caused not only by performance bottlenecks but also by bugs leading
to infinite loops. This may be because that Fink’s experiments focus more on
testing performance and less on the analysis of errors. In contrast, the Goto-
Fuzz succeeded in discovering hidden vulnerabilities in ESBMC and provided
conjectures and explanations for the possible causes.

63

4.0.2 Coverage Improvement

The improvement in coverage is another test of Fuzzer’s ability. To collect the coverage
information, Lcov[39] and genhtml[40] are applied with both version 1.14. Informa-
tion on line coverage and function coverage is collected and represents different test
metrics. Line coverage checks if each executable line of code is executed, while func-
tion coverage checks if each function gets invoked. Figure 4.4 shows a report of the
coverage information. The following steps is needed to generate this report:

1. enabling the ”–coverage” option when compiling ESBMC with Clang

2. use one or more programs to have ESBMC validated

3. generate the report via command-line tools Lcov and genhtml

The report is divided into two tables, the top left table shows the overall line cov-
erage and function coverage information, with additional ’Hit’ and ’Total’ information
for each type of coverage. The large table below shows the coverage information by
source files’ directory representing corresponding ESBMC components. For example,
the ”c2goto” directory represents the c2goto component, while ”big-int” represents the
container for handling large numbers.

In theory, GotoFuzz works on top of parsed IR and therefore has no impact on the
code coverage of the front-end. Furthermore, GotoFuzz focuses on testing ESBMC’s
middleware, so changes in code coverage of middleware-related components before
and after fuzzing should be monitored. Finally, as the goto program gets changed,
this makes it possible for the translated SMT formula to change as well, so backend-
related coverage information will also be collected. We have summarised some of the
information that we will be collecting and listed it below.

1. esbmc: This reflects the overall ESBMC situation

2. goto-program: This reflects the use of the goto converter and the APIs associated
with the manipulation of goto programs. These APIs include exchanging goto
program instructions, exporting and reading Goto binaries.

3. goto-symex: This reflects the execution of SSA formula translations and seman-
tic execution by the Symbolic engine.

4. irep2: Irep stands for interpretation representation. he is the prototype and the
underlying layer of goto programs.

64 CHAPTER 4. EVALUATION

5. solvers: This reflects the back-end validation of the SMT formula

6. util: This represents the methods that are shared and common to all ESBMC
components

Here, we look at GotoFuzz from four perspectives. Firstly we will look at the
improvement in code coverage when using a test suite consisting of a single file. Next,
we will look at the improvement in code coverage when using a test suite made up of
multiple files. The comparison between the two will reflect the percentage increase in
code coverage relative to a single file. Next, we will look at the effect of individual file
size on code coverage. We guess that File size and coverage are positively correlated,
yet the time cost will be significantly higher with the file size growth. Finally, we
collect and analyse the results when different command line arguments are set. For
example, when using the ”–unwind n” option to limit the times of unwinding, the code
coverage can be compared in different n set.

coverage growth based on individual sample

According to the description in Section 3.2, GotoFuzz accepts a C file, mutates and
verifies it via ESBMC. Thus, there are two objects for comparison. One is the code
coverage with the C file verified directly using ESBMC, and the other is the code
coverage after applying GotoFuzz. In order to collect the data, the following steps
were carried out:

1. construct samples via Csmith. To reduce the error due to randomness, we gen-
erated 20 samples. Each sample was generated with the same Csmith command
and with default parameters

2. feed each sample to ESBMC and collect the information. The backend is set
uniformly to Z3. Each round was run with the same command with an additional
setting ”–unwind 1”, which limits the unwinding times to 1. This was done to
avoid the bugs mentioned in Section 4.1 as much as possible by reducing loop
unrolling.

3. feed each sample to GotoFuzz and collect the information. The backend is set
uniformly to Z3. Additionally, we manually set libFuzzer to run for a maximum
of 15 minutes and a maximum of 2 GB of memory, while running the same
command for each round of ESBMC and setting the unwinding times to 1.

65

Figure 4.4: Example of Coverage Report

66 CHAPTER 4. EVALUATION

line function esbmc goto-
program

goto-
symex

irep2 solvers/
z3

util

Pre 39.20% 40.30% 31.30% 35.30% 30.40% 63.20% 26.30% 44.90%
Post 42.50% 43.30% 37.00% 38.80% 33.50% 65.50% 34.80% 48.70%
Improve 3.00% 2.10% 5.70% 3.60% 2.80% 1.80% 7.50% 3.10%

Table 4.1: Sample with the Most Coverage Improvement

line function esbmc goto-
program

goto-
symex

irep2 solvers/
z3

util

Pre 38.79% 39.89% 31.31% 34.88% 30.20% 62.80% 26.35% 44.03%
Post 41.78% 41.98% 37.01% 38.38% 33.05% 63.80% 34.00% 47.40%
Improve 2.99% 2.09% 5.70% 3.50% 2.85% 1.00% 7.65 % 3.38%

Table 4.2: Average Improvement Based on Individual Sample

4. calculate the average code coverage of the 20 samples generated in steps 2 and
3.

Table 4.1 shows the samples with the most line/function coverage improvement.
Table 4.2 illustrates the average results for the 20 samples. ”Pre” stands for Pre-fuzzing
mentioned in step 2. ”Post” stands for Post-fuzzing mentioned in step 3. ”Improve”
stands for the difference between ”Post” and ”Pre”. This value represents the improve-
ment in code coverage brought about by GotoFuzz. Some conclusions can be drawn
here. For the overall code coverage, the improvement in line coverage is about 3%,
while the improvement in function coverage is about 2%. Furthermore, the largest
improvement of the components is 7.65% (solvers/z3) and the smallest is 1% (irep2).
Lastly, comparing Tables 4.1 and 4.2, we can see that although the sample in Table 4.1
has a greater line/function code coverage and improvement, it does not mean that this
corresponds to the case of every component (solvers/z3).

coverage growth based on multiple samples

GotoFuzz has proved his improvement in code coverage based on individual random C
files. Thus, a natural thought is whether these improvements will be accumulated when
using multiple files as test suites. Therefore, we generated seven random files using
Csmith and fed them into ESBMC and GotoFuzz consecutively and synchronously.

67

1 2 3 4 5 6 7
Pre 38.90% 38.90% 39.00% 39.00% 39.00% 39.01% 39.01%
Post 41.90% 42.00% 42.20% 42.20% 42.20% 42.40% 42.70%
Improve 3.00% 3.10% 3.20% 3.20% 3.20% 3.30% 3.60%

Table 4.3: Accumulated Improvement of Line Coverage

1 2 3 4 5 6 7
Pre 40.10% 40.10% 40.20% 40.20% 40.20% 40.40% 40.40%
Post 42.20% 42.20% 43.20% 43.30% 43.30% 43.40% 43.80%
Improve 3.00% 3.10% 3.20% 3.20% 3.20% 3.30% 3.60%

Table 4.4: Accumulated Improvement of Function Coverage

Tables 4.3 and 4.4 show the datasheet in Line and Function Coverage respectively.
The first row of each table represents the number of samples fed into ESBMC and
GotoFuzz in each round. The pattern that can be observed is that as the number of
samples used increases, the improvement from GotoFuzz is greater, which confirms
our suspicion.

Effect of file size

Next, we focus on the impact of the file size of the samples. To do this we generate
samples of different sizes. Since Csmith does not provide options to set the file size, we
need to use the option ”–max-block-size n” indirectly. This option limits the number
of non-return statements in a block to n. By experience, a smaller n reflects a smaller
file size. In our benchmarks, this number has been set to 1 to 5 respectively. The
conclusions can be listed as follows:

1. the small file takes fewer times to reach the upper limit of the coverage improve-
ment. This conclusion can be drawn from Figure 4.5, where the sample with a
maximal block size of 1 and size of 29KB. The X-axis represents the number of
rounds executed. To reduce the effect of randomness, we take each 250 rounds
as a unit. The Y-axis represents the percentage value of code coverage. It can be
seen that all code coverage ramps up until 500 rounds are reached, but not after
that. This implies that there is an upper limit to the amount of improvement that
GotoFuzz can deliver.

68 CHAPTER 4. EVALUATION

Figure 4.5: Example of Reaching Maximal Line/Function Coverage Improvement

69

Figure 4.6: Example of PRNG Generated Corpus

2. the cost can be stunning for fuzzing large files. For example, for a sample gen-
erated with n set to 4 and size 450KB , the seed corpus coming from PRNG can
be considerably huge, as shown in Figure 4.6. Figure 4.7 shows that this test
case can easily consume all allocated memory (2GB), resulting in running out of
memory error. Moreover, considering the performance bottleneck of ESBMC,
especially the verification efficiency of Z3, the CPU time consumption on this
processing would be huge.

3. Based on 1 and 2, a possible conclusion is that the sample size needs to be
constrained.

Effect of unwinding times

Finally, we compare the effect of different command-line argument settings on code
coverage. One possible conjecture is that the more times the loop is unrolled, the more
complex the resulting SSA formula is and the more linguistic features are covered by
the symbolic execution performed, leading to more improvement. Therefore, We set n

differently for the option ”–unwind n” and repeat the previous steps. Table 4.5 shows
a comparison where n is set to 1 and 5 respectively. It can be seen that there is a slight
increase in code coverage, which confirms our idea.

70 CHAPTER 4. EVALUATION

Figure 4.7: Example of Running Out of Memory

line function esbmc goto-
program

goto-
symex

irep2 solvers/
z3

util

unwind
1

41.90% 42.20% 37.00% 38.50% 33.00% 65.10% 33.80% 47.20%

unwind
5

42.10% 42.20% 37.00% 38.50% 33.20% 65.10% 33.80% 47.80%

Improve 0.20% 0.00% 0.00% 0.00% 0.20% 0.00% 0.00% 0.60%

Table 4.5: Improvement with Extra Unwinding Times

71

4.0.3 Summary

The GotoFuzz succeeded in discovering hidden vulnerabilities in ESBMC and pro-
vided conjectures and explanations for the possible causes. At the same time, we
demonstrated that GotoFuzz can improve the code coverage of ESBMC. We also found
the relevant exchange rate for code coverage. The code coverage increase is large when
using single test samples. This increase will accumulate when fuzzing with multiple
files. The conclusion from experiments comparing file sizes is that the size of test cases
needs to be constrained. Lastly, different command line arguments can also have an
impact on the performance of GotoFuzz.

Chapter 5

Conclusion and Further Work

In this chapter, we review the results of our project to testify whether the goals were
achieved and reflect on the project, assessing what went well and what could be im-
proved. The chapter concludes with a discussion of limitations and recommendations
for future work.

5.1 Deliverables and Key Achievements

Our project’s deliverables can be outlined from three aspects. First, an intelligent hy-
brid fuzzer GotoFuzz has been designed and developed. This fuzzer allows ESBMC’s
middleware to be directly tested for the first time. In practice, two approaches were
proposed and implemented, leading to 3 new program files created and 9 files altered
in ESBMC. The total amount of coding is about 274 lines of code in C++ and 23 lines
in Shell code. This code will be committed to the ESBMC GitHub repository in the
future.

Another contribution is a summary of the Goto grammar. This can be valuable as
the lack of Goto syntax made it difficult to understand the internal logic of the ESBMC
middleware. In addition, bounded model checkers, such as CBMC and JBMC, share
a similar structure to ESBMC, as they are based on the same platform called Cprover.
Hence, this summary is also useful for understanding other Cprover-based BMCs. This
document will also be committed to the ESBMC GitHub repository in the future.

The key achievement of this project is a bug-fixing commitment made to ESBMC,
as shown in Figure 5.1. As mentioned in section 3.2, the output interface for the Goto
program is essential for GotoFuzz, yet this ESBMC API has been broken for a long
time. So I spent a lot of time finding the source of the bug and writing code to fix it.

72

5.2. REFLECTION 73

Figure 5.1: The Commitment to ESBMC

These changes were eventually merged into ESBMC and I was able to read/write Goto
binaries properly.

5.2 Reflection

What went well?

First, applying the dynamic verification technique Fuzzing to the static verifier BMC
was a challenge. Different test methods and tools were understood in detail and
successfully applied to the Fuzzer’s construction. Secondly, We have succeeded in
analysing and summarising the structure of the black box that is ESBMC, leading to
the discovery of possible vulnerabilities. Last but not least. The results of the evalua-
tion show the value of our GotoFuzz.

What could be improved?

This project also contains development tasks that consume more time than the original
estimate. This is due to several reasons. Firstly, to the best of our knowledge, there
is no current work or research on fuzzing verifiers. Therefore, finding relevant and
valuable literature can be a challenge. Due to the neglect of the importance of finding
and reading papers in related fields, a big amount of mistakes have been made. For
example, the architecture design of GotoFuzz got constant refactoring whenever a new
idea was found after accidentally finding out a relative paper. The lesson is to seek out
and read as much relevant literature and methodology as possible before designing.
Secondly, difficulties have been encountered during the coding period. Due to the
lack of expectations of the outcome, agile development methods like test-driven mode

74 CHAPTER 5. CONCLUSION AND FURTHER WORK

cannot be used when developing on ESBMC. Another mistake is neglecting to pay
attention to the formatting of the code. Since ESBMC is a well-known open-source
project, submissions are scrutinised by reviewers. The lack of attention to the code
style resulted in my commits being rejected several times, so a lot of time was spent
on code changes.

The result of this timeout is troubling. For example, according to the previous plan,
the coding job should be done by the end of July, yet in reality, this work continues
until August and is still ongoing during the writing of the dissertation. This is due to
poor programming skills and unreasonably time planning.

5.3 Limitations and Future Work

Some future work could be done to apply GotoFuzz to other areas. Firstly, although
the vulnerabilities in Section 4.1 were identified, we were neither able to identify the
root cause nor fix it. This is due to the fact that GotoFuzz is still a grey-box fuzzer
and does not fully understand the internal structure of its testing subject. Hence, One
possible work is to change GotoFuzz to a white box fuzzer. In addition, since Goto-
Fuzz only focuses on structural mutation, the randomisation of variables relies entirely
on Csmith; however, Csmith does not always find interesting values, especially zero
values. Therefore, GotoFuzz could be enhanced by adding control over the variables’
value, for example by manually setting some boundary values. Lastly, some future
work could be done by applying this fuzzer to a broader area. Given that the core of
GotoFuzz is a modification of the Control flow chart, a possible solution is to draw up
an abstraction of the target program into a control flow chart form such that it can be
fuzzed by GotoFuzz.

Bibliography

[1] Mikhail R Gadelha, Rafael Menezes, Felipe R Monteiro, Lucas C Cordeiro, and
Denis Nicole. Esbmc: scalable and precise test generation based on the floating-
point theory:(competition contribution). Fundamental Approaches to Software

Engineering, 12076:525, 2020.

[2] Esbmc. http://www.esbmc.org/, 2020.

[3] Xaver Fink, Philipp Berger, and Joost-Pieter Katoen. Configurable benchmarks
for c model checkers. In Lecture Notes in Computer Science, pages 338–354.
Springer International Publishing, 2022.

[4] Dirk Beyer and M Erkan Keremoglu. Cpachecker: A tool for configurable soft-
ware verification. In International Conference on Computer Aided Verification,
pages 184–190. Springer, 2011.

[5] Cedric Richter and Heike Wehrheim. Pesco: Predicting sequential combinations
of verifiers. In International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 229–233. Springer, 2019.

[6] Marek Chalupa, Jakub Novák, and Jan Strejček. Symbiotic 8: Parallel and tar-
geted test generation. Fundamental Approaches to Software Engineering, pages
368–372, 2021.

[7] Matthias Heizmann, Yu-Fang Chen, Daniel Dietsch, Marius Greitschus, Jochen
Hoenicke, Yong Li, Alexander Nutz, Betim Musa, Christian Schilling, Tanja
Schindler, et al. Ultimate automizer and the search for perfect interpolants. In
International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 447–451. Springer, 2018.

75

76 BIBLIOGRAPHY

[8] Viktor Malı́k, Peter Schrammel, and Tomáš Vojnar. 2ls: heap analysis and mem-
ory safety. In International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems, pages 368–372. Springer, 2020.

[9] Issues · esbmc/esbmc. https://github.com/esbmc/esbmc/issues, 2022.

[10] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and understanding
bugs in c compilers. ACM SIGPLAN Notices, 46(6):283–294, jun 2011.

[11] libfuzzer. https://llvm.org/docs/LibFuzzer.html, 2020.

[12] Cprover. http://cprover.diffblue.com/, 2022.

[13] Daniel Kroening and Michael Tautschnig. Cbmc–c bounded model checker. In
International Conference on Tools and Algorithms for the Construction and Anal-

ysis of Systems, pages 389–391. Springer, 2014.

[14] Lucas Cordeiro, Pascal Kesseli, Daniel Kroening, Peter Schrammel, and Marek
Trtik. Jbmc: A bounded model checking tool for verifying java bytecode.
In International Conference on Computer Aided Verification, pages 183–190.
Springer, 2018.

[15] William Bonnaventure, Ahmed Khanfir, Alexandre Bartel, Mike Papadakis, and
Yves Le Traon. Confuzzion: A java virtual machine fuzzer for type confusion
vulnerabilities. In 2021 IEEE 21st International Conference on Software Quality,

Reliability and Security (QRS), pages 586–597. IEEE, 2021.

[16] Rohan Padhye, Caroline Lemieux, Koushik Sen, Mike Papadakis, and Yves
Le Traon. Semantic fuzzing with zest. In Proceedings of the 28th ACM SIG-

SOFT International Symposium on Software Testing and Analysis, pages 329–
340, 2019.

[17] Z3. https://github.com/Z3Prover/z3, 2022.

[18] Yices. https://yices.csl.sri.com/, 2022.

[19] Mathsat. https://mathsat.fbk.eu/, 2022.

[20] Stefan Kupferschmid and Bernd Becker. Craig interpolation in the presence of
non-linear constraints. In International Conference on Formal Modeling and

Analysis of Timed Systems, pages 240–255. Springer, 2011.

BIBLIOGRAPHY 77

[21] Cvc4. https://cvc4.github.io/, 2022.

[22] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-
vectors and arrays. In International Conference on Tools and Algorithms for the

Construction and Analysis of Systems, pages 174–177. Springer, 2009.

[23] Armin Biere. Picosat essentials. Journal on Satisfiability, Boolean Modeling and

Computation, 4(2-4):75–97, 2008.

[24] Mate Soos, Armin Biere, M Heule, M Jarvisalo, and M Suda. Cryptominisat 5.6
with yalsat at the sat race 2019. Proc. of SAT Race, pages 14–15, 2019.

[25] Peled Doron, P Pelliccione, and Paola Spoletini. Model checking. 2009.

[26] Siert Wieringa. On incremental satisfiability and bounded model checking. De-

sign and implementation of formal tools and systems, pages 46–54, 2011.

[27] Alessandro Armando, Jacopo Mantovani, and Lorenzo Platania. Bounded model
checking of software using smt solvers instead of sat solvers. International Jour-

nal on Software Tools for Technology Transfer, 11(1):69–83, 2009.

[28] Lucas Cordeiro, Bernd Fischer, and Joao Marques-Silva. Smt-based bounded
model checking for embedded ansi-c software. IEEE Transactions on Software

Engineering, 38(4):957–974, 2011.

[29] Huning Dai, Christian Murphy, and Gail Kaiser. Configuration fuzzing for soft-
ware vulnerability detection. In 2010 International Conference on Availability,

Reliability and Security, pages 525–530. IEEE, 2010.

[30] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. T-fuzz: fuzzing by program
transformation. In 2018 IEEE Symposium on Security and Privacy (SP), pages
697–710. IEEE, 2018.

[31] Patrice Godefroid, Michael Y Levin, David A Molnar, et al. Automated whitebox
fuzz testing. In NDSS, volume 8, pages 151–166, 2008.

[32] Siddharth Karamcheti, Gideon Mann, and David Rosenberg. Adaptive grey-box
fuzz-testing with thompson sampling. In Proceedings of the 11th ACM workshop

on artificial intelligence and security, pages 37–47, 2018.

78 BIBLIOGRAPHY

[33] Structure-aware fuzzing with libfuzzer. https://github.com/google/

fuzzing/blob/master/docs/structure-aware-fuzzing.md, 2022.

[34] Michal Zalewski. American fuzzy lop, 2017.

[35] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong
program analysis & transformation. In International Symposium on Code Gen-

eration and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

[36] Kosta Serebryany. Continuous fuzzing with libfuzzer and addresssanitizer. In
2016 IEEE Cybersecurity Development (SecDev), pages 157–157. IEEE, 2016.

[37] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu. Fuzzing symbolic
expressions. In 2021 IEEE/ACM 43rd International Conference on Software En-

gineering (ICSE), pages 711–722. IEEE, 2021.

[38] Hoang Lam Nguyen and Lars Grunske. Bedivfuzz: Integrating behavioral diver-
sity into generator-based fuzzing. arXiv preprint arXiv:2202.13114, 2022.

[39] Lcov. https://wiki.documentfoundation.org/Development/Lcov, 2022.

[40] genhtml. https://manpages.ubuntu.com/manpages/bionic/man1/

genhtml.1.html, 2022.

