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Abstract 

 
Python is an interpreted, object-oriented, high-level programming language with 
dynamic semantics suited for most programs. Due to its properties, Python is frequently 
applied in the creation of robotic applications for associated industries. However, 
during the development process of these programmes, various faults may be 
encountered; for example, erroneous logical operators are operated, resulting in a 
count-by-one error in the loop, or even dividing by zero. The Efficient SMT-Based 
Context-Bounded Model Checker (ESBMC) is used as a backend in this research to 
provide an innovative verification technique for Python applications. This methodology, 
entitled bounded model checking - Python (BMCPython), implies converting Python 
applications to ANSI-C source code and then verifying them utilizing ESBMC. 
Research performed on Python programmes demonstrates that the proposed 
verification approach works productive and is efficient. Experiments prove that 
BMCPython generates an ANSI-C code that is fast to compile and verify. As far as we 
can tell, this study is the first to deploy bounded model checking to verify Python 
programs. 
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1    Introduction 

In this chapter, we will start with the motivation behind choosing this project and 
introduce the main concepts of Efficient SMT-Based Bounded Model Checking 
(ESBMC). A problem description of python programs vulnerabilities and the aim and 
objectives for this project are also provided. This chapter also highlights the impact of 
COVID-19 as well as the structure of my report.  

1.1    Motivation and Problem description 
 
Python has sparked much interest, especially among computer experts, over the last 
decade, and much python-based software has been developed. At the same time, robotic 
applications will also continue to be a prominent topic due to rising consumption and 
industrial demand. Therefore, it is not difficult to imagine a Python framework robotic 
application that generates possible uncertainty for users because of Python 
vulnerabilities. 
 
People proposed the model checking approach as a supplement, which can 
automatically verify whether the software being produced has issues more effectively 
in all the feasible states since flaws and defects hardly reached in the programme are 
challenging to identify entirely using standard modelling and testing techniques. We 
will develop BMCPython, a novel verification approach based on a bounded model 
checking tool for software written in Python, to find vulnerabilities in Python scripts in 
this project [22]. When BMCPython identifies a vulnerability in a programme, it creates 
a counterexample. However, the Benchmark results of BMCPython [28] yield several 
inaccurate findings, including wrong TRUE and FALSE. As a result, we must validate 
the findings after running BMCPython, and we may potentially implement some 
optimisations using ESBMC[20]. 
 
1.2    Aims and Objectives 
 
This project will produce BMCPython, which will be based on the Efficient SMT-
Based Bounded Model Checker tool (ESBMC). By understanding software model 
checking, readers will be able to identify Python vulnerabilities[22], assess current 
verification methodologies, and design appropriate improvements. 
 
The specific aims and objectives are as follows.  
l Understand the background and logic of ESBMC 
l Develop BMCPython by calling the library of ESBMC 
l Determine the ideas and concepts underlying vulnerability discovery of 

BMCPython in Python bytecode 
l Reproduce the extension described in the initial research and ascertain its limits 

and disadvantages 
l Verifying and analysing the BMCPython after the developments 
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1.3    Report Structure 

 The chapters of this report cover: 

l Chapter  2:  Background presents the necessary background concepts for 
comprehending this project and evaluating this report. Contains details about the 
Satisfiability Modulo Theories (SMT) used by the tool and intermediate 
representation (IR) supported by ESBMC, as well as an explanation of the 
technique used for bounded model checking. Additionally, the chapter concludes 
with a synopsis of the relevant work. 

l Chapter  3:  Proposed Method describes the components of the BMCPython 
application and details the encodings used to transform restrictions and 
characteristics, along with the Abstract Syntax Tree (AST) analysis of Python, into 
the background concepts mentioned in Chapter 2. It also introduces the methods 
for converting Python to ANSI-C code, also known as the GOTO section. 

l Chapter  4:  Evaluation covers the outcomes of the testing, as well as the 
benefits and drawbacks of the implementation and probable causes. 

l Chapter 5: Conclusions and Future Work emphasises the project's 
accomplishments and limitations, including student reflections on the strategy and 
critical review of future work. 

1.4    Impact of COVID-19  

Six semesters comprised my undergraduate courses, and the COVID-19 outbreak lasted 
five semesters. It was quite frustrating. Spend more than half of my undergraduate time 
studying online, making it difficult to have a good experience. When it comes to 
selecting my final year project, we can just browse our supervisor's project profile and 
communicate with them via email. If we teach offline, we could discuss it in advance 
with our tutor. For instance, my project involves robotic applications, and I am only 
limited by my creativity. Online tutorial sessions and resource searches are insufficient. 
The robotic application attracted me to this project. I could have consulted the technical 
advisor about robotic applications and visiting the robot prototypes at our department. 
Due to lack of knowledge on robotic applications, I was unable to improve on this 
section. This is also my biggest regret regarding my project. Additionally, I was 
vaccinated against COVID-19 during the first semester of my final year. Due to my 
preceding pneumothorax surgery on my lungs, I suffered a serious adverse reaction that 
lasted more than 10 days. With the government's COVID-19 restriction removed, in 
early March, for more than two years it eventually came to me, I affected the virus. I 
had a slight fever, felt exhausted, was concerned about my project, and was just 
miserable. After I recovered, I spent the Easter vacation concentrating on completing 
the project report. When the epidemic spread to Shanghai, my entire family live there, 
experiencing another round of lockdown with scarce supplies and even no fresh veggies 
or food to eat. I had serious mental health problems recent days because of what my 
family is suffering due to the local government's lack of control. I wrote this report in 
a depressed state, which have impacted the quality of my report to a certain extent.  
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2    Background 
 
2.1    Boolean Satisfiability (SAT)  
 
The Boolean satisfiability problem[14] (sometimes referred to as the propositional 
satisfiability problem) is a problem in logic and computer science that involves 
assessing if an explanation exists that satisfies a particular Boolean formula[14]. In 
other words, it determines whether a variable specified by a Boolean formula can be 
consistently substituted with a TRUE or FALSE value such that the formula evaluates 
to TRUE. If this is TRUE, the formula is satisfiable. If such assignments do not exist, 
the function described by the formula is FALSE for all conceivable variable terms, 
rendering the formula unsatisfiable. 
 
2.2    Satisfiability Modulo Theories (SMT)  
 
SMT[12, 19] solver has established itself as the primary engine in the fields of software 
engineering, programming languages, and information security; its application 
scenarios are numerous. Because this project is based on the ESBMC library call and 
SMT[18] solvers available in ESBMC verification, we will primarily introduce and 
demonstrate SMT's software analysis and verification functions. Software deductive 
verification reduces to solving the implication problem of two logical formulae, which 
can then be expressed as the satisfaction problem of SMT. 
 
More SAT solvers have been used for formal hardware and software verification in 
recent decades. Determining the satisfiability of logical expressions, first order, has 
been instrumental in determining the correctness of a system. Nonetheless, many 
applications need to determine satisfiability that is not first-order but defined in some 
grounding theory, the interpretation of which uses certain symbols of predicates and 
functions. For example, formula 2.1 uses integer arithmetic symbols, which cannot be 
interpreted alone by propositional logic[1, 14]. 

F :: = y ∪ z ∧(y+6) <z∧¬(z<y+6)              (2.1) 
SMT is a subset of the problems of formula satisfiability determination. This sort of 
formula possesses the following two characteristics: the propositional logic formula 
contains several first-order logical formulations[3]; possesses an arbitrarily complex 
Boolean structure. All are familiar with propositional logic formulations, such as: 

𝑃 ∧ 𝑄	 ∧ (𝑅 → 𝑆 ∨ ¬𝑇)                        (2.2) 
That is, variables, negatives, and logical conjunctions are all permitted. And the formula 
for SMT is as follows: 

𝑔(𝑎) = 𝑐 ∧ 2𝑓2𝑔(𝑎)4≠ 	𝑓(𝑐) ∨ 𝑔(𝑎) = 𝑑4 ∧ 𝑐 ≠ 𝑑 (2.3) 

In comparison to the propositional logic formula, there are a few additional features, 
mainly the two given at the outset: To begin, there are more non-logical symbols, such 
as functions g(a),f(g(a)), and constants c, d. [13]Only the characters of P, Q, R,	 ∨ and 
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→  instead of the signs of logic, constitute the contents of first-order logic in 
propositional logic. Second, the Boolean structure has been enlarged or become a 

macroscopic Boolean structure. For instance, 𝑔(𝑎) = 𝑐 , 𝑓2𝑔(𝑎)4≠ 	𝑓(𝑐)  this 

equation substitutes the original Boolean expression definition of the atom. The second 
point above, extended Boolean structures, becomes apparent with this example. Again, 
we employ formula 2.3 to make a first-order substitution[9]:  

𝑔(𝑎) = 𝑐 ↦ 𝑃!, 𝑓2𝑔(𝑎)4 = 𝑓(𝑐) 	↦ 𝑃", 𝑔(𝑎) = 𝑑 ↦ 𝑃#, 𝑐 = 𝑑 ↦ 𝑃$ 

So, the formula 2.3 takes on the following form: 
𝐵(𝐹): 𝑃! ∧ (¬𝑃" ∨ 𝑃#) ∧ ¬𝑃$	 

This is the most often used Boolean expression. As a result, the SMT formula has an 
arbitrary abstract Boolean structure and is only concerned with the logical connective. 
B(F) created in this manner is an abstraction of F and can also be thought of as a macro-
Boolean structure. 
Figure 1 illustrates the typical notation for explaining the SMT syntax. In this notation, 
F symbolises a Boolean expression, T specifies terms composed of integers, reals, and 
bit vectors, and op denotes binary operators. [30]Conjunction (∧), disjunction (∨), 
exclusive-or (⊕), implication (⇒), and equivalence (⇔) are the annotated logical 
connectives. The relational and nonlinear operators (∗, /, rem) analyse arguments from 
arrays of bits, integers, and reals. In bit vector manipulation, the shift operators (« and 
»), and (&), or (|), or exclusive (⊕), complement (∼), concatenation (@), Bitstract(T, 
i) FullSignExt(T,k), and UnsignExt(T, i) are utilised. It evaluates a Boolean formula F, 
picking the first argument if the formula is true and setting the second argument if the 
formula is false. The select operator is used to identify the value stored at the vector's 
position i. The store operator replaces the value at class i with the new value v contained 
within the vector. 

 
Figure 1. Arithmetic logic of SMT 

2.3    Model Checking  
 
The most extensively used approach for automated formal verification of finite-
state transition systems is model checking[27]. It entails modelling the intended design 
as a finite state machine and defining temporal logic characteristics[5] to formalise the 
specification. The correctness[7, 8] property can be guaranteed in theory by testing 
exhaustively inside all attainable configurations. A counterexample[2] will be produced 
if the condition does not match and is connected to a prohibited state. 
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Algorithms are used in model checking to ensure that the model is valid. Program 
models are composed of states, transitions, and a specification or attribute that is 
logically defined. Stack and heap settings are also assessed in a state, as is the 
programme counter. The way a programme moves from one state to the next is 
described in terms of transitions. [26]Checking all potential states in a programme is 
done using model checking approaches. This technique has a built-in assurance that it 
will terminate if the state space is finite. In the event that a state is detected that breaks 
a soundness property, an execution trace identifying the fault is created as a 
counterexample (to demonstrate the error). Model Checking approaches are used to 
verify properties that are only partially stated, such as security or liveliness. The 
deficiency of vulnerable positions such as assertion violations, null pointer dereferences 
or buffer overflow, or API[25] utilisation contracts, including the sequence of function 
calls, is described by safety characteristics. It's a sign that something beneficial will 
ultimately happen, such as the requirement for requests to be serviced or for a 
programme to end. 
 
2.4    Bounded model checking  
 
Bound Model Checking (BMC) was designed as a technique for substituting symbolic 
analysis methods for the usage of Binary Decision Diagrams (BDD) in symbolic model 
checking. BMC is a notion used in computer science. It is based on the idea of 
traversing a finite prefix of states constrained by some constraint k, such that there may 
exist a trace that fails the critical condition. [25]The presence of a back loop from the 
most recent state of the prefix to any of its initial conditions leads to an endless route. 
To solve the original planning issue and the bound, the k-bounded model is translated 
into a polynomial SAT[6] or SMT instance using BMC.  
 
Bound Model Checking also considers liveness and nested temporal features, in 
contrast to deterministic planning, which only considers essential safety aspects (i.e., if 
and how the desired state can be attained). To conclude, BMC verifies the satisfiability 
of verification criteria, which is the outcome of the issue translated into a syntax that 
the verifier accepts. It is called bounded because it examines only states that may be 
reached in a limited number of steps, for example, k. Unwinding the model under 
verification k times and associating it with a property generates a propositional formula 
presented to a SAT solver[10]. The procedure is fulfilled if and only if there exists a 
sign of length k that contradicts the property. BMC has detected several flaws that 
would have received little attention otherwise. 
 
2.5    Efficient SMT-Based Context-Bounded Model Checker 
 
ESBMC is a context-bounded model checker for incorporated ANSI-C[11] system that 
utilises SMT solvers to verify single- and multi-threaded software with private objects 
and keys. ESBMC is entirely compatible with ANSI-C and capable of ascertaining 
programmes that implement bit-level data structures, arrays, pointers, structs, unions, 
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memory allocation, and fixed-point arithmetic. It is possible to carry out the validation 
of single or multi-threaded programs and check for deadlocks, arithmetic overflow, 
division by zero, vector limits and other types of violations. 
 
The examined programme is built in ESBMC as a state transition system M = (S, R, 
𝑠%), which is retrieved from the control-flow graph (CFG). S denotes the set of states, 
R ⊆ S × S denotes the set of transitions (i.e., pairs of states indicating how the system 
might transition from one state to another), and 𝑠%⊆ S is the set of beginning states. A 
state s∈	S is made up of the quality of the programme counter pc and the importance of 
all programme variables combined into a single object. A CFG's first programme 
location is assigned to pc by the starting state s0 of the CFG. A logical formula r = 
(𝑠& , 𝑠&'!) ∈ R identifies each transition from one state to another in the R-state between 
the two states 𝑠& and 𝑠&'!. This logical formula contains the restrictions placed on the 
values obtained from the programme counter and the corresponding outputs of the 
programme variables. 
 
Additionally, ESBMC enables users to expand this method to property violation 
verification to complicated programmes with several iterations. The architecture of the 
ESBMC[20, 18] is depicted in Figure 2. 

 
Figure 2. ESBMC architectural overview 

This technique enables the generation of verification conditions (VC) for checking 
arithmetic overflow, doing an analysis of a program's CFG, determining the optimal 
solution for a given situation, and simplifying the unfolding of a formula. In brief, 
ESBMC turns an ANSI-C/C++ programme into a GOTO programme[14]; that is, it 
changes switch and while expressions to GOTO statements, which are subsequently 
symbolically replicated by the GOTO symbol. Following that, an SSA model is built 
with static values given to the properties, which can be checked using an appropriate 
SMT solver. If there is a violation in the property, the counterexample is interpreted 
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and the fault discovered is reported; otherwise, the property fulfils the k iteration limit 
capacity. 
 
The automated nature of the ESBMC verification method makes it perfect for fast real-
time embedded software testing[18]. For the purposes of this project, the capabilities 
of the ESBMC tool are generalised to the verification of Python applications. This is 
the first attempt in the existing literature to utilise ESBMC to verify Python 
programmes. 
 
2.6    Python programs vulnerabilities 
 
When developing an application or coding, it is possible to make errors or introduce 
loopholes. These faults result in weaknesses, also known as vulnerabilities. When 
exploited, these defects may be highly damaging for enterprises since they endanger 
the security and availability of data stored in the system. The nature of the coding fault 
determines the severity of the vulnerability. Developers may provide user input directly 
into the system command, for example. If this is the case, an attacker may be able to 
gain complete control of the server through remote code execution. As a result, it's 
critical to know how these flaws arise and to prevent making mistakes that might lead 
to exploitation. Almost all of Python's problems stem from faulty input validation, 
which allows users to exploit security weaknesses by inserting arbitrary data. The most 
frequent Python security flaws will be examined now. 
l Python code injection[22] and arbitrary command execution: Server-side code 

injection vulnerabilities occur when a code interpreter dynamically analyses a 
string containing user-controllable data. An attacker can modify the code that will 
be executed and insert arbitrary code that will be executed by the server using 
manipulated input. Vulnerabilities in server-side code injection can reveal a 
program's capabilities as well as the server on which it is running. The server might 
be exploited as a jumping-off point for attacks on other systems. The standard 
Python function, which is in charge of executing commands on the system, takes 
direct user input. As a result, the attacker has the ability to seize control of the target 
system. 

l Directory traversal tools in Python: This well-known vulnerability also arises due 
to improper sanitisation of user inputs when a file is viewed. This approach enables 
an attacker to upload files to the server. This might result in sophisticated data 
leaking and remote code execution. 

l Outdated Dependencies (e.g., Unnecessary, old, and overlapping transitive 
dependencies): In other words, dependencies are the fundamental aspects upon 
which all of these different components are constructed. While modules are being 
created, unintentional vulnerabilities[22] may arise. As a result, programmers 
update these dependencies regularly to address these vulnerabilities. When a 
developer continues to use an out-of-date dependency with a vulnerability, the 
programme becomes vulnerable. 
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l Flawed logic in Python Assert Statement: Strong assertions make a claim or 
represent a fact in a programme. For instance, when a division function is written, 
it asserts that the divisor cannot be 0. Assertion is built into Python. Assertions, 
such as Boolean expressions, are used to assess the condition. Execution advances 
to the next line if the target is satisfied. Otherwise, an error message will appear. 

 

3    Proposed Method 
 
This chapter discusses the project's general architecture, beginning with the front-end 
framework and progressing to an introduction to Python Abstract Syntax Tree (AST) 
analysis, as well as a detailed explanation of the method used in the Intermediate 
Representation process, also known as the GOTO part, which describes how to convert 
Python to ANSI-C code. We compile into the anticipated ANSI-C code using an 
existing Python optimised execution library (CPython) and are compatible with 
ESBMC. 
 
3.1   Architecture 
The process of designing and implementing this project is depicted succinctly in Figure 
3. The project's base is built on the Python flask frontend; benefit from this interface, 
python scripts control and execute the process of AST analysis are efficient and 
transparent. 

 
Figure 3. The architecture of the project 

3.2    Front-end 
 
The Python parser (front end) allows users to construct their unique Python compilers, 
analysis tools, and source transformation tools. This project is mainly related to the 
Python flask front-end analysis tools. PyFlask[21] is a Python web framework with a 
small core and a strong emphasis on extensibility. Unlike Django's batteries-included 
approach, flask does not contain serialisers, user administration, or built-in 
internationalisation. Other flask extensions provide these and many more features, 
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forming a diverse ecosystem. Flask is very straightforward to learn as a newbie due to 
the lack of boilerplate code required to get a small app setting and running.  
 
3.3    Python Abstract Syntax Tree analysis 
 
Abstract Syntax Tree (Ast) is an intermediate for Python that sits between source code 
and bytecode. The Ast module enables users to perform a syntax tree analysis on the 
source code. Additionally, programmers can modify and execute the syntax tree, as 
well as unparsed the syntax tree generated by Source into Python Source. As a result, 
the AST provides ample opportunity for Python source examination, parsing, code 
modification, and debugging. The AST and overlay types that users want to utilise for 
type inference come from two sources: operations-specific types and user-supplied 
types. The conventional method of constraint-based unification will be used to recreate 
the styles. To address the massive constraint problem that arises when given a collection 
of input arguments of varying types, we'll traverse our AST and generate a constraint 
set of equality relations between types (expressed as a b). If we do not know the kind 
of an expression, we shall use free type variables. Several outcomes could occur, 
including the types that have been accurately identified; we don't know what the classes 
are yet, polymorphism abounds in the styles, and there is a wide range of varieties. 
When creating a polymorphic function, it still has free type variables at the top-level 
type. For instance, we might have a subcategory like: 
1. [Array a, Array a] -> a 

This means that the reasoning is not limited to a particular array element type and may 
be applied to any element type regardless of its nature. When we suppose that our 
compiler understands how to decrease a, we receive a whole family of functions. This 
is advantageous for code reuse since we now have access to an entire family of 
functions. The varieties are not entirely determined. This means that the constraints 
imposed by usage are excessively permissive in determining the entirety of each 
subexpression's meaning. In this case, an explicit annotation is necessary. The typeface 
has a confused look. This will occur if no solution exists that satisfies all of the 
constraints. 
 
When the AST concept is applied, it is necessary to introduce the Control-Flow Graph 
(CFG) Generator. When it comes to constructing GOTO programmes, the CFG 
generator is in charge. These are derived from the input programmes' abstract syntax 
trees (AST) and are a condensed form of the source code, consisting of conditional and 
unconditional branches, assertions, assignments, and assumptions, as well as 
conditional and unconditional branching. Technically, it eliminates all loops (for, while, 
and do-while) and switches expressions, which is a significant improvement.  
The CPython interpreter officially provided by Python processes the python source 
code as follows: 
l Create a parse tree from the source code  
l Convert the parse tree to an Abstract Syntax Tree (AST)  
l Convert AST to a Control Flow Graph (CFG) 
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l Produce bytecode from the Control Flow Graph 
 
Precisely, Figure 4 illustrates the procedure of processing the original Python code. 

 
Figure 4. Python code compiled process 

Python source code is parsed into two trees: a syntax tree and an abstract syntax tree. 
The abstract syntax tree illustrates the Python source file's syntactic structure. While 
users probably don't need an abstract syntax tree to programme most of the time, the 
AST offers certain unique advantages under specific circumstances and conditions. 
This section describes in detail the creation and traversal of the AST in order to properly 
apply AST analysis methods in this project. The section that creates the AST is divided 
into two sections: compile function and generate the AST: 
l Compile Function in Python  
 
compile(source, filename, mode[, flags[, dont_inherit]]) 
 
Source -- String or AST (Abstract Syntax Trees) object. Users can normally pass in the 
entire contents of the py file through file. read() 
Filename -- The filename of the source code or a recognised value if the source code 
cannot be read from the file 
Mode -- Defines the type of code that will be compiled. It can be chosen from one of 
the following: exec, eval, or single 
Flags -- A variable scope, local namespace, or any mapping object, if specified 
Flags and dont_inherit are indicators used to govern how source code is compiled 
 
An AST compile example is shown below. And compile and execute this code fragment 
using compile function. 
2. func_def = \ 

3. """ 

4. def add(x, y): 

5. return x + y 

6. print add(3, 5) 

7. """ 

8. >>> cm = compile(func_def, '<string>', 'exec') 

9. >>> exec cm 

10. >>> 8 

The above func_def is compiled to get bytecode via compile, and cm is the code object. 
 
l AST generation 
 
Use the func_def above to generate the AST.  
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1. r_node = ast.parse(func_def) 

2. print astunparse.dump(r_node)       

3. print ast.dump(r_node)   

 
Figure 5. illustrates the AST structure of func_def: 

 
l Traversal of Python AST 
 
Python provides two solutions to traverse the entire Abstract Syntax Tree. The first one 
is ast.NodeVisitor which is used primarily to change the AST structure by modifying 
nodes in the syntax tree. The other is ast.NodeTransformer, it achieves this mainly by 
replacing nodes in the AST. Both approaches are applied to the AST analyser for this 
project. 
 
--ast.NodeVisitor: Change the addition operation in the add() function in func_def to 
subtraction and add the call log for the function implementation. 

 
Figure 6. ast.NodeVisitor case study 
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-- ast.NodeTransformer: After changing the add() function specified in func_def to a 
subtraction function, it is preferred to be thorough and modify the function name and 
parameters, as well as the function called in the AST, and complicate the additional 
function call log. 

 
Figure 7. ast.NodeTransformer case study 

The divergence is readily apparent in the code shown in Figure 6 and Figure 7. As a 
source code analysis tool, AST is effective. Checking syntax, debugging faults, 
detecting particular fields, etc. While the above is a technique for debugging Python 
source code by including call log information in a function, in practice, we parse the 
complete Python file to loop over the updated source code. 
We designed a rather extensive AST analysis Application Programming Interface (API) 
based on the flask framework through Python flask front-end learning and AST parser 
demonstration imitation. Figure 8a and 8b illustrate the project's AST parser's original 
test code and AST structure findings, respectively. 
 

 
Figure 8a. AST API test code 
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Figure 8b. AST API partial test result 

 
3.4    Intermediate Representation (GOTO) 
 
This section illustrates how to transform code into quantifier-free equations and 
representations of various portions to increase one's understanding of ESBMC 
capabilities. As described in the Project design, Figure 9 illustrates the translation of a 
C programme to a GOTO programme[23], provides guidance for subsequent python 
GOTO programming and has a basic understanding of GOTO. 

 
Figure 9. Compile C code to GOTO program 

 
 
3.5     Cython 
Cython's cdef syntax was created to make type descriptions straightforward and 
understandable from a C/C++ perspective[15]. Due to the PEP 484[22] type hints and 
PEP 526[31] variable annotations in pure Python syntax, static Cython type 
declarations are permitted in pure Python programmes. Importing a custom Cython 
module into the Python module user is creating enables the use of C data types. e.g. 
1. import cython 

 
Python programming encourages users to consider about classes and objects in terms 
of their methods and properties rather than their position in the class structure. The 'red 
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tape' of data type handling is delegated to the interpreter, which may result in Python 
being a more relaxed and pleasant language for rapid development. 
 
Throughout execution, searching for namespaces, obtaining attributes, and decoding 
argument and adjective tuples all consume considerable time. In comparison to other 
"early coupling" languages such as C, Python has a 'late binding' difficulty during 
runtime. However, with Cython[33], 'early binding' programming techniques can result 
in significant speedups. If users wish to improve the performance of their code, users 
can use static typing for arguments and variables, although this is not required. When 
and if necessary, do optimisations. If users are unable to optimise their code due to 
typing and Cython still needs to verify that an object's type matches the provided one, 
typing may actually slow down their application. 
 
The following strategies can be used to define C variables and types. Annotations can 
be typed in PEP-484/526 or cython.declare, or they can be operated using the Cython-
specific cdef statement. Declare() and the cdef statement can be used to declare 
variables and attributes at the function and module levels. However, type annotations 
have no effect on variables or attributes at the module level. Instead of generating 
module-specific C variables, Cython[33] is prevented from doing so by type 
annotations, and therefore variables are saved in the package dict (as Python values). 
Declare() can be used explicitly to declare C variables in the Python program. 
All global variables that have been declared in the C language are instantly reset to 
either 0, NULL or nil. For a local variable, as is well known in Python and C, merely 
stating it is not sufficient to initialise it. If declaring a local variable but does not assign 
any data to it, the developer will get an error from both Cython and the C compilers. 
Before users can use the variable, a value must be given to it. In most circumstances, 
users may do this directly in the declaration. Figure 10 gives an example of this variable 
type compiled.

 

 
Figure 10. compiled variable and type contrast 

Implication types can be provided for classes: 
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Figure 11. compiled class contrast 

When it comes to the variable types, it is convenient to visualize the type difference 
between Python and C (see figure 12), after all, around a third of the work in this section 
is to imagine how covert can be a C type of variable in Python.  

 
Figure 12. correspondence between python types and c types 

The C-based Cython[33] programming language makes use of pointers. All C types, 
including char, short, int, long, and long-long, are accessible in unsigned variants 
(cython.uint in Python code). BINT (boolean values in C) and PY SIZE T(signed size 
values in Python containers) are the two forms of bint. The pointer types in Cython 
follow C traditions, such as appending a * to the underlying type they refer to, such as 
int. In Pure Python mode, pointer types are named with "p"s instead of "p"s followed 
by an underscore (cython.pp int for C int pointer). 
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Other pointer types, such as cython.pointer(), may be constructed using the 
cython.pointer() function (cython.int). When stack-allocated arrays are used, the array's 
size must be established prior to formation. For instance, int[10] Cython does not allow 
variable-length arrays, which were introduced in C99. Because Python's *x syntax is 
incorrect, Cython uses x[0] as a pointer. Any Extension Types specified by the user 
may also benefit from the use of static typing. Consider figure 13: 

 

 
Figure 13. compiled defined Extension contrast 

 
In Cython, there are two ways to define a function. The def statement is used to describe 
Python functions, much like in Python. A Python object is sent in as an argument, and 
a Python object is returned. In Cython syntax, the cdef statement or the @cfunc 
modifier are used to declare C functions. As input, they accept either Python objects or 
C values[33] and may output either Python objects or C values. 
 
Only Python functions may be invoked from outside the package by construed Python 
code, while both Python and C procedures can reach each other freely inside a Cython 
module. Def must be used to define all the Cython procedures that users would like to 
export from this module. Users may use the @ccall decorator, or the cpdef function, to 
define a combination function. 
 
Following the example below(figure 14), such procedures may be accessed from 
anywhere; however, when invoked from other Cython programmes, they utilise the 
quicker C calling convention. Additionally[33], they may be overwritten by a Python 
function on a subtype of an object feature, even when invoked from Cython. If this 
occurs, the majority of performance improvements are erased, and even if it does not, 
there is a negligible expense associated with invoking such a function from Cython as 
opposed to calling a C method. Using standard C declaration syntax, parameters of any 
kind of function may be defined to have C data types.  
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Figure 14. compiled declaration syntax contrast 

 
At the moment, automatic conversion is only available for numeric types, text types, 
and structs (constructed recursively of any of these kinds); using any other type as an 
argument to a Python function would lead to a compile-time exception. Strings must be 
handled carefully to guarantee that they include a value if the pointer is to be utilised 
after the call. Types of data may be retrieved using Python mappings, and once again, 
caution should be used when using string attributes after the method returns. 
 
Because the call is done via a regular C function call, it is possible to provide any 
kind of argument into a C function. For example, C functions that are defined using 
Cdef or a @cfunc decorator that does not have an explicitly returned object will return 
an object return type similar to that of Python. This is an exception to the rule that the 
lambda function may be left undefined in C/C++. Null is returned for reference types 
and False for ints; 0 is returned for bints and other non-Python objects, and 0 is 
returned for all other objects. Python (and specifically the Cython runtime) makes use 
of specified error return values to communicate exceptions up the callback function 
and inform the caller when they occur inside a process, as explained here. 
 
Error returns are always the NULL pointer for functions yielding Python objects; 
hence every function that returns a Python object has an error return value. Unlike code 
written as C functions or cpdef/@ccall functions, which must always produce a specific 
C type in case of a failure, functions declared as C functions or cpdef/@ccall functions 
may return any C type. It is, therefore, possible to write a function that returns instantly 
without transmitting an exception to its operator if an exception is thrown in such a 
function. 
Exception output values for C functions must be declared as connections with the 
library if the user wishes such a C function[33] to be capable of propagating 
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exceptions. Here is an illustration(figure 15).

 

 
Figure 15. compiled non-Python-aware function contrast 

 
As the name indicates, the execution module includes the implementation of 
developers’ functions, classes, extension types, etc. This module supports almost all 
of the python syntax. When a.py file is changed to.pyx without altering any code, 
Cython will preserve the python functionality. This is the case most of the time. It is 
feasible for Cython[33] to build both .py and .pyx files. Cython doesn't care about the 
suffix in the filename if you're simply going to use Python syntax; it won't alter the 
produced code in any way. 
The .pyx file is required if one wants to utilise Cython syntax. C values and functions 
may be declared using Cython syntax (such as cdef) as well as Python syntax (such as 
cimport), both of which can be used to import C definitions. This article and the 
remainder of the Cython[33] instructions cover a plethora of additional functional 
Cython capabilities that may be included in the implementation code. The 
construction of certain Extension Types is constrained by those defined in the 
associated definition file. 
Characterization files are used to specify a variety of different things. It is possible to 
make any C declaration, and it is also possible to declare a C object or function that has 
been performed in a C file. This may be accomplished using the command cdef extern 
from. Cython can comprehend a .c files since they are used to translate C data types 
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into a syntax that Cython[33] can recognize then enables the C variables and functions 
to be used directly in execution files, eliminating the need for a separate import 
statement(. cimport). Read can read more about it in Interfacing with External C 
Code and Using C++ in Cython.  
 
Also included are the definitions for an additional category and the assertions of 
procedures for an auxiliary package. It cannot include any C or Python procedure 
definitions, nor can it contain any Python class declarations, nor can it contain any 
interactive representations. It is required when attempting to access cdef properties and 
methods, as well as when attempting to derive from cdef classes specified in this 
module. Ultimately, we wanted to create a highly modular system that could conduct 
simulation, data processing, and visualisation—and that could often accomplish all of 
these activities at the same time. 
 
There is a temptation to achieve this by creating a streamlined atomic library (for 
example, by utilising a well-structured C++ set of categories), which is not ideal. This 
seems to be, in our perspective, too formal and limiting. We intended to make it 
possible to support modules that were only weakly tied to one another. For instance, 
there is no need for a graphics library to rely on the same concepts as a simulation 
code or even that they are written in the same language in order to function correctly. 
A similar approach was used with third-party packages, where no hypotheses could be 
formed about the underlying structure of such libraries. 
 
With efficient analysis and utilization of Cython[33], the core aspects of our proposed 
methods can be effectively implemented. To conclude this chapter, two code 
snippets(figure 16) illustrate the outcomes of Cython. This is a commendable and 
accomplished process of converting Python source to ANSI-C code. 
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Figure 16. A complete compile process (Python → C) 

 
 

4    Evaluation 
This chapter presents how BMCPython was tested in order to prove the absence of 
memory safety and undefined behaviour issues in Python programs. Moreover, an 
evaluation of the BMCPython veracity of generating GOTO programs as well as 
generating ANSI-C is presented to demonstrate the efficiency and effectiveness of 
this verification technique. 
 
4.1    Experimental evaluation 
In this section, we focus on the evaluation of the IR program. The evaluation approach 
has been discussed particularly in sections 3.4&5 along with some compiled C code 
snippets. To further demonstrate the reliability of the compiler, we chose a 
representative mathematical algorithm(Floyd Warshall Algorithm) to make Cython 
convert according to its Python source code, see figure 16. 
 
Floyd-warshall algorithm[16] is an algorithm to solve the shortest path between any 
two points. It can correctly deal with the shortest path problem of a directed graph or 
negative weight and is also used to calculate the transitive closure of a directed graph. 
The time complexity of the Floyd-Warshall algorithm is O(𝑁# ) and the space 
complexity is O(𝑁"). Floyd's algorithm is a classic example of dynamic programming. 
In brief, our initial objective is to determine the shortest path between points I and J.  
 
We provide a more professional interpretation from the perspective of dynamic 
programming. There are only two possible paths from each node I to any node J: one 
straight from I to J, and another via numerous nodes K to J. Assume that Dis(I, J) is the 
shortest path between nodes U and V. We verify whether Dis(I, K) + Dis(K, J) < Dis(I, 
J) is true for each node K. If this is the case, it is demonstrated that the journey from I 
to k and then to j is shorter than the straight path from I to J. We define Dis(I, J) as 
Dis(I, K) + Dis(K, J), such that after all nodes k are traversed, Dis(I, K) is the shortest 
path between I and j. It is necessary to briefly introduce this algorithm in the 
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experimental evaluation section, only in this way, the reader can better evaluate the 
accuracy of the compiled c code. The following figure(figure 1888) shows the logical 
structure of the Floyd-warshall algorithm in pseudocode. 
 

 
Figure 17. pseudocode of Floyd-warshall algorithm 

 

 

 
Figure 18. Python Floyd Warshall Algorithm compile to ANSI-C code 

By observing the compiled C code, we can see that functions are correctly replaced, 
variable names are preserved, variable types have a good mapping according to 
Figure 11, and the overall algorithmic logic structure is preserved. 
 
4.2    Experimental Setup and Benchmarks 
 
Platform – Laptop, MacBook Pro 2021, 16-inch. 
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All the experiments were conducted on a 3 GHz Apple M1 Pro processor with 16GB 
of RAM, running macOS Monterey 12.1 with 10 cores.  
 
For each experiment, the execution time, which is the average of three executions, is 
measured in seconds based on CPU time.  
 
The maximum execution time for ESBMC and BMCPython is two hours and three 
hours respectively. 
 
As for software, ESBMC v6.7 is selected as verification tool and boolector is chosen 
as SMT solver. 
 
Compiler: Visual Studio Code Version 1.65, with Python 3.8 for most of coding 
work, Cython vision 3.0. 
 
For AST master implementation, additional library is required:  
gunicorn~=19.7.1 
gevent~=1.2.1 
Flask~=1.0.2 
whitenoise~=4.1 
PyYAML~=5.1 
 
antlr4-python3-runtime~=4.7.2 
antlr-ast~=0.8.1 
 
shellwhat==1.2.0 
antlr-plsql==0.9.1 
antlr-tsql==0.12.6 
 
4.3    Experimental Results 
 
In this section we will verify BMCPython is implemented correctly by testing it on 
some of the test packages from the SV-benchmarks GitLab repository and we create 
some tests according to the benchmarks of BMCLua, those algorithm functions are 
specially developed in python. We will also compare the speed of the original 
ESBMC and BMCPython. 
 
Firstly, we compared the speed of the implementation of BMCPython on 3 different 
algorithms taken example by BMCLua benchmarks. The results are as follows: 
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BMCPython 
Input  

Total Lines of 
Python 
 

Loop iterations Total Processing Time 
(seconds) 
 

Sum of Prime 
number 

7 1000 1.2 
7 1000000 127 

Fibonacci  14 5001 6.3 
14 50001 49 

Bellman-Ford 
 

31 6 1.3 
31 21 1.9 

 
Unsurprisingly, for these tasks, both versions achieve the same perfect result. This 
result suggests to us that the implementation of BMCPython is correct. We now will 
compare the speed of BMCPython and ESBMC on a variety of problems from     
SV-Benchmarks. 
 
 

Test file name ESBMC BMCPython 
sum01-1.c/.py 0.51s 2.21s 
sum01-2.c/ .py 1.07s 3.32s 
matrix-1.c/ .py 0.10s 1.54s 

sum-array-2.c/ .py 1.02s 3.63s 
From these results, we can observe that BMCPython spent more time verifying a 
Python program over the original ESBMC. This difference indicates BMCPython is 
more complex than ESBMC. It needs to analyze the Python AST and covert the 
source code to ANSI-C code, which can be checked via ESBMC. 

 

5    Conclusion and Future Work 
 

5.1    Conclusion 
 
This report discussed bounded model checking and how it can be used to verify Python 
programmes. It commenced by conducting a literature review of the fundamental logic 
algorithm used in software verification. It provided an intensive explanation of how a 
bounded model checking tool works. Bounded model checking and ESBMC's 
specifications were then discussed in detail, with an ESBMC structure diagram 
provided as a demonstration. A significant challenge in this research was 
comprehending the current ESBMC and intermediate representation code compile. 
This subject required a tremendous amount of work, but the results were well worth the 
effort. It was assessed on standard tests for Efficient SMT-Based bounded model 
checking tools after the development of this GOTO programme, and an illustration of 
how it operates was presented in chapter 3. The main challenges were ultimately 
combined as a form of BMCPython and then utilised to verify python applications. 
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The following methods were used to achieve the five objectives listed in the 
introduction: 
l Understand the background and logic of ESBMC-- The student was able to provide 

a clear description of ESBMC logic theory via an intensive literature search and 
citations in the background theory portion. 

l Develop BMCPython by calling the library of ESBMC-- This was accomplished 
by Cython implemented, after converting the Python source code to ANSI-C, 
BMCPython will automatically execute the specified ESBMC test library to verify 
the transformed code. 

l Determine the ideas and concepts underlying vulnerability discovery of 
BMCPython in Python bytecode-- By receiving failed validation data from 
BMCPython, users can readily detect faults in python source code. 

l Reproduce the extension described in the initial research and ascertain its limits 
and disadvantages-- When the technique was presented, the majority of its flaws 
and limitations were highlighted. The editor will also address the verification scope 
and faults of BMCPython at the subsequent reflection session. 

l Verifying and analysing the BMCPython after the developments-- This was 
accomplished by thousands of tests and a detailed BMCPython analysis was given 
in chapter 3. 

To sum up, the student has developed an effective and convenient python verification 
tool and a complete demonstration system has been created for programme verification 
and model checking. Capabilities for project development and report writing have also 
increased. 
 
5.2    Reflection 
 
Every coin has two sides, and BMCPython is no exception. Several Python features 
were not supported during the development of Intermediate Representation due to the 
limitations of the compile tool. Cython is not a superset of the Python programming 
language in its entirety. Restrictions are applicable if the following conditions are met: 
Regardless of whether they are expressed in def or cdef syntax, function definitions 
cannot be nested inside other function definitions. A class can be defined only at the 
module's top-level, not within a function. The 'import *' form of the reference library is 
not permitted in any region (other formats of the import statement are acceptable, 
though). In Cython, it is not possible to implement generators. Additionally, user 
cannot utilise the globals() function or the locals() function. The foregoing constraints 
are likely to stay, as they would be hard to remove, and Cython proposed applications 
do not necessitate their removal. Class and function declarations cannot currently be 
inserted inside control structures; however, this may change in the future. In the 
meanwhile, list conditional expressions are not available. Unicode is not supported. The 
docstrings for extension types of unique methods are not functional. It is not suggested 
at this time to utilise string literals as comments in areas where executable declarations 
are not permitted. Given the above limitations, there is still too much functionality that 
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needs to be optimized for BMCPython, otherwise, a significant portion of python code 
will fail due to compile problems rather than validation problems.  
 
There is one more point to reflect on, due to lack of knowledge of robotic applications, 
I was unable to improve on this section, so only BMCPython has been created without 
practical application yet. It is also my biggest regret regarding my project. 
 
5.3    Future work 
 
After submitting this project, I will monitor if the compiler's libraries have been updated 
and optimized to support more Python features, and if time allows, I will even attempt 
to construct one to two compiler-callable Python features libraries this summer. 
 
For the robotic application, I think Unmanned Aerial Vehicles[24](UAVs or drones) 
are also a robotics application. This BMCPython method can be applied to the 
verification of UAV path[17], UAV GPS analysis and Python Fuzzer in the computer 
vision field. The most important thing is that I will test my program in the robot 
application to optimize its compatibility to the greatest extent. 
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