
 1

Department of Computer Science
Bachelor Project Report

Verifying Python Programs in

Robotic Applications

Author: Wenda Lu

Supervisor: Dr. Lucas Cordeiro

April 2022

 2

Abstract

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics suited for most programs. Due to its properties, Python is frequently
applied in the creation of robotic applications for associated industries. However,
during the development process of these programmes, various faults may be
encountered; for example, erroneous logical operators are operated, resulting in a
count-by-one error in the loop, or even dividing by zero. The Efficient SMT-Based
Context-Bounded Model Checker (ESBMC) is used as a backend in this research to
provide an innovative verification technique for Python applications. This methodology,
entitled bounded model checking - Python (BMCPython), implies converting Python
applications to ANSI-C source code and then verifying them utilizing ESBMC.
Research performed on Python programmes demonstrates that the proposed
verification approach works productive and is efficient. Experiments prove that
BMCPython generates an ANSI-C code that is fast to compile and verify. As far as we
can tell, this study is the first to deploy bounded model checking to verify Python
programs.

 3

Acknowledgements

First and foremost, I would like to express my deepest appreciation to Dr Lucas
Cordeiro, my project supervisor, for his unwavering support, patience, and guidance
during the duration of my research project. In addition, he has provided me with
valuable resources that have encouraged me to come up with a novel and creative
design.

Second, I also want to express my gratitude to my family and friends for their
encouragement and unwavering trust in my qualities.

 4

Project Planning

I visualized my project planning timeline(as follows). During weekly tutorial meetings,
I was able to summarize the work done this week and propose the project goals for the
next week.

Figure 0. Project Planning Timeline

 5

List of Figures

Figure 0. Project Planning Timeline

Figure 1. Arithmetic logic of SMT

Figure 2. ESBMC architectural overview

Figure 3. The architecture of the project

Figure 4. Python code compiled process

Figure 5. illustrates the AST structure of func_def

Figure 6. ast.NodeVisitor case study

Figure 7. ast.NodeTransformer case study

Figure 8a. AST API test code

Figure 8b. AST API partial test result

Figure 9. Compile C code to GOTO program

Figure 10. compiled variable and type contrast

Figure 11. compiled class contrast

Figure 12. correspondence between python types and c types

Figure 13. compiled defined Extension contrast

Figure 14. compiled declaration syntax contrast

Figure 15. compiled non-Python-aware function contrast

Figure 16. A complete compile process (Python → C)

Figure 17. pseudocode of Floyd-warshall algorithm

Figure 18. Python Floyd Warshall Algorithm compile to ANSI-C code

 6

List of Abbreviations

1. SAT: Boolean Satisfiability

2. SMT: Satisfiability Modulo Theories

3. BMC: Bounded Model Checking

4. BDD: Binary Decision Diagrams

5. ESBMC: Efficient SMT-based Bounded Model Checker

6. CFG: Control-Flow Graph

7. VC: Verification Conditions

8. AST: Application Programming Interface

9. API: Intermediate Representation

10. IR: Intermediate Representation

11. BINT: Boolean Values in C

12. PY SIZE T: Signed Size Values in Python

 7

Contents

Abstract ... 2

Acknowledgements .. 3

Project Planning ... 4

List of Figures ... 5

List of Abbreviations ... 6

1. Introduction ... 8
1.1 Motivation and Related Work ... 8

1.2 Aims and Objectives ... 8

1.3 Report Structure .. 9

1.4 Impact of COVID-19 .. 9

2. Background ... 10
2.1 Boolean Satisfiability (SAT) ... 10

2.2 Satisfiability Modulo Theories (SMT) .. 10

2.3 Model Checking .. 11

2.4 Bounded model checking .. 12

2.5 Efficient SMT-Based Context-Bounded Model Checker ... 12

2.6 Python program vulnerabilities ... 14

3. Proposed Method .. 15
3.1 Architecture ... 15

3.2 Front-end ... 15

3.3 Python Abstract Syntax Tree analysis .. 16

3.4 Intermediate Representation (GOTO) ... 20

3.5 Cython ... 20

4. Evaluation .. 27
4.1 Experimental evaluation ... 27

4.2 Experimental Setup and Benchmarks ... 28

4.3 Experimental Results .. 29

5. Conclusion and Future Work .. 30
5.1 Conclusion .. 30

5.2 Reflection .. 31

5.3 Future work ... 32

Bibliography ... 33

 8

1 Introduction

In this chapter, we will start with the motivation behind choosing this project and
introduce the main concepts of Efficient SMT-Based Bounded Model Checking
(ESBMC). A problem description of python programs vulnerabilities and the aim and
objectives for this project are also provided. This chapter also highlights the impact of
COVID-19 as well as the structure of my report.

1.1 Motivation and Problem description

Python has sparked much interest, especially among computer experts, over the last
decade, and much python-based software has been developed. At the same time, robotic
applications will also continue to be a prominent topic due to rising consumption and
industrial demand. Therefore, it is not difficult to imagine a Python framework robotic
application that generates possible uncertainty for users because of Python
vulnerabilities.

People proposed the model checking approach as a supplement, which can
automatically verify whether the software being produced has issues more effectively
in all the feasible states since flaws and defects hardly reached in the programme are
challenging to identify entirely using standard modelling and testing techniques. We
will develop BMCPython, a novel verification approach based on a bounded model
checking tool for software written in Python, to find vulnerabilities in Python scripts in
this project [22]. When BMCPython identifies a vulnerability in a programme, it creates
a counterexample. However, the Benchmark results of BMCPython [28] yield several
inaccurate findings, including wrong TRUE and FALSE. As a result, we must validate
the findings after running BMCPython, and we may potentially implement some
optimisations using ESBMC[20].

1.2 Aims and Objectives

This project will produce BMCPython, which will be based on the Efficient SMT-
Based Bounded Model Checker tool (ESBMC). By understanding software model
checking, readers will be able to identify Python vulnerabilities[22], assess current
verification methodologies, and design appropriate improvements.

The specific aims and objectives are as follows.
l Understand the background and logic of ESBMC
l Develop BMCPython by calling the library of ESBMC
l Determine the ideas and concepts underlying vulnerability discovery of

BMCPython in Python bytecode
l Reproduce the extension described in the initial research and ascertain its limits

and disadvantages
l Verifying and analysing the BMCPython after the developments

 9

1.3 Report Structure

 The chapters of this report cover:

l Chapter 2: Background presents the necessary background concepts for
comprehending this project and evaluating this report. Contains details about the
Satisfiability Modulo Theories (SMT) used by the tool and intermediate
representation (IR) supported by ESBMC, as well as an explanation of the
technique used for bounded model checking. Additionally, the chapter concludes
with a synopsis of the relevant work.

l Chapter 3: Proposed Method describes the components of the BMCPython
application and details the encodings used to transform restrictions and
characteristics, along with the Abstract Syntax Tree (AST) analysis of Python, into
the background concepts mentioned in Chapter 2. It also introduces the methods
for converting Python to ANSI-C code, also known as the GOTO section.

l Chapter 4: Evaluation covers the outcomes of the testing, as well as the
benefits and drawbacks of the implementation and probable causes.

l Chapter 5: Conclusions and Future Work emphasises the project's
accomplishments and limitations, including student reflections on the strategy and
critical review of future work.

1.4 Impact of COVID-19

Six semesters comprised my undergraduate courses, and the COVID-19 outbreak lasted
five semesters. It was quite frustrating. Spend more than half of my undergraduate time
studying online, making it difficult to have a good experience. When it comes to
selecting my final year project, we can just browse our supervisor's project profile and
communicate with them via email. If we teach offline, we could discuss it in advance
with our tutor. For instance, my project involves robotic applications, and I am only
limited by my creativity. Online tutorial sessions and resource searches are insufficient.
The robotic application attracted me to this project. I could have consulted the technical
advisor about robotic applications and visiting the robot prototypes at our department.
Due to lack of knowledge on robotic applications, I was unable to improve on this
section. This is also my biggest regret regarding my project. Additionally, I was
vaccinated against COVID-19 during the first semester of my final year. Due to my
preceding pneumothorax surgery on my lungs, I suffered a serious adverse reaction that
lasted more than 10 days. With the government's COVID-19 restriction removed, in
early March, for more than two years it eventually came to me, I affected the virus. I
had a slight fever, felt exhausted, was concerned about my project, and was just
miserable. After I recovered, I spent the Easter vacation concentrating on completing
the project report. When the epidemic spread to Shanghai, my entire family live there,
experiencing another round of lockdown with scarce supplies and even no fresh veggies
or food to eat. I had serious mental health problems recent days because of what my
family is suffering due to the local government's lack of control. I wrote this report in
a depressed state, which have impacted the quality of my report to a certain extent.

 10

2 Background

2.1 Boolean Satisfiability (SAT)

The Boolean satisfiability problem[14] (sometimes referred to as the propositional
satisfiability problem) is a problem in logic and computer science that involves
assessing if an explanation exists that satisfies a particular Boolean formula[14]. In
other words, it determines whether a variable specified by a Boolean formula can be
consistently substituted with a TRUE or FALSE value such that the formula evaluates
to TRUE. If this is TRUE, the formula is satisfiable. If such assignments do not exist,
the function described by the formula is FALSE for all conceivable variable terms,
rendering the formula unsatisfiable.

2.2 Satisfiability Modulo Theories (SMT)

SMT[12, 19] solver has established itself as the primary engine in the fields of software
engineering, programming languages, and information security; its application
scenarios are numerous. Because this project is based on the ESBMC library call and
SMT[18] solvers available in ESBMC verification, we will primarily introduce and
demonstrate SMT's software analysis and verification functions. Software deductive
verification reduces to solving the implication problem of two logical formulae, which
can then be expressed as the satisfaction problem of SMT.

More SAT solvers have been used for formal hardware and software verification in
recent decades. Determining the satisfiability of logical expressions, first order, has
been instrumental in determining the correctness of a system. Nonetheless, many
applications need to determine satisfiability that is not first-order but defined in some
grounding theory, the interpretation of which uses certain symbols of predicates and
functions. For example, formula 2.1 uses integer arithmetic symbols, which cannot be
interpreted alone by propositional logic[1, 14].

F :: = y ∪ z ∧(y+6) <z∧¬(z<y+6) (2.1)
SMT is a subset of the problems of formula satisfiability determination. This sort of
formula possesses the following two characteristics: the propositional logic formula
contains several first-order logical formulations[3]; possesses an arbitrarily complex
Boolean structure. All are familiar with propositional logic formulations, such as:

𝑃 ∧ 𝑄	 ∧ (𝑅 → 𝑆 ∨ ¬𝑇) (2.2)
That is, variables, negatives, and logical conjunctions are all permitted. And the formula
for SMT is as follows:

𝑔(𝑎) = 𝑐 ∧ 2𝑓2𝑔(𝑎)4≠ 	𝑓(𝑐) ∨ 𝑔(𝑎) = 𝑑4 ∧ 𝑐 ≠ 𝑑 (2.3)

In comparison to the propositional logic formula, there are a few additional features,
mainly the two given at the outset: To begin, there are more non-logical symbols, such
as functions g(a),f(g(a)), and constants c, d. [13]Only the characters of P, Q, R,	 ∨ and

 11

→ instead of the signs of logic, constitute the contents of first-order logic in
propositional logic. Second, the Boolean structure has been enlarged or become a

macroscopic Boolean structure. For instance, 𝑔(𝑎) = 𝑐 , 𝑓2𝑔(𝑎)4≠ 	𝑓(𝑐) this

equation substitutes the original Boolean expression definition of the atom. The second
point above, extended Boolean structures, becomes apparent with this example. Again,
we employ formula 2.3 to make a first-order substitution[9]:

𝑔(𝑎) = 𝑐 ↦ 𝑃!, 𝑓2𝑔(𝑎)4 = 𝑓(𝑐) 	↦ 𝑃", 𝑔(𝑎) = 𝑑 ↦ 𝑃#, 𝑐 = 𝑑 ↦ 𝑃$

So, the formula 2.3 takes on the following form:
𝐵(𝐹): 𝑃! ∧ (¬𝑃" ∨ 𝑃#) ∧ ¬𝑃$	

This is the most often used Boolean expression. As a result, the SMT formula has an
arbitrary abstract Boolean structure and is only concerned with the logical connective.
B(F) created in this manner is an abstraction of F and can also be thought of as a macro-
Boolean structure.
Figure 1 illustrates the typical notation for explaining the SMT syntax. In this notation,
F symbolises a Boolean expression, T specifies terms composed of integers, reals, and
bit vectors, and op denotes binary operators. [30]Conjunction (∧), disjunction (∨),
exclusive-or (⊕), implication (⇒), and equivalence (⇔) are the annotated logical
connectives. The relational and nonlinear operators (∗, /, rem) analyse arguments from
arrays of bits, integers, and reals. In bit vector manipulation, the shift operators (« and
»), and (&), or (|), or exclusive (⊕), complement (∼), concatenation (@), Bitstract(T,
i) FullSignExt(T,k), and UnsignExt(T, i) are utilised. It evaluates a Boolean formula F,
picking the first argument if the formula is true and setting the second argument if the
formula is false. The select operator is used to identify the value stored at the vector's
position i. The store operator replaces the value at class i with the new value v contained
within the vector.

Figure 1. Arithmetic logic of SMT

2.3 Model Checking

The most extensively used approach for automated formal verification of finite-
state transition systems is model checking[27]. It entails modelling the intended design
as a finite state machine and defining temporal logic characteristics[5] to formalise the
specification. The correctness[7, 8] property can be guaranteed in theory by testing
exhaustively inside all attainable configurations. A counterexample[2] will be produced
if the condition does not match and is connected to a prohibited state.

 12

Algorithms are used in model checking to ensure that the model is valid. Program
models are composed of states, transitions, and a specification or attribute that is
logically defined. Stack and heap settings are also assessed in a state, as is the
programme counter. The way a programme moves from one state to the next is
described in terms of transitions. [26]Checking all potential states in a programme is
done using model checking approaches. This technique has a built-in assurance that it
will terminate if the state space is finite. In the event that a state is detected that breaks
a soundness property, an execution trace identifying the fault is created as a
counterexample (to demonstrate the error). Model Checking approaches are used to
verify properties that are only partially stated, such as security or liveliness. The
deficiency of vulnerable positions such as assertion violations, null pointer dereferences
or buffer overflow, or API[25] utilisation contracts, including the sequence of function
calls, is described by safety characteristics. It's a sign that something beneficial will
ultimately happen, such as the requirement for requests to be serviced or for a
programme to end.

2.4 Bounded model checking

Bound Model Checking (BMC) was designed as a technique for substituting symbolic
analysis methods for the usage of Binary Decision Diagrams (BDD) in symbolic model
checking. BMC is a notion used in computer science. It is based on the idea of
traversing a finite prefix of states constrained by some constraint k, such that there may
exist a trace that fails the critical condition. [25]The presence of a back loop from the
most recent state of the prefix to any of its initial conditions leads to an endless route.
To solve the original planning issue and the bound, the k-bounded model is translated
into a polynomial SAT[6] or SMT instance using BMC.

Bound Model Checking also considers liveness and nested temporal features, in
contrast to deterministic planning, which only considers essential safety aspects (i.e., if
and how the desired state can be attained). To conclude, BMC verifies the satisfiability
of verification criteria, which is the outcome of the issue translated into a syntax that
the verifier accepts. It is called bounded because it examines only states that may be
reached in a limited number of steps, for example, k. Unwinding the model under
verification k times and associating it with a property generates a propositional formula
presented to a SAT solver[10]. The procedure is fulfilled if and only if there exists a
sign of length k that contradicts the property. BMC has detected several flaws that
would have received little attention otherwise.

2.5 Efficient SMT-Based Context-Bounded Model Checker

ESBMC is a context-bounded model checker for incorporated ANSI-C[11] system that
utilises SMT solvers to verify single- and multi-threaded software with private objects
and keys. ESBMC is entirely compatible with ANSI-C and capable of ascertaining
programmes that implement bit-level data structures, arrays, pointers, structs, unions,

 13

memory allocation, and fixed-point arithmetic. It is possible to carry out the validation
of single or multi-threaded programs and check for deadlocks, arithmetic overflow,
division by zero, vector limits and other types of violations.

The examined programme is built in ESBMC as a state transition system M = (S, R,
𝑠%), which is retrieved from the control-flow graph (CFG). S denotes the set of states,
R ⊆ S × S denotes the set of transitions (i.e., pairs of states indicating how the system
might transition from one state to another), and 𝑠%⊆ S is the set of beginning states. A
state s∈	S is made up of the quality of the programme counter pc and the importance of
all programme variables combined into a single object. A CFG's first programme
location is assigned to pc by the starting state s0 of the CFG. A logical formula r =
(𝑠& , 𝑠&'!) ∈ R identifies each transition from one state to another in the R-state between
the two states 𝑠& and 𝑠&'!. This logical formula contains the restrictions placed on the
values obtained from the programme counter and the corresponding outputs of the
programme variables.

Additionally, ESBMC enables users to expand this method to property violation
verification to complicated programmes with several iterations. The architecture of the
ESBMC[20, 18] is depicted in Figure 2.

Figure 2. ESBMC architectural overview

This technique enables the generation of verification conditions (VC) for checking
arithmetic overflow, doing an analysis of a program's CFG, determining the optimal
solution for a given situation, and simplifying the unfolding of a formula. In brief,
ESBMC turns an ANSI-C/C++ programme into a GOTO programme[14]; that is, it
changes switch and while expressions to GOTO statements, which are subsequently
symbolically replicated by the GOTO symbol. Following that, an SSA model is built
with static values given to the properties, which can be checked using an appropriate
SMT solver. If there is a violation in the property, the counterexample is interpreted

 14

and the fault discovered is reported; otherwise, the property fulfils the k iteration limit
capacity.

The automated nature of the ESBMC verification method makes it perfect for fast real-
time embedded software testing[18]. For the purposes of this project, the capabilities
of the ESBMC tool are generalised to the verification of Python applications. This is
the first attempt in the existing literature to utilise ESBMC to verify Python
programmes.

2.6 Python programs vulnerabilities

When developing an application or coding, it is possible to make errors or introduce
loopholes. These faults result in weaknesses, also known as vulnerabilities. When
exploited, these defects may be highly damaging for enterprises since they endanger
the security and availability of data stored in the system. The nature of the coding fault
determines the severity of the vulnerability. Developers may provide user input directly
into the system command, for example. If this is the case, an attacker may be able to
gain complete control of the server through remote code execution. As a result, it's
critical to know how these flaws arise and to prevent making mistakes that might lead
to exploitation. Almost all of Python's problems stem from faulty input validation,
which allows users to exploit security weaknesses by inserting arbitrary data. The most
frequent Python security flaws will be examined now.
l Python code injection[22] and arbitrary command execution: Server-side code

injection vulnerabilities occur when a code interpreter dynamically analyses a
string containing user-controllable data. An attacker can modify the code that will
be executed and insert arbitrary code that will be executed by the server using
manipulated input. Vulnerabilities in server-side code injection can reveal a
program's capabilities as well as the server on which it is running. The server might
be exploited as a jumping-off point for attacks on other systems. The standard
Python function, which is in charge of executing commands on the system, takes
direct user input. As a result, the attacker has the ability to seize control of the target
system.

l Directory traversal tools in Python: This well-known vulnerability also arises due
to improper sanitisation of user inputs when a file is viewed. This approach enables
an attacker to upload files to the server. This might result in sophisticated data
leaking and remote code execution.

l Outdated Dependencies (e.g., Unnecessary, old, and overlapping transitive
dependencies): In other words, dependencies are the fundamental aspects upon
which all of these different components are constructed. While modules are being
created, unintentional vulnerabilities[22] may arise. As a result, programmers
update these dependencies regularly to address these vulnerabilities. When a
developer continues to use an out-of-date dependency with a vulnerability, the
programme becomes vulnerable.

 15

l Flawed logic in Python Assert Statement: Strong assertions make a claim or
represent a fact in a programme. For instance, when a division function is written,
it asserts that the divisor cannot be 0. Assertion is built into Python. Assertions,
such as Boolean expressions, are used to assess the condition. Execution advances
to the next line if the target is satisfied. Otherwise, an error message will appear.

3 Proposed Method

This chapter discusses the project's general architecture, beginning with the front-end
framework and progressing to an introduction to Python Abstract Syntax Tree (AST)
analysis, as well as a detailed explanation of the method used in the Intermediate
Representation process, also known as the GOTO part, which describes how to convert
Python to ANSI-C code. We compile into the anticipated ANSI-C code using an
existing Python optimised execution library (CPython) and are compatible with
ESBMC.

3.1 Architecture
The process of designing and implementing this project is depicted succinctly in Figure
3. The project's base is built on the Python flask frontend; benefit from this interface,
python scripts control and execute the process of AST analysis are efficient and
transparent.

Figure 3. The architecture of the project

3.2 Front-end

The Python parser (front end) allows users to construct their unique Python compilers,
analysis tools, and source transformation tools. This project is mainly related to the
Python flask front-end analysis tools. PyFlask[21] is a Python web framework with a
small core and a strong emphasis on extensibility. Unlike Django's batteries-included
approach, flask does not contain serialisers, user administration, or built-in
internationalisation. Other flask extensions provide these and many more features,

 16

forming a diverse ecosystem. Flask is very straightforward to learn as a newbie due to
the lack of boilerplate code required to get a small app setting and running.

3.3 Python Abstract Syntax Tree analysis

Abstract Syntax Tree (Ast) is an intermediate for Python that sits between source code
and bytecode. The Ast module enables users to perform a syntax tree analysis on the
source code. Additionally, programmers can modify and execute the syntax tree, as
well as unparsed the syntax tree generated by Source into Python Source. As a result,
the AST provides ample opportunity for Python source examination, parsing, code
modification, and debugging. The AST and overlay types that users want to utilise for
type inference come from two sources: operations-specific types and user-supplied
types. The conventional method of constraint-based unification will be used to recreate
the styles. To address the massive constraint problem that arises when given a collection
of input arguments of varying types, we'll traverse our AST and generate a constraint
set of equality relations between types (expressed as a b). If we do not know the kind
of an expression, we shall use free type variables. Several outcomes could occur,
including the types that have been accurately identified; we don't know what the classes
are yet, polymorphism abounds in the styles, and there is a wide range of varieties.
When creating a polymorphic function, it still has free type variables at the top-level
type. For instance, we might have a subcategory like:
1. [Array a, Array a] -> a

This means that the reasoning is not limited to a particular array element type and may
be applied to any element type regardless of its nature. When we suppose that our
compiler understands how to decrease a, we receive a whole family of functions. This
is advantageous for code reuse since we now have access to an entire family of
functions. The varieties are not entirely determined. This means that the constraints
imposed by usage are excessively permissive in determining the entirety of each
subexpression's meaning. In this case, an explicit annotation is necessary. The typeface
has a confused look. This will occur if no solution exists that satisfies all of the
constraints.

When the AST concept is applied, it is necessary to introduce the Control-Flow Graph
(CFG) Generator. When it comes to constructing GOTO programmes, the CFG
generator is in charge. These are derived from the input programmes' abstract syntax
trees (AST) and are a condensed form of the source code, consisting of conditional and
unconditional branches, assertions, assignments, and assumptions, as well as
conditional and unconditional branching. Technically, it eliminates all loops (for, while,
and do-while) and switches expressions, which is a significant improvement.
The CPython interpreter officially provided by Python processes the python source
code as follows:
l Create a parse tree from the source code
l Convert the parse tree to an Abstract Syntax Tree (AST)
l Convert AST to a Control Flow Graph (CFG)

 17

l Produce bytecode from the Control Flow Graph

Precisely, Figure 4 illustrates the procedure of processing the original Python code.

Figure 4. Python code compiled process

Python source code is parsed into two trees: a syntax tree and an abstract syntax tree.
The abstract syntax tree illustrates the Python source file's syntactic structure. While
users probably don't need an abstract syntax tree to programme most of the time, the
AST offers certain unique advantages under specific circumstances and conditions.
This section describes in detail the creation and traversal of the AST in order to properly
apply AST analysis methods in this project. The section that creates the AST is divided
into two sections: compile function and generate the AST:
l Compile Function in Python

compile(source, filename, mode[, flags[, dont_inherit]])

Source -- String or AST (Abstract Syntax Trees) object. Users can normally pass in the
entire contents of the py file through file. read()
Filename -- The filename of the source code or a recognised value if the source code
cannot be read from the file
Mode -- Defines the type of code that will be compiled. It can be chosen from one of
the following: exec, eval, or single
Flags -- A variable scope, local namespace, or any mapping object, if specified
Flags and dont_inherit are indicators used to govern how source code is compiled

An AST compile example is shown below. And compile and execute this code fragment
using compile function.
2. func_def = \

3. """

4. def add(x, y):

5. return x + y

6. print add(3, 5)

7. """

8. >>> cm = compile(func_def, '<string>', 'exec')

9. >>> exec cm

10. >>> 8

The above func_def is compiled to get bytecode via compile, and cm is the code object.

l AST generation

Use the func_def above to generate the AST.

 18

1. r_node = ast.parse(func_def)

2. print astunparse.dump(r_node)

3. print ast.dump(r_node)

Figure 5. illustrates the AST structure of func_def:

l Traversal of Python AST

Python provides two solutions to traverse the entire Abstract Syntax Tree. The first one
is ast.NodeVisitor which is used primarily to change the AST structure by modifying
nodes in the syntax tree. The other is ast.NodeTransformer, it achieves this mainly by
replacing nodes in the AST. Both approaches are applied to the AST analyser for this
project.

--ast.NodeVisitor: Change the addition operation in the add() function in func_def to
subtraction and add the call log for the function implementation.

Figure 6. ast.NodeVisitor case study

 19

-- ast.NodeTransformer: After changing the add() function specified in func_def to a
subtraction function, it is preferred to be thorough and modify the function name and
parameters, as well as the function called in the AST, and complicate the additional
function call log.

Figure 7. ast.NodeTransformer case study

The divergence is readily apparent in the code shown in Figure 6 and Figure 7. As a
source code analysis tool, AST is effective. Checking syntax, debugging faults,
detecting particular fields, etc. While the above is a technique for debugging Python
source code by including call log information in a function, in practice, we parse the
complete Python file to loop over the updated source code.
We designed a rather extensive AST analysis Application Programming Interface (API)
based on the flask framework through Python flask front-end learning and AST parser
demonstration imitation. Figure 8a and 8b illustrate the project's AST parser's original
test code and AST structure findings, respectively.

Figure 8a. AST API test code

 20

Figure 8b. AST API partial test result

3.4 Intermediate Representation (GOTO)

This section illustrates how to transform code into quantifier-free equations and
representations of various portions to increase one's understanding of ESBMC
capabilities. As described in the Project design, Figure 9 illustrates the translation of a
C programme to a GOTO programme[23], provides guidance for subsequent python
GOTO programming and has a basic understanding of GOTO.

Figure 9. Compile C code to GOTO program

3.5 Cython
Cython's cdef syntax was created to make type descriptions straightforward and
understandable from a C/C++ perspective[15]. Due to the PEP 484[22] type hints and
PEP 526[31] variable annotations in pure Python syntax, static Cython type
declarations are permitted in pure Python programmes. Importing a custom Cython
module into the Python module user is creating enables the use of C data types. e.g.
1. import cython

Python programming encourages users to consider about classes and objects in terms
of their methods and properties rather than their position in the class structure. The 'red

 21

tape' of data type handling is delegated to the interpreter, which may result in Python
being a more relaxed and pleasant language for rapid development.

Throughout execution, searching for namespaces, obtaining attributes, and decoding
argument and adjective tuples all consume considerable time. In comparison to other
"early coupling" languages such as C, Python has a 'late binding' difficulty during
runtime. However, with Cython[33], 'early binding' programming techniques can result
in significant speedups. If users wish to improve the performance of their code, users
can use static typing for arguments and variables, although this is not required. When
and if necessary, do optimisations. If users are unable to optimise their code due to
typing and Cython still needs to verify that an object's type matches the provided one,
typing may actually slow down their application.

The following strategies can be used to define C variables and types. Annotations can
be typed in PEP-484/526 or cython.declare, or they can be operated using the Cython-
specific cdef statement. Declare() and the cdef statement can be used to declare
variables and attributes at the function and module levels. However, type annotations
have no effect on variables or attributes at the module level. Instead of generating
module-specific C variables, Cython[33] is prevented from doing so by type
annotations, and therefore variables are saved in the package dict (as Python values).
Declare() can be used explicitly to declare C variables in the Python program.
All global variables that have been declared in the C language are instantly reset to
either 0, NULL or nil. For a local variable, as is well known in Python and C, merely
stating it is not sufficient to initialise it. If declaring a local variable but does not assign
any data to it, the developer will get an error from both Cython and the C compilers.
Before users can use the variable, a value must be given to it. In most circumstances,
users may do this directly in the declaration. Figure 10 gives an example of this variable
type compiled.

Figure 10. compiled variable and type contrast

Implication types can be provided for classes:

 22

Figure 11. compiled class contrast

When it comes to the variable types, it is convenient to visualize the type difference
between Python and C (see figure 12), after all, around a third of the work in this section
is to imagine how covert can be a C type of variable in Python.

Figure 12. correspondence between python types and c types

The C-based Cython[33] programming language makes use of pointers. All C types,
including char, short, int, long, and long-long, are accessible in unsigned variants
(cython.uint in Python code). BINT (boolean values in C) and PY SIZE T(signed size
values in Python containers) are the two forms of bint. The pointer types in Cython
follow C traditions, such as appending a * to the underlying type they refer to, such as
int. In Pure Python mode, pointer types are named with "p"s instead of "p"s followed
by an underscore (cython.pp int for C int pointer).

 23

Other pointer types, such as cython.pointer(), may be constructed using the
cython.pointer() function (cython.int). When stack-allocated arrays are used, the array's
size must be established prior to formation. For instance, int[10] Cython does not allow
variable-length arrays, which were introduced in C99. Because Python's *x syntax is
incorrect, Cython uses x[0] as a pointer. Any Extension Types specified by the user
may also benefit from the use of static typing. Consider figure 13:

Figure 13. compiled defined Extension contrast

In Cython, there are two ways to define a function. The def statement is used to describe
Python functions, much like in Python. A Python object is sent in as an argument, and
a Python object is returned. In Cython syntax, the cdef statement or the @cfunc
modifier are used to declare C functions. As input, they accept either Python objects or
C values[33] and may output either Python objects or C values.

Only Python functions may be invoked from outside the package by construed Python
code, while both Python and C procedures can reach each other freely inside a Cython
module. Def must be used to define all the Cython procedures that users would like to
export from this module. Users may use the @ccall decorator, or the cpdef function, to
define a combination function.

Following the example below(figure 14), such procedures may be accessed from
anywhere; however, when invoked from other Cython programmes, they utilise the
quicker C calling convention. Additionally[33], they may be overwritten by a Python
function on a subtype of an object feature, even when invoked from Cython. If this
occurs, the majority of performance improvements are erased, and even if it does not,
there is a negligible expense associated with invoking such a function from Cython as
opposed to calling a C method. Using standard C declaration syntax, parameters of any
kind of function may be defined to have C data types.

 24

Figure 14. compiled declaration syntax contrast

At the moment, automatic conversion is only available for numeric types, text types,
and structs (constructed recursively of any of these kinds); using any other type as an
argument to a Python function would lead to a compile-time exception. Strings must be
handled carefully to guarantee that they include a value if the pointer is to be utilised
after the call. Types of data may be retrieved using Python mappings, and once again,
caution should be used when using string attributes after the method returns.

Because the call is done via a regular C function call, it is possible to provide any
kind of argument into a C function. For example, C functions that are defined using
Cdef or a @cfunc decorator that does not have an explicitly returned object will return
an object return type similar to that of Python. This is an exception to the rule that the
lambda function may be left undefined in C/C++. Null is returned for reference types
and False for ints; 0 is returned for bints and other non-Python objects, and 0 is
returned for all other objects. Python (and specifically the Cython runtime) makes use
of specified error return values to communicate exceptions up the callback function
and inform the caller when they occur inside a process, as explained here.

Error returns are always the NULL pointer for functions yielding Python objects;
hence every function that returns a Python object has an error return value. Unlike code
written as C functions or cpdef/@ccall functions, which must always produce a specific
C type in case of a failure, functions declared as C functions or cpdef/@ccall functions
may return any C type. It is, therefore, possible to write a function that returns instantly
without transmitting an exception to its operator if an exception is thrown in such a
function.
Exception output values for C functions must be declared as connections with the
library if the user wishes such a C function[33] to be capable of propagating

 25

exceptions. Here is an illustration(figure 15).

Figure 15. compiled non-Python-aware function contrast

As the name indicates, the execution module includes the implementation of
developers’ functions, classes, extension types, etc. This module supports almost all
of the python syntax. When a.py file is changed to.pyx without altering any code,
Cython will preserve the python functionality. This is the case most of the time. It is
feasible for Cython[33] to build both .py and .pyx files. Cython doesn't care about the
suffix in the filename if you're simply going to use Python syntax; it won't alter the
produced code in any way.
The .pyx file is required if one wants to utilise Cython syntax. C values and functions
may be declared using Cython syntax (such as cdef) as well as Python syntax (such as
cimport), both of which can be used to import C definitions. This article and the
remainder of the Cython[33] instructions cover a plethora of additional functional
Cython capabilities that may be included in the implementation code. The
construction of certain Extension Types is constrained by those defined in the
associated definition file.
Characterization files are used to specify a variety of different things. It is possible to
make any C declaration, and it is also possible to declare a C object or function that has
been performed in a C file. This may be accomplished using the command cdef extern
from. Cython can comprehend a .c files since they are used to translate C data types

 26

into a syntax that Cython[33] can recognize then enables the C variables and functions
to be used directly in execution files, eliminating the need for a separate import
statement(. cimport). Read can read more about it in Interfacing with External C
Code and Using C++ in Cython.

Also included are the definitions for an additional category and the assertions of
procedures for an auxiliary package. It cannot include any C or Python procedure
definitions, nor can it contain any Python class declarations, nor can it contain any
interactive representations. It is required when attempting to access cdef properties and
methods, as well as when attempting to derive from cdef classes specified in this
module. Ultimately, we wanted to create a highly modular system that could conduct
simulation, data processing, and visualisation—and that could often accomplish all of
these activities at the same time.

There is a temptation to achieve this by creating a streamlined atomic library (for
example, by utilising a well-structured C++ set of categories), which is not ideal. This
seems to be, in our perspective, too formal and limiting. We intended to make it
possible to support modules that were only weakly tied to one another. For instance,
there is no need for a graphics library to rely on the same concepts as a simulation
code or even that they are written in the same language in order to function correctly.
A similar approach was used with third-party packages, where no hypotheses could be
formed about the underlying structure of such libraries.

With efficient analysis and utilization of Cython[33], the core aspects of our proposed
methods can be effectively implemented. To conclude this chapter, two code
snippets(figure 16) illustrate the outcomes of Cython. This is a commendable and
accomplished process of converting Python source to ANSI-C code.

 27

Figure 16. A complete compile process (Python → C)

4 Evaluation
This chapter presents how BMCPython was tested in order to prove the absence of
memory safety and undefined behaviour issues in Python programs. Moreover, an
evaluation of the BMCPython veracity of generating GOTO programs as well as
generating ANSI-C is presented to demonstrate the efficiency and effectiveness of
this verification technique.

4.1 Experimental evaluation
In this section, we focus on the evaluation of the IR program. The evaluation approach
has been discussed particularly in sections 3.4&5 along with some compiled C code
snippets. To further demonstrate the reliability of the compiler, we chose a
representative mathematical algorithm(Floyd Warshall Algorithm) to make Cython
convert according to its Python source code, see figure 16.

Floyd-warshall algorithm[16] is an algorithm to solve the shortest path between any
two points. It can correctly deal with the shortest path problem of a directed graph or
negative weight and is also used to calculate the transitive closure of a directed graph.
The time complexity of the Floyd-Warshall algorithm is O(𝑁#) and the space
complexity is O(𝑁"). Floyd's algorithm is a classic example of dynamic programming.
In brief, our initial objective is to determine the shortest path between points I and J.

We provide a more professional interpretation from the perspective of dynamic
programming. There are only two possible paths from each node I to any node J: one
straight from I to J, and another via numerous nodes K to J. Assume that Dis(I, J) is the
shortest path between nodes U and V. We verify whether Dis(I, K) + Dis(K, J) < Dis(I,
J) is true for each node K. If this is the case, it is demonstrated that the journey from I
to k and then to j is shorter than the straight path from I to J. We define Dis(I, J) as
Dis(I, K) + Dis(K, J), such that after all nodes k are traversed, Dis(I, K) is the shortest
path between I and j. It is necessary to briefly introduce this algorithm in the

 28

experimental evaluation section, only in this way, the reader can better evaluate the
accuracy of the compiled c code. The following figure(figure 1888) shows the logical
structure of the Floyd-warshall algorithm in pseudocode.

Figure 17. pseudocode of Floyd-warshall algorithm

Figure 18. Python Floyd Warshall Algorithm compile to ANSI-C code

By observing the compiled C code, we can see that functions are correctly replaced,
variable names are preserved, variable types have a good mapping according to
Figure 11, and the overall algorithmic logic structure is preserved.

4.2 Experimental Setup and Benchmarks

Platform – Laptop, MacBook Pro 2021, 16-inch.

 29

All the experiments were conducted on a 3 GHz Apple M1 Pro processor with 16GB
of RAM, running macOS Monterey 12.1 with 10 cores.

For each experiment, the execution time, which is the average of three executions, is
measured in seconds based on CPU time.

The maximum execution time for ESBMC and BMCPython is two hours and three
hours respectively.

As for software, ESBMC v6.7 is selected as verification tool and boolector is chosen
as SMT solver.

Compiler: Visual Studio Code Version 1.65, with Python 3.8 for most of coding
work, Cython vision 3.0.

For AST master implementation, additional library is required:
gunicorn~=19.7.1
gevent~=1.2.1
Flask~=1.0.2
whitenoise~=4.1
PyYAML~=5.1

antlr4-python3-runtime~=4.7.2
antlr-ast~=0.8.1

shellwhat==1.2.0
antlr-plsql==0.9.1
antlr-tsql==0.12.6

4.3 Experimental Results

In this section we will verify BMCPython is implemented correctly by testing it on
some of the test packages from the SV-benchmarks GitLab repository and we create
some tests according to the benchmarks of BMCLua, those algorithm functions are
specially developed in python. We will also compare the speed of the original
ESBMC and BMCPython.

Firstly, we compared the speed of the implementation of BMCPython on 3 different
algorithms taken example by BMCLua benchmarks. The results are as follows:

 30

BMCPython
Input

Total Lines of
Python

Loop iterations Total Processing Time
(seconds)

Sum of Prime
number

7 1000 1.2
7 1000000 127

Fibonacci 14 5001 6.3
14 50001 49

Bellman-Ford

31 6 1.3
31 21 1.9

Unsurprisingly, for these tasks, both versions achieve the same perfect result. This
result suggests to us that the implementation of BMCPython is correct. We now will
compare the speed of BMCPython and ESBMC on a variety of problems from
SV-Benchmarks.

Test file name ESBMC BMCPython
sum01-1.c/.py 0.51s 2.21s
sum01-2.c/ .py 1.07s 3.32s
matrix-1.c/ .py 0.10s 1.54s

sum-array-2.c/ .py 1.02s 3.63s
From these results, we can observe that BMCPython spent more time verifying a
Python program over the original ESBMC. This difference indicates BMCPython is
more complex than ESBMC. It needs to analyze the Python AST and covert the
source code to ANSI-C code, which can be checked via ESBMC.

5 Conclusion and Future Work

5.1 Conclusion

This report discussed bounded model checking and how it can be used to verify Python
programmes. It commenced by conducting a literature review of the fundamental logic
algorithm used in software verification. It provided an intensive explanation of how a
bounded model checking tool works. Bounded model checking and ESBMC's
specifications were then discussed in detail, with an ESBMC structure diagram
provided as a demonstration. A significant challenge in this research was
comprehending the current ESBMC and intermediate representation code compile.
This subject required a tremendous amount of work, but the results were well worth the
effort. It was assessed on standard tests for Efficient SMT-Based bounded model
checking tools after the development of this GOTO programme, and an illustration of
how it operates was presented in chapter 3. The main challenges were ultimately
combined as a form of BMCPython and then utilised to verify python applications.

 31

The following methods were used to achieve the five objectives listed in the
introduction:
l Understand the background and logic of ESBMC-- The student was able to provide

a clear description of ESBMC logic theory via an intensive literature search and
citations in the background theory portion.

l Develop BMCPython by calling the library of ESBMC-- This was accomplished
by Cython implemented, after converting the Python source code to ANSI-C,
BMCPython will automatically execute the specified ESBMC test library to verify
the transformed code.

l Determine the ideas and concepts underlying vulnerability discovery of
BMCPython in Python bytecode-- By receiving failed validation data from
BMCPython, users can readily detect faults in python source code.

l Reproduce the extension described in the initial research and ascertain its limits
and disadvantages-- When the technique was presented, the majority of its flaws
and limitations were highlighted. The editor will also address the verification scope
and faults of BMCPython at the subsequent reflection session.

l Verifying and analysing the BMCPython after the developments-- This was
accomplished by thousands of tests and a detailed BMCPython analysis was given
in chapter 3.

To sum up, the student has developed an effective and convenient python verification
tool and a complete demonstration system has been created for programme verification
and model checking. Capabilities for project development and report writing have also
increased.

5.2 Reflection

Every coin has two sides, and BMCPython is no exception. Several Python features
were not supported during the development of Intermediate Representation due to the
limitations of the compile tool. Cython is not a superset of the Python programming
language in its entirety. Restrictions are applicable if the following conditions are met:
Regardless of whether they are expressed in def or cdef syntax, function definitions
cannot be nested inside other function definitions. A class can be defined only at the
module's top-level, not within a function. The 'import *' form of the reference library is
not permitted in any region (other formats of the import statement are acceptable,
though). In Cython, it is not possible to implement generators. Additionally, user
cannot utilise the globals() function or the locals() function. The foregoing constraints
are likely to stay, as they would be hard to remove, and Cython proposed applications
do not necessitate their removal. Class and function declarations cannot currently be
inserted inside control structures; however, this may change in the future. In the
meanwhile, list conditional expressions are not available. Unicode is not supported. The
docstrings for extension types of unique methods are not functional. It is not suggested
at this time to utilise string literals as comments in areas where executable declarations
are not permitted. Given the above limitations, there is still too much functionality that

 32

needs to be optimized for BMCPython, otherwise, a significant portion of python code
will fail due to compile problems rather than validation problems.

There is one more point to reflect on, due to lack of knowledge of robotic applications,
I was unable to improve on this section, so only BMCPython has been created without
practical application yet. It is also my biggest regret regarding my project.

5.3 Future work

After submitting this project, I will monitor if the compiler's libraries have been updated
and optimized to support more Python features, and if time allows, I will even attempt
to construct one to two compiler-callable Python features libraries this summer.

For the robotic application, I think Unmanned Aerial Vehicles[24](UAVs or drones)
are also a robotics application. This BMCPython method can be applied to the
verification of UAV path[17], UAV GPS analysis and Python Fuzzer in the computer
vision field. The most important thing is that I will test my program in the robot
application to optimize its compatibility to the greatest extent.

 33

Bibliography

[1] Alglave, J., Kroening, D., and Tautschnig, M. (2013). Partial orders for efficient
bounded model checking of concurrent software. In: Computer Aided Verification,
volume 8044 of LNCS, pages 141–157.

[2] Armando, A., Mantovani, J., and Platania, L. (2009). Bounded model checking of
software using SMT solvers instead of SAT solvers. In: Software Tools for
Technology Transfer, 11(1):69–83.

[3] Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C. (2009). Handbook of

Satisfiability, chapter Satisfiability Modulo Theories, In: pages 825–885. IOS
Press.

[4] Beyer, D. (2019a). Automatic verification of c and java programs: Sv-comp 2019.
In Beyer, D., Huisman, M., Kordon, F., and Steffen, B., editors, Tools and
Algorithms for the Construction and Analysis of Systems. In: pages 133–155,
Cham. Springer International Publishing.

[5] Beyer, D. and Lemberger, T. (2017). Software verification: Testing vs. model

checking. In: Haifa Verification Conference, pages 99–114. Springer.

[6] Bradley, A. R. (2011a). SAT-based model checking without unrolling. In

Verification, Model Checking, And Abstract Interpretation, In: volume 6538 of
LNCS, pages 70–87.

[7] Clarke E.M., Klieber W., Zuliani P. , Model Checking and the State Explosion

Problem. In: Meyer B., Nordio M. (eds) Tools for Practical Software Verification,
2012.

[8] Clarke EM, Henzinger TA, Veith H. Handbook Of Model Checking, chap.

Introduction To Model Checking. In: Springer International Publishing, 2018; 1–
26.

[9] Clarke, E. and Emerson, E., 1981. Design and synthesis of synchronization

skeletons using branching time temporal logic. In: Logics of Programs, volume
131 of Lecture Notes in Computer Science, pp.52-71.

[10] Clarke, E., Biere, A., Raimi, R. et al. Bounded Model Checking Using Satisfiability

Solving. In: Formal Methods in System Design 19, 7–34, 2001.

[11] Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:

TACAS, LNCS 2988, pp. 168–176, 2004.

 34

[12] Cordeiro, L., Kesseli, P., Kroening, D., Schrammel, P. and Trtik, M., 2018. JBMC:

A Bounded Model Checking Tool for Verifying Java Bytecode. Computer Aided
Verification - 30th International Conference, In: volume 10981 of Lecture Notes
in Computer Science, pp.183-190.

[13] Cordeiro, L., Kroening, D. and Schrammel, P., 2019. JBMC: Bounded Model

Checking for Java Bytecode - (competition contribution). Tools and Algorithms for
the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics, In:
volume 11429 of Lecture Notes in Computer Science, pp.219-223.

[14] Cordeiro, L.C., Fischer, B., Marques-Silva, J.: SMT-based bounded model

checking for embedded ANSI-C software. In: IEEE TSE 38(4), pp. 957–974, 2012.

[15] Cython.org., n.d. About Cython. [online] Available at: https://cython.org/

[16] Dasgupta, Sanjoy; Papadimitriou, Christos; Vazirani, Umesh. Algorithms (PDF) 1.

In: McGraw-Hill Science/Engineering/Math. 2006-09-13: 176 [2015-04-11].
ISBN 978-0073523408

[17] Dey, V., Pudi, V., Chattopadhyay, A., and Elovici, Y. (2018). Security

vulnerabilities of unmanned aerial vehicles and countermeasures: An experimental
study. In: VLSID, pages 398–403. IEEE Computer Society.

[18] Gadelha MR, Monteiro F, Cordeiro L, Nicole D. ESBMC v6.0: Verifying C

programs using k-induction and invariant inference. Tools And Algorithms For
The Construction And Analysis Of Systems, In: LNCS, vol. 11429, 2019; 209–
213.

[19] Gadelha, M. Y. R., Cordeiro, L. C., Nicole, D., Encoding floating-points using the

SMT theory in ESBMC: An empirical evaluation over the SV-COMP benchmarks.
In: 20th Brazilian Symposium on Formal Methods (SBMF), LNCS 10623, pp. 91-
106, 2017.

[20] Gadelha, M., Monteiro, F. R., Morse, J., Cordeiro, L., Fischer, B., Nicole, D.,

ESBMC 5.0: An Industrial-Strength C Model Checker. In: 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp. 888-891,
2018.

[21] GitHub. n.d. GitHub - pallets/flask: The Python micro framework for building web

applications.. [online] Available at: <https://github.com/pallets/flask> .
[22] Guido van Rossum (2015). Python Enhancement Proposals. [online]

Peps.Python.org. Available at: https://peps.python.org/pep-0484/

 35

[23] IEEE Guide for Software Verification and Validation Plans, In: IEEE Std 1059-
1993, vol., no., pp.1-87, 28 April 1994, doi: 10.1109/IEEESTD.1994.121430

[24] Kerns, A. J., Shepard, D. P., Bhatti, J. A., and Humphreys, T. E. (2014). Unmanned

aircraft capture and control via gps spoofing. In: Journal of Field Robotics,
31(4):617–636.

[25] Merz, F., Falke, S., Sinz, C.: LLBMC: Bounded model checking of C and C++

programs using a compiler IR. In: VSTTE, LNCS 7152, pp. 146–161, 2012.

[26] Monteiro FR, Alves EHdS, Silva IS, Ismail HI, Cordeiro LC, Filho EBdL. ESBMC-

GPU a context-bounded model checking tool to verify CUDA programs. In:
Science of Computer Programming 2018; 152:63-69.

[27] Morse, J., Cordeiro, L.C., Nicole, D., Fischer, B.: Model checking LTL properties

over ANSI-C programs with bounded traces. In: SoSym 14(1), pp. 65–81, 2015.

[28] Monteiro, F. R. , FAP Januário, Cordeiro, L. C. , & Filho, E. . (2017). BMCLua:
a translator for model checking Lua programs. ACM SIGSOFT Software
Engineering Notes, 42(3).

[29] Professionalqa.com. n.d. Software Verification |Professionalqa.com. [online]

Available at: <https://www.professionalqa.com/software-verification> .

[30] Ramalho M, Freitas M, Sousa F, Marques H, CordeiroL C, Fischer B. SMT-based

bounded model checking of C++ programs. In: Engineering of Computer Based
System, 2013; 147–156.

[31] Rocha, H., Barreto, R.S., Cordeiro, L.C.: Memory management test-case

generation of C programs using bounded model checking. In: SEFM, LNCS 9276,
pp. 251–267, 2015.

[32] Ryan Gonzalez (2016). Python Enhancement Proposals. [online] Peps.Python.org.

Available at: https://peps.python.org/pep-0526/

[33] Skiena, Steven. The Algorithm Design Manual (PDF) 2. In: Springer. 2008-07-26:

212 [2015-04-11]. ISBN 978-0073523408. doi:10.1007/978-1-84800-070-4

[34] Stefan Behnel, Robert Bradshaw, William Stein, Gabriel Gellner, et al..(2022).

Cython documentation, Users Guide of Language Basics.
[online]cython.readthedocs.io. Available at:
https://cython.readthedocs.io/en/latest/src/userguide/language_basics.html

