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Abstract

In recent years, the prominence of Internet of Things (IoT) networks con-
sisting of vast amounts of low-power, low-memory internet-connected devices
has given rise to a new attack surface for attackers to exploit. Vulnerabilities
found in IoT communication systems can give rise to exploits, providing lat-
eral movement into wider organisational IT infrastructures, with potentially
devastating consequences. In this final year project, we focus on the testing
of the MQTT Protocol - a lightweight communication protocol tailored for use
in IoT devices. Significant contributions in this area have been made thanks
to the development of the MultiFuzz packet-aware fuzzer, a fork of the AFL
fuzzer that allows for testcase generation tailored to publish-subscribe proto-
cols thanks to a fuzzing strategy that segregates inputs into packet entities. We
propose a new custom mutator as an additional module to the more optimised
AFL++ fuzzer, which implements both packet awareness and MQTT gram-
mar according to the OASIS MQTT specification in order to generate more
relevant testcases for input into MQTT Broker applications, thus resulting in
faster path discovery compared to current state-of-the-art solutions and the
potential of new vulnerability discovery programs that accept MQTT packet
inputs.
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1 Introduction

1.1 Motivation

As the cost of semiconductors has fallen throughout the last two decades, the large-
scale use of low-power internet-connected devices has significantly increased, known
collectively as the Internet of Things (IoT) [5]. These devices can range from ther-
mostats to kettles to key card locks, and often collectively produce large amounts
of data from sensors, actuators and other such devices. This produced data is later
transmitted to a larger main network to be processed, usually with the help of a ’bro-
ker’ intermediary. Especially in the case of IoT devices being used in security systems,
it is necessary to use protocols with strong cryptographic capabilities and a reliable
broker to ensure data confidentiality and integrity upon transmission, preventing the
possibility of attacks through data interception and/or manipulation. Due to the
limitations of IoT devices both in memory and processing power, the use of standard
desktop protocols is infeasible, and thus, tailored lightweight communication proto-
cols such as MQTT (Message Queue Telemetry Transport) [19] have been developed
specifically for use in such devices. Due to the fairly recent widespread adaptation
of IoT devices, many of these lightweight protocols have not been analysed as rig-
orously as those used in standard desktop/mobile devices, with new vulnerabilities
constantly being discovered in many implementations [9]. According to the Eclipse
Foundation [15], the MQTT protocol is now the most widely-adopted communication
protocol in IoT devices, and thus it has become crucial to make sure that popular
implementations of this protocol are extensively tested for vulnerabilities.

1.2 The Problem

Indeed, it has been found that there are limitations to current fuzzing techniques for
the MQTT protocol due to the lack of structure-aware seed development [3].

Significant progress has been made in the form of fuzzers designed specifically for
the testing of MQTT, however, the only solution that implements a state-of-the-art
fuzzer, MultiFuzz [52], provides a more generic solution applicable to a variety of
publish-subscribe protocols, and does not implement the MQTT’s packet structure
or grammar, leasing to a lot of irrelevant testcases being produced. In conjunction
with the more optimised AFL++ fuzzer [13] and possibly more effective testcase
generation thanks to the EBF tool’s [1] model checker, we wish to devise a more ef-
fective fuzzing strategy than current state-of-the-art solutions, combining the packet
awareness seen in MultiFuzz with MQTT grammar.

1.3 Objectives

The key objective set out to achieve in this project is to improve the EBF [1] tool’s
effectiveness in bug detection in the MQTT protocol, therefore, two main goals can
be derived for the project:

• Improve the speed of path discovery in fuzzing applications that accept MQTT
packet inputs compared to current state-of-the-art solutions

• Discover new vulnerabilities in various applications implementing the MQTT
Protocol
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1.4 Current Contributions

Many highly efficient generic fuzzers have currently been developed, with LibFuzz
[36] and American Fuzzy Lop (AFL) [49] being the most popular solutions currently
in use. AFL++ [13], a fork of AFL, has also recently been developed, and contains
many improvements over AFL such as more effective instrumentation, and most no-
tably, support for custom modules. AFL++’s support for custom modules, including
custom mutators has made it the obvious choice for a platform to base the project on.

The most promising MQTT fuzzing effort has been made in MultiFuzz [52] - an
altered fork of AFL tailored to fuzzing pub-sub protocols such as MQTT. MultiFuzz
utilises a custom packet-aware fuzzing strategy alongside a tailored desocketing tool
simulating multiparty connections and has proven to be significantly more effective
at fuzzing MQTT applications than AFL alone, however, as previously mentioned,
the tool does not implement MQTT grammar, which is one of the key aims of our
project.

In order to further improve the quality of our results, we aim to run our cus-
tom mutator with AFL++ on the back of a more robust verification tool, EBF.
Encryption-BMC and Fuzzing tool (EBF) [1] utilises additional program analysis in
the form of the ESBMC tool [16] to generate more effective initial seeds for AFL++
and a custom LLVM pass alongside the TSAN tool [40] to better bugs specific to mul-
tithreaded implementations. Although our project focuses on MQTT brokers that
primarily do not utilise multithreading, the additional analysis may prove useful in
fuzzing future implementations that do take advantage of it. Other fuzzers focusing
on fuzzing multithreaded programs such as MUZZ [8] and ConFuzz [32] have also
been developed, but are unfortunately either closed-source (MUZZ) or not as robust
due to the use of a ”Dumb fuzzer” rather than AFL (ConFuzz).

A grammar-based MQTT fuzzer, MQTTGRAM [37] has also been developed, which
provided more realistic fuzzing, even going as far as setting probabilities of different
control packets, however, the tool does not utilise a state-of-the-art solution such as
MultiFuzz with AFL, and the fuzzer remains closed-source, so cannot be analysed.
Another popular contribution is F-Secure’s mqtt fuzz [12] - a basic open-source fuzzer
consisting of a python script sending different types of MQTT control packets to a
server. Other implementations include [7] and [43], all presenting custom closed-
source implementations of MQTT fuzzers.

1.5 Impact of COVID-19

Although the impact of the COVID-19 pandemic may have not been as substantial
as seen in the year prior due to various lockdown and restriction procedures, the
pandemic has still produced a significant impact on the overall project. Most notably,
catching a heavy case of the virus caused progress on the project to halt for almost
a month, thus slowing down the pace of the research conducted.

1.6 Report Structure

In this report, we will first provide an overview of software testing and verification,
and an introduction to fuzzers. We then provide a deeper insight into the AFL
and AFL++ fuzzers and their architecture, as well as a brief look at other fuzzing
implementations and the anatomy of the EBF tool. We then provide a detailed
breakdown the MQTT Protocol, looking at its packet types, typical communication,
packet construction and grammar. This is followed by a brief synopsis of the ’des-
ockmulti’ desocketing tool [53] used in the project, and then a wider presentation
of our testing environment and architecture. Our custom mutation strategy is then
presented in detail, followed by a small section covering other noteworthy research
conducted throughout the project. Finally, we present an evaluation of our tool,
results compared to competing tools in testing MQTT brokers, and a conclusion of
the project with suggested improvements and next steps.
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2 Background

2.1 The Internet of Things

In 1999, the term ’Internet of Things’ was first coined by Kevin Ashton to describe
the integration of RFID tagging systems in corporate supply chains to the internet
as a means of automating tracking of goods.[4] The term, first used as a catchphrase
to gain corporate attention, has since risen to prominence when describing different
physical objects with sensors that collect data, and embedded devices that com-
municate this collected data over the internet. Smart traffic lights, smart central
heating system sensors (e.g. Hive [18]) and wearables (e.g. FitBit [14]) are all ex-
amples of Internet of Things (IoT) devices commonly used today. Increased demand
and supplier focus, monumental advances in efficient low-power processing (such as
the the development of the ARM Cortex-M chips) [5] and decreased semiconduc-
tor costs in the last decade [31] have all been key factors in the recent rapid growth
of IoT devices, with estimates of around 12.3 billion connected devices as of 2021.[42]

With mainstream adoption of any technology, comes a new attack surface that mali-
cious actors will try and exploit, and so has been the case with IoT devices, with the
number of attacks worldwide escalating to 1.51 billion in 2021 according to Kaspersky
[10]. Especially in the case where aforementioned IoT devices form part of security
or essential monitoring systems (such as door locking systems, IP cameras or health
monitoring systems) or in cases where lateral movement from IoT Devices to broader
IT networks is possible, such attacks can have devastating consequences. Notable ex-
amples include hackable cardiac devices from St Jude [22] and the Mirai IoT Botnet
[48].

2.2 The MQTT Protocol

One of the current key challenges in IoT communication is protocol security [28] -
a vulnerable protocol (or poor implementations of the protocol, such as exploitable
client or broker applications) can serve as an easy entry point for an attacker to
manipulate or gain control of an IoT network. According to the Eclipse Foundation
December 2021 survey, the MQTT (Message Queue Telemetry Transport) protocol
has become the most widely-utilised protocol for communication in IoT devices, with
44% of surveyed devices utilising it for sending and receiving messages [15], therefore,
it is crucial that this protocol is thoroughly tested for any vulnerabilities that could
potentially be exploited.

For communication using MQTT, at least two parties must be present - a client (or
multiple clients) and a message broker (server). MQTT uses the publish-subscribe
model, in which clients first connect to a server, and then have three key actions [29]:

• Publish - A client publishes a sends a piece of data to the broker with an
associated topic name

• Subscribe - A client subscribes to a certain topic, all messages published with
this topic name will be relayed back to the client by the broker.

• Unsubscribe - A client unsubscribes from a topic that the client had previ-
ously subscribed to.

In practical implementations, IoT devices serve as ’publishers’ and send data with
a given topic to the broker, whereas devices such as computers used for processing
this data act as ’subscribers’ - the MQTT broker relays data from the publishers to
the subscribers. However, in theory, any client is capable of both publishing data
and subscribing to topics.
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Other packet types can be sent, and more detailed overview of the protocol gram-
mar will be presented in section 3.2 of the report, however, these three actions con-
struct the large majority of messages that the client sends to the broker. The data
that is being sent alongside the publish messages and the topic naming structure is
entirely dependent on the program with which the MQTT protocol is being used.

Figure 1: A basic overview of MQTT client-broker communication [30]

Rather than focusing on the programs that utilise MQTT, we look at implemen-
tations of the protocol itself - we will test the security of different MQTT Broker
implementations such as Mosquitto [25] and NanoMQ [11] through the discovery
of potentially harmful inputs that could cause the broker to crash, potentially ex-
posing a vulnerability (e.g. a buffer overflow) that would allow for an attacker to
manipulate/disrupt communication, discover otherwise inaccessible data, or even run
arbitrary code. Some examples of such vulnerabilities have already been discovered
in the past. [20][9]

Section 3.5 of the report will also cover some MQTT client testing done through-
out the project and the results found via this process.

2.3 Software Testing

2.3.1 Black-Box Testing

Historically, there have been several methods of discovering vulnerabilities in soft-
ware. By far the most popular type has been black box testing, in which inputs are
fed into the Program Under Test (PUT) with no knowledge of the inner workings
or structure of the PUT - this type of testing is often seen in software development
pipelines in the form of various automated testing tools such as Selenium [38], which
is used for testing web applications. This style of testing can be beneficial in catch-
ing common bugs and vulnerabilities, however are limited to the scenarios that the
quality assurance team is able to conceptualise and script, and thus more advanced
vulnerabilities can often get overlooked or may take too long for black-box testing
software to catch in a reasonable time frame.

7



2.3.2 White-Box Testing

The other side of the coin is white-box testing, in which the testing software finds
vulnerabilities by analysing the source code of the PUT. Unit tests and integration
tests are the most basic examples of this, where developers write tests tailored to the
code they have written to make sure their code behaves as intended, however, these
tests are as good as the people who write them. More advanced white-box testing
techniques allow for the discovery of vulnerabilities that developers may not have
accounted for, these include [24]:

• Static Analysis - Analysis of source code without actually executing it to try
and find errors before compilation. This usually involves techniques such as
data flow analysis and lexical/grammar analysis that is nowadays often per-
formed automatically by IDEs such as Visual Studio Code [26] and Eclipse [17]
as well as many modern compilers such as GCC [34] and Clang [23]. Addi-
tional tools for creating more tailored static analysis such as CodeQL [33] and
SonarQube [44] are now becoming increasingly popular in DevOps pipelines.
Static analysis meets its limitations with more complex and modular code,
where interaction between many different systems cannot be effectively anal-
ysed without running the code. Furthermore, more complex bugs such as data
race in multithreaded programs cannot be detected through static analysis.

• Dynamic Analysis - Analysis of source code via additional instrumentation
(monitoring) while executing it on a real or virtual CPU. Known examples
include Intel Inspector and Clang ThreadSanitizer, the latter of which has
been used in the project and will further be mentioned in section 3.5. These
tools can be very effective in finding a variety of vulnerabilities from misused
memory allocation to multithreading bugs, but often require a good set of test
inputs and a specialised testing environment, making it hard to scale up for
more complex programs.

• Symbolic Execution - Tools that analyse the inputs of a source code and
’symbolise’ them, converting them into a set of satisfiability problems [21] to
be solved by constraint solvers. This technique is by far the most precise, going
further than software testing into the realm of software verification, in which
programs are proven to be correct/safe. However, with more complex programs
with many inputs, the amount of paths grows exponentially, meaning that poor
scalability is a major drawback of this technique.

• Model Checking - Tools that create a finite computational model of the
source code and check that a desired logical property holds in this model by
exhaustive state space search. [6] Similar to Symbolic Execution, this is a ver-
ification technique rather than a testing technique and is thus a lot more accu-
rate, however, suffers from the same state-space explosion problem as symbolic
execution in large and complex systems, again making scalability an issue.

2.3.3 Gray-Box Testing

In between black-box and white-box testing, we have gray-box testing, in which some
lightweight program analysis is performed, but without any heavy processing such
as constraint analysis or other forms of verification.[51] A good example of this is
the AFL (American Fuzzy Lop) fuzzer [49], which will be covered further in the next
section.
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2.4 Fuzzing

First proposed by Barton Miller in 1988, fuzzing is currently by far the most popular
automated vulnerability discovery technique [45]. It involves the large scale execu-
tion of automatically generated testcases into the PUT in order to force a crash or
abnormal program state. State-of-the-art solutions such as AFL often run multiple
instances of the program simultaneously in different fork processes for faster results.

Figure 2: The process flow of a mutation-based fuzzer. [46]

Figure 2 portrays the typical structure of a mutation-based fuzzer. We start with
a PUT and a set of valid ’seed’ inputs to begin with. The fuzzer starts off by exe-
cuting the PUT with the seed inputs, and then uses a mutator function to alter the
inputs , generating new testcases in an effort to force different program behaviour.
The fuzzer uses a variety of monitoring techniques to look at the program behaviour,
and uses the results from this monitoring to prioritise testcases that change program
behaviour and run them through an new cycle of mutations to generate new test-
cases. Whenever execution of the program using one of the testcases as an input
causes a program to crash, the information is printed and can then be sent to a bug
detector to analyse a potential vulnerability in the program. This process continues
indefinitely, and in practice, the fuzzing process can take hours, and even days, often
on machines with large amounts of computational power.

Fuzzers can fit all three testing categories from white-box to black-box, with some
doing no program analysis or monitoring and simply running many slightly altered
inputs (so-called ’dumb fuzzers’ [27] such as F-Secure’s mqtt fuzz [12]), and others
(such as FuseBMC[2]) performing deep symbolic execution to generate higher quality
inputs. Fuzzers that perform at least some program analysis (i.e. aren’t black-box)
are known as ’smart/intelligent fuzzers’ and can typically be categorised into two
types [24]:

• Mutation-Based - Only a set of initial valid inputs is required - new testcases
are generated by mutating (slightly altering) existing inputs

• Generation-Based - Testcases are generated based on a given configuration
file or according to a specific file format, as well as possibly through source
code analysis.
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As further analysed in [24], due there being no requirement of manual program
analysis to start fuzzing, mutation-based fuzzers are generally more applicable. Cur-
rent state-of-the-art solutions are mostly mutation-based due to their wide adaptabil-
ity to a variety of different PUTs without any additional configuration. Furthermore,
fuzzers can be categorised into coverage-guided and directed.

• Coverage-Guided - Fuzzers that prioritise testcases that cover new functions
and paths that haven’t previously been executed.

• Directed - Fuzzers that prioritise testcases that cover specified areas of code
that a user wants to be tested rigorously.

By far the most popular types of fuzzers are coverage-guided gray-box fuzzers.
A prime example is the AFL (American Fuzzy Lop) fuzzer [49] which only uses
lightweight instrumentation in the form of injecting additional code at each condi-
tional ’jump’ instruction (e.g in an if statement) to track which branches of the
PUT have been executed. Throughout the fuzzing process, AFL keeps track of code
coverage by keeping a store of which branches have been executed - no further code
analysis is done beyond this. AFL is currently the most extensively used fuzzer, and
this project will focus on better adapting an improved fork of AFL (AFL++) to
generate higher quality testcases when testing programs that accept MQTT packets
(such as MQTT Brokers).

2.5 AFL and AFL++

As mentioned in the previous section, the focus of the project is improving a fork of
the AFL fuzzer for better MQTT testcase generation. In turn, the inner workings of
the AFL fuzzer need to be introduced to portray where said improvements will be
made.

2.5.1 AFL: Fuzzing Process

Before a program can be fuzzed by AFL, it must first be compiled with AFL’s custom
instrumentation in order to inject monitoring code at JUMP statements. AFL has a
built in module (’afl-cc’) which uses Clang [35] or GCC [34] to compile the source
code alongside its own instrumentation. Once compiled with the instrumentation,
the ’afl-fuzz’ module creates a set of mutated inputs based on the next item in the
input queue (which will start off with an initial set of inputs given by the user). Each
mutated input will then be executed on the PUT in a separate forkserver process
and during execution, the additional instrumentation will alter a ’coverage bitmap’
in the shared memory each time a branch is executed. The coverage data is then fed
into a result analyser, which sends any mutated data that causes new branch hits
into the input queue, marks it as ’interesting’, and writes both the testcase and the
fuzzing results into a file in memory. This process repeats indefinitely.

2.5.2 AFL++

Rather than standard AFL, the project will be based upon AFL++ - a fork of AFL
with various optimisations and improvements. Improvements include support for
testcase minimisation, better LLVM compiler support, and most notably, easy sup-
port and helper modules for custom mutators, which is the main artefact of the
project. The AFL fuzzing process structure has been retained by AFL++, and
the use of a custom mutator such as the one in this project involves a simply the
export of an environment variable called ’AFL CUSTOM MUTATOR LIBRARY’
with the path to the custom mutator. Customisable helper modules such as ’cus-
tom mutator helpers.h’ also simplify the process of effective custom mutator devel-
opment.
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Figure 3: The structure of the AFL Fuzzer.

2.6 The EBF Tool

The Encryption-BMC and Fuzzing tool created by Fatimah Aljafaari, Rafael Menezes,
Dr. Lucas Cordeiro and Dr. Mustafa Mustafa [1] is a tool that builds upon AFL++
to try and promote more efficient bug detection, especially in multithreaded pro-
grams.

EBF uses Bounded Model Checking, a Model Checking technique to scan for
different specified properties in order to find more effective testcases for AFL++ to
start off with. Furthermore, it includes its own additional instrumentation which
injects pauses in execution of different threads in order to increase the likelihood
of concurrency issues such as deadlocks or data races occurring in multithreaded
programs, which then get caught by the Sanitiser (Clang TSAN/ThreadSanitizer).
Although the MQTT brokers tested in this project will be mostly singlethreaded
implementations, the use of Bounded Model Checking to generate initial inputs may
allow for a significant speedup in vulnerability discovery compared to the use of a
sample of regular inputs. One of out ultimate aims of the project is to serve as an
addition to the whole EBF tool for use in testing programs that accept inputs in the
form of MQTT packets.

Phase 1. Inputs

− Benchmark

− Property

Phase 2. Model

Checking

Built on top of CBMC

Phase 4. Instrumen-

tation

− Delay Insertion

− Harnessing Function

− Witness Information

Phase 3. Seed Generation
Initial seed generation

Phase 5. Fuzz Engine

Built on top of AFL++

and ThreadSanitizer

AFL++parent

AFL++ child 1

AFL++ child 2

Phase 6.

Aggregation
UNKNOWN

Verification Successful

Verification Witness

Verification Failed

Verification Witness

Figure 4: The EBF framework. [1]
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2.7 Other Relevant Fuzzers

One of the most significant current contributions to MQTT fuzzing has been Mul-
tiFuzz [52] - a fuzzer that combines a new packet-aware mutation strategy and a
fast desocketing tool in order to fuzz publish/subscribe protocols such as MQTT.
MultiFuzz splits testcases into packets, and extracts random packets from previous
testcases to add to new testcases, rather than just randomising the data input. It has
proven to be far more effective than AFL alone, or any standard fuzzer not tailored
to pub/sub protocols, discovering a lot more paths in a shorter amount of time, as it
retains the format of packets, such that if a program reaches a series of states after a
combination of packets, this series of states can be reproduced with high likelihood
by the fuzzer.

However, although MultiFuzz has been specifically tailored to pub/sub proto-
cols, it does not implement MQTT packet grammar as intended in our project, and
thus further improvements can be made. It has to be noted that the desocketing
tool developed alongside ’MultiFuzz’ has proven to be extremely useful in simulating
multi-client connections, and thanks to it being open-source, will also be used in the
fuzzing environment in this project.

A grammar-based MQTT fuzzer, MQTTGRAM [3], has also been developed,
however, does not utilise a state-of-the-art fuzzing solution such as AFL. Further-
more, due to its closed-source nature and lack of comparison to other state-of-the-art
solutions, its effectiveness cannot be measured compared to other available tools. The
same notion applies for other closed-source solutions such as [7] and [43].

A number of dumb fuzzers with MQTT grammar implemented are also available,
most notable F-Secure’s ’mqttfuzz’[12], with which comparisons will be made in the
experimentation phase of the project. With consideration of the lack of mutation
or program analysis of any sort, we can expect mqttfuzz to not reach the level of
effectiveness seen in other previously mentioned solutions.
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3 Design and Implementation

3.1 Project Methodology

The main drawback of the MultiFuzz fuzzer was the inability to implement MQTT
packet grammar in the fuzzing stage, leading to many supposedly malformed packets
being sent. The idea is to create a custom mutator module which creates mutated
packets that can still be accepted as not malformed by MQTT brokers. In order to
this, we will create a custom mutator module in AFL++, which will be run instead
of the standard mutator. This custom mutator will follow the OASIS 3.1.1. MQTT
Specification [29] in constructing MQTT packets. The solution will first be run with
AFL++ alone, and we aim to later integrate it with the EBF [1] tool to give us
higher quality initial seeds. We will start with a set of initial testcases tailored to
the packet format set by the custom mutator, with the custom mutator generating
new testcases based on these, as well as completely new testcases following MQTT
grammar.

3.2 MQTT Packet Structure

3.2.1 Packet Types, Typical Communication and Grammar

Though briefly described in section 2.2, in order to provide a more detailed insight
into the way the packets are constructed, its’ important to look at the main types of
packets that a client can send to an MQTT broker. These are as follows: [29]

Packet Type Header Description

CONNECT 0x10 Connect to Broker and begin session
PUBLISH 0x30 (+[0-255]) Publish data with given topic

SUBSCRIBE 0x81 Subscribe to Topic
UNSUBSCRIBE 0xA1 Unsubscribe To Topic

PUBREC 0x50 Acknowledge PUBLISH Received (QoS 2)
PINGREQ 0xC0 Ping MQTT Broker to check connection

DISCONNECT 0x81 End Session and Disconnect from Broker

In practice, if Transport Layer Security (TLS) is used as an additional means
of security, then AUTH packets are also sent both from client to broker and bro-
ker to client in order to provide authentication between the two parties and enable
encrypted packets to be sent back and forth. Fuzzing encrypted client-broker com-
munication requires the MQTT broker to be run in a custom configuration, and
public\private key exchange to be established between client and broker, which is
beyond the scope of this project.

Two other packet types, PUBACK and PUBREL, can also theoretically be sent
by the client to the broker, however, in typical exchanges are often sent from server
to client, and are thus set aside as further development goals of the project. Dif-
ferent types of packets are sent back from broker to client, such as CONNACK and
SUBACK, however, those do not need to be considered since they are not accepted
in client-to-broker communication.
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Any exchange between client and broker starts with a CONNECT packet, and
continues with an exchange of multiple different packets sent by the client. Therefore,
there is little use in sending singular packets to the broker, since this will only trigger
either of two behaviours:

1. If CONNECT packet is properly constructed - A connection acknowledgement
from the broker followed by session closure

2. Otherwise - A connection closure due to a protocol error

Therefore, apart from the odd edge case, a sequence of packets starting (with a
CONNECT packet) will be sent to the broker rather than only singular packets -
this will be done with the help of the ’desockmulti’ tool, further details of which are
highlighted in 4.3.1. A typical exchange follows the client-server request-response
structure: [41]

Figure 5: Typical client-broker communication in the MQTT Protocol [41]

.

3.2.2 MQTT Packet Format

Due to the lightweight nature of the protocol, all packets are sent in binary format
with the following structure:

• Fixed Header (Always present) - Of a size of at least 2 bytes and present in
every MQTT packet, this consists of the following:

– Control Header - A 1-byte value, in which the most significant (leftmost)
4 bits represent the packet type, and the least significant (rightmost) 4
bits represent additional controls such as QoS level.

– Remaining Length - A 1-4 byte value specifying the remaining length
of the packet not including the fixed header (size of variable header +
payload)

• Variable Header (Not always present) - Some packet types such as PUBLISH
and SUBSCRIBE will include a variable header, in which information such as
the packet identifier will be included, or in the case of PUBLISH, the topics
specified.
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• Payload (Not always present) - This is where additional packet-specific data
is added, such as application data in PUBLISH packets, as well as topic names
in SUBSCRIBE packets.

Figure 6: The format of MQTT packets

Due to their binary nature, packets are first declared as a struct in C for easier
navigation and maintainability, and are serialized into a buffer once construction is
complete. Due to difficult maintainability with a variable remaining length, MQTT
packet deserialization is seen as relatively inefficient, will not take place in our project.
Once a packet is constructed by the custom mutator, its contents will not be altered.

Each type of MQTT packet follows its own set of rules for the presence of a
variable header and payload (as well as additional controls) and their contents, and
can be summarised in the following table:

Packet Type Variable Header Payload

CONNECT
Protocol Name
and Connection
Configuration

Protocol Username\Password
and Will Topic\Length

PUBLISH
Topic Name
and Packet
Identifier

Application
Data

SUBSCRIBE Packet Identifier List of Topics and QoS

UNSUBSCRIBE Packet Identifier List of Topics

PUBREC Packet Identifier N/A
PINGREQ N/A N/A

DISCONNECT N/A N/A

3.2.3 Further Packet Grammar

In addition to following a strict packet format, further rules are set out in the speci-
fication regarding the construction of packets:

Remaining Length Calculation - Remaining length in packets is calculated
in a somewhat unorthodox manner, with the size of the remaining length section
changing depending on its value. The length starts at the 2nd byte from left to
right, while the most significant byte is used as a flag to determine whether the next
byte still represents the remaining length (0 if next byte isn’t remaining length field,
1 otherwise). As an example, the largest 1-byte remaining length is 127, represented
by 01111111, with the next remaining length, 128, being represented as 10000000
00000001, and 129 being 10000000 00000010. Conveniently the OASIS MQTT 3.1.1
Specification [29] includes a rough C pseudocode for encoding the remaining length,
which has been utilised in this project.
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CONNECT Packet Grammar - Further highlighted in the specification, cer-
tain connection configurations should not be allowed by the broker, such as having a
password flag without a username flag. Furthermore, the contents of the payload in
the CONNECT packet depend heavily on the contents of the variable header (e.g.
Username flag in variable header signifies the presence of a username field in the
payload). Due to the whole client-broker connection being reliant on a CONNECT
packet being accepted, all rules laid out in the specification [29] have been imple-
mented in the custom mutator’s packet construction procedures.

QoS Level and Associated Packets - In addition to regular MQTT com-
munication described previously, the MQTT specification also allows for additional
reliability checks in the form of Quality of Service Levels 1 and 2. When QoS levels
1 or 2 are selected, communication involves additional acknowledgement packets to
make sure transmission has taken place properly. Due to the highly complex nature
of QoS 1 and 2 communication in relation to regular QoS Level 0 communcation
in MQTT, no QoS level grammar has been implemented (with the exception of the
CONNECT packet, for which it is vital to be constructed accurately), and instead,
all packets involving specification of a QoS Level have had the QoS level set to a
random value from 0 to 2.

3.3 Fuzzing Environment

3.3.1 Desockmulti

The first challenge that took place in our project was fuzzing a program that accepted
inputs through a network socket rather than through standard input, since AFL++
sent all its inputs through standard input. In order to work around this, there were
two different solutions:

• Use a hooking tool such as Preeny’s desock() [50] to hook socket functions and
hijack the broker’s socket functions to accept inputs from standard input. The
’desocketing’ tool is then preloaded whenever AFL++ is run

• Configure AFL++ to send packets directly through ordinary sockets into the
broker

The latter solution would require modification of the AFL++ source code, and
AFL documentation recommends the use of a desocketing tool, so this is the solution
that we also utilise in our project. As previously mentioned in 3.2, sending singular
packets to the MQTT broker will render limited results, and thus we need to be
able to simulate a full session consisting of multiple packets being sent from client to
broker. Furthermore, typical MQTT communication involves multiple parties (more
than 2) rather than standard two-party communication, as we have the ’broker’,
’publishers’ and ’subscribers’ (see 2.2). Therefore, in order to provide a more realis-
tic testing environment, we need to be able to simulate multiple clients interacting
with the MQTT broker, rather than just a single client.

In order acheive this, we use the open-source ’desockmulti’ [53] desocketing tool
provided by the creators of the MultiFuzz [52] fuzzer. Desockmulti, similarly to
Preeny, is preloaded when AFL++ is run (either through LD PRELOAD or AFL PRELOAD
arguments specified when running AFL++) and hooks the basic socket(), bind(),
listen() and accept() functions of a network program. Unlike Preeny, however, it
presents the following advantages:

• Multiple connection support (i.e. simulation of multiple clients in a single
fuzzing instance), with multiple packets being able to be sent through a single
connection.

• Optimisation for fuzzing, providing a 10x speedup over standard desock().
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For these reasons, we have tailored the custom mutator to work in conjunction
with the desockmulti tool rather than constructing standard MQTT packets sent
over the desock tool.

Desockmulti seed format - Due to the additional features provided by desock-
multi, it requires the use of a custom seed format that is wrapped around MQTT
packets. Each seed starts with a 2-byte header. The first byte (Accept Number)
specifies the number of sockets that connnect to the broker’s accepting socket. The
second byte (Connect Number) provides the number of sockets to which the broker
connects to, which in this case will be set to 0 at all times, since the MQTT brokers
tested in our project do not initiate any connections. Following these two bytes, we
have desockmulti messages, which consist of: [52]

• Socket Index - A 1-byte value specifying the index to which the message
belongs to

• Message Length - A 2-byte value specifying the length of the message content

• Message Content - The message being sent, in our case, the serialized MQTT
packet itself, the size of which is specified by the message length.

Figure 7: The Desockmulti packet format. [52]

Using the example provided in the MultiFuzz paper, we see a packet with Accept
Number 2 and Connect Number 0, meaning that two clients will be simulated. The
first packet will be sent by the first client (Socket Index 00) with a length of 4 bytes
and the message ’00 11 22 33’, and the second packet will be sent by the second client
(Socket Index 01) with a length of 2 bytes, and the message ’FF EE’. Though in our
example, these messages are random values, these will be of the standard MQTT
packet format when running the program itself.

Figure 8: An Example Desockmulti seed [52]

Due to the message length being limited to 2 bytes, only MQTT packets of a
maximum size of 65535 bytes can be sent to the broker by desockmulti - a size
significantly smaller than the maximum accepted size of 268435455 bytes provided
by the OASIS specification. With this in mind, it is unlikely that our current fuzzing
environment will be able to discover any overflow-related vulnerabilities (e.g buffer
overflow) in the MQTT brokers tested - this is a point highlighted in the project’s
further improvements.
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3.3.2 AFL++ Environment

To summarise, we now use a modified environment of the standard AFL\AFL++
Fuzzing setup, which desockmulti acting as an intermediary between afl-fuzz and
the PUT. Desockmulti seeds containing several packets are fed into desockmulti,
which in turn creates the specified number of sockets and feeds packets through
these sockets accordingly. The custom mutator creates new seeds of the desockmulti
format, with embedded packets following the MQTT packet grammar accordingly.
The desockmulti seed generation strategy will be outlined in the next subsection.

Figure 9: Our updated fuzzing environment utilising the ’desockmulti’ tool
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3.4 Mutation Strategy

In our custom mutation strategy, we provide a packet-aware strategy similar to the
implementation seen in MultiFuzz [52] to alternate between packets and retain the
desockmulti seed structre. The strategy is outlined as follows:

• Create Entirely New Desockmulti Seed (40% Chance)

• Add a packet Onto The Current Desockmulti Seed (40% Chance)

– Select from Existing Queue (20% Chance)

– Create New Packet (20% Chance)

• Remove A Random Packet from Current Desockmulti Seed (15%
Chance)

• Chance Desockmulti Connect or Accept Number (5% Chance)

Figure 10: An Outline of Our Mutation Strategy and the Steps that Entail It
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Note: In this chapter, the phrases ’seed’ and ’testcase’ are used interchangably
and are equivalent.

3.4.1 Create Entirely New Seed

When this process is selected, we first randomise the amount of packets in the desock-
multi seed. We then create desockmulti testcase() struct pointer and allocate the
appropriate amount of memory to it depending on the amount of packets we have ran-
domised. The desockmulti packet is then populated using dsm packet create. We
start by randomising the accept number, and setting the connect number to 0. Every
time a desockmulti packet is created, there is a 40% chance that the socket index of
the packet will be incremented from the previous value, with the maximum socket
index being the one less than the randomised accept number. For every creation of a
desockmulti packet, the socket index is first set, and then the mqtt packet is formed
by packet create and then serialized into a buffer of appropriate size, a pointer to
which is stored in the desockmulti packet. The serialize mqtt packet function
returns a value for the size of the mqtt packet (including the control flag) in bytes,
which is later set as the message length value in the desockmulti packet. A pointer
to the buffer containing the serialised MQTT packet is then set as the mqtt packet

pointer of the desockmulti packet. A pointer to the constructed desockmulti packet
is stored in the packet array pointer array of the desockmulti testcase. Once
the entire desockmulti testcase is populated, it is then serialized into the output
buffer.

3.4.2 Add A Packet Onto the Current Desockmulti Seed

When this process is selected, the current testcase input is first deserialized back
into a desockmulti testcase() struct, with the appropriate amount of memory
assigned to accomodate a new packet. The following two actions can then be taken:

• A new desockmulti packet is created and added to the current desockmulti seed

• A random existing desockmulti packet is extracted from a random testcase in
the corpus and added to the current desockmulti seed

If a new desockmulti packet is created, then the creation process follows the same
methodology as seen in creating an entirely new seed.

The extraction of a current testcase follows a different set of procedures. First,
a similar procedure as the one seen in MultiFuzz [52] has been used to find a ran-
dom queue entry and map its contents into a buffer of appropriate size using C’s
mmap function - this buffer is then serialized into a desockmulti testcase() struct,
with the individual desockmulti packets also being serialized in the process. A ran-
dom desockmulti packet pointer is then chosen from the packet array of the
desockmulti testcase struct.

In both cases, once the pointer to the appropriate desockmulti packet is chosen,
the a new desockmulti testcase is created with the same data as the current seed,
but with larger memory to account for the additional packet pointer. The new packet
is then added to the end of the packet array of the new seed, and the testcase is
serialized into the output buffer.

3.4.3 Remove Random Packet from Current Seed

When this process is selected, the current seed is deserialized into a desockmulti testcase

struct, and a random pointer is chosen from the packet. The pointer is swapped with
the last pointer in the array and then cleared. C’s realloc function is used to resize
the testcase into the appropriate smaller size, and the new testcase is written into
the output buffer.
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3.4.4 Change Desockmulti Accept/Connect Number

A strategy also seen in MultiFuzz [52], the current testcase is deserialized into a
desockmulti testcase struct, one of either the Accept number of Connect Number
(50% chance) is either incremented or decremented (50% chance) and the desockmulti testcase

struct is written back into the output buffer.

3.5 Side Endeavor: Vulnerability Research in MQTT Clients

Throughout the initial research stage of the project, various other ideas related to
fuzzing were experimented with. In this, an attempt was made at vulnerability
discovery in MQTT client implementations using different instrumentation tools such
as AddressSanitizer [39] and ThreadSanitizer [40]. Throughout this research, we
managed to find a data race vulnerability in the multithreaded example client in the
WolfMQTT [47] Library thanks to compilation using ThreadSanitizer. Following
the presentation of this project, the vulnerability will be responsibly disclosed to the
WolfSSL developer team.

Figure 11: The Data Race Vulnerability found in the Multithreaded WolfMQTT
Client
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4 Evaluation

4.1 Evaluation of Mutation Strategies

In our project, we have developed a set of improvements that give the AFL++ both
packet awareness and grammar awareness in fuzzing MQTT brokers, and can be
compared to existing MQTT fuzzing solutions below:

Fuzzer Fuzzer Type Grammar-Aware? Packet-Aware?

mqtt fuzz Dumb No No
AFL++ Coverage-Based No No

MQTTGRAM Grammar-Based Yes No
MultiFuzz Coverage-Based No Yes

AFL++ with Our Mutator Coverage-Based Yes Yes

Our solution ultimately combines a packet-aware fuzzing strategy similar to the
one seen in MultiFuzz [52] with the MQTT grammar seen in MQTTGRAM to create
a new and improved fuzzing strategy atop a state-of-the-art fuzzing solution in the
form of AFL++.

4.2 Testing on MQTT Broker Implementations

4.2.1 Testing Environment

In order to measure the effectiveness of our new mutation strategy, two popular
MQTT brokers have been selected for testing - Eclipse Mosquitto [25] and NanoMQ
[11].

Eclipse Mosquitto - We used Mosquitto version 2.0.14 for testing, which im-
plements MQTT Protocol versions 5.0, 3.1.1 and 3.1.

NanoMQ - We used NanoMQ version 0.7.5 for testing, which also implements
MQTT Protocol versions 5.0, 3.1.1 and 3.1.

Testing has been conducted on a VMWare Workstation 15 Virtual Machine with
10GB of allocated RAM and 2 CPU Cores allocated from the parent CPU - an Intel
Core i7-6700HQ processor. Across the first hour of testing, we took results per 5
minutes and averaged them out for each fuzzing solution. Testing for longer than 1
hour did not take place.

4.2.2 Testing Results

In our testing stage, we ran 3 different solutions - AFL++, MultiFuzz and AFL++
with our Custom Mutator Module over a set of different short time frames, with the
averages being calculated below:

Solution Avg Execution Speed Avg Total Paths/5min Paths/1k Executions

Standard AFL++ 472 execs/s 16 0.488
Custom Mutator 146 execs/s 41 1.250

MultiFuzz 620 execs/s 285 1.357
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Furthermore, in one of the runs of our custom mutator, a crash was found in the
Mosquitto broker application:

Figure 12: A crash that was found in Mosquitto 2.0.14 having only run our custom
mutator for 48 seconds

4.3 Evaluation of Results

All of our results were taken across the 1st hour of fuzzing the brokers using the
virtual machine, as the number of new paths discovered reaches a plateau upon
more hours of fuzzing, and as such, the 1st hour of fuzzing is rendered to be most
significant. Our custom mutator proved to be more effective at finding new paths
in the MQTT broker code compared to a standard state-of-the-art AFL++ generic
solution, but fell significantly short of MultiFuzz in path discovery per 5 min. The
amount of paths discovered per 1000 executions, however, are fairly similar, signify-
ing this is most likely an issue of our custom mutator’s slow execution speed, with
MultiFuzz achieving over 4x the amount of executions per second. Inefficient memory
management in the form of multiple malloc and realloc calls rather than reusing
buffers is likely the main cause of this, thus one of the key improvements outside of
the ones highlighted in the conclusion, is to implement said reusable buffers.

Unlike MultiFuzz, however, one of the runs of our custom mutator module has
managed to produce a crash of the Mosquitto 2.0.14 broker - a goal that was specifi-
cally mentioned not to have been achieved in [52]. It remains to show that this crash
is reproducible (or whether it could simply be an anomaly in our testing environ-
ment) and could potentially lead to a vulnerability - an area of further investigation
in the future.

Finally, in the earlier stages of our research we have discovered a data race bug
(thanks to compilation with Clang ThreadSanitizer) in the WolfMQTT version 1.12.0
example multithreaded client. At the time of writing this report, WolfMQTT version
1.13.0 has been released, and it remains to show whether this bug is still present in
the latest version. If so, responsible disclosure to the developer team will take place
in hopes of this bug being fixed.
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4.4 Threats to Validity

One of the major uncertainties throughout the development of the project was
whether the testcases have been generated as intended. Efforts have been made
in debugging in the form of writing packets to standalone files to be run with desock-
multi against the broker without the use of AFL++ to check the validity of testcases
generated, but without analysing packets bit-by-bit (a taxing process for which the
time constraints of the project didn’t allow for), we cannot be certain that the MQTT
packets have been generated exactly as intended. Furthermore, only MQTT brokers
written in C (Mosquitto, NanoMQ) have been tested, and it remains to show the ef-
fectiveness of the tool in fuzzing other MQTT brokers written in different languages,
such as EMQ X and FlashMQ.

All fuzzing programs were run in the space of an hour or less, with 5-minute
results being taken - this is due to the initial amount of paths in fuzzing spiking,
and later reaching a plateau as the program is run for several hours, thus the most
significant change in amount of paths produced takes place in the first hour. Running
the experimentation for a prolonged period of time (e.g. more than 6 hours) is likely
to produce more accurate results and is an area for further investigation.

Another feature to highlight in our implementation is the use of the time as a
random seed in initiating our fuzzing rather than a fixed seed, and as such results
generated in this experimentation phase are unlikely to be precisely reproducible in
any other environment, or even in another run. The use of a fixed seed in a later
version of our application will allow for reproducible results.

Finally, it remains to show that the same results can be achieved while running
the program on any system, and thus a further step in proving the validity of the
results would be to re-run the experimentation on a fresh, isolated system (e.g. a
new virtual machine) and compare results.

5 Conclusion

5.1 Project Summary

This project has allowed for the development of a new fuzzing strategy tailored
specifically towards fuzzing MQTT Brokers. There remain gaps in our solution, as
execution speed is relatively low compared to all other implementations, and thus
before public release, more efficient memory management needs to be implemented.
Our first objective has only partially been fulfilled in the form of outperforming
a generic state-of-the-art fuzzer (AFL++), rather than a more specialised solution
(MultiFuzz).

Although the project experimentation has proven that MultiFuzz is still optimal
for MQTT fuzzing, our novel solution has allowed for the discovery of a crash in
the Mosquitto MQTT Broker - a feat not achieved by MultiFuzz. Moreover, MQTT
client testing during our initial research phase has allowed for the discovery of a new
data race bug in a popular MQTT client application, thus again fulfilling our second
objective of finding vulnerabilities in applications that utilise the MQTT Protocol.
With this in mind, it is safe to assume that the second objective highlighted in our
report has been achieved.

A workable custom mutator module solution used in this project will be made
available alongside all additional programs necessary (e.g. AFL++, desockmulti) on
my personal GitHub page: https://github.com/mgotko
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5.2 Further Improvements

5.2.1 Most Significant Improvements

A variety of further improvements can be made in order to generate more effective
results. The following two improvements would prove to be the most academically
significant and would be most likely to discover new vulnerabilities:

• Support for AUTH Packets - The next stage to develop is fuzzing MQTT
communication via TLS, as a lot of sensitive information uses this format rather
than a standard MQTT communication channel. In order to achieve this, a
number of modifications would have to be made. The most significant of which,
would be the establishment of a public\private key scheme between broker
and client, and an encryption function which uses the broker’s public key to
encrypt packets before sending them. Other modifications include changing the
broker’s configuration to TLS communication, and implementing the grammar
for AUTH packets being sent.

• Generation of packets with size larger than 65KB - A major limitation
of the desockmulti tool is the 2-byte message length value in each desock-
multi packet, which only allows for a maximum packet size of 65535 bytes.
As previously mentioned, the limited packet size will not allow for generation
of edge case packets, in which a large size could trigger a buffer overflow in
the code. A change from a 2-byte message length value to a 4-byte message
length would allow for packets to be created close (and potentially over) the
268435455-byte limit highlighted in the OASIS MQTT Specification [29], and
thus could potentially trigger new unexpected behaviours, and the possibility
of new vulnerabilities being discovered.

5.2.2 Other Potential Improvements

Other improvement ideas that have the potential positive impact on fuzzing results
and path discovery are the following:

• Optimisations to Current Mutation Strategy - At the moment, the cus-
tom mutator module utilises a lot of malloc statements upon packet creation
and packet extraction, leading to reduced efficiency - replacing these memory
allocations with reusable buffers (e.g. would allow for a significant speedup to
the module overall.

• Implementation of Proper QoS Grammar - Support for PUBACK, PUB-
REL, and PUBCOMP packets being sent from client to broker as well as the
implementation of stricter QoS grammar (e.g. tracking which packets have
been sent with which QoS level) could allow for new paths relating to the han-
dling of QoS-related messages being discovered. While generation of random
PUBACK, PUBREL and PUBCOMP packets is a fairly trivial process and
one of the most likely next steps in developing the custom mutator, the im-
plementation of a stricter QoS will require a larger overhead and will provide
an additional layer of compexity to the mutation strategy. For this reason, a
stricter QoS grammar could prove to provide more drawbacks in both fuzzing
efficiency and the ease of use of the custom mutator relative to any improve-
ments in path discovery that it would provide.

• A Custom Havoc Mutation Procedure - At the moment, the custom
mutator uses a the standard surgical havoc mutate procedure provided in
the custom mutator helper function header in order to generate random bit
values for MQTT packet contents. The MQTT specification [29], however,
states that in most cases packet contents should be of the UTF-8 format, a
subset of the set of all possible bit values. This likely means that a lot of
packets are potentially being rejected because the contents are not entirely
of the UTF-8 format - a custom havoc mutation function that only sets bits
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to UTF-8 values has the potential of fixing this. On the other hand, limiting
packet contents to only UTF-8 values has the potential of missing a lot of paths,
and therefore it is likely that the utilisation of both a custom havoc mutation
procedure and the standard procedure provided by AFL++ (e.g 50% chance of
custom procedure, 50% chance of generic procedure in order to generate packet
contents), would be the best compromise for effective path discovery.

• Support for the EBF Tool - Although initially a significant goal of the
project was to provide a direct improvement to the EBF tool as a whole, the
integration of the improved custom mutator into the EBF tool proved to be
beyond the scope of the project. The use of model checking in generation of
initial inputs could potentially allow for more efficient fuzzing, however, several
hurdles will have to be overcome. Any initial inputs that the EBF model
checker provides would then have to be wrapped into desockmulti testcases
before being input into the fuzzer, and it would have to be made sure that
these initial inputs somewhat follow MQTT grammar (with the understanding
that malformed packets could also trigger interesting behaviours) in order to
not risk being immediately rejected by the broker.

• Addition of Random Havoc Mutations - One of the simpler potential im-
provements, an additional mutation strategy could be added in form of simply
adding a random standard AFL++ havoc mutation (bit flip, word addition,
etc.) to the current testcase in hopes of triggering new behaviours. This ran-
dom mutation is likely to result in either desockmulti or the MQTT broker
simply rejecting the packets, and thus, if implemented, should be set to run at
a low probability of occurrence (e.g. 5% Chance of using this strategy).

• Probability of Incorrect MQTT Packet grammar - Another interesting
strategy was presented by Rodriguez and Batista in the MQTTGRAM tool
[37], in which the fuzzer ran with a probabilty of packets being generated in
the incorrect order. A similar idea implemented in our custom mutator could
potentially allow for new path discovery, however, a large number of packets
sent in the incorrect order would decrease the efficiency of the fuzzer.

References

[1] Fatimah Aljaafari, Lucas C Cordeiro, Mustafa A Mustafa, and Rafael Menezes.
Ebf: A hybrid verification tool for finding software vulnerabilities in iot crypto-
graphic protocols. arXiv preprint arXiv:2103.11363, 2021.

[2] Kaled M Alshmrany, Rafael S Menezes, Mikhail R Gadelha, and Lucas C
Cordeiro. Fusebmc: A white-box fuzzer for finding security vulnerabilities in
c programs (competition contribution). Fundamental Approaches to Software
Engineering, 12649:363, 2021.

[3] Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Program-aware
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