
 1

Department of Computer Science

Bachelor Project Report

Counterexample-Guided Optimisation Applied
to Mobile Robot Path Planning

Author: Mengze Li

Supervisor: Dr. Lucas Cordeiro

April 2021

 2

Abstract

The purpose of this project is to present description, implementation and evaluation of the
Counterexample Guided Inductive Optimisation (CEGIO) algorithm based off-line path
planning for mobile robots, and to discuss Bounded Model Checking and software model
checkers as verification techniques which assist the algorithm to generate paths.

In addition, the original contribution of this project is that it further describes the design,
implementation and evaluation of Assisted CEGIO-based path planning (ACEGIO-based path
planning) which combines Gradient Descent to significantly improve the efficiency. Besides, a
possible design of mobile robot and an implementation of trajectory planning are also provided
in this project.

In particular, this report presents that paths which are extremely close to the global optimal path,
consisted of a sequence of points in a predetermined environment, have been successfully
achieved by CEGIO and ACEGIO based path planning. Besides, smooth trajectories based on
the obtained paths have been achieved by trajectory planning and applied to the mobile robot.

 3

Acknowledgements

First and foremost, I would like to express my heartfelt gratitude to Dr Lucas Cordeiro, my
supervisor, for his constant encouragement, patience and guidance on my project. He has
provided me with helpful materials which pushed me to find a novel and challenging idea.

Second, I would also like to thank my family and friends for their support and great confidence
in my abilities.

 4

Impact of lockdown

I will briefly discuss the impact of lockdown on my project. Firstly, I planned to be back to
Manchester from China at the beginning of the first semester, but because of lockdown most
flights were cancelled including my flights. Thus, my travel was delayed for several times, and
this led me wasting some time on repacking luggage and rebooking flight, which affected my
original project plan. Additionally, since I live alone in Manchester, I hardly see my friends and
rarely speak to other students in person for nearly half a year, along with the stress of uncertain
future postgraduate program, I had slight mental problem, which made me feel negative and
really anxious. This distracted me from doing my project for several weeks. Overall, the
lockdown did have impact on me, and I spent some time to handle the unexpected situations.
But the project has been done, following the timetable of new project plan.

 5

Contents

Abstract ·· 2

Acknowledgements ·· 3

Impact of lockdown ··· 4

List of Figures ·· 7

List of Abbreviations ·· 8

1 Introduction ··· 9

1.1 Motivation ·· 9

1.2 Project objectives and criteria ·· 10

1.3 Report structure and outline ·· 10

2 Background ··· 11

2.1 Optimisation problem ·· 11

2.2 Path planning for mobile robots ··· 12

2.3 Model checking ·· 12

2.4 Bounded Model Checking ·· 13

2.5 CEGIO ·· 14

2.6 ACEGIO ·· 14

2.7 Trajectory planning preliminaries ··· 15

3 CEGIO-based Path Planning Algorithm ·· 16

3.1 Optimisation problem formulation ·· 16

3.2 CEGIO-F ·· 17

3.3 CEGIO-based Path Planning Algorithm ·· 19

4 ACEGIO-based path planning Algorithm ·· 22

4.1 ACEGIO-F-GD ·· 22

4.2 ACEGIO-GD-based Path Planning Algorithm ·· 25

5 Trajectory planning ··· 26

5.1 Robot simulation ··· 27

5.2 Physical robot ·· 28

6 Experimental evaluation ·· 29

6.1 Experimental Objectives and Description ·· 29

6.2 Experimental Setup ·· 31

 6

6.3 Experimental Results ·· 31

7 Conclusion ··· 34

7.1 Reflection ··· 34

7.2 Future work ··· 35

References ··· 35

 7

List of Figures

Figure 1: Pseudocode of CEGIO-F

Figure 2: Pseudocode of CEGIO-F applied to path planning problem

Figure 3: Example of related variables and marco constants

Figure 4: Code of setting constraints

Figure 5: Code of the rest_points function

Figure 6: Pseudocode of ACEGIO-F-GD

Figure 7: An example explains how ACEGIO achieves global optimal and improves efficiency

Figure 8: Pseudocode of ACEGIO-F-GD-based path planning algorithm

Figure 9: Code of calculating the rotation angle

Figure 10: Final version of physical robot

Figure 11: Environment settings

Figure 12: Virtual environment

Figure 13: Physical robot experimental environment

Figure 14: Paths generated by the two algorithms in different settings

Figure 15: Value of cost function

Figure 16: Result of trajectory planning on virtual robot

 8

List of Abbreviations

1. CEGIO: Counterexample-Guided Inductive Optimisation

2. ACEGIO: Assisted Counterexample-Guided Inductive Optimisation

3. SAT: Boolean Satisfiability

4. SMT: Satisfiability Modulo Theories

5. BMC: Bounded Model Checking

6. ESBMC: Efficient SMT-based Bounded Model Checker

7. CEGIO-F: Fast version of CEGIO

8. GD: Gradient Descent

9. ACEGIO-GD: Assisted CEGIO by Gradient Descent

10. ACEGIO-F-GD: Assisted CEGIO-F by Gradient Descent

11. Algorithm 1: CEGIO-based path planning algorithm

12. Algorithm 2: ACEGIO-based path planning algorithm

 9

1 Introduction

This chapter will begin with discussing the reason of choosing this project and explaining the
shortcoming of other algorithms for solving optimisation problem. Motivation section will also
briefly introduce and define CEGIO and ACEGIO with presenting their pros and cons. Next, it
will list the objectives of my project and criteria for identifying their success. Follow this will
be the structure of my report.

1.1 Motivation

The last several decades have seen a growing trend towards automated societies. Mobile robots
are replacing humans in repeated and monotonous work such as transforming parcels in
Amazon’s warehouses and more resources are provided for mobile robot development [1]. This
is the reason why, autonomous navigation, especially path planning has a pivotal role in
development of mobile robots. Path planning algorithm is a computational problem to find a
valid path from initial location to desired destination that avoids all possible obstacles in the
motion space [2][3].

A considerable amount of literature has provided series of algorithms and various methods on
solutions to path planning. Previous research by Araujo et al. [4] has considered path planning
problem as optimisation problem and established the description, which is “a decision variable
represents a given path, i.e., the sequence of points (or movements) by which the robot must
move; the cost function is certain criteria or metric whose value is optimized (e.g., distance,
energy consumption, and execution time)” [5]. To solve this optimisation problem, algorithms,
such as A* algorithm [6], genetic algorithm (GA) [7], particle swarm optimisation (PSO), ant
colony optimisation, gravitational search algorithm (GSA) [8], can be applied to on-line path
planning due to their optimal efficiency. However, these methods have an uncertain possibility
that global optimality cannot be achieved.

Study of Counterexample Guided Inductive Optimisation Algorithm (CEGIO) by Araujo et al.
[9] shows the ability of CEGIO that can ensure global optimality, thus CEGIO can be applied
to path planning. In term of Araujo et al.’s description about CEGIO [10], it bases on Boolean
Satisfiability (SAT) and Satisfiability Modulo Theories (SMT). Besides, the basic process and
working principle of CEGIO is that it is executed iteratively by SAT and SMT solvers to
generate counterexamples, which are employed to update both decision variables and the cost
function and guide the optimisation towards global optimality. However, because of high time
consumption on CEGIO-based path planning application, CEGIO is only applied to off-line
path planning in this report.

Assisted Counterexample Guided Inductive Optimisation Algorithm (ACEGIO) is described
by Chitoraga [11] which combines CEGIO with an auxiliary algorithm, in order to improve the
efficiency of CEGIO. Previous study [12] shows CEGIO assisted by gradient descent can

 10

ensure global optimality in all the cases that CEGIO can achieve. Therefore, ACEGIO
algorithm with gradient descent as the auxiliary algorithm is applied to off-line path planning
for mobile robots.

1.2 Project objectives and criteria

Objectives of my project are summarized briefly and clearly. The objectives have two main
categories, the two path planning algorithms and trajectory planning. The following is a
comprehensive list of the objectives.
• Implement and evaluate CEGIO-based path planning algorithm
• Propose, implement and evaluate ACEGIO-based path planning algorithm
• Design a mobile robot, and build a physical robot
• Implement trajectory planning
• Apply trajectory planning to the virtual mobile robot and physical robot, respectively

CEGIO-based path planning algorithm and ACEGIO-based path planning algorithm are
implemented and evaluated in a pre-defined environment with static obstacles. The criteria for
identifying success of the objectives are as follows.
• Whether these two algorithms (CEGIO-based path planning and ACEGIO-based path

planning) are capable of generating the global optimal path or paths close to the global
optimality

• Whether ACEGIO-based path planning algorithm improves the efficiency of finding the
global optimal path or paths close to the global optimality

• Whether smooth trajectories based on the obtained 2D paths are achieved by trajectory
planning

• Whether the virtual robot and the physical robot follow the trajectories smoothly

1.3 Report structure and outline

Firstly, this report will begin with a technical background about optimisation problem, path
planning for mobile robots, bounded model checking, CEGIO, ACEGIO and trajectory
planning. Secondly, it will present description of modelling path planning problem as
optimisation problem and implementation of CEGIO algorithm for solving the path planning
problem. Then it will present the methodology steps for proposing ACEGIO-based path
planning algorithm, and it will offer description and implementation of the algorithm. Next, the
Trajectory Planning chapter will describe the implementation of the trajectory planning. In this
chapter, it will also present the virtual robot simulation and designs of physical robot. Following
this will be the evaluation and experimental results of these two path planning algorithms and
trajectory planning. At last, conclusions and future work will be presented.

 11

2 Background

This chapter will cover technical background, which is necessary for understanding my project
achievements. Firstly, it will define optimisation problem and discuss difficulty of finding global
optimal solution for optimisation problems in different categories. Then, it will explain the path
planning problem that I will focus on in my project. Next, it will introduce the Model Checking with
its steps and Bound Model checking with its basic principle. Additionally, it will discuss how
CEGIO works with assistance of Bounding Model Checking. It will also discuss how ACEGIO
works with assistance of Gradient Descent. Finally, it will cover trajectory planning preliminaries.

2.1 Optimisation problem

Optimisation problems and global optimal solution can be defined as Follows:

Definition 1. Optimisation problems in the field of Computer Science is finding the global
optimal solution from all feasible solutions.

In general, optimisation problems are to minimize the cost function. If there are optimisation
problems which need to maximize the cost function, then minimize the negation of the cost
function. Therefore, general optimisation problems can be written as [13]

minimize
!

				 f(x)
 subject to 				g"(x) ≤ 0, i = 0,… ,m
				 h#(x) = 0, j = 0,… , p

 , (1)

where
• f(x)	is the objective function as known as cost function, which needs to be minimized over

a vector x composed n variables as known as decision variables.
• g"(x) ≤ 0	and h#(x) = 0 are inequality constraints and equality constraints, respectively.
• m ≥ 0 and p ≥ 0
• If m and p are both 0, then there is no constraint, and the problem is an unconstrained

optimisation problem.

Definition 2. A vector x∗	such that g"(x∗) ≤ 0	or h#(x∗) = 0 is a global optimal solution
of f(x) iff f(x∗) ≤ f(x), for ∀x such that g"(x) ≤ 0	or h#(x) = 0.

There are different categories of optimisation problems, which depend on the number of
objective functions, objective function nature, constraints and whether the decision variables
are continuous or discrete.

Different nature of optimisation problems has impacts on ways and difficulty of finding the
global optimal solution. For instance, discrete optimisation problems tend to be harder to find
the best solution than continuous optimisation problems. Problems with multiple objectives
functions are often converted to single objective function problem, in order to make them easier

 12

[14]. Furthermore, optimisation problems with non-convex cost function are the most difficult
to achieve global optimality because of the cost function nature. Some optimisation techniques
fail to find the global optimal solution within the given time and computational memory, and
some optimisation algorithms trap in local optimal solutions while finding the global optimal
solution [15]. In contrast, convex optimisation problems are easier, and more optimisation
techniques are available because of the following properties

• Every local optimality is global optimality.
• There is at most one global optimality for the optimisation problems whose cost function

is strictly convex.

2.2 Path planning for mobile robots

Path planning problem can be described as finding a safe and available path from a starting
position to a target position in the environment. As one step in mobile robot navigation, efficient
path planning algorithms have considerable contribution on safe and effective mobile robot
navigation. Path planning can be classified as static or dynamic, global or local, exact or
heuristic, respectively depending on environment nature, robot’s knowledge about the
environment and completeness [16]. In the present work, I focus on static, global, exact path
planning algorithm in bi-dimensional environment with following properties
• The environment is fixed, where the starting position, the target position, obstacles and

map information are unvarying.
• The mobile robot has priori knowledge about the environment.
• The algorithm finds an optimal path if one exists or proves no feasible solution exists.

Definition 3. An optimal path is composed by a sequence of points, which are consecutively
and sequentially connected by straight segments. The optimal path is valid for mobile robots to
move from a starting position to a target position, and it minimizes the cost function related to
that path such as energy consumption, distance. [17]

According to the definition 3 and the above properties, proposed path planning algorithm in
this report is to find an optimal path, consisting of a set of straight segments that formed by
points, from the source to the destination, which meets the path specification (obstacle
avoidance) and minimizes the distance as the principal objective in the predefined environment.

2.3 Model checking

In this section, the definition and steps of Model Checking will be presented. Model checking
is an automated verification technique. Given a finite-state model of a system and a formal
property, model checking systematically explores and checks all reachable systems states in a
brute-force manner [18]. Model checking is a successful approach for verifying requirements

 13

with a wide range of applications. Model checking process can be divide into three steps:
modelling, specification, and verification [19].

Modelling converts the system to a formal characterization of a finite set of states and a set of
transition to be checked. Then specification prescribes the system behaviour and properties that
all relevant systems states should satisfy. In this process, it has no requirement on complete
specification which allows focus on essential properties to be checked instead of all properties.
Therefore, it makes model checking support partial verification in next step. The final step
verification examines the model and checks whether the states satisfy the given property [20].
Verification succeeds if the model satisfies the specification. Otherwise, counterexample, which
describes the execution path from the initial system state to property violation state, is generated
if verification fails [21]. The counterexample also contains diagnostic information that plays a
vital role in debugging.

2.4 Bounded Model Checking

This section will cover definition and basic idea of Bounded Model Checking. Additionally, it
will discuss a Bounded Model Checker.

Model Checking checks if all given states in model satisfy a property, while Bounded Model
Checking (BMC) which is based on SAT or SMT solvers as a verification technique checks if
a subset of states within the bound satisfies a property. Bounded Model Checking can be
described as follows:

Definition 4. “Given a transition system M, a property ϕ, and a bound k; BMC unrolls the
system k times and translates it into a verification condition (VC) ψ, which is satisfiable iff ϕ
has a counterexample of depth less than or equal to k” (Araujo et al., 2017) [22].

Study of Bounded Model Checking by Araujo et al. (2017) [23] shows that the basic idea of
BMC is to check the negation of a given property and the logical formula of associated problem
in BMC is as following:

ψ% = I(S&) ∧ ⋁  %
"'& ⋀  "()

#'& >γ@s#, s#*)B ∧ ¬ϕ(s")D, (2)

where ϕ is a property and S& is a set of initial states of M, and γ@s#, s#*)B is the transition
relation of M between time steps j and j + 1. The verification condition ψ% is satisfiable iff for
some i ≤ k there exists a reachable state at time step i in which the property ϕ is violated. In
this case, the last step of model checking (verification) fails, and the SAT or SMT solver
provides a satisfying assignment of the above logic formula which is counterexample.
Counterexample can be described as follows:

Definition 5. “A counterexample for a property ϕ is a sequence of states S&, S), … , S% with
s& ∈ S&, s% ∈ S% , and γ(s", s"*)) for 0 ≤ i ≤ k that makes Eq. (2) satisfiable. If it is
unsatisfiable (i.e., returns false), then we can conclude that there is no error state in k steps or
less” (Araujo et al., 2017)) [24].

 14

ESBMC is an efficient SMT-based Bounded Model Checker for both single- and multi-threaded
C / C++ programs which is used as software verification tool in this study. ESBMC is able to
verify program properties violations such as memory safety, overflows, array bounds and also
additional properties which are stated by users. In C / C++ programming language, ASSUME
and ASSERT are two directives which can be used in modelling and specification in the process
of model checking. In particular, ASSUME directive can set constraints by employing variables
in non-deterministic representation and ASSERT directive can be used to specify the given
property. The corresponding intrinsic functions in ESBMC is __ESBMC_assume and
__ESBMC_assert.

2.5 CEGIO

The working process of CEGIO with the help of Bounded Model checking is presented as
follows. CEGIO algorithm is an optimisation algorithm which requires iterative executions to
achieve global optimisation by requesting counterexamples from SAT and SMT solvers.
According to definition 1,4 and formula (1)(2), optimisation problems can be solved by
Bounded Model Checking and be modelled as system states and formal property via cost
function, decision variables and its constraints. In each iteration of CEGIO, decision variables
and its constraints are defined by ASSUME directive as constraints, and optimal condition is
specified by ASSERT directive as property. Then bounded model checker, in particular ESBMC
is applied with its intrinsic functions in this study, generates counterexamples, which are
employed to update both domain boundaries and the optimal candidates, and guide the
optimisation towards global optimality.

Additionally, the previous study by Araujo et al. demonstrates that CEGIO algorithm has strong
ability of finding the global minima of optimisation problems [25]. The study also presents
three variants of CEGIO, which are the Generalized CEGIO (CEGIO-G), the Simplified
CEGIO (CEGIO-S) and the Fast CEGIO(CEGIO-F) [26]. CEGIO-G is suitable for any
optimisation problems in relatively slow speed. CEGIO-S is faster than CEGIO-G and is
suitable for optimisation problems whose knowledge about local minima is provided in advance.
CEGIO-F is the fastest among these three types of algorithm, but it can only be applied to
convex functions.

2.6 ACEGIO

This section will cover technical background information of ACEGIO algorithm. Firstly, it will
begin with its definition and how it works. Assisted CEGIO (ACEGIO) proposed by Dumitru
[27] combines CEGIO with an auxiliary algorithm, which significantly improves the
optimisation speed without restricting the range of problems CEGIO can be applied to. The
process of achieving optimisation by ACEGIO is as following. In each iteration of generating
a more optimized position by ACEGIO, instead of only extracting from counterexamples, the
position is calculated by the auxiliary algorithm based on the counterexamples from CEGIO

 15

till it reaches local optimum or global optimum. If it reaches local optimum, a new position is
generated from counterexamples, and repeat the above process till global optimum is found.
Since requesting counterexamples from SMT solvers is the most time-consuming step in
CEGIO, and ACEGIO greatly reduces the times of requesting counterexamples. For this
specific reason, ACEGIO significantly improves the execution speed of finding global optimum.

Additionally, it will present a particular auxiliary algorithm as follows. Gradient Descent, an
efficient optimisation technique for optimizing convex functions, is applied as auxiliary
algorithm to assist CEGIO in this report. Given a differentiable cost function, Gradient Descent
algorithm has the capability to find the local minimum. The basic idea of general Gradient
Descent algorithm is to iteratively move towards the opposite direction of the gradient of the
function at current position, which is the direction of steepest descent at current point. To be
more specific, Gradient Descent algorithm can be pictured as a hiker who would like to climb
down a mountain (cost function) into valley (local minimum), and each step is determined by
direction of steepest descent at current position and the leg length of the hiker. In each iteration
of Gradient Descent Optimisation, compute the gradient of the cost function and move-in the
opposite direction with a step. The hiker iteratively takes steps till reaching the valley (local
minimum).

The following property enables Gradient Descent to be the auxiliary algorithm in ACEGIO:

∀y, if ∃x such that g(f(y)) > g(x) then g(f(y)) > g(f(x)), (3)
where
• x is decision variable
• g is cost function, f is the function of Gradient Descent
• f(x) is the result of applying Gradient Descent on x

Finally, it will discuss how ACEGIO-GD (CEGIO assisted by Gradient Descent) algorithm can
ensure global optimality. If the cost function is convex, f(x) can always point to the global
optimality. However, if the cost function is non-convex, Gradient Descent has some possibility
of being trapped in local optimum. In this case, CEGIO would generate counterexamples which
contains more optimized decision variable position than previous local optimum. Then f(x) is
applied, either to global optimum or a better local optimum. This process will be repeated till
global optimum is found. Therefore, global optimum can always be found by ACEGIO-GD.

2.7 Trajectory planning preliminaries

After achieving the optimal path from path planning, smooth movements of physical robots are
achieved by trajectory planning. Trajectory planning can be described as motion planning,
which plans how to move based on velocity, time, etc. As for implementation, VEXcode VR is
a browser-based platform which can realize robot simulation with programming languages like
Python. Besides, Lego Mindstorms EV3 Home is a robotics kit, which contains a programmable
brick, motors and various building components. The kit allows users to design and build their
own robots with different functionalities and import their own programs into the programmable
brick to control the motion of robot. As for coding the controlling programs, different tools are

 16

available based on the user’s preference to a specific programming language. For instance,
ROBOTC is a C programming language-based IDE with built-in variables and functions that
control the robot’s hardware like motors. In this report, VEXcode VR, Lego Mindstorms EV3
kit and ROBOTC are respectively applied to simulate robot motion online, build a physical
robot and control the physical robot motion by programs.

3 CEGIO-based Path Planning Algorithm

In this project, the main objective of path planning problem is to find the global optimal path
composed by a set of points which can guide the mobile robots from a starting position to a
target position with avoiding obstacles in an environment. A great deal of previous research has
explored the impacts of obstacles number and obstacles type on complexity of path planning
problem. With the increase in number of obstacles and types of obstacles, the complexity
substantially increases which requires more processing time to find the optimal path. As a result,
there is high demand of developing novel methods that can achieve optimal path, considering
time and system consumption.

In this report, CEGIO based path planning is applied to generate points on path in a pre-defined
environment with static obstacles. This method consists of two steps: (1) formulate the path
planning problem as an optimisation problem (i.e., model the environment, and static obstacles
as constraints, set the cost function) (2) apply CEGIO to find the optimal path that satisfies the
constraints.

Following the above steps, this chapter will firstly discuss how path planning problem is
formulated as an optimisation problem. Next, it will present description and implementation of
CEGIO-F algorithm, which is employed to solve the optimisation problem. Finally, it will
present description and implementation of applying CEGIO-F algorithm to solve path planning
problem.

3.1 Optimisation problem formulation

In order to solve the path planning problem by CEGIO algorithm, it is necessary to formulate
the path planning problem as an optimisation problem. Thus, its cost function and constraints
need to be defined. Araujo et al. [28] proposed the following definitions (Definition 6, 7) about
cost function and constraints for path planning problem.

Definition 6. Cost function: Define the starting position (S) and target position (T) as S = P)
and T = P+ , respectively. The objective is to find a decision variable matrix, 𝐋 =
[P), P,, … , P+(), P+], which minimizes the cost function J(L). J(L) is the distance function to
calculate the total distance of the path, also J(L) is the cost function of the path planning
problem in this project. The cost function is defined as:

 17

J(L) = ∑  +()
"') ∥∥P"*) − P"∥∥,, (4)

where n is the number of points (including the starting position and the target position) that
form the path. A a smooth trajectory will be achieved if n is infinite [29].

From Definition 3 and 6, the path consists of n points on the path which is connected by 	n − 1
straight segments, such that the	i-th straight segment is from position	P" to	position P"*).

Definition 7. Constraints: Each straight segment on the path must not intercept any obstacle
and must be within the pre-defined environment.

According to Definition 1 and Eq.(4), the optimisation problem for path planning can be written
as:

min
-
  J(L),

p".(L) ∉ 𝕆
 s.t. p".(L) ∈ 𝔼

i = 1,… , n − 1,

, (5)

where “𝕆 is the set of points defined by obstacles; 𝔼 is the set of points defined by
environment limits; n is the number of points that consist the path; and		p".(L) is all points
belonging to the i-th straight segment of the path defined by vector	L, each p".(L) point is
defined as” (Araujo et al., 2017) [30]:

p".(L) = (1 − λ)P" + λP"*), ∀λ ∈ [0,1]. (6)

After defining the cost function and constraints, movement environment (𝔼) and static obstacles
(𝕆) need to be encoded. In this report, the environment of movement is modelled in a two-
dimensional Cartesian system as rectangle with lower and upper boundaries. Each point on path
must be within this rectangle. As for obstacles (𝕆), one circle is used to model one obstacle,
such that a centre of circle is the geometric centre of a physical obstacle, radius of circle is the
largest distance from the centre to edge of the physical obstacle. This ensures all the points
formed physical obstacles are surrounded by the corresponding circles. Therefore, for each
obstacle, constraints p".(L) ∉ 𝕆 such that i = 1,… , n − 1 can be written as:

(x". − x&), + (y". − y&), ≥ (r + σ),,
where p". = (x"., y".), and σ is a safety margin, (x&, 	y&) is the center of an obstacle, r is
the radius of the obstacle.

3.2 CEGIO-F

Previous research has demonstrated that the cost function (Eq.(4)) is convex, thus CEGIO-F
which is aforementioned is applied to solve path planning due to its efficiency. The
pseudocode of CEGIO-F algorithm proposed by Araujo et al. [31] is in figure 1. The
explanation of the pseudocode is as follows.

CEGIO-F takes the cost function f(𝐱), the space for constraint set Ω, and a desired precision
ϵ as input. The output includes the optimal decision variable vector 𝐱∗, and optimal cost

 18

function value f(𝐱∗) . Firstly, from line 1 to line 3 of the pseudocode, it begins with
initialization and declaration of value f@x(&)B, precision p and non-deterministic decision
variable 𝐱. The space for constraint set in line 5 is defined as Ω%, such that k = log	 p, where
k is the number of decimal places of the points coordinate values (i.e., if p is 1, then k is 0
and coordinates are considered as integers). Precision p is initialized with value 1 and is
updated in line 14 by multiplying p by 10. Finally, CEGIO-F ends if precision p reaches the
desired precision ϵ.

The core in CEGIO-F algorithm of finding optimal solution is as follows. Aforementioned
ASSUME and ASSERT directives in line 5,8 and 9 are used to define constraints and check
specific constraints. Line 5 defines constraints by setting the bounds for decision variable 𝐱
within the space Ω%	 with ASSUME directive. Besides, line 8 sets constraint f@𝐱(")B <
f@𝐱("())B , which defines that objective function f@𝐱(")B must be smaller than the value
obtained as optimal candidate f@𝐱("())B . Then check the literal loptimal with ASSERT
directive，loptimal is described as:

loptimal ⟺ f@𝐱(")B	≥ f@𝐱("())B. (7)
If ¬loptimal ⟺ (f@𝐱(")B < f@𝐱("())B) is satisfiable , a counterexample is generated which
contains the new decision variables vector 𝐱∗(𝐱(")) and new optimal candidate f(𝐱∗)	(f@𝐱(")B).
The new optimal candidate is smaller than previous optimal candidate f@𝐱("())B and closer
to global optimality. Otherwise, if loptimal is satisfiable, 𝐱∗ and f(𝐱∗) would not be updated
and would remain 𝐱("()) and f@𝐱("())B, respectively. Besides, variable i stores the index of
new optimal candidate, which means i is only updated by adding 1 in each iteration when a
counterexample is generated in this iteration. As a result, in each iteration, either a new optimal
candidate which is closer to global optimality is found, or the state-space is updated. After
substantial times of iterations, the optimal value and optimal solution is generated.

Figure 1. Pseudocode of CEGIO-F

 19

3.3 CEGIO-based Path Planning Algorithm

This section will cover the development and explanation of CEGIO-based path planning algorithm.
Following this will be the brief analysis of its efficiency. Finally, it will present how the algorithm
is applied to path planning problem. In this section, it will firstly begin with the development and
explanation of CEGIO-based path planning algorithm as follows.

Previous study of Araujo et al. [32] provides the algorithm (in Figure 2.) that CEGIO-F is
applied to solve path planning problem based on its optimisation formula. The algorithm takes
cost function J(𝐋), constraint set Ω defined by a set of obstacles constraints 𝕆 and a set of
environment constraints 𝔼, and a desired precision η as input. And the output is the optimal
path 𝐋∗, and the optimal cost function value J(𝐋∗). It starts with initialization of J@𝐋(&)B, which
is in high value, in order to make ¬Joptimal is satisfiable and generate a new optimal candidate
in first iteration. Joptimal is described as:

Joptimal ⟺ J@𝐋(")B ≥ J@𝐋("())B. (8)
Besides, the precision p is initialized with value 1 (coordinates are considered as integers),
and number of points n composed the path is initialized with value 1, which means there is
only one point excluding the starting point and the target point on the path. Decision variables
vector 𝐋" is declared over non-deterministic variables which contains all the path points
information.

Figure 2. Pseudocode of CEGIO-F applied to path planning problem

 20

Similar to CEGIO-F, ASSUME directive is used to set the constraints, and ASSERT directive
is used to verify the specific property. According to line 6, 10, 11, and 12 in Figure 2, the
algorithm defines all boundary constraints with ASSUME directive and set the constraint
¬Joptimal ⟺ 𝐉@𝐋(")B < J@𝐋("())B is satisfiable for a given n and p . Then use ASSERT
directive to check the specific property Joptimal , if verification fails, which means ¬Joptimal is
satisfiable. In this case, a counterexample, which contains decision variables vectors 𝐋∗ =	𝐋(")
is generated. The counterexample contains current optimal path which is composed by the set
of n points, and it also current optimal cost function value which is the total distance of current
path. Then the optimal candidate is updated as 𝐉@𝐋(")B . Otherwise, if the verification is
successful, the current optimal candidate is still 	J@𝐋("())B. Therefore, new optimal candidates
who is closer to global optimality is generated in this way. For a given n and p, if it is not
possible to find a new optimal candidate, number of points n is updated by adding 1 to n. If
¬Joptimal is not consecutively satisfiable, then update precision p by multiplying p by 10.
And the number of decimal places of the points coordinate values k is updated by adding 1 to
k, since k = log	 p. Therefore, the precision is increased by adding one decimal place in the
coordinate values.

The analysis of efficiency is as follows. The number of points on the path depends the efficiency
of the algorithm and number of obstacles have impacts on the algorithm performance. With the
number of points increases, the time complexity and space complexity are substantially
increasing, resulting in a large execution time.

In this project, I focused on applying the CEGIO-based path planning algorithm to static
movement environment and employing ESBMC verification tool as Bounded Model Checking
tool. Constraints of path planning problem are encoded in C programming language as follows.
Figure 3 shows the definition and declaration of space dimension, initialized precision,
candidate value, and number of points. In this example, only one obstacle is defined in this
environment. These information are necessary for defining constraints.

Figure 3. Example of related variables and macro constants [33]

 21

Figure 4. Code of setting constraints [34]

Figure 4 shows the environment constraints. Firstly, it initializes points with non-deterministic
variables and set every point on the path within the environment limits. Then set the constraints
on obstacles by using function rest_points showed in Figure 5, which make sure aim (1) every
point on the path is outside the obstacles, and aim (2) every straight segment composed the path
would neither be within the range of any obstacle nor intersect with the any obstacle. The
function takes a point and its next point that form a straight segment on the path as input. First
six line ensure that the points on the path are outside the obstacles. In order to achieve aim (2),
consider the intersection between the support line of the straight segment from (x[i-1], y[i-1])
and (x[i], y[i]) and its perpendicular passing through the obstacle centre (x[0], y[0]). Py is the
y coordinate of that intersection point. Then if condition (line 18) is true if and only if the
intersection point belongs to the straight segment. In this case the distance d between the
obstacle centre and the straight segment should be greater than the obstacle radius to ensure the
obstacle avoidance. Such an assumption is not necessary if the intersection point does not
belong to the straight segment.

 22

Figure 5. Code of the rest_points function [35]

After defining the environment and obstacles constraints, cost function J(𝐋) is calculated
according to Eq. 4 and constraint J@𝐋(")B < J@𝐋("())B is defined by __ESBMC_ASSUME
directive. To obtain a new optimal candidate, Joptimal (Eq. 8) is verified with
__ESBMC_ASSERT directive at the end of each iteration. In this report, the above C program
is iteratively passed to ESBMC to generate counterexample contains new optimal candidate
based on the current optimal candidate, resulting in a smooth global optimal path if the
execution time is infinite. A script is implemented and used to control the iteration and the
update of precision p and number of points n.

4 ACEGIO-based path planning Algorithm

This chapter will cover development of ACEGIO-F-GD algorithm, and it will also cover description
and development of ACEGIO-GD based path planning algorithm.

4.1 ACEGIO-F-GD

CEGIO-F based path planning is available for generating the optimal path. However, the
execution process of the algorithm is extremely time-consuming, due to high time consumption
on requesting counterexamples from SMT solvers, especially when the number of points on the
path is relatively large. For this specific reason, to improve the efficiency of CEGIO based path
planning algorithm, times of requesting counterexamples must be reduced. Therefore, CEGIO
assisted by Gradient Descent (ACEGIO-GD) is applied. According to the capability of

 23

ACEGIO-GD which is discussed in Background chapter, it can be applied to optimisation
problems, no matter the cost function is convex or not. Thus ACEGIO-GD can generate the
optimal path for the path planning problem.

Since the cost function of path planning is convex, CEGIO-F assisted by Gradient Descent is
capable of finding the global optimality. Thus, ACEGIO-F-GD (CEGIO-F assisted by Gradient
Descent) is applied which is proposed specifically for solving optimisation problems whose
cost function is convex. ACEGIO-F-GD employs Gradient Descent algorithm to assist CEGIO-
F algorithm, which is relatively faster than general ACEGIO-GD algorithm. Based on Eq. 3
and CEGIO-F in figure 1, the pseudocode of ACEGIO-F-GD is described in figure 6.

Figure 6. Pseudocode of ACEGIO-F-GD

The different between CEGIO-F and ACEGIO-F-GD is that ACEGIO-F-GD employs Gradient
Descent to iteratively calculate optimal candidates in line 11 instead of iteratively generating
optimal candidates by requesting counterexamples. To be more specific, for a given precision
in ACEGIO-F-GD, requesting counterexamples only happens once when it reaches the inner
loop, resulting in an optimal candidate. Then Gradient Descent is iteratively used to achieve a
new optimal candidate who is closer to the global optimal solution for the given precision.
Contrary to CEGIO-F, ACEGIO-F-GD greatly reduces the time consumption.

An example in Figure 7 shows how ACEGIO-GD can achieve global minimum and how
ACEGIO-GD improves the efficiency with a simple non-convex cost function. The example
presents possible optimisation processes for CEGIO and ACEGIO-GD optimising the same

 24

cost function f(x), who has one variable x as decision variable. The optimising processes of
CEGIO and ACEGIO-GD are presented on the left side and right side of Figure 7, respectively.
The red dot represents global minimum or local minimum. The orange dot is current optimal
candidate position updated by requesting counterexamples from SMT solvers over non-
deterministic decision variable. The green dot is current optimal candidate position updated by
Gradient Descent. The orange arrow is the optimising path from last optimal candidate to
current optimal candidate, generated by requesting counterexamples. The green arrow is the
optimising path generated by Gradient Descent.

Figure 7: Example explains how ACEGIO achieves global optimality and improves efficiency

As for how ACEGIO-GD achieves global optimality, in the above example, from the initial
position, ACEGIO-GD generated a new optimal candidate position by requesting
counterexamples. Then iteratively employ Gradient Descent to achieve new optimal candidate
till it traps in the local minimum, where general Gradient Descent algorithm cannot get it out.
Thus, it needs to request counterexamples from SMT solvers and generates a more optimised
candidate. Then Gradient Descent is iteratively applied till it reaches the global minimum. This
example demonstrates how ACEGIO-GD achieves global optimum, and the working principle
is similar for other cost functions.

As for how ACEGIO-GD improves the efficiency comparing with CEGIO, in the above
example, a possible path of optimising the cost function by CEGIO is presented on the left side
of Figure, and the optimising process of ACEGIO-GD is on the right. Comparing to the time
consumption of requesting counterexamples (orange arrow), the time consumption of Gradient
Descent (green arrow) can be ignored. Comparing the paths of optimising processes for CEGIO
and ACEGIO-GD, much fewer orange arrows for ACEGIO-GD, which means times of
requesting counterexamples are greatly reduced. Therefore, the time efficiency of ACEGIO-

 25

GD is significantly improved. The working principle can be expanded to all cost function
optimisation problem.

4.2 ACEGIO-GD-based Path Planning Algorithm

In this report, ACEGIO-F-GD is applied to solve path planning problem. Figure 8 shows the
pseudocode of ACEGIO-F-GD based Path Planning. The only difference between this
ACEGIO-GD (ACEGIO-F-GD is simply written as ACEGIO-GD) based path planning (Figure
8) and CEGIO-based path planning (Figure 2) is that Gradient Descent is applied in line 13 to
update 𝐋(") = G@𝐋("())B and J(𝐋(")) = J(G(𝐋("()))) , if ¬Joptimal in line 11 is satisfiable.
Besides, the input additionally includes a Gradient Descent function G.

Figure 8. Pseudocode of ACEGIO-F-GD based Path Planning algorithm

Gradient Descent algorithm is an optimisation algorithm which is capable to find local
optimality of optimisation problems whose cost function is differentiable. The basic idea has
been discussed in Background chapter, which is to iteratively move towards the direction of
steepest descent. Gradient descent is defined as follows.

Definition 8. For a multi-variable function F(x) which is differentiable in its whole domain.
For every point 𝐱+ of the function, F(𝐱+) decreases fastest if one moves from 𝐱+ against
the gradient of F at 𝐱+, −∇F(𝐱+). It can be described as:

 26

For every point 𝐱+ of the function, if 𝐱+*) = 𝐱+ − γ+∇F(𝐱+), n ≥ 0,
then F(𝐱+) ≥ F(𝐱+*)), (9)

where γ+ is the value of step size, which is allowed to change at every iteration, −∇F(𝐱+) is
the steepest direction of function F(x) at current point 𝐱+.

According to Eq. 4, cost function can be written as:

J(x), y), x,, y,, … , x+, y+) = ∑  +()
"') j(x" − x"*)), + (y" − y"*)),, (10)

where i is the index of points, (x", y") is point on path, n is the number of points on the path.

Assume every point on the path (x", y") ∈ ℝ,, thus the cost function of the path planning
problem can be considered as a differentiable function with 2 n variables. Combining
Definition 8 and equation 𝐋(#*)) = G@𝐋(#)B, 𝐋(#*)) can be written as:

𝐋(#*)) = G@𝐋(#)B = 	𝐋(#) −	γ#∇J@𝐋(#)B, (11)
where	𝐋 = [x), y), x,, y,, … , x+, y+], j is the index of iteration in Gradient Descent, 𝐋(#*)) is
the new decision variable vector generated by Gradient Descent.

For each variable x" or y", the partial derivate can be written as:

∇J(x") = 	
!!(!!"#

2(!!(!!"#)$*(3!(3!"#)$
+ !!(!!%#

2(!!(!!%#)$*(3!(3!%#)$
 (12)

∇J(y") = 	
3!(3!"#

2(!!(!!"#)$*(3!(3!"#)$
+ 3!(3!%#

2(!!(!!%#)$*(3!(3!%#)$
 (13)

Gradient descent G of the cost function J is defined as above equations. A new decision
variable vector 𝐋(#*)) can be achieved by following Eq. 11, Eq. 12, Eq. 13. Since every point
on the path (x", y") is assumed in the range of ℝ,, it is necessary to make the new calculated
x", y" keep k decimal places for a given precision p. Then a new optimal candidate based on
the new decision variables can be generated by Gradient Descent.

5 Trajectory planning

A desired path consisting of a set of points is achieved by previous path planning algorithms,
then trajectory planning is applied to ensure smooth movements of the mobile robot. In this
project, trajectory planning is firstly implemented on a virtual robot, in order to test the
trajectory planning algorithm and simulate robot motion in a virtual environment before
applying in real world. Robot simulation also decreases workload than directly testing the
algorithm on a physical robot. After obtaining the appropriate trajectory planning algorithm, it
is applied to a physical robot in a real pre-defined environment.

In this chapter, it will firstly discuss robot simulation tool and present steps of smooth trajectory
planning. Following this will be physical robot design and implementation.

 27

5.1 Robot simulation

VEXcode VR is a platform that allows you to code a virtual robot using a custom developed
Text-based Python interface. The virtual robot is pre-built which use drivetrains to navigate and
use pen features to code a creative drawing and record the path. Different virtual three
dimensional playgrounds are available, including a grid world, an art canvas, and a walled maze.
Besides, point of view can be controlled by users as the robot runs the code.

As the path is consisted of a sequence of straight segments, which is determined by a set of
points on the path, trajectory planning in this case takes the set of points as input and make sure
the virtual robot consecutively reaches every point on the path following the corresponding
straight segment smoothly. By repeating the following two steps, smooth robot motion can be
achieved. Step 1: rotate the robot with a certain angle in current position to make it point
towards next position. Step 2: move forward to next position.

To achieve step 1, the certain rotation angles need to be calculated. The rectangle environment
is defined in the first quadrant in Cartesian coordinate system with its left bottom at origin of
coordinate. Figure 9 shows the code of calculating the rotation angle.

Figure 9. Code of calculating the rotation angle

The angles and robot orientations are all represented relatively to X-axis in the range from -180
degree to 180 degree. The positive direction of X-axis is 0 degree, and the degrees in first or
second quadrant are positive. The certain rotation angle depends on current orientation and the
angle of intersection between next segment (current point to next point) and the positive
direction of X-axis. The function getAngleX returns a radian value of the angle between the
certain segment and positive direction of X-axis with the help of cosine and arccosine. Since

 28

the range of arccosine output is from 0 to 180, the quadrant which the angle is in can be
generated with the help of sign value (1 or -1) in function getAngleX.

The rotation angle is calculated, and robot rotation is achieved by function turnwithAngle. It
computes the angle of the next segment on the path and get the rotation angle by subtracting
current orientation from the new angle. Then rescale the angle in the range of semicircle to get
the smallest rotation angle.

To achieve Step 2, the distance of the straight segment is calculated based on Euclidian distance
formula. Then use the drivetrains to move forward with certain distance.

5.2 Physical robot

As aforementioned in background chapter, the physical robot in this report is built with Lego
Mindstorms EV3 robotics kit, which contains two motors, a programmable and intelligent brick
to use programs to control the motors, and various building components. ROBOTC is a cross-
robotics-platform programming language, and it is used to write the controlling program in this
report.

The final version of the robot is showed in Figure 10. It uses two caterpillar tracks, and each
track is consisted of a rear-wheel, a front-wheel and a rubber track, to move and rotate. And
only the two rear-wheels are connected by the two large motors. The design of the robot is
based on military tank, which has the capability to rotate in place. As the virtual robot can rotate
in place in previous robot simulation, the physical robot needs to have the same ability to ensure
smooth trajectory with applying previous trajectory planning method. It rotates by making the
rear-wheels spin with the same speed in opposite directions (one clockwise, another counter
clockwise).

Figure 10. Final version of physical robot

The previous version of robot was based on the same skeleton as rear-wheel-drive car. This
design was aborted because it did not fit well with the previous trajectory planning method,

 29

since it cannot accurately rotate without changing its current position. Besides, wheel-drive car
has more requirements on the surface than caterpillar.

The program of trajectory planning for this physical robot is similar to the previous one for the
virtual robot. It also achieves smooth motion by repeating the two steps which are
aforementioned.

6 Experimental evaluation

In this chapter, it will cover evaluation of CEGIO-based path planning algorithm, ACEGIO-based
path planning algorithm, and trajectory planning. It will also discuss achievements of the project
aims. Firstly, it will begin with the experimental objectives and description of the path planning
algorithms and trajectory planning. Next, it will introduce the experimental setup. Finally, it will
discuss the experimental results and present results analysis.

6.1 Experimental Objectives and Description

In this section, it will firstly discuss the experimental objectives and description of both path
planning algorithms as follows. To be brief, CEGIO-based path planning algorithm is labelled with
Algorithm 1, and ACEGIO-based path planning algorithm is labelled with Algorithm 2.

CEGIO-based path planning algorithm (Algorithm 1) and ACEGIO-GD-based path planning
algorithm (Algorithm 2) are evaluated and compared via following experiments. The goal of
all the experiments in different environment settings is to generate a set of points which
composed the global optimal path or a path close to the global optimal path from starting
position to target position.

Two environment settings are designed with meter as the measurement unit. The shape of both
settings is square, whose side length is 10. Starting points and target points are the same in both
settings, which is (1, 1) and (9, 9) respectively. The only difference is the obstacles. In first
setting (setting 1 in Figure 11), one obstacle is applied whose centre is in (5,5) and radius is 2.5.
In Setting 2, two obstacles are applied which are centred in (4,3) and (8,7) with 1.5 and 1 as
their radius, respectively. The safety margin in both settings is 0.5. Figure 11 shows the
obstacles with blue line and safety margin with dotted red line.

 30

Figure 11. Environment settings

In total, four experiments were conducted. For each path planning algorithm which needs to be
evaluated in this chapter, it is applied to both settings, in order to compare its performance in
different environments. For each setting, Algorithm 1 and Algorithm 2 is respectively applied
to achieve the goal, in order to compare their accuracy, efficiency, and performance in the same
environment.

Additionally, this section will discuss experimental objectives and description of trajectory
planning as follows. Trajectory planning is evaluated by applying to both virtual robot and
physical robot. Firstly, trajectory planning applied to virtual robot is evaluated. Then the
physical robot will be evaluated if the robot simulation successes. The goal of experiments for
trajectory planning is to achieve smooth robot motion (including rotation and moving forward)
based on the trajectory.

Virtual movement environment is designed as in Figure 12. The 10x10 square environment is
consisted of 100 small squares with their indices. The virtual robot in Figure 12 is at the starting
point (1, 1) and it is in small square 1. The experiment starts with (1, 1) as starting point and
makes the robot move towards a sequence of points in order, which is point (2, 6), point (4, 8)
and destination point (9, 9). The corresponding square indices of these points are 1, 52, 74 and
89, respectively.

Figure 12. Virtual environment

 31

As for experiment of trajectory planning applied to the physical robot, it takes four (2x2) square
ground tiles as experimental environment. A coordinate system is built, and the left bottom
point of the left bottom tile is set as original point, whose coordinate position is set as (1, 1).
The side length of each tile is 40 centimetres, and each side length in the coordinate system
takes 4 units. Therefore, each unit in the coordinate system is 10 centimetres. Besides,
coordinate position of physical robot depends on its geometric centre position. In Figure 13, the
position of physical robot is at (1, 1). The trajectory planning on physical robot experiment
starts with point (1, 1), and follows the sequence of points, which is point (2, 6), point (4, 8)
and destination point (9, 9). The criterion is to check whether it can achieve smooth motion
based on the desired trajectory, which is presented as the blue line in Figure 13.

Figure 13. Physical robot experimental environment

6.2 Experimental Setup

All the path planning experiments were conducted on 2.3 GHz OCTA Intel Core i9 processor
with 16GB of RAM, running macOS Catalina 10.15.6 64-bits. For each experiment, the
execution time, which is the average of five executions, is measured in seconds based on CPU
time. The maximum execution time for setting 1 and setting 2 is two days and three days
respectively. However, memory consumption is not restricted. As for software, ESBMC 6.4.0
is selected as verification tool and boolector is chosen as SMT solver.

As for trajectory planning, virtual robot is simulated via platform VEXcode VR. Besides,
physical robot is built with Lego EV3 kit and is controlled by ROBOTC based programs.

6.3 Experimental Results

In this section, it will firstly discuss experimental results of the path planning algorithms and present
the analysis. Following this will be the results of trajectory planning.

 32

The paths obtained by CEGIO-based path planning algorithm and ACEGIO-based path
planning algorithm are presented in Figure 14.

Figure 14. Paths generated by the two algorithms in different settings

For both settings, red paths in Figure 14 were obtained by Algorithm 1, and the blue paths were
obtained by Algorithm 2. For Setting 1, a path composed by five points (including starting point
and target point) was generated by Algorithm 1, and a path with seven points was generated by
Algorithm 2. As for Setting 2, a path with four points and a path with six points was obtained
by Algorithm 1 and Algorithm 2, respectively. Both algorithms in both settings suffered the pre-
set timeout.

Figure 15 shows the value of cost function in path planning problem and the values were
obtained by these two algorithms in different iteration. The iteration in abscissa represents the
times of requesting counterexamples over non-deterministic variables, which is the most time-
consuming step in both algorithms. The red line represents the tendency for cost function values
obtained by Algorithm 1, and blue line is the tendency for cost function values generated by
Algorithm 2. The cost function value continuously decreases at each iteration and converges to
the global optimality. Note that all the solutions in both scenarios are not the global optimal
solution because of the pre-set timeout, but they are very close to the global optimality.
Therefore, the aim of path planning has been achieved, since both path planning algorithms
have successfully generated paths close to global optimum within the timeout.

Figure 15. Value of cost function

 33

In Figure 15, ACEGIO-based path planning algorithm can get a solution which is closer to
global optimal solution with fewer times of iteration. Therefore, ACEGIO-based path planning
algorithm does improve the efficiency of finding a more optimized solution within the first
several iterations, comparing with CEGIO-based path planning. Hence, the extended section
goal of improving CEGIO-based path planning algorithm’s efficiency has been achieved with
assistance of Gradient Descent.

However, setting the same timeout (like three days) with CEGIO-based path planning algorithm,
the solution generated by Algorithm 2 is slightly farther from the global optimal solution. Thus,
if the timeout is the same and long enough, CEGIO-based path planning algorithm has higher
accuracy to get the solution which is closer to global optimal path. The following two points
can explain. Firstly, an appropriate step in Gradient Descent algorithm, which is determined by
the gradient and also leg length, is hard to be selected due to changes of precision. For example,
after applying Gradient Descent, the new generated decision variables, which are the points on
the path, have some possibilities to be in the range of obstacles, especially like points at the
edge of safety margin on the red path from Setting 1 in Figure 14. In this case, it is difficult to
choose a suitable step and keep the new decision variables outside the obstacles in its precision.
Secondly, there were more points on the path obtained by Algorithm 2, which takes much longer
execution time for each iteration. Although Algorithm 2 has generated a path which is greatly
close to the global optimum. However, comparing with Algorithm 1 within the same and long
execution time, Algorithm 2 has fewer iterations, resulting in solutions which are relative
farther from the global optimal solution.

With longer execution time, CEGIO-based path planning algorithm and ACEGIO-based path
planning algorithm can find a solution which is closer to global optimal solution. Note that after
several iterations, the cost function value only slightly decreases. However, the execution time
of each iteration significantly increases. Thus, there is trade-off between execution time and
how optimal the path solution is.

Additionally, the result of trajectory planning on virtual robot is in Figure 16. The black line is
the trajectory which tracks the robot motion. Following the experiments, both virtual robot and
physical robot can achieve smooth motion, including the process of rotating and moving
towards the desired position. Besides, both robots have high motion accuracy, which means the
robots will make accurate rotation and move forwards for accurate distances in order to reach
each point on the path. The results of trajectory planning are the same as the expected
experimental results. Therefore, the aims of trajectory planning have been achieved.

 34

Figure 16. Result of trajectory planning on virtual robot

7 Conclusion

In this chapter, it will firstly discuss my reflection in my project, and it will present and highlight
achievements of my project. Next, it will discuss possible future work.

7.1 Reflection

The main reason of choosing this project was originally from the path planning algorithms learnt
from Course Unit “Algorithms and Imperative Programming” in second year, including depth first
search, Dijkstra, and A* algorithm. However, all these algorithms can only solve node-based path
planning problems based on graph data structure. Therefore, CEGIO-based path planning algorithm
is a novel and refreshing approach without limitation of encoding movement environment by a
specific data structure. Besides, I was eager to dive into the interesting field that I was completely
unfamiliar with. These attracted me to choose this project.

My original project “Counterexample-Guided Optimisation Applied to Mobile Robot Path Planning”
is to develop and evaluate off-line path planning based on CEGIO algorithm. This led me to begin
my project with investigating technical background such as propositional logic, SMT solver,
Bounded Model Checking, and optimisation problem. Since I was not familiar with these areas
which were hard to comprehend, it took several weeks to choose and understand related background
materials. After comprehending the recommended materials, I implemented CEGIO-based path
planning algorithm and evaluated it with experiments in different environment settings. The
experiments generated the desired paths took several days, which achieved the project aim but was
a significantly time-consuming process. Therefore, I further proposed Assisted CEGIO-based path
planning with Gradient Descent as project extension, which can greatly improve the efficiency
theoretically. Since ACEGIO algorithm was relatively new and had never been applied to solve path
planning problem, it took several weeks on choosing the Gradient Descent as auxiliary optimisation
algorithm and applying it to path planning problem whose cost function is discrete. Then evaluation

 35

of ACEGIO-based path planning algorithm on the same environment setting was completed,
resulting in great improvement on the efficiency within specific execution time. At this point in my
project, I had completed the original project and expanded my project with proposing ACEGIO-
based path planning algorithm. Besides, development and evaluation of the proposed algorithm was
also completed as extension section in my project. Additionally, after generating the desired path,
smooth trajectory planning based on the path could be achieved. Therefore, I implemented trajectory
planning and tested it with virtual robot which realized smooth trajectory planning. Then, I built a
physical robot with Lego components and evaluated the trajectory planning in real world. In my
project, smooth trajectory planning on both virtual and physical robot has been achieved and also
been added as extension. Overall, all the aims of my project including original sections and
extension sections had been achieved.

7.2 Future work

There are two main categories for possible future work, regarding path planning environments and
ACEGIO-based path planning algorithm. Firstly, in this project, obstacles were modelled as circles,
and movement environment was modelled as square. Therefore, future work for encoding different
environment settings would be presented, which could increase the application range of CEGIO-
based path planning algorithm and ACEGIO-based path planning algorithm. Additionally, this
project proposed Gradient Descent algorithm as its auxiliary algorithm for CEGIO algorithm. There
are other algorithms like Genetic Algorithm which can also improve the efficiency of CEGIO, and
different auxiliary algorithm improves the CEGIO to different degrees. Therefore, another future
work would focus on the algorithms which could be applied to ACEGIO.

References

[1] Edwards, D., 2021. Amazon now has 200,000 robots working in its warehouses. Robotics &
Automation News. Available from: https://roboticsandautomationnews.com/2020/01/21/amazon-
now-has-200000-robots-working-in-its-warehouses/28840 [Accessed 25 February 2021].

[2] En.wikipedia.org. 2021. Motion planning. Available from:
https://en.wikipedia.org/wiki/Motion_planning [Accessed 25 February 2021].

[3] Liu, H., 2020. Robot systems for rail transit applications. San Diego: Elsevier.

[4] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 1. Available from:
https://arxiv.org/pdf/1708.04028.pdf

 36

[5] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 1. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[6] Wikipedia Contributors (2019). A. Wikipedia. Available from: https://en.wikipedia.org/wiki/A.

[7] BAJPAI, P. and M. Kumar (2010). (PDF) Genetic Algorithm - an Approach to Solve Global

Optimization Problems. ResearchGate. Available from:

https://www.researchgate.net/publication/283361244_Genetic_Algorithm_-

_an_Approach_to_Solve_Global_Optimization_Problems.

[8] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 1. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[9] R. Araujo, I. Bessa, L. C. Cordeiro, and J. E. C. Filho, “SMT-based verification applied to non-
convex optimization problems,” in 2016 VI Brazilian Symposium on Computing Systems
Engineering (SBESC), Nov 2016, pp. 1–8.

[10] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 1-2 Available from:
https://arxiv.org/pdf/1708.04028.pdf

[11] Dumitru CHITORAGA .(2019). Assisted Counterexample Guided Optimisation. The final year
project. The University of Manchester. pp. 3

[12] Dumitru CHITORAGA .(2019). Assisted Counterexample Guided Optimisation. The final year
project. The University of Manchester

[13] Wikipedia contributors. (2021a, January 29). Optimization problem. Wikipedia. Available from:
https://en.wikipedia.org/wiki/Optimization_problem

[14]Types of Optimization Problems | NEOS. (n.d.). Neos-Guide. Available from: https://neos-
guide.org/optimization-tree

[15] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 1-2. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[16] Koubaa, Anis & Bennaceur, Hachemi & Chaari, Imen & Trigui, Sahar & Ammar, Adel & Sriti,
Mohamed-Foued & Alajlan, Maram & Cheikhrouhou, Omar & Javed, Yasir. (2018). Introduction to
Mobile Robot Path Planning.

 37

[17] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 1-2. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[18] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.

[19] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 2-3. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[20] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 2-3. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[21] C. Baier and J. Katoen, Principles of model checking. MIT Press, 2008.

[22] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 2. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[23] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 2. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[24] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 2-3. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[25] R. Ara´ujo, I. Bessa, L. Cordeiro, and J. E. C. Filho, “Counterexample guided inductive
optimization,” in arXiv:1704.03738 [cs.AI], April 2017, pp. 1–32. Available from:
http://arxiv.org/abs/1704.03738

[26] R. Ara´ujo, I. Bessa, L. Cordeiro, and J. E. C. Filho, “Counterexample guided inductive
optimization,” in arXiv:1704.03738 [cs.AI], April 2017, pp. 18–24. Available from:
http://arxiv.org/abs/1704.03738

[27] Dumitru CHITORAGA .(2019). Assisted Counterexample Guided Optimisation. The final year
project. The University of Manchester. pp. 3

[28] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 3-4. Available from:
https://arxiv.org/pdf/1708.04028.pdf

 38

[29] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 3. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[30] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 3. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[31] R. Ara´ujo, I. Bessa, L. Cordeiro, and J. E. C. Filho, “Counterexample guided inductive
optimization,” in arXiv:1704.03738 [cs.AI], April 2017, pp. 18–19. Available:
http://arxiv.org/abs/1704.03738

[32] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, pp. 3-5. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[33] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 4. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[34] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 4. Available from:
https://arxiv.org/pdf/1708.04028.pdf

[35] R. F. Araujo, A. Ribeiro, I. V. Bessa, L. C. Cordeiro, J. E. C. Filho. (2017). Counter- example
Guided Inductive Optimisation Applied to Mobile Robots Path Planning, p. 5. Available from:
https://arxiv.org/pdf/1708.04028.pdf

