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Abstract  

 

This report offers an introduction to Model Checking as an automated verification 

technique and discusses the use of the Counterexample Guided Inductive Optimisation algo-

rithm as a method of approaching off-line path planning.  

It further presents a possible implementation of trajectory planning using ROBOTC as 

an Integrated Development Environment for programming a Lego Mindstorms EV3 robot.  

 

 

Acknowledgements  

 I wish to express my deepest appreciation to my supervisor, Dr Lucas Cordeiro, for 

his incredible encouragement, patience, and constant belief in my abilities to finish this pro-

ject.  

 I would also like to thank my family and friends who have supported me along my 

studies.  

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

CONTENTS 
 

Chapter 1 – Introduction .................................................................................................... 5 

1.1 Objectives and contribution ............................................................................................. 5 

1.2 Impact of COVID-19 ....................................................................................................... 6 

Chapter 2 – Path planning preliminaries ........................................................................... 7 

2.1 Optimisation Problems Overview .................................................................................... 7 

2.2 Optimization Techniques ................................................................................................. 8 

2.3 Model Checking .............................................................................................................. 8 

2.3.1 Bounded Model Checking (BMC): ............................................................................... 9 

2.4 Modelling Optimization Problems using a Software Model Checker ............................... 9 

2.5 Counterexample Guided Inductive Optimization (CEGIO) ............................................ 10 

2.5.1 CEGIO – F ................................................................................................................. 10 

2.5.2. Note on roundoff and truncation errors ...................................................................... 12 

2.6 The path planning problem ............................................................................................ 12 

2.7 Overview of path planning techniques ........................................................................... 12 

Chapter 3 – Trajectory planning preliminaries ............................................................... 14 

3.1 Lego Mindstorms .......................................................................................................... 14 

3.2 Robot Design ................................................................................................................ 14 

3.2 Software ........................................................................................................................ 14 

Chapter 4 - CEGIO-based path planning ........................................................................ 16 

4.1 Problem formulation...................................................................................................... 16 

4.2 Path planning algorithm................................................................................................. 17 

4.2.1 Modelling ................................................................................................................... 17 

4.2.2 Specification............................................................................................................... 17 

4.2.3 Verification ................................................................................................................ 18 

4.3 Experimental Evaluation ............................................................................................... 19 

4.3.1 Description and objectives .......................................................................................... 19 

4.3.2 Experimental Setup .................................................................................................... 19 

4.3.2 Experimental Results and Conclusion ......................................................................... 19 

Chapter 5 – Trajectory planning ...................................................................................... 23 

5.1 Trajectory planning implementation .............................................................................. 23 

5.2 Experimental Evaluation ............................................................................................... 24 

5.2.1 Description and objectives .......................................................................................... 24 

5.2.2 Experimental Results and Conclusion ......................................................................... 25 



4 
 

Chapter 6 – Conclusion ..................................................................................................... 28 

6.1 Reflections .................................................................................................................... 28 

6.2 Further work.................................................................................................................. 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 



5 
 

CHAPTER 1 – INTRODUCTION 
 

As society makes its shift towards a more automated future, the practice of using industri-

al and service robots to help or replace human workers is getting more and more common.  

One of the core requirements for robots such as the Tesla Self-Driving Car and iRobot 

Roomba Series is the ability to decide their next step, ideally without any human intervention. 

For this particular reason, the autonomous navigation field is experiencing a steady increase 

in demand, with the global market estimated to reach $6.15 Billion by 2025 [1].  

Robot navigation takes into account three main problems: self-localisation, path planning 

and map-building. In its most basic form, path planning can be described as the problem of 

finding a sequence of positions which allows the robot to move continuously and safely from 

one point to another. Numerous approaches to this problem can be found in literature, ranging 

from the pivotal node-based algorithms to sampling-based, mathematical model-based, bioin-

spired and multifusion-based methods [2]. 

This report is concerned only with the path planning problem and the resulting trajectory 

planning, since the method used to generate the solution can be applied only in off-line mode 

planning (i.e., planning is done before movement). It is based on the work of Araújo et al. in 

which a counterexample guided inductive optimisation (CEGIO) algorithm is used to obtain 

optimal two-dimensional paths for autonomous mobile robots [3].  

 The path planning task can be modelled as an optimisation problem, with the path encod-

ed as a decision variable and the cost function representing a given criteria or metric whose 

value is to be optimized (e.g., distance, energy consumption, and execution time) [4]. Conse-

quently, it can be solved using various optimisation techniques, such as genetic algorithm 

(GA), particle swarm optimisation (PSO), nonlinear programming (NLP) and ant colony [5]. 

These techniques have the advantage of fast processing time, but global optimality is not en-

sured.  

CEGIO employs non-deterministic representation of decision variables and performs iter-

ative executions of successive verifications based on counterexamples produced by a Boolean 

Satisfiability (SAT) or Satisfiability Modulo Theories (SMT) solver in order to achieve com-

plete global optimization without employing randomness [6]. It has been shown in previous 

studies that CEGIO is capable of solving a wide variety of functions, even non-linear and 

non-convex ones [7]. Compared to the other optimisation techniques mentioned above, which 

are usually trapped by local minima, CEGIO always finds the correct global minima [8]. 

1.1 OBJECTIVES AND CONTRIBUTION 

The objective of this project is to successfully implement the method described in the 

original paper and then use the results for the practical application of getting a robot to navi-

gate accordingly. This implies that the agent must have prior knowledge of the starting and 

target coordinates, environmental limits and obstacle data, as well as the path it must follow.  

Therefore, the main original contribution of this paper is the trajectory planning done for a 

Lego Mindstorms EV3 robot.  
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1.2 IMPACT OF COVID-19 

The practical work for this report was completed before the outbreak of COVID-

19.Therefore, there were no major changes or adjustments made in order to complete this 

project.  
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CHAPTER 2 – PATH PLANNING PRELIMINARIES 

2.1 OPTIMISATION PROBLEMS OVERVIEW 

 Optimisation is indisputably a core part of computer science, as many important ad-

vances are based on optimisation theory, such as planning and decidability problems, re-

source allocation problems and computational estimation and approximation [9].  

 Rao defines optimisation as the process of finding the parameters that give the mini-

mum value of a function, as the maximum of a function can be found by seeking the mini-

mum of the negative of the same function [10]. Therefore, the following definition is present-

ed: 

 Let 𝑓 ∶  𝑋 → ℝ be a cost function, such that 𝑋 ⊂  ℝ𝑛  represents the decision variables 

vector 𝑥1, 𝑥2, . . . , 𝑥𝑛 and 𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛)  ≡  𝑓(𝐱). Let Ω ⊂  X be a subset settled by a set of 

constraints.  

Definition 1.  A multi-variable optimization problem consists in finding an optimal 

vector x, which minimizes f in Ω [11]. 

Resulting from this definition is the following formulation of an optimization prob-

lem: 

     min     𝑓(𝒙),                                                      (1)                     

     𝑠. 𝑡.     𝒙 ∈ Ω.                                   

 A classification can be done based on the nature of the cost function 𝑓, decision vari-

ables domain and constraints. The domain 𝑋 and constraints heavily influence the size of the 

optimization search-space, thus influencing the performance of the optimization algorithms 

[12]. Depending on the type of the cost function 𝑓 (e.g., linear or non-linear, continuous, dis-

continuous or discrete, convex or non-convex, and single- or multi-objective) specific optimi-

sation techniques are employed.  

Optimisation problems with a non-convex cost function are particularly hard to solve, 

the difficulty arising from the various inflexion points that can trap the employed algorithm to 

a sub-optimal solution i.e., a solution that is not a global minimum of f, but only locally min-

imizes f. Note that the problem is necessarily non-linear in this case, and it can furthermore 

also be discontinuous [13].   

A definition for a global optimal solution for an optimisation problem is presented as 

follows:  

Definition 2.  A vector 𝑥∗ ∈ 𝛺 is a global optimal solution of f in 𝛺 iff 𝑓(𝑥∗) ≤
𝑓(𝑥), ∀𝑥 ∈ 𝛺 [14]. 

The problem of finding the global optimal solution is a particularly hard one to solve, 

research area in this field being still on its way to maturity [15]. 
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2.2 OPTIMIZATION TECHNIQUES  

The methods developed for solving the optimization problems can be divided into two 

groups, depending on whether they make use of stochastic elements. Deterministic methods 

are those that do not involve any stochastic concepts and employ a search engine, where each 

step is directly and deterministically related to the previous steps [16]. On the other hand, 

stochastic methods employ randomness to avoid the local minima and are often based on me-

ta-heuristics [17]. 

Deterministic approaches can be classified as gradient-based or enumerative search-

based. Gradient-based techniques, such as gradient-descent and Newton’s optimization, 

search for points, where the gradient of the cost function is null (∇𝑓(𝑥) = 0).  They have the 

advantage of producing fast result, however they are unusable for non-convex or non-

differentiable problems. Enumerative search-based optimization algorithms (e.g., dynamic 

programming, branch and bound, pattern search) scan the search-space by taking into account 

all possible points and compare the value of the cost function with best previous values [18].  

As of latest, SMT-based optimization techniques are being used to solve optimization 

problems. Those techniques employ non-deterministic representation of decision variables 

and lead to the global optima by using counterexamples produced by SMT solvers, which 

constrain a search-space that is symbolically defined [19]. The global optima is the set of val-

ues for the decision variables that makes an optimization proposition satisfiable [20].  

2.3 MODEL CHECKING  

Model checking is the most widely used technique for automatic formal verification 

of finite state transition systems. It consists of modelling the desired design as a finite state 

machine, with the specification formalised by writing temporal logic properties. The first 

decade of research on this topic was focused on deciding which specification formalism is 

more appropriate: linear time logic (LTL) or branching time logic, i.e computational tree log-

ic (CTL) [21].  

Research concludes that BDD-based checking is biased towards CTL and SAT-based 

checking has a bias towards LTL [22]. Furthermore, BDD-based systems can check models 

with no more than a few hundred latches, whereas SAT-based can handle instances with hun-

dreds of thousands of variables and millions of clauses [23]. 

In model checking all reachable states of the system are traversed in order to verify 

‘safety’ (what should not happen) or ‘liveness’ (what should eventually happen) properties. 

In the case of a failed property, a counterexample is generated in the form of a sequence of 

states which led to the particular failure [24].  

 This technique usually implies three separate steps. In the first step, called modelling, 

the system is converted to a formalism accepted by a verifier. The second step is the specifi-

cation, which describes the system’s behaviour and the property to be checked [25].  

Model checking provides ways to check whether a given specification satisfies a sys-

tem property, but it is difficult to determine whether such specification covers all properties 

which the system should satisfy [26]. 

Finally, the verification step checks whether a given property is satisfied with respect 

to a given model, i.e., all relevant system states are checked to search for any state that vio-

lates the verified property. In case of a property violation, the verifier reports the system exe-
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cution trace (counterexample), which contains all steps from the initial state to the property 

violating state [27].  

2.3.1 BOUNDED MODEL CHECKING (BMC):  

 Bound Model Checking originated as an attempt to replace the use of Binary Decision 

Diagrams (BDD) in symbolic model checking with SAT. BMC is based on the idea of trav-

ersing a finite prefix of states, restricted by some bound k, such that there may be a trace that 

contradicts the required property. An important remark is that the existence of a back loop 

from the last state of the prefix to any of the previous states leads to an infinite path [28].  

BMC involves the translation of the k-bounded model into a SAT or SMT instance, 

which is polynomial in the original planning problem and the bound. Compared to determin-

istic planning, which is only concerned with simple safety properties (i.e, whether and how 

the goal state can be reached), model checking also takes liveness and nested temporal prop-

erties into consideration [29]. In summary, BMC checks the satisfiability of a verification 

condition, which is the result of translating the problem into a formalism accepted by the ver-

ifier. 

Definition 4. A set of formulas {𝑝1, 𝑝2, … , 𝑝𝑛} is said to be satisfiable if there is some 

structure 𝐴 in which all its component formulas are true, i.e., {𝑝1, 𝑝2, … , 𝑝𝑛} is SAT iff 𝐴 ⊨
𝑝1 ∧ 𝐴 ⊨ 𝑝2 … 𝐴 ⊨ 𝑝𝑛 [30]. 

Definition 5. Given a transition system M, a property 𝜙, and a bound k; BMC unrolls the 

system k times and translates it into a verification condition (VC) 𝜓, which is satisfiable iff 𝜙 

has a counterexample of depth less than or equal to k [31]. 

 In BMC, the associated problem is formulated by constructing the following logical for-

mula: 

    𝜓𝑘 = 𝐼(𝑆0) ⋀ ⋁ ⋀ (𝛾(𝑠𝑗 , 𝑠𝑗+1) ⋀𝑖−1
𝑗=0 ¬ 𝑘

𝑖=0 𝜙(𝑠𝑖))                              (2)                     

where φ is a property and 𝑆0 is a set of initial states of M, and 𝛾(𝑠𝑗, 𝑠𝑗+1)  is the transition 

relation of M between time steps j and j + 1 [32].  

The above condition 𝜓𝑘  can be satisfied if and only if, for some i ≤ k there exists a reach-

able state at time step i in which 𝜙 is violated. If the logical formula is satisfiable (i.e., returns 

true), then the SMT solver provides a satisfying assignment (counterexample) [33].  

Definition 6. A counterexample for a property 𝜙 is a sequence of states 𝑠0, 𝑠1, . . . , 𝑠𝑘 with 

𝑠0 ∈ 𝑆0 , 𝑠𝑘 ∈ 𝑆𝑘  and 𝛾(𝑠𝑗 , 𝑠𝑗+1) for 0 ≤ i ≤ k that makes 𝜓𝑘  satisfiable. If it is unsatisfiable 

(i.e., returns false), then we can conclude that there is no error state in k steps or less [34]. 

2.4 MODELLING OPTIMIZATION PROBLEMS USING A SOFTWARE 

MODEL CHECKER 

As mentioned in Section 2.4, model checking involves three separate steps: modelling, 

specification and verification. In order to model and control the verification process, two 

code directives in the C/C++ programming language may be used to check desired con-

straints: ASSUME and ASSERT. The ASSUME directive can define constraints over (non-

deterministic) variables, and the ASSERT directive is used to check system’s correctness re-

garding a given property [35].  
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Any off-the-shelf C/C++ model checker that includes those two intrinsic functions can be 

used as a verification engine (e.g. ESBMC, CBMC, CPAChecker). In this report, ESBMC is 

used since it is one of the most efficient BMC tools [36].  

In the presented CEGIO-based algorithms, verification is done iteratively in order to lead 

to the global optimal result. The basic idea is to incrementally use ESBMC in order to verify 

the satisfiability of a desired property and update the value of the candidate to the cost func-

tion based on the provided counterexample.  

2.5 COUNTEREXAMPLE GUIDED INDUCTIVE OPTIMIZATION (CEGIO)  

The CEGIO technique is based on iterative executions to constrain a verification proce-

dure, in order to perform inductive generalization, based on counterexamples extracted from 

SAT and SMT solvers [37]. It employs non-deterministic representation of decision varia-

bles.  

CEGIO has been proven to successfully optimize a wide variety of functions, given a de-

sired precision for the respective decision variables, including non-linear and non-convex op-

timization problems. Based on SAT and SMT solvers, data provided by counterexamples is 

employed to guide the verification engine, thus reducing the optimization domain [38].   

Araújo et al. proposed three different versions of CEGIO, each suited for a particular 

class of problems. The Generalized Algorithm (CEGIO-G) can be applied to both convex and 

non-convex functions, the Simplified Algorithm (CEGIO-S) is best suited for problems 

where there is some prior data given about the function(e.g. semi- and positive-definite func-

tions), and the Fast Algorithm (CEGIO-F) which is applied only to convex functions. 

The main advantage of CEGIO compared to the other discussed path planning algorithms 

is that it will always find the global optimal point, though it is more time-costly depending on 

the problem.  

Since the cost function in path planning is convex and always positive, the proposed 

method is based on CEGIO-F. 

2.5.1 CEGIO – F 

The CEGIO-F algorithm requires three inputs: a cost function 𝑓(𝑥); the space for 

constraint set Ω; and a desired precision 𝜖. The output consists of the decision variables vec-

tor 𝑥∗and minimum optimal value of the cost function 𝑓(𝑥∗). 

The algorithm begins with variable declaration and initialization (lines 1-2 of Algo-

rithm 1). 𝑓𝑐
(0)

 represents a given candidate for the minimum value of the cost function. The 

auxiliary variables 𝑋 are declared as non-deterministic integer variables in order to minimise 

the state-space search.  

The variable 𝜖 reflects the number of decimal places of the decision variables values, 

𝒙. If 𝜖 = 0, then obtained solution is included in ℤ. As seen in line 3, 𝜖 starts off with the 0 

value and is incremented after each iteration of the outer loop, in order to increase the deci-

sion variables domain by one decimal place in the next iteration of the loop [39].  

The search domain Ω𝜖  is defined in line 4 with the help of the upper and lower bounds 

of the auxiliary variables 𝑋. Thus, Ω𝜖  limits are given by:  

                 lim{𝛺𝜖} = lim{𝛺} × 10 𝜖                                           (3) 
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 Then the model for the objective function 𝑓(𝑥) is defined in line 5, with consideration 

to the desired precision, i.e., 𝒙 = 𝑿/10𝜖. 

 The optimality condition is modelled as: 

               𝑙𝑠𝑢𝑏𝑜𝑝𝑡𝑖𝑚𝑎𝑙 ↔ 𝑓(𝒙) > 𝑓𝑐 −  𝛿,                                      (4)                     

where 𝛿 must be sufficiently high to reduce the effects of roundoff and truncation errors in 

computations [40]. 𝛿 can also be used with the purpose of determining the minimum im-

provement at each iteration in the cost function [41].  

At each iteration of the while loop, the algorithm checks if ¬𝑙𝑠𝑢𝑏𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is satisfiable. 

If there is a value for 𝑓(𝒙) such that 𝑓(𝒙) < 𝑓𝑐 , then the decision variables vector and mini-

mum value of cost function are updated based on the resulting counterexample, and the value 

of the candidate function 𝑓𝑐
(𝑖)

 is replaced with the new found minimum. Otherwise, the latest 

value of 𝑓𝑐  is the minimum value of the cost function for the current precision 𝜖. 

The algorithm concludes if the outer loop reaches the limit imposed by 𝜂, which rep-

resents the desired number of decimal places of the decision variables.   

                                                          

 

 

         Algorithm 1. CEGIO-F 
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2.5.2. NOTE ON ROUNDOFF AND TRUNCATION ERRORS  
The optimality condition is modelled as above in order to combat potential problems 

risen from verifiers which implement finite-precision arithmetic. Without the introduction of 

𝛿, solvers such as Z3 and MathSAT (which support floating-point arithmetic) are prone to 

roundoff and truncation errors.  

There is not much that a programmer can do about the roundoff error, since it is a 

characteristic of computer hardware [42]. However, a truncation error represents the differ-

ence between the obtained answer of a practical calculation and the actual true answer, and it 

arises from the employed program or algorithm. This type of error is unavoidable even if cal-

culation is performed on a perfect computer that had an infinitely accurate numerical repre-

sentation and no roundoff error [43].  

2.6 THE PATH PLANNING PROBLEM 

Given a random environment, path planning can be considered the task of finding a 

set of positions that connect the initial and target points. This set must abide the particular 

constraints given by the problem (e.g. must not collide with any obstacles, any two succes-

sive positions must be connected). The path finding process typically consists of firstly repre-

senting the robot and its environment and then searching for a solution. 

The parameters that define the shape of the robot determine how the robot is repre-

sented in the map. In this report the robot is considered to be a rigid object moving in a two-

dimensional plane with static obstacles, and its position can be uniquely defined by two 

point-coordinates. The obstacles are encoded using an approximate representation, all of 

them having a predetermined shape (e.g. circle, square, etc). 

The desired goal of path planning is to find the optimal solution, i.e. the path involv-

ing the minimum movement cost.  

Definition 3. An optimal path is a set of straight segments successively connected to 

guide the mobile robot from one initial point to a target point, which minimizes a cost func-

tion related to that path [44].  

Yang et al. remark on the symbiotic relationship between path and trajectory plan-

ning, by explaining trajectory planning as the problem of taking the solution from a path 

planning algorithm and determining how to move the robot along the resulting path with re-

spect to the kinodynamic constraints, i.e. velocity, acceleration [45]. 

Definition 3. A trajectory is a set of states that are associated with time, which can be 

described mathematically as a polynomial 𝑋(𝑡), and velocities and accelerations can be 

computed by taking derivatives with respect to time [46]. 

2.7 OVERVIEW OF PATH PLANNING TECHNIQUES  

Yang et al. aim to clarify on the taxonomy of path finding techniques by classifying 

them based on their approach of modelling the environment (kinematic constraints), the 

movement of the agent (dynamic constraints) and on the property of performing either on-

line or off-line. Thus, they contour five different categories: sampling-based (e.g. Probabilis-

tic Road Map, Rapidly Exploring Random Trees), node-based optimal (e.g. Dijkstra’s algo-

rithm, A*, D*), mathematical model-based (e.g. Mixed-Integer Linear Programming), bioin-

spired (e.g. Genetic Algorithm, Particle Swarm Optimisation) and multifusion-based algo-

rithms [47].  
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Sampling-based techniques require prior complete information of the workspace, i.e. 

a mathematical representation. Rapidly Exploring Random Trees (RTT) explore the configu-

ration space by sampling a new node in each step, the resulting path being the set of all sam-

pling vertices generated by the exploration process [48]. Probabilistic Road Map (PRM) on 

the other hand considers a range of choices for the states of which connections are attempted 

[49]. Both of these techniques unfortunately offer nonoptimal solutions. 

Node-based optimal algorithms encode map locations as nodes, and the cost of travel-

ling from one node to the other is represented as edge information. Dijkstra’s algorithm finds 

the shortest path in a graph which depends purely on local path cost [50]. A* can be seen as 

Dijkstra’s algorithm with an added evaluation function which consists of post calculation to-

ward the initial state and heuristic estimation toward the goal [51]. The estimation function of 

each state is usually the shortest path to the target, hence A* performs faster than Dijkstra’s. 

Because of this, A* is better suited for on-line path planning. 

Mathematic model-based algorithms consider the robot as a point and optimize by de-

scribing kinodynamic constrains in combination of polynomial forms. Linear algorithms, 

such as MILP, are able to fully describe the environment and they can also handle control 

disturbance and model uncertainty. MILP uses discrete decisions in an optimization proce-

dure, thus allowing on-line application [52].  

Bioinspired algorithms have originated from mimicking natural processes and are di-

vided into two categories: Evolutionary Algorithm (EA) and Neural Network (NN) algo-

rithm. EA includes population-based algorithms and most of them are based on the same pro-

cedures: reproduction, mutation, recombination, and selection. They are able to solve NP-

hard problems but are very time costly. The most popular algorithm of this type is the Genet-

ic Algorithm (GA), however Particle Swarm Optimization (PSO) is much faster than GA but 

coming with a downside of high parameter sensitivity. NN has the advantage of stability in 

case of sudden changes in the network, however it displays high time complexity [53].  

Finally, multi-fusion-based algorithms include methods which are made of a combi-

nation of approaches in order to achieve a fast and global optimal algorithm. They are further 

categorised into Embedded Multifusion Algorithms (EMA) and Ranked Multifusion Algo-

rithms (RMA). As an example of a RMA solution, PRM cannot compute an optimal path on 

its own, so it is combined with A*. This results in global path optimisation. 

Yang et al. offer a complete and much needed classification of path planning tech-

niques, though others can be found in literature.  
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CHAPTER 3 – TRAJECTORY PLANNING PRELIMINARIES 

3.1 LEGO MINDSTORMS 

Lego Mindstorms EV3 Home is a robotics kit designed to make computer science 

more approachable for young users by also providing an easy to understand visual program-

ming language. However, its popularity has exceeded the target clientele since the program-

mable brick of EV3 has a powerful ARM9 processor operating at 300 Mhz with a 64MB of 

RAM and 16MB of flash drive. It supports multiple programming languages, such as Java, 

C/C++ and C#, and it runs a Linux distribution as the operating system.  

The kit contains four sensors (colour, touch, ultrasonic, gyroscopic), two types of mo-

tors (large and medium) and various technical building components. The programmable brick 

has a 178 × 128 pixel monochrome LCD display with a six-button interface and it also 

comes with WiFi and Bluetooth connectivity. Connection with the computer can be done also 

via the integral USB 2.0.  

3.2 ROBOT DESIGN 

 The final version of the presented EV3 robot (Picture 1) uses front-wheel drive trans-

mission by connecting the two large motors only to the front wheels of the robot. The rear 

wheels do not have tires in order to minimise friction with the terrain. It does not make use of 

any of the previously mentioned sensors, as the objective is to implement a functionable tra-

jectory planning algorithm using only the built-in motor encoders and mathematical geomet-

rical functions.  

 The design of the robot was changed along the way based on the observational 

movement tested on a hard surface floor. Naturally, the characteristics of the environment 

heavily influence the robot’s performance: if tested on a fuzzy surface (e.g. carpet) or one 

which displays different areas of high angles of inclination, the presented robot will not move 

ideally. However, this problem is beyond the scope of this paper and is presented as a pro-

posed future improvement.  

 The previous version of the robot was based on the same skeleton, with three wheels 

on each side connected by a rubber band, similar to the caterpillar track used for military ve-

hicles. This design was aborted after observing that sections of the band do not make contin-

uous contact with the tested surface, mainly caused by the loss of elasticity over time and 

erosion of the band’s tread. This resulted in a higher movement error, the robot tending to 

displace by approximately 10 cm on the right side from the goal when a moving distance of 

100 cm is required.  

 The changes made for the final presented version improve significantly the aforemen-

tioned error, with a displacement of 1 to 2 cm in experimental evaluation. Note that this data 

is observed in the case of a fully charged battery.  

3.2 SOFTWARE 

 Coding the robot can be done in different ways based on the user’s preference to a 

particular programming language. The chosen programming method is by using ROBOTC, 

which is Integrated Development Environment (IDE) that extends the C programming lan-

guage. It comes with a large number of built-in variables and functions in order to provide 

control over the robot’s hardware components, mainly its motors and sensors. There are two 
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compiler targets: Physical Robot and Virtual Worlds, which is a high-end simulation envi-

ronment. The ROBOTC compiler has a powerful code optimizer that shrinks the program by 

half of its size before being sent to the robot.  

 

 

  

         Picture 1.  Robot built with Lego Mindstorms EV3 kit 
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CHAPTER 4 - CEGIO-BASED PATH PLANNING 
 

The main objective of a path planning algorithm is to generate points needed to guide the 

mobile robot in an environment with obstacles. Usually this implies a considerable amount of 

processing time, as the complexity of the problem increases with the number of points visited 

and the different types of obstacles. As a result, there is an obvious necessity for developing 

new methods that can be employed for optimal path finding.  

4.1 PROBLEM FORMULATION 

Using the CEGIO-based approach to the path planning problem consists on firstly formu-

lating it as an optimisation problem, then encoding the given environmental data, i.e. envi-

ronmental limits, position and radius of obstacles and finally using a path search method that 

consists of points in the movement space to find the optimal path that satisfies the given con-

straints [54]. 

Providing definitions for the cost function and problem constraints is necessary for a 

complete optimisation problem formulation.  

Definition 7.  Cost function: Given the starting point (S) and the target point (T) defined  

as 𝑆 =  𝑃1 and 𝑇 =  𝑃𝑛, the objective is to find a decision variables matrix, 

𝐿 =  [𝑃1, 𝑃2, . . . , 𝑃𝑛−1, 𝑃𝑛], such that, 𝐽(𝐿) is the path length function. The cost function is 

therefore defined as: 

𝐽(𝐿)  = ∑ ||𝑃𝑖+1
𝑛−1
𝑖=1 − 𝑃𝑖|| ,                                         (5)                     

where 𝑛 is the number of points that compose the path and for the bi-dimensional case, 

 𝑃𝑖 =  (𝑥𝑖, 𝑦𝑖) is a path vertex. Note that, if 𝑛 → ∞ the path will be a smooth trajectory; fur-

thermore, the optimization problem dimension will also tend to infinity [55]. 

Definition 8. Constraints: Each point 𝑝𝑖𝜆 that composes the i-th straight segments must 

not intercept any obstacle and must be within environmental limits [56].  

Resulting from Definitions 1, 7 and 8, the path finding optimisation problem can be writ-

ten as: 

min
𝐿

                  𝐽(𝐿), 

             𝑝𝑖𝜆(𝐿) ∉ 𝐎                                                 (6) 

                              𝑠. 𝑡.             𝑝𝑖𝜆(𝐿) ∈ 𝐄 

      𝑖 =  1, . . . , 𝑛 −  1,  

where 𝐎 is the set of points defined by obstacles; 𝐄 is the set of points defined by environ-

ment limits;  𝑛  is the number of points that compose the path; and 𝑝𝑖𝜆(𝐿) represent the set of 

points belonging to the 𝑖-th straight segment of the path defined by vector 𝐿. 

 Each 𝑝𝑖𝜆(𝐿) point is defined as:  

𝑝𝑖𝜆(𝐿)  =  (1 −  𝜆)𝑃𝑖 +  𝜆𝑃𝑖+1, ∀𝜆 ∈  [0, 1]   [57].                           (7)                     
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Regarding environmental modelling, for simplicity, we will consider the lower and upper 

limits of the decision variable set to define a rectangle, i.e the dimensions of the map. Each 

individual obstacle is associated with a set of points (𝑥𝑖, 𝑦𝑖) which define its position with 

respect to the centre of the obstacle, and a circle radius such that it surrounds the whole shape 

of the obstacle. The equation that models the interaction between obstacles and path segments 

is as follows:  

(𝑥𝑖𝜆 −  𝑥0)2  +  (𝑦𝑖𝜆 −  𝑦0)2  ≥  (𝑟 + 𝜎)2,                            (8)                     

where 𝜎 is a safety margin [58].  

4.2 PATH PLANNING ALGORITHM  

4.2.1 MODELLING  

Modelling consists of defining the constraints given by the problem, which is of utter 

importance since ESBMC is not efficient for unconstrained optimization. Note that in the 

above path finding formulation given by Eq. (6), the state-space search is therefore reduced to 

the numeric interval based on environment limits, excluding members which define static ob-

stacles. Based on this, Fig. 2 represents the resulting C code after the modelling step. 

 The matrix x holds the coordinates for each point of the path, excluding the given ini-

tial and target positions. Note that x is declared as an integer number and is initialised with 

non-deterministic values.  

The ASSUME statements in lines 21-24 are used to constrain the state-space search 

by reducing the possible values of x to be within the map limits. Additional ASSUME func-

tions are added based on preliminary conventions. Line 26 conditions path points not to be on 

the same column. Line 29 ensures that the y-coordinate of the first generated point cannot be 

equal to the y-coordinate of the given initial position. In the same fashion, line 30 ensures that 

the y-coordinate of the last generated point cannot be equal to the y-coordinate of the given 

target position. 

A function rest_points (Fig. 1) is used to insert additional constraints on the path 

points based on obstacle information. This function must be called for every individual obsta-

cle and uses Eq. (8) to assume the distance between the agent and obstacle to be within limits. 

Finally, the objective function 𝐽 is computed as the sum of the lengths of the found 

path segments.   

4.2.2 SPECIFICATION 

This second step consists of describing the system behaviour and the property to be 

checked. The result is the C program shown in Fig. 3, which will be iteratively given to the 

chosen verifier. 

An integer variable 𝑝 (line 2) is created to represent the path points coordinates preci-

sion such that 

              𝑘 > log 𝑝,                                                        (9)                     

where 𝑘 represents the number of decimal places of the coordinate variables. Now, the deci-

sion variables’ initialisation depends directly on 𝑝. For each successive execution the preci-

sion is increased by multiplying p by 10 in order to converge to an optimal solution. 
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 Another variable is needed to hold the candidate value for the cost function, called 

𝐽_𝑖. It must be initialised with a random high value for the first iteration of the verifier. For 

example, in Fig. 3 the candidate function is initialised to 25. 

 An additional constraint needs to be inserted (line 62), namely the one which models 

the assumption that the current value of the cost function 𝐽 is smaller than the new found val-

ue (𝐽_𝑖). This corresponds to line 10 of Algorithm 2, which imposes that the new value of the 

objective function must be less than the value obtained in the previous iteration. At the be-

ginning, all members of the state-space search Ω are considered optimal candidates, and this 

particular constraint helps to remove a number of candidates on each iteration.  

 To ensure convergence to the minimum point on each iteration, a final property needs 

to be modelled with the help of the ASSERT statement.  Line 63 verifies whether the literal 

𝐽𝑜𝑝𝑡𝑖𝑚𝑎𝑙  given by the formula below is satisfiable for the current value of 𝐽_𝑖.  

                𝐽𝑜𝑝𝑡𝑖𝑚𝑎𝑙  ⟺ 𝐽(𝑳) > 𝐽_𝑖                                          (10) 

 The verification procedure stops when ¬𝐽𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is found satisfiable, meaning that the 

generated counterexample will contain a value for J which is smaller than the current value 

𝐽_𝑖. If it is impossible to find an optimal solution with the current number of points, 𝑛, in the 

path, then the number of points is increased automatically. If 𝐽𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is found repeatedly un-

satisfiable, then 𝑝 must be increased as discussed above. 

Note that the value of 𝐽_𝑖 must be updated for each iterative execution with the value 

returned from the counterexample, which can be done with the help of scripts.   

4.2.3 VERIFICATION 

 In the final step of the proposed methodology, the C program shown in Fig. 3 is given 

to ESBMC as input and a counterexample will be returned in the case of an unsuccessful ver-

ification, containing a set of decision variables 𝒙 and the value of the resulting cost function. 

In the case of a successful verification of a C program, this means that ESBMC has found the 

optimal value for the specified objective function, for a precision defined by 𝑝 and number of 

points in the path, 𝑛.  

As an example, for the algorithm shown in Fig. 3, a counterexample with the follow-

ing data is generated: 𝑥[0][0] = 2, 𝑥[0][1] = 7 and 𝐽 =  12.28. These values are used for 

calculating the next minimum value of the cost function, as seen in Algorithm 2, thus getting 

closer to the global optimal solution on each iteration. Consequently, the data extracted from 

the counterexample is of crucial importance for state-space search reduction and algorithm 

convergence.  

The number of points in the path 𝑛 impacts Algorithm 2’s efficiency. As expected, the 

problem’s complexity increases as 𝑛 is updated with a bigger value. However, a large number 

of path points is not needed, since smoothness (i.e. interpolating the points found) is handled 

by trajectory planning [59].  
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4.3 EXPERIMENTAL EVALUATION 

4.3.1 DESCRIPTION AND OBJECTIVES 

This section covers two designed experiments in order to evaluate the proposed CE-

GIO-based method. Both of them share the same goal of generating the optimal path from the 

initial (I) to the target (T) point. As the robot is modelled as a point defined by two coordi-

nates, the ratio between the unit distance in the context of the path planning algorithm and 

real-life distance is 14cm, which is the diameter of the robot.  

In the first experiment, the map is a 10 × 10 square and it contains only one obstacle, 

with the centre positioned at 𝐶(𝑥, 𝑦) = (5,5) and radius 𝑟 = 2.5. The second one involves 

two obstacles, with 𝐶1(𝑥1, 𝑦1) = (3,3), 𝐶2(𝑥2, 𝑦2) = (7, 6) and 𝑟1 = 1, 𝑟2 = 2. Both experi-

ments have a value of 𝜎 = 0.5. 

4.3.2 EXPERIMENTAL SETUP 

 For the cases presented above the employed software verifier is ESBMC v6.1.0 with 

the Boolector v3.0.0 solver. The experiments were conducted in an idle Intel Core i7-8750H 

2.20 GHz processor, with 16 GB of RAM and running Ubuntu 18.04.4 64-bits. The time 

measuring unit is in seconds based on the CPU time and memory consumption is not restrict-

ed. The time presented for the first setting is the average of five executions, however due to 

the large amount of time, the second experiment was only performed once. 

4.3.2 EXPERIMENTAL RESULTS AND CONCLUSION 

 The first experiment took 6 hours to conclude and a path of two points (𝑛 = 2) was 

obtained. The second setting ended after 13 hours and found a value for 𝑛 = 5. 

 Compared to other path finding techniques described in Section 2.6, the presented 

CEGIO-based algorithm finds the global optimal solution, i.e. the shortest path, but comes at 

the expense of high execution time.  

 

 

          Fig 1. rest_points function 
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      Figure 2. C code after modelling step 
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Figure 3. C code after specification step 
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      Algorithm 2. Path planning algorithm proposed by Araújo et al. 
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CHAPTER 5 – TRAJECTORY PLANNING  

5.1 TRAJECTORY PLANNING IMPLEMENTATION 

The presented trajectory planning is implemented on a Lego Mindstorms EV3 robot 

(Picture. 1) using the ROBOTC IDE. It uses basic geometrical formulas and the built-in mo-

tors encoders in order to guide the agent in a predefined environment. As mentioned in 

Chapter 3, the following method needs to receive as input the coordinates of the path points 

resulted from the CEGIO-based path planning algorithm, along with the start and target coor-

dinates. The first experiment’s results from Section 4.3 are chosen as an example. Conse-

quently, the robot assumes that the given environment is obstacle-free, i.e. has no knowledge 

of obstacle information.  

 The designed model has the following parameters: the radius of the robot is 7 cm and 

the two front wheels have a radius of 4 cm. The robot is represented as a point coordinate and 

the starting position is conventionally oriented to the North of the map. The variable repre-

senting the orientation holds values from 0 to 359, with 0 representing the North direction. 

After each move, the new orientation of the robot is computed in order to guide its next step.  

This process can be seen in Fig. 4. The beginNextMove function takes as input the co-

ordinates for the current and target positions and the current robot orientation. The distance 

between the two input points is calculated based on the Euclidian distance formula. In order 

for the robot to turn in the right direction before moving forward, the rotation angle in com-

puted with the help of the computeRotationAngle function.  

To call this function, it is firstly needed to calculate the rotation angle relative to the 

Y-axis of the map as seen in Fig. 5. The computeAngleOy function is based on the formula 

for calculating the slope of a line.  

Definition 9. Given any two points on a line, the slope of the line is given by the for-

mula:  

𝑠𝑙𝑜𝑝𝑒 = (𝑦𝐴 − 𝑦𝐵) (𝑥𝐴 − 𝑥𝐵)⁄ , 

where  (𝑥𝐴, 𝑦𝐴) are the coordinates of the first point 𝐴 and (𝑥𝐵 , 𝑦𝐵) are the coordinates of the 

second point 𝐵.  

 The if statements adjust the output of the function with regards to the resulted value of 

the slope. This adjustment is made based on which of the four circle quadrants includes the 

aforementioned value. The output of this function is an integer ranging from 0 to 359, which 

represent the angle value in degrees.  

 This result is given as input along with the current orientation of the robot for the 

computeRotationAngle function. The function returns the difference between the input angles, 

thus obtaining the rotation angle needed before the start of the next move.  

 The for loop in the main function (Fig. 4) iteratively computes the necessary robot 

movement for the set of points. The beginNextMove function (Fig. 6) decides the complete 

movement of the robot based on the given input including the rotation (if needed) and mov-

ing forward commands. The return value is an integer representing the resulted orientation 

after the movement. It can have two different implementations, depending on the way the ro-

tation execution is wanted. More specifically, two functions are provided for this aspect: ro-

tateRight and moveRight.  
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 The moveForwardEncoder function aims to minimise the displacement error of the 

robot by adjusting the power given to each motor such that they run synchronously. Two cor-

responding functions are created for backwards movement without the balancing of power, as 

they are called only for small distances which do not result in any displacement errors.   

The first rotation function, rotateRight, provides a basic rotation to the right around 

the centre point of the robot; however, this results in a displacement of a few centimetres 

(maximum 2 cm) compared to the ideal rotation. The cause for this is concluded to be the 

lack of power for the back wheels, which would have helped by providing the necessary trac-

tion. In order to solve this problem, a moveRight function has been created.  

After the moveRight call, the robot will be rotated, however the left front wheel will 

remain in the same physical place. This function uses the moveBackwardsCM function, 

which is called in order to move the robot backwards for a distance equal to the front wheel’s 

diameter (4 cm). However, by using moveRight, the time taken to complete the path follow-

ing is greater compared to using the more straightforward function, rotateRight. This is due to 

the extra steps taken to align the robot in the perfect position. Additional display outputs have 

been added for each movement function, the scope being an easier verification during testing.  

Note that the calculation of necessary encoder ticks is different for forward and rota-

tion movement. In the case of forward movement, the function shown in Fig. 7 is used, 

whereas for rotation tickCountRotate (Fig. 8) needs to be called. The integer output of both 

functions is used as the upper limit in while statements for all movement methods. The em-

ployed technique assures a correct movement of the robot without the use of a gyroscopic 

sensor.   

As this report is focused with optimisation, is it naturally recommended to use the ro-

tateRight and respective rotateLeft functions for time efficiency, especially since the dis-

placement error is very small. If physical place precision is considered more important, then 

the version which implements moveRight should be employed. A solution that balances both 

location precision and time optimisation cannot be created with the current design of the ro-

bot.  

5.2 EXPERIMENTAL EVALUATION 

5.2.1 DESCRIPTION AND OBJECTIVES 

 This section covers the designed experiments in order to evaluate the proposed trajec-

tory planning method, based on the results of the first experiment from Section 3.3. They all 

share the same goal of reaching the target destination by following a predefined path. Since 

the robot is modelled as a point, the ratio presented in Section 3.3 is maintained.  

 The purpose of this experimentation is to see which of the two rotating functions dis-

cussed above generates the best result, as the forward command gives the expected constant 

output. The robot is tested on three different types of surfaces: hard with zero inclination ter-

rain, hard with low inclination and soft terrain. Setting 1 uses the rotateRight function and 

Setting 2 uses the moveRight function. All the experiments are performed with a power of 30 

for the motors and the results presented are the average of ten executions. 
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5.2.2 EXPERIMENTAL RESULTS AND CONCLUSION 

  All the experiments took an average time of 10 seconds to complete for the ro-

tateRight case, and for moveRight the average time was 18 seconds.  

In the first scenario, the robot moves on a hard terrain with zero inclination and uses 

the rotateRight function. This naturally gives the best time results, and the distance between 

the final position of the robot and the actual target position is 1.6 cm. In the case of using 

moveRight,, the difference between positions is of 0.9 cm, which is a significant improvement 

but comes at the cost of longer execution time.  

The second scenario consists of hard terrain with a very low inclination (smaller than 

5 degrees) and the results are as follows: a difference of 2.3 cm for rotateRight and 1.9 cm for 

moveRight.  The last scenario offers the most disappointing results. Due to the lack of friction 

between the robot’s wheels and fuzzy surface, the robot barely changes its initial position.  

Therefore, it can be concluded that the presented method is a feasible solution for tra-

jectory planning, however improvements must be made with more consideration to terrain 

characteristics.  

 

 

 

 

 

  

 

Figure 4. Main function of trajectory planning 
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Figure 5. Function that computer the robot’s orientation 

       with respect to the Y-axis of the map 

 

 

 

Figure 6. Function that controls the next step of the robot 
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Figure 7. Function that computes the amount of  

ticks needed in order to move a given distance 

 

 

                              

Figure 8. Function that computes the amount of  

    ticks needed for a rotation of given angle  
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CHAPTER 6 – CONCLUSION 
 

6.1 REFLECTIONS 

The main reason of choosing this project has been a desire to work on something that in-

volved robotics, an area completely unfamiliar which I was eager to dive into. Before the 

start of the year, I had no previous knowledge of model checking or what it entailed, and be-

cause of that I naively thought I could grasp the topic within a short amount of time. The 

Gantt chart proposed at the middle of the first semester was deemed completely inaccurate, as 

all the original self-imposed deadlines were not respected by approximately one month.   

The reason for this was due to the prolonged time that had to be dedicated to research in 

order to contextualise the original paper. Being familiar only with node-based path planning 

techniques from the second year of studies, the jump to the CEGIO-based approach was re-

freshing, but the technique was harder to comprehend. Without the appropriate level of back-

ground, the technique presented by Araújo et al. is an unsolvable puzzle.  

After reading the recommended materials, I was not confident in my understanding of 

BMC, so further research on its history has been made. Along with acquiring new infor-

mation, this has also led me to strengthen some previously learnt notions that were not pre-

cise enough. As for the software aspect, learning how the ASSUME and ASSERT work was 

the most challenging part, several try-out functions unrelated to path planning being tested.  

Regarding the trajectory planning part of the project, originally my work began on a Ar-

duino.CC robot, which was unusable at the beginning of the second semester due to technical 

failures. At the recommendation of my tutor, I switched to a Lego Mindstorms EV3 robot 

which involved building the actual robot unlike the Arduino one.  

The different versions of the robot have helped me see how much the problem changes 

and how to adjust the code accordingly, an aspect I did not think I had to consider. The final 

version of EV3 balances its weight almost evenly on its wheels, since this has shown to gen-

erate the smallest displacement error while moving. The task of programming the robot re-

quired a surprising amount knowledge of geometry, which was used in the movement func-

tions and parameter generation.  

6.2 FURTHER WORK 

 The following improvements and ideas are presented as possible further work: 

1. Autonomous robot adjustment depending on environmental characteristics 

2. Applying the CEGIO-based algorithm for multi-agent path finding 
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