
A Security Analyser for
Finding Vulnerabilities in C

Programs

The Efficient SMT-Based Context-Bounded Model
Checker Tool

Author:
Alecsandru-Catalin Balan

Supervisor:
Lucas Cordeiro

Final year project report submitted for the degree of
BSc. (Hons) Computer Science

University of Manchester
School of Computer Science

May 2020

Abstract
As modern embed software become more and more complex, the need for auto-
matic verification is now greater than ever. Numerous programs contain many
unidentified vulnerabilities, which could be exploited and could lead to faulty
behaviors, crashes, information leakage and even data theft. In order to avoid
such scenarios, automatic verification can be used for detecting hidden bugs
and vulnerabilities. This project evaluates one tool used for automatic ver-
ification, the Efficient SMT-based Bounded Model Checker, an open source
software which consists of different security check methods like: pointer de-
reference, double free, memory leaks and many others. This report presents the
tool’s architecture, components, as well as the background theory it is based
on. The effectiveness and capabilities are demonstrated by rigorous testing and
experiments show the tool’s performance compared to other existing tools. The
last section presents the achievements and reflections of this project, as well as
possible future work, with this project acting as a base.

1

Acknowledgements
My greatest thanks are expressed towards my coordinator, Lucas Cordeiro. His
support and constructive feedback helped me to overcome all the challenges
encountered during the completion of this project.

In addition, I want to acknowledge my parents and my sister for providing the
wise counsel and the moral support needed during these challenging years and
special thanks to my friends for the given recommendations and advice this
year.

2

Contents

1 Introduction 7
1.1 Motivation and Related Work . 7
1.2 Aim and Objectives . 8
1.3 Report Structure . 8
1.4 Impact of COVID-19 . 9

2 Context 9
2.1 Boolean Satisfiability and Satisfiability Modulo Theories 10

2.1.1 Boolean Satisfiability (SAT) 10
2.1.2 Satisfiability Modulo Theories (SMT) 10

2.2 Bounded Model Checker . 12
2.3 Bounded Model Checker based on SMT 13
2.4 C programs vulnerabilities . 13
2.5 Related Work . 14

3 Design 14
3.1 Architecture . 14
3.2 Handling Input . 16

3.2.1 Scalar Data Types . 16
3.2.2 Fixed Point Arithmetic 16
3.2.3 Arrays . 17
3.2.4 Structures and Unions . 17
3.2.5 Pointers . 17
3.2.6 Dynamic Memory Allocation 18
3.2.7 Floating Point . 19

3.3 Illustrative examples . 20

4 Testing and Results 23
4.1 Regression testing . 23
4.2 Concurrency testing . 23
4.3 Evaluation . 24

5 Reflection and Conclusion 26
5.1 Reflection . 26
5.2 Conclusion and Future Work . 27

3

List of Figures
1 ESBMC tool’s architecture. 15
2 C program converted into GOTO program. 20

4

Listings
1 Pointer to array example . 20
2 SSA form of the C program . 21
3 ESBMC output after running the fixed code from Listing 1 . . . 22
4 C program with global variable and faulty behaviour 24

5

List of Tables
1 Data representing conversions and run time of ESBMC 25

6

1 Introduction

In this section, we introduce the main concepts of Bounded Model Checking
(BMC), Boolean Satisfiability (SAT) and Satisfiability Modulo Theories (SMT)
as well as the motivation behind choosing this project. An overview as well
as the aim and objectives for this project are also provided. This chapter also
highlights the impact of COVID-19 and the changes that were necessary for
completing the project.

1.1 Motivation and Related Work

Over the past 3 decades, there has been a great interest for automatic verifica-
tion techniques for software systems as well as hardware systems where there
is a finite number of states. One of the earliest techniques for solving Boolean
functions is using a binary decision diagram (BDD) where, given a truth table
and its decision tree, a BDD can be created from the decision tree by maximally
reducing it using the reduction rules. The main advantage of BDD is that it
is unique for every given function and variable order. Because systems and
programs are very complex, their system state space grows exponentially, thus
creating the ‘state explosion problem’ [1]. One solution for solving this prob-
lem is Bounded Model Checking (BMC) based on Boolean Satisfiability (SAT),
method introduced as complementary to BDD. BMC will check for negations of
given properties at a given depth of the Finite State Machine (FSM). Given a
transition system T, a property φ and a depth (bound) k, BMC will unfold the
system k times and encode it into a verification condition (VC) ψ which will be
satisfiable if and only if a counterexample of φ is found at depth k or less. Due
to the growth of software complexity every year, Satisfiability Modulo Theories
(SMT) solvers are used as back-ends for solving the VC generated by the BMC.
Older work on SMT-based BMC [2] for software did not encode constructs such
as pointers, unions and bit-level operation, thus minimizing its usefulness for
verifying programs written in ANSI-C, but nowadays such tools fully supports
verification of ANSI-C programs, as well as C/C++ applications. Moreover,
this project particularly focuses on embed software written in C language, which
utilise dynamic memory allocation, one of the most common cause of unwanted
vulnerabilities such as: buffer overflow and string manipulation, with the con-
sequence of information leakage and memory overwriting. Nowadays, software
becomes more and more complex, which leads to a greater risk of creating vul-
nerabilities, thus the need of automatic verification for finding possible threats
is higher.

7

1.2 Aim and Objectives

This paper makes use of previous work on the Efficient SMT-Based Bounded
Model Checker (ESBMC) [3][4], with the aim of demonstrating the efficiency
and effectiveness of formal verification techniques to prove the absence of mem-
ory safety and undefined behavior issues in C programs. With various ap-
proaches which could be pursued for completing the project, a list of objectives
must be considered, so the general goal is correlated with the following specific
ones:

• Describing the background problem and the context. This is done by
rigorous research over the existing C vulnerabilities, in order to gain a
thorough understanding of common vulnerabilities in this environment;

• Providing enough level of detail regarding the background theories used
and the current capabilities of the ESBMC tool. Again, this is achieved
as a result of laborious research and documentation;

• Extending ESBMC in order to further enhance its ability of proving cor-
rectness of the C programs. In order to achieve this, suitable extension
must be identified, as well as documentation over the development of the
ESBMC must be made, as ESBMC is an open source project;

• Testing and evaluating the ESBMC after the implementations and then
comparing with other existing SMT-based BMC tools. This is achieved by
setting up the environment and dependencies of tools, as well as writing
suitable tests.

1.3 Report Structure

The chapters of this report cover:

• Chapter 2: Context discuss the background theory needed to under-
stand this project and to evaluate this report. Includes details of Boolean
Satisfiability and Satisfiability Modulo Theories used by the tool and it
also provides the theory behind bonded model checking. Furthermore, an
outline of the related work is given at the end of the chapter.

• Chapter 3: Design explains the architecture of the ESBMC tool and
describes the encodings used to convert the constraints and properties of
C programs into the background theories discussed in Chapter 2. It also
provides an illustrative examples of a C programs being converted as it
goes through the ESBMC pipeline, using relevant figures and listings.

• Chapter 4: Testing and Results provides the methods to measure both
the quality and performance of the ESBMC when verifying C programs
for faulty behaviors and memory safety using relevant tables and data
collected from using the tool.

8

• Chapter 5: Reflexion and Conclusion highlights the achievements
and challenges of this project, contains the student reflection for the
project and ends with a discussion for further work.

1.4 Impact of COVID-19

Unfortunately, the rapid evolution of COVID-19, from an epidemic to a pan-
demic in just a few months, has greatly influenced the last part of the project
and changes were necessary in order to ensure the project’s completion. One of
the greatest impacts the pandemic had over this project was the environment
change caused by leaving Manchester. The home desktop from Manchester was
properly set up to conduct rigorous experimentation and testing of the ESBMC
as it had all the dependencies installed. Because leaving was necessary, test-
ing and experimenting was conducted over an older version of the environment,
which did not allow for comparative evaluation with other tools, as installing
the required dependencies and tools would have taken a considerably amount of
time. Thus, the approach for presenting relevant comparison data was changed
and comparative results from other papers were used in order to prove the ef-
ficiency of the tool. Other changes were regarding the project management
aspect, because COVID-19 had quite the impact on the project planning, thus
objectives and aims dates needed to be changed accordingly with the deadlines’
change and so the project planning is not very accurate. Despite the unfor-
tunate changes caused by the pandemic, the student considers the project as
being completed, details covering the conclusion and reflection being covered in
the last chapter.

2 Context

C Bounded Model Checker (CBMC) [5] is a BMC used to check C/C++ pro-
grams for memory safety, exceptions and user-specified assertions. While it
comes with a built-in solver based on MiniSat to solve bit-vector formulas,
it also supports external SMT solvers. Building on the front-end of CBMC,
ESBMC generates the VCs for a program, converts them based on different
background theories and uses external SMT libraries to decide satisfiability of
first-order formulae. This section describes the above-mentioned background
theories and how BMC makes use of them in order to find vulnerabilities in a
C environment.

9

2.1 Boolean Satisfiability and Satisfiability Modulo The-
ories

2.1.1 Boolean Satisfiability (SAT)

Given a Boolean formula, we can say that the formula is satisfiable if and only
if, for all the interpretations of formula’s variables, there exists at least one such
that the function evaluates to TRUE. On the other hand, if for all possibili-
ties of variables interpretation, the formula is FALSE, then we say that it is
unsatisfiable.

2.1.2 Satisfiability Modulo Theories (SMT)

By replacing Boolean variables with predicates from background theories, SMT
generalize the SAT problem. Given a theory τ and a quantifier-free formula φ,
we say that φ is τ -satisfiable if and only if there exists a structure that satisfies
both the formula and the sentences of τ , or equivalently, if τ ∪ {φ} is satisfiable
[6]. Let us assume Γ ∪ {φ}, a set of formulae in the same language as τ . We
say that φ is a τ -consequence of Γ, or Γ |= τφ, if and only if every model of
τ ∪ Γ is a model of φ. Showing that Γ |= τφ holds it is clearly a problem
that can be reduced to the problem of checking the τ -satisfiability of Γ ∪ {¬φ}
[3]. The SMT-LIB [7] aims to create a common standard for the specification
of background theories, but many SMT solvers (e.g. Boolector, CVC3, and
Z3) provide additional functions apart from those specified in the SMT-LIB.
Bellowed are described fragments of SMT solvers used by ESBMC [3] for theory
of linear, non-linear, and bit-vector arithmetic:

F ::= F con F |¬F |A;

con ::= ∧| ∨ | ⊕ | → | ⇒;

A ::= T rel T |Id|true|false ;

rel ::=< | ≤ | ≥ | > | = | 6= ;

T ::= T op T | ∼ T |ite(F, T, T)|Const|Id|

Extract(T, i, j)|SignExt(T, k)|ZeroExt(T, k);

op ::= +| − | ∗ |/|rem| << | >> |&| | | ⊕ |@;

with the following notations:

• F: a Boolean-valued expression with atoms A;

• T: terms built over integers, reals, and bit-vectors;

• con: logical connectives such as conjunction (∧), disjunction (∨),
exclusive-or (⊕), implication (→) and equivalence (⇒);

• rel: relational operators <,≤,≥, >,=, 6=;

10

• bit-level operators:and (&), or (—), exclusive-or (⊕), complement (∼),
right shift (>>), and left shift (<<), concatenation;

• linear and nonlinear arithmetic operators: +, -, ∗, /, remainder (rem);

• Extract (T, i, j): bit vector extraction from bits i to j, resulting in a new
bit vector of size i - j + 1;

• SignExt (T, k): bit vector extension from size v to the signed equivalent
bit-vector of size v + k;

• ZeroExt (T, k): bit vector extension with zeros from size v to the unsigned
equivalent bit-vector of size v + k;

• ite(f, t1, t2): conditional expression with input f (Boolean formula) and
output t1 or t2 (arguments).

In order to cope with the array theories, SMT solvers use McCarthy axioms [8].
Two functions are used, the select function and the store function. Select(a, i)
simply returns the value of a at the position i, while store(a, i, v) returns the
same array as a where index i holds the value v. Formally, these functions are
described by the following axioms [9]:

• i = j ⇒ select(store(a, i, v), j) = v;

• i 6= j ⇒ select(store(a, i, v), j) = select(a, j);

Moreover, the theory of equality allows reasoning of array equality. For example,
the following Boolean expression a = b ∧ i = j can be written as select(a, i) =
select(b, j). Explicitly, two more axioms can be deduced from the array theory
[9]:

• a = b⇐ ∀i, select(a, i) = select(b, i);

• a 6= b⇒ ∃i, select(a, i) 6= select(b, i);

By using tuple theory, modelling of union and structures becomes possible.
Similar as in the array theory, tuples provide the same two functions: select
and store, but they are used on the tuple elements. The function select(t, f)
will return the constant value hold by the field f of the tuple t and store(t, f, v)
returns the same tuple as tuple t, except that the value of the field f is v.

By using decision procedure [10] SMT efficiently handles terms in the given
background theory, in comparison to SAT solvers, which need to replace all
higher-level operators by bit-level circuit equivalents, resulting in a loss of word-
level information used to formulate problems, thus scaling very poorly.

11

2.2 Bounded Model Checker

Model Checking was first proposed by Clarke and Emerson in [11] with the first
algorithms enumerating all the reachable states of a system and then checking
the correctness for a given property. This model was heavily restricted by the
number of states a system could have, so it did not scale very well with industrial
systems and was more appropriate for small designs. Model checking has three
fundamental features as described in [12]:

• It is automatic, so there is no need for user interaction in order to prove
given properties;

• Every system checked is assumed to be finite, for example, communication
protocols or digital sequential circuits;

• It makes use of temporal logic to describe the properties of the system.

Thus, Clarke et al. [2001] stated that ’model checking is an algorithmic tech-
nique for checking temporal properties of finite systems.’

Because model checking was used as complementary to BDDs, this method was
limited by the amount of memory necessary for manipulating and storing the
BDDs, so it could only check systems with around a hundred latches, as these
would be converted into formulae with a very few numbers of variables. Because
of the huge success of solving Boolean formulas using SAT, there was a great
motivation for studying the technique called Bounded Model Checking (BMC),
first proposed in [13]. In its early stages, it did not fully solve the problem
of systems complexities, but results have shown that it could handle instances
with a huge number of variables (around hundreds of thousands) and much more
clauses (even millions). Instead of the näıve approach of enumerating states and
checking the given specification, BMC focuses on generating a counterexample
of the specified property, with its execution length bounded by a variable k.
Some systems could have a pre-known upper bound, otherwise known as ‘Com-
pleteness Threshold of the design’ described by Cimatti et al. in [13] where, if
no bug is found until this bound is reached, then the verification is successful.
Although BMC aim was the same as BDD-based model checking, there were
two noticeable characteristics which made the method unique:

• It required an input the user had to provide, the bound, which would
represent the number of cycles the method had to explore, thus if the
bound is not high enough, implies that the method is incomplete;

• It opted for SAT techniques over traditional BDDs. Many experiments
showed that SAT solver outperforms BDD, moreover, many problems con-
sidered hard for BDDs were easily solved by SAT.

12

2.3 Bounded Model Checker based on SMT

In order to analyze a program, BMC will transform it into a state transition
system created from the control-flow graph (CFG)[14] which is discussed in the
next chapter. As a formal definition, a transition system M, written as M = (S,
T, S0), is an abstract machine consisting of the set of states S, the set of initial
states S0 and the transition relation T, describing possible moves from one state
to another. Assuming a transition system M, a given property φ and the bound
specified by the user k, BMC will unfold the system k-times creating the VC ψ,
where ψ is a quantifier-free formula, which will be checked by an SMT solver
for satisfiability. The following logical formula represents the above-mentioned
model checking problem [3]:

ψk = I(s0) ∧
k∨

i=0

i−1∧
j=0

γ(sj , sj + 1) ∧ ¬φ(si)

with the following notations:

• φ = the safety property for checking;

• I = the set of the initial states;

• γ(sj , sj + 1) = the transition from state j to state j+1;

The above formula is satisfiable if and only if there is a reachable state at
time I, with I < k where φ is violated. If the formula is unsatisfiable, that
means there is no error state that can be reached within the bound k. In case
of satisfiability, the BMC must generate a counterexample for the property φ,
which is represented by a sequence of states s0, s1 . . . , sk, where sk is reachable
within the bound k.

2.4 C programs vulnerabilities

As a formal definition, a vulnerability in a program is a property which violates
the CIA Triad (Confidentiality, Integrity and Availability) allowing sensitive
data to be leaked or even malicious code to be written as part of the program.
Most common vulnerabilities regarding the C/C++ language are related to
buffer overflow, such as: type overflow, array overflow, string overflow.

• Type overflow: happens when the value e of a variable v defined as type
t exceeds the maximal value of t at runtime;

• Array overflow: happens when the variable a[i] is used when i¿size a, where
a is an array of size a.

These vulnerabilities among many others are specified in detail in [15].

13

2.5 Related Work

In the early days of automatic verification, SAT-based BMC [16] was first pro-
posed as a complementary technique to BDD, but this raised new challenges,
especially in handling recursive function calls and in handling complex data
structures. The next step, as solutions to the above problems were proposed
in [5][17] and later implemented in the CBMC tool. The approach was to first
build a propositional formula to model those program traces (within an upper
bound) which violates given properties and second to use the SAT solvers to
prove the satisfiability of the resulted formulae, or to generate a counterex-
ample if the formulae is unsatisfiable. Following the solutions implemented in
CBMC, a generalization was proposed in [18] which would have programs to
be encoded into quantifier free formula, instead of propositional formula, which
later would be checked for satisfiability using SMT solvers. This approach leads
to more dense formulae when handling programs with complex data structures
(e.g. arrays), because the encoding techniques of CBMC depends on both the
size of data structures present in the program as well as the size of bit-vector
representation of basic data types, whereas the size of quantifier free formula
is independent. Experimental results obtained in [18] showed that using SMT
is more efficient, not only because some formulae generated by SAT-CBMC
where of such a size that makes solving them impractical, but also because
SMT-CBMC scales better as the size of the data structures increases.

3 Design

This chapter covers the design of the Efficient SMT-based Bounded Model
Checker (ESBMC), as well as its architecture, components and features. A
description of ESBMC encoding of C programs into SMT-solvers background
theories, introduced in the previous chapters, is also provided in this section
alongside with illustrative examples.

3.1 Architecture

When a C program is provided to ESBMC, by default, it will check for user-
defined properties, but also for pointer safety and alignment, division by zero
and array bounds violations. As an option, it can check for deadlocks, memory
leaks, overflows, and data-races. Figure 1 shows ESBMC architecture [4].

• Front-end: In its early days, ESBMC built on top of the CBMC model
checker. This included the scanning of C/C++ source and computing
its Parse tree, creating the intermediate representation of the program
(IRep) and modeling the IRep into GOTO program using the control-
flow graph generator. Now, ESBMC uses clang [19], a compiler suite
for C/C++/ObjectiveC/ObjectiveC++ widely used in industry [20], as it
provides a number of advantages for both the developers and the users: (i)
the CBMC front-end needed maintenance as the ESBMC was developing;

14

Figure 1: ESBMC tool’s architecture.

clang removed this need of maintenance, thus helping developers signifi-
cantly, (ii) it allowed ESBMC to provide both compilation error messages
and meaningful warnings when the program was parsed, (iii) the analysis
of the input code is easier with clang, as this allows for simplification of
the program (e.g. evaluate static assertion, calculate sizeof expressions).

• Control-flow Graph (CFG) generator: The CFG generator is re-
sponsible for the creation of GOTO programs. These are created from the
Abstract syntax tree (AST) of the input programs, and are a simplified
representation of the source code, because it only consists of conditional
and unconditional branches, assertions, assignments and assumptions. Ba-
sically, it removes all loops statements (for, while, do-while) and the switch
statements. At this stage, additional checks are made such as out of bound
access, division by zero and, optional, variable types overflow (e.g. inte-
ger overflow, floating-point overflow). Section 3.3 provides an ilustrative
example of a simple code piece being converted into a GOTO program.

• Symbolic execution: The GOTO symex of ESBMC performs a symbolic
execution of the GOTO programs: firstly, it will use the bound k provided
by the user to unfold the program, secondly, the unfolded program will be
converted into the static single assignments (SSA) and lastly, the safety
properties are derived from the SSA and passed to the SMT solver, in
order to be checked. At this step, dynamic memory allocation is checked
by inserting the pointer safety checks. It is mandatory for the program
to be unrolled first, so that the maximum set of dynamically allocated
structures is known in advance by the pointer analysis.

15

• SMT back-end: At the time of writing, ESBMC supports five SMT
back-ends solvers [4]: Boolector (default), Z3, MathSAT, CVC4 and Yices.
Apart from Boolector, which does not support encoding for real arithmetic
and linear integer, all solvers support encoding of arrays, tuple, bit vec-
tors, fixed-point arithmetic and floating-point arithmetic into quantifier
free formulas, which makes the back end very flexible and highly config-
urable. The SSA are converted into two sets of quantifier free formulas,
one represents the constraints, written as C and the other set represents
the properties, written as P . So the SMT-solver checks the satisfiability
of C ∧ ¬P , more precisely, C is I(s0) ∧

∨k
i=0

∧i−1
j=0 γ(sj , sj + 1) and not

P is
∨k

i=0 ¬φ(si). Depending on the result, we can say that the property
holds (up to bound k) if C |=T P is unsatisfiable, otherwise, in case of
satisfiability, a violation was found and ESBMC proceeds to generate a
counterexample, using the set of SSAs which lead to the violation of the
property.

3.2 Handling Input

For the SMT solver to determine the satisfiability problem for the properties of
a given program, it first requires the constraints and properties of the C/C++
program to be converted into the background theories described in the previous
chapter. In this section, the encoding for: scalar data types, fixed-point arith-
metic, arrays, structures and unions, pointers, dynamic memory allocation and
floating-point are briefly described, as they are detailed in [3].

3.2.1 Scalar Data Types

ESBMC comes with two approaches when modelling unsigned and signed data
types. The first approach is to use the default integers which are provided by
SMT-LIB theories. However, the second approach transforms the data types
into bit-vectors with different bit widths. Thus, int, char, long int, long long
int are treated as signedbv (while the unsigned version for these are considered
unsignedbv). Relational and arithmetic operators, described in Section 2.1, are
encoded depending on their operands’ encoding. Conversions of integers into
fixed point types is supported and performed using the functions described in
Section 2.1, precisely Extract, SignExt and ZeroExt. Bool is also converted into
signedbv and unsignedbv by using the ite function and the reverse conversion
is possible, by comparing singedbv and unsignedbv to constants representing
zero.

3.2.2 Fixed Point Arithmetic

Non integral numbers are used in many application domains such as telecom-
munication and discrete control, so ESBMC uses two approaches for encoding
those numbers: binary, for bit-vector arithmetic and decimal for rational arith-
metic.

16

Every rational number has an integral number I and a fractional number F ,
with m being the number of bits for representing I and n the number of bits
used by F . Thus, ESBMC represents the number as the pair 〈I.F 〉 which can
be interpreted as I+F/2n. As an example, 0.25 is represented as 〈0000.01〉 and
3.125 is 〈0011.001〉. Fixed-point arithmetic encoding depends on the approached
used and is encoded as either bit-vector arithmetic or rational arithmetic by
rounding. For bit vector arithmetic, operands must have the same bit widths
for both the integral and fractional part. In order to achieve same bit width,
the shorter bit sequence is extended with 0’s from the left, if there are missing
bits before the radix point, or from the right otherwise. For rational arithmetic
by rounding, the fractional part F is divided by 2n, the result being rounded
to a given number of decimal places, the integer part is extracted as it is and
everything is converted into a rational number in base 10. As an example, if
m = 2, n = 8, 4 decimal places, the number 2.7 (〈10.10110011〉) is converted
to: I = 2, F = 179/28 and then rounded to 26992/10000. With this approach,
speed and accuracy are traded off, but multiple SMT background theories can
be explored, this is detailed in [3].

3.2.3 Arrays

Because of the functions store and select presented in Section 2.1 of the array
theory, arrays are encoded with ease. For example, the assignment value =
array[i] can be mapped using the select function and is encoded as value =
select(a, i) and array’ = array WITH [i:=v] is encoded as array’ = store(array,
i, v). The only problem is the array out of bounds which can cause a program
to crash, because in a program, the arrays are bounded, but in array theory,
they are not. But ESBMC easily checks for this violation by simply generating
VCs provable if and only if the indexing is within the bound, which ESBMC
keeps a track of.

3.2.4 Structures and Unions

As for the arrays, encoding of structures and unions is done using the store and
select functions from tuples theory. The expression store(t, f, v) returns a tuple
t, where the value of field f is v. Unions are encoded in a similar matter, the
only difference being an additional field l, which holds a number indicating the
last field used for writing.

3.2.5 Pointers

For pointers encoding, ESBMC creates a tuple p with two fields:

• p.o: representing the object being pointed at by the pointer. This can be
dynamically updated using the store function from tuple theory, depend-
ing on the changes of the object.

17

• p.i: representing the offset of that object. This depends on the object
type, as pointers could point to an array (in which case p.i is the index),
a scalar (in this case, p.i is fixed to 0) or a structure (here, p.i represents
the field of the structure).

Formally, regarding pointer property like: SAME OBJECT, LOWER BOUND,
UPPER BOUND and INVALID POINTER, different literals are used with the
following constraints:

• l same object ⇔ pa.o = pb.o;

• l lower bound ⇔ ¬(pa.i < bl) ∨ ¬(pa = pb);

• l upper bound ⇔ ¬(pa.i ≥ bu) ∨ ¬(pa = pb);

• l invalid pointer ⇔ (p.o 6= ν) ∧ (p.i 6= η);

Where bl is the lower bound of object b, bu is the upper bound of object b, ν
represents an invalid object and η is the encoding of the NULL pointer. A more
detailed encoding of pointers is described by Cordeiro et al [3].

3.2.6 Dynamic Memory Allocation

Using dynamic memory allocations in embed software is a very discussed subject
and although most disagree with this method, there are many programs that
use dynamic memory allocations and ESBMC can deal with the use of functions
malloc and free. By using the SMT solver theory on arrays and modelling the
memory into an array of bites, basic operations of write and read on this array
are converted to the logic level. Thus, three properties are checked by the
ESBMC: (i) any call of malloc, free, or other dereferencing operations have as
argument a dynamic object, (ii) free and dereferencing operations are called
only on valid objects, (iii) the memory allocated using malloc is deallocated
before the end of the execution. Thus, as for the pointer properties, three literals
are used by ESBMC in order to check these properties:

• l is dynamic object: checks whether the object is dynamic and between
the memory bounds:

l is dynamic object⇔ (

k−1∨
n=0

do.pj = n) ∧ (0 ≤ 1 < n)

• l valid object: checks whether the object is alive, by using one additional
bit, which is true when malloc is called for the object (denoting is still
alive) and false when free is used on the object (denoting is no longer
alive):

l valid object⇔ (l is dynamic object⇒ do.ν)

18

• l deallocated object: checks whether all the objects have been deallocated,
at the end of the unfolded program:

l deallocated object⇔ (l is dynamic object⇒6= do.ν)

Here, do represents a dynamic object, which is identified using the pointer p
(which is bounded by k, so 0 ≤ p < k) and k is the number of dynamic objects.
The dynamic object does also consist of m, representing the memory array with
size n bytes and ν is the additional bit used for validating do.

3.2.7 Floating Point

In addition to the SMT standards, the SMT floating point theory was first
proposed by Rummer and Wahl [21] in 2010 and deals with floating point arith-
metic, comparison and arithmetic operators, NaNs, positive and negative infini-
ties and zeroes, covering almost all the operations performed by the program
and the encoding is that described above. The only limitations are casts on
Boolean type and equality operators, which will be briefly described, as they
are detailed in [22].

In order to deal with the with the encoding, ESBMC comes with two approaches:
(i) Using the SMT theory of floating points (fully available in Z3, but partially in
CVC4), (ii) using bit vectors, allowing support for all integrated solvers of float-
ing point arithmetic. SMT-LIB provides two non-standard function for convert-
ing floating point into and from bit vectors: fp as ieebv and fp from ieebv.

• In order to deal with Boolean casting, the ite function is used and returns
either 1.0 if the Boolean evaluates to true, or 0.0 otherwise. On the
other hand, conditional assignments are used to encode floating points
into Boolean: true if the floating point is anything but 0.0, false if it is
0.0.

• Assignments and equality of bit vectors can be encoded with the equality
operator (==), however, this dose not follow the SMT standard, which
instead defines the fp.eq operator which is capable of handling special
symbols, e.g. NaNs. The operator (fp.eqxy) returns true, if x is negative
zero and y is positive zero, or if x is positive zero and y is negative zero.
In case of an argument being a NaN , the fp.eq will return false. Thus,
ESBMC uses the fp.eq operator to encode the equality of floating points,
while the equality operator is only used for assignments.

19

3.3 Illustrative examples

This section provides illustrative examples of pieces of code being transformed
into quantifier free formulas and encodings of different elements to further en-
hance the understanding of ESBMC capabilities. Figure 2 shows the conver-
sion of a C program to a GOTO program, described in the ESBMC architec-
ture.

Figure 2: C program converted into GOTO program.

Consider the C program from Listing 1, where the array a is initialised in a
for loop and the pointer p points to a (line 8). Obviously, this program contains
an array out of bounds, as i is initialised with 3 in line 3, line 10 violating the
bounds property. ESBMC is able to spot the violated property by checking that
i0 < 3. Assuming that the bug is fixed and the C program initialises i with 2.
ESBMC unfolds the program and transforms it into the SSA form as shown in
Listing 2.

1 int main ()
2 {
3 int a [3] , x , i = 3 , ∗p ;
4 for (int j = 0 ; j < 3 ; j++)
5 {
6 a [j] = j + 1 ;
7 }
8 p = a ;
9 i f (x == 0)

10 a [i] = 0 ;
11 else
12 a [i −1] = 0 ;
13 a s s e r t (∗ (p+2) == 0) ;
14 }

Listing 1: Pointer to array example

20

This consist of assignments, where every variable is unique (e.g. the j integer
from the for loop is replaced with j0 , ... j3). As described in Section 3.2.3, the
WITH symbolic notation of the SSA is replaced with store function from the
SMT theories.

i@1 !0&0#1 == 2
j@1 !0&0#1 == 0
a@1!0&0#1 == (a@1!0&0#0 WITH [0 : = 1])
j@1 !0&0#2 == 1
Unwinding loop 1 i t e r a t i o n 1 f i l e t e s t 2 . c l i n e 4
a@1!0&0#2 == (a@1!0&0#1 WITH [1 : = 2])
j@1 !0&0#3 == 2
Unwinding loop 1 i t e r a t i o n 2 f i l e t e s t 2 . c l i n e 4
a@1!0&0#3 == (a@1!0&0#2 WITH [2 : = 3])
j@1 !0&0#4 == 3
Unwinding loop 1 i t e r a t i o n 3 f i l e t e s t 2 . c l i n e 4
p@1!0&0#1 == &a@1 ! 0 [0]
guard@0!0&0#1 == (x@1!0&0#0 == 0)
a@1!0&0#4 == (a@1!0&0#3 WITH [2 : = 0])
a@1!0&0#5 == a@1!0&0#3
a@1!0&0#6 == (a@1!0&0#5 WITH [1 : = 0])
a@1!0&0#7 == (guard@0!0&0#1 ? a@1!0&0#4 : a@1!0&0#6)
\guard exec@0 ! 0 => a@1!0&0#7 [2] == 0

Listing 2: SSA form of the C program

Using the SSA form, ESBMC builds the constraints C and the properties P
described bellow, using the background theories.

C :=

i0 = 3 ∧ j0 = 0
∧a1 = store(a0, j0, j0 + 1) ∧ j1 = j0 + 1
∧a2 = store(a1, j1, j1 + 1) ∧ j2 = j1 + 1
∧a3 = store(a2, j2, j2 + 1) ∧ j3 = j2 + 1
∧p1 = store(p0, 0, a)
∧p2 = store(p1, 1, 0) ∧ g1 = (x1 = 0)
∧a4 = store(a3, j2, 0)
∧a5 = a3
∧a6 = store(a5, j1, 0)
∧a7 = ite(g1, a4, a6)
∧p3 = store(p2, 1, select(p2, 1) + 2)

P :=

j0 ≥ 0 ∧ j3 < 3
∧i0 ≥ 0 ∧ i0 < 3
∧i0 − 1 ≥ 0 ∧ i0 − 1 < 3
∧select(p3, select(p3, 1)) = a
∧select(select(p4, 0), select(p4, 1)) = 0)

21

The assertion made in line 13 is checked by first adding 2 to the value of pi. This
is done in the last store operation from C. The select functions from P check if
the pointer and the array point to the same memory location. The verification
fails because the SAME OBJECT property is violated and a counterexample is
generated, as shown in Listing 2.

VERIFICATION FAILED
Bui ld ing e r r o r t r a c e

Counterexample :

State 1 f i l e t e s t 2 . c l i n e 6 function main thread 0
main
−−

a [0] = 1 (00000000000000000000000000000001)

State 2 f i l e t e s t 2 . c l i n e 6 function main thread 0
main
−−

a [1] = 2 (00000000000000000000000000000010)

State 3 f i l e t e s t 2 . c l i n e 6 function main thread 0
main
−−

a [2] = 3 (00000000000000000000000000000011)

State 4 f i l e t e s t 2 . c l i n e 12 function main thread 0
main
−−

a [1] = 0 (00000000000000000000000000000000)

State 5 f i l e t e s t 2 . c l i n e 13 function main thread 0
main
−−
Vio lated property :

f i l e t e s t 2 . c l i n e 13 function main
a s s e r t i o n
(Bool) (∗ (p + 2) == 0)

Listing 3: ESBMC output after running the fixed code from Listing 1

22

4 Testing and Results

This chapters presents how ESBMC was tested in order to prove the absence of
memory safety and undefined behavior issues in C programs. Moreover, evalua-
tion on ESBMC speed of generating GOTO programs as well as generating VCs
is presented in order to demonstrate the efficiency and effectiveness of formal
verification techniques.

4.1 Regression testing

Regression testing was mandatory to ensure that previous developed software
performs as expected during the implementation of new components. ESBMC
allows for regression testing, as this contains a python binding, which provides
access to ESBMC internal API’s and data structures using python language.
Running the testing tool provided by ESBMC would return enough information
in order to determine new bugs resulted during implementation and help de-
bugging, because it dynamically generates unit tests and identifies the specific
parts of the ESBMC that failed. In order to mitigate bugs as much as possible
and to ensure that previous state of the software could be reached, Git was
used for storing the project, because of its capabilities of controlling systems
and tracking changes during development. Thus, control of the implementation
as well as a better evaluation were ensured, which helped achieving this project
aim.

4.2 Concurrency testing

Because C language allows running threads with shared memory, this could lead
to a numerous of bugs and/or undefined behavior of programs. Most reliable for
proving ESBMC capability of detecting such behaviors are concurrency tests,
which validates different aspects of concurrency: mutexes, atomicity, race con-
ditions, locks and others. For example, the code from Listing 4 [23] provides a
simple lock created using C language, where LOCK is a global variable in line
1 and two functions, lock a Bool type in line 4 and unlock a void type in line
13, use it in order to lock and unlock the variable (change its value to 1 and 0
respectively). This program is considered to have an unbounded loop, the while
from line 22 has no run-time bound. The option −− unwindx allows ESBMC
to unroll the program a number of x times. The verification is successful if
the unwinding assertion are off, which means that the first run of the program
does executes as expected, however, if we set a bound to the program, ESBMC
can spot the faulty behavior and generate a counter example for any K ≥ 2,
meaning that starting from the second iteration, the program does not execute
correctly. It is important to notice that, in this case, the program correctness
is not proved, however, ESBMC is able to find bugs.

23

1 Bool LOCK = 0 ;
2 Bool nondet boo l () ;
3
4 Bool l o ck () {
5 i f (nondet boo l ()) {
6 a s s e r t (!LOCK) ;
7 LOCK=1;
8 return 1 ;
9 }

10 return 0 ;
11 }
12
13 void unlock () {
14 a s s e r t (LOCK) ;
15 LOCK=0;
16 }
17
18 int main () {
19 int t ;
20 unsigned i s l o c k e d = 0 ;
21
22 while (t > 0) {
23 i f (l o ck ()) i s l o c k e d = 1 ;
24 i f (i s l o c k e d != 0) unlock () ;
25 i s l o c k e d = 0 ;
26 t−−;
27 }
28 }

Listing 4: C program with global variable and faulty behaviour

4.3 Evaluation

As there are a lot of components that need to be computed in order to validate
a program, the speed as well as the effectiveness must be mandatory properties
of the ESBMC tool. The data presented in Table 1 is collected from running
ESBMC on a few of the concurrency tests which shows how effective conversions
are made. The back end SMT solver used for validating these programs is
Boolector v.3.2.0 [24]

24

Boolector v3.2.0

Program L C B
GOTO
time

Symex
time

Runtime
decision

Verification
Output

assume1 15 2(1) 1 0.074 0.0 0.001 (T)Failed
atomic
section 1

16 2(1) 1 0.083 0.0 0.001 (T)Successful

atomic
section 5

34 1(1) 1 0.072 0.001 0.0 (T)Successful

cond
spawn 1

37 14(2) 1 0.108 0.02 0.001 (T)Failed

global
pointer

33 26(2) 1 0.078 0.002 0.005 (F)Successful

loop 12 1(1) 5 0.069 0.0 0.0 (T)Failed
malloc 28 14(6) 1 0.097 0.001 0.004 (T)Failed
recursion 28 1(1) 10 0.064 0.0 0.0 (T)Failed
simple
lock

28 35(34) 17 0.076 0.003 0.035 (T)Failed

Table 1: Data representing conversions and run time of ESBMC

Here, Program is the name of the concurrency test from the artefact, L repre-
sents the number of lines of the program, C is the number of constraints cre-
ated by ESBMC x before the simplification and (y) the remaining constraints
after simplification and B represents the unwinding bound. The GOTO time
represents the time it took to create the GOTO programs from the control
flow graph(CFG) discussed in Chapter 3, while the Symex time represents the
symbolic execution of the GOTO programs. We can clearly see that the tool
performs extraordinary well when generating GOTO programs and even better
while executing them. This is also backed up by the choice of the SMT-solver,
Boolector in our case, which has been proved in [3] by rigurous evaluation to
perform better than other available SMT-solvers. Lastly, the verification out-
put represents if a bug was found in one of the test, where (T) means that
ESBMC did manage to make correct assertions of the test, and (F) means that
the ESBMC fails to verify the program, due to known bugs.

A detailed comparison of different SMT solver being used as back ends, as well as
a direct comparison between ESBMC and others BMC is described by Cordeiro
et al. in [3]. The experiments showed that both Boolector and Z3 performs
extraordinary well, compared to CVC3, due to the fact that they use memory
more efficient and so memory overflow is absent for both Boolector and Z3,
while also being more efficient in solving the background theories, where time
is significantly less. Compared to SAT-version of CBMC, ESBMC noticeably
outperforms CBMC in both time and memory, as being more precised and
scalling significantly better for programs involving non-linear arithmetic, bit
vectors and structures manipulation.

25

5 Reflection and Conclusion

The project’s objective was to prove the absence of faulty behaviors and memory
safety in C programs. This was motivated by the need of automatic verification,
especially for enterprise grade software, where vulnerabilities can easily go un-
detected, until they are exploited. This was achieved by testing and evaluating
the performance of ESBMC tool.

5.1 Reflection

The student had prior knowledge regarding Boolean Satisfiability and Satisfi-
ability Modulo Theories, which greatly helped in understanding back end pro-
cesses. However, this project greatly enhanced the student understanding of
Bounded Model Checking, especially based on SMT. The student had previ-
ous experience with C/C++ programing languages and this project helped in
further enhancing programing skills. Several challenges were encountered while
working on this project. ESBMC is an open source software in continuous de-
velopment, so the student had to ensure that the latest version was used for
testing. One major challenge was the upgrade of building the ESBMC tool. In
the beginning this was done by using a configure script, but after two months
since the beginning, a rebase was done so that the tool would build using cmake
[25], but a building guide was available only after three months from the update,
so the student had to work with an older version for the time being. Another
obstacle was setting up the environment for the tool. ESBMC makes use of
several dependencies, some of which are very difficult to install due to lack of
documentation. One major constant obstacle was the lack of proper equipment
for this project, explicitly the student did not use a laptop for creating the en-
vironment in the beginning, but a home desktop was used instead. This led to
inconsistent progress, as consultation with the coordinator was online. Finally,
this is the first long term individual project of the student. Thus, the student
learnt relevant lessons regarding project management, the most important be-
ing to take clear notes, which can be used throughout the project, as well as
to create a project journal, which would clearly show the progression of the
project. Regarding the above-mentioned challenges, as well as the ability to
address them, the student considers this project a success. Through rigorous
testing, the tool’s efficiency has been proved and the proposed objectives have
been completed. The student presented a theoretical understanding of the main
concepts covered by this project, but had no practical experience, so laborious
research and documentation was conducted throughout the whole duration of
the project, ranging from understanding ESBMC to experimental evaluation of
different existing automatic verification methods implemented by other BMC
tools. If the project was to be completed again, several changings would be made
regarding different approaches taken and decisions made. First, a laptop would
be the appropriate choice of equipment for developing, as this allows feedback
with progress being presented face to face. Secondly, the student would create
issues within the tool’s GitHub, allowing indications and solutions directly from

26

the developers, which would have speed up the progress significantly. Lastly,
the student would make use of available software such as Trello or OneNote,
which would considerably help with the project management aspect.

5.2 Conclusion and Future Work

Within a limited time, the student managed to demonstrate the efficiency and
capability of automatic verification of an open source tool, thus proving high un-
derstanding of the presented concepts. During this time, the student improved
his knowledge significantly for a broad range of domains, while also elevating
interest for this specific field, which is heavily researched.

The results presented could act as a base for further improvement of this project,
which consist in verification of large embed software written in C used in secu-
rity domain. Numerous encryption applications such as OpenSSL, OpenSSH,
PuTTY are written in C and potentially contain numerous bugs which could
be identify using ESBMC.

Improvement could be made on the front-end of the ESBMC as currently this
is hard to maintain due to its huge size. One proposed solution was writing a
front-end based on C++ clang, which would also allow automatic verification
of C++ programs which use the standard template library (STL).

One addition to this tool would be the creation of a GUI, which would greatly
help users getting started with ESBMC, as currently there is no documentation
on that part and new users must be self-taught.

27

References

[1] Clarke E.M., Klieber W., Nováček M., Zuliani P. , Model Checking and the
State Explosion Problem. [In: Meyer B., Nordio M. (eds) Tools for Practical
Software Verification] 2012.

[2] A. Armando, J. Mantovani, and L. Platania Bounded model checking of
software using SMT solvers instead of SAT solvers [In: SPIN, LNCS 3925,
pp. 146–162.] 2006.

[3] Cordeiro, L., Fischer, B., and Marques-Silva, J., SMT-Based Bounded Model
Checking for Embedded ANSI-C Software [In: IEEE Transactions on Soft-
ware Engineering (TSE), v. 38, pp. 957-974, IEEE] 2012.

[4] Gadelha, M., Monteiro, F. R., Morse, J., Cordeiro, L., Fischer, B., Nicole, D.,
ESBMC 5.0: An Industrial-Strength C Model Checker [In: 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pp.
888-891] 2018.

[5] E. Clarke, D. Kroening, and F. Lerda, A tool for checking ANSI-C programs
[In: Intl. Conf. on Tools and Algorithms for the Construction and Analysis
of Systems (TACAS), LNCS 2988, pp. 168–176] 2004.

[6] A. R. Bradley and Z. Manna, The Calculus of Computation: Decision Pro-
cedures with Applications to Verification. [In: Springer] 2007.

[7] SMT-LIB, The Satisfiability Modulo Theories Library,
http://combination.cs.uiowa.edu/smtlib, 2009

[8] J. Mccarthy, Towards a mathematical science of computation [In: IFIP
Congress. North-Holland, pp. 21–28] 1962.

[9] R. Brummayer and A. Biere, Boolector: An efficient SMT solver for bit-
vectors and arrays [In: Intl. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), LNCS 5505, pp. 174–177] 2009.

[10] L. M. de Moura and N. Bjørner, Satisfiability modulo theories: An appetizer
[In: Brazilian Symposium on Formal Methods (SBMF), LNCS 5902, pp.
23–36] 2009.

[11] E. M. Clarke and A. Emerson, Synthesis of synchronization skeletons for
branching time temporal logic [In: Logic of Programs: Workshop, Yorktown
Heights, volume 131 of Lecture Notes in Computer Science, pages 52–71.
Springer-Verlag] 1981.

[12] Clarke, E., Biere, A., Raimi, R. et al. Bounded Model Checking Using
Satisfiability Solving [Formal Methods in System Design 19, 7–34] 2001.

[13] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, Symbolic model checking with-
out BDDs [In Proc. of the Workshop on Tools and Algorithms for the Con-
struction and Analysis of Systems (TACAS’99), LNCS. Springer-Verlag]
1999.

28

[14] S. S. Muchnick, Advanced compiler design and implementation [In: Morgan
Kaufmann Publishers Inc.] 1997.

[15] Technical report of the joint FCP Russian-French grant Nr. 02.514.12.4002,
Step 4.

[16] Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y., Symbolic model checking
without BDDs [Cleaveland, R., ed.: Proceedings of TACAS99. Volume 1579
of Lecture Notes in Computer Science., Springer193–207] 1999.

[17] Kroening, D., Clarke, E., Yorav, K, Behavioral consistency of C and Verilog
programs using bounded model checking [In: Proceedings of DAC03, ACM
Press 368–371] 2003.

[18] A. Armando, J. Mantovani, and L. Platania, Bounded model checking of
software using SMT solvers instead of SAT solvers [In: Int. J. Softw. Tools
Technol. Transf., vol. 11, no. 1, pp. 69–83] 2009.

[19] B. C. Lopes and R. Auler, Getting Started with LLVM Core Libraries [In:
Packt Publishing] 2014.

[20] C. Metz, ”Why Apple’s swift language will instantly remake computer pro-
gramming.”
http://www.wired.com/2014/07/apple-swift/ 2014

[21] Rümmer, P., Wahl, T., An SMT-lib theory of binary floating-point arith-
metic [In: SMT Workshop] 2010.

[22] Gadelha, M. Y. R., Cordeiro, L. C., Nicole, D., Encoding floating-points us-
ing the SMT theory in ESBMC: An empirical evaluation over the SV-COMP
benchmarks [In: 20th Brazilian Symposium on Formal Methods (SBMF),
LNCS 10623, pp. 91-106] 2017.

[23] The CProver User Manual [online]
Available from: https://www.cprover.org/cbmc/doc/manual.pdf

[24] Boolector SMT solver [online]
Available from: https://boolector.github.io/

[25] Cmake, designed to build, test and package software. [online]
Available from: https://cmake.org//

29

