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Abstract — Software Product Lines (SPL) is an efficient 

software engineering approach for dealing with reusable 

components in products that not only share common features, 

but also support specific functionalities that satisfy a 

particular market segment. This approach is interesting for 

the consumer electronics industry, particularly for mobile 

device applications. Despite having a significant common 

core, software applications developed for that domain have to 

be frequently adapted to different device features, such as 

operating systems and screen resolution. Thus, developers 

need to select proper software components to suitably 

compose the applications for each new device in a family of 

devices. In this paper, an approach that is able to customize 

consumer electronics software applications for different 

devices, in a dynamic and automated way, is presented. It 

results in a tool called AppSpotter that composes applications 

by selecting software components according to the features of 

each target device. To check the tool’s performance, a set of 

experiments were realized in order to simulate different 

scenarios with up to 10,000 components 
1
. 

 
Index Terms — Product derivation, Dynamic software 

product lines, Mobile applications, Dependency injection. 

I. INTRODUCTION 

Since diverse consumer electronic devices started providing 

interactive services, the amount of applications and possible 

uses for these devices grow exponentially [1]. This trend has 

been established throughout recent years supported by the 

increasing evolution of existing infrastructure and the even 

more powerful new generation of devices and applications [2], 

[3]. In fact, the development of software for such system is an 

even more challenging task [4], [5]. 

The growing need for providing support for a variety of 

platforms available in the market (from low-end to high-end 

devices) is perhaps one of the most important challenges faced 

by consumer electronics software application developers [6], 

[7]. These developers need to produce several versions of the 
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same application in order to deal with particular features. 

Indeed, the variation in features among devices suggests that 

portability requirements play an important role, as it is not 

economically viable to produce software only for a few 

devices (i.e., a small fraction of customers) [8]. Moreover, the 

poor adaptation of content for consumer electronics device 

might negatively affect users’ Quality of Experience (QoE) 

[9]. For example, an application designed to smartphones may 

face problems related to screen size and resolution when 

running on a tablet. Therefore, one important requirement is to 

adapt the content according to the capabilities of target devices 

[10]. For such cases, Software Product Lines (SPL) seems to 

be a promising development technique, since it explores the 

similarities and diversities among related products. 

In fact, SPL Engineering (SPLE) is a software engineering 

approach focused on improved productivity and efficiency, 

i.e., it reduces costs and time-to-market while improving the 

quality and reliability of the resulting products [11], [12]. 

SPLE aims at building a unique platform of software-related 

assets to be used during the development of individual 

products. As a result, a family of related products can be built 

by large-scale reuse of that unique platform. 

Several authors have addressed SPLE, in its various aspects, 

to the consumer electronic devices domain and most 

specifically to the mobile devices domain [8], [13]-[15]. One 

of the most frequently discussed topics is the large number of 

features present in those devices. The variation of these 

features may result in a significant amount of variability in 

software. That is, besides market or users needs, the selection 

of alternative versions of software components also depends 

on technical limitations that include factors such as device 

capabilities, e.g., sensors, processing power, screen resolution, 

communication technologies, and operating systems [16]. 

Hence, the development of mobile applications becomes even 

more complex and the process of selecting proper software 

components becomes error-prone, time-consuming, and 

manually impracticable [17]. In addition, it is difficult to 

anticipate all possible versions of applications and it is 

improbable that applications specially designed for one device 

can be fully compatible with a different one without 

adjustments. These problems bring about the need for an 

approach to address the construction of software applications 

for this domain in a dynamic and automated way. 

Product Derivation (PD) in SPLE refers to the construction 

of individual products from the software-related assets of a 

SPL [17]. It includes the selection, composition, and 

customization of these assets to deal with a specific SPL 

product and to satisfy the customer's requirements [18]. The 
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dynamic and automated PD associated with Dynamic SPL 

(DSPL) techniques [19] seems to be a promising approach for 

the handheld domain. It can be used for building mobile 

applications through a combination of existing software 

artifacts by adapting them to the features that are present on 

each mobile device without prior knowledge of the platform, 

or adapting the software according to the resources that are 

available on the consumer device using techniques based on 

dynamic resources management [20]. 

In this paper, an approach to support the automated 

composition of software applications will be presented. This 

approach results in a tool called AppSpotter that uses DSPL 

concepts for the dynamic and automated derivation of mobile 

applications. To achieve this, AppSpotter performs five steps 

in an automated way: (1) identifies the target devices within 

the range of the local wireless communication technology; (2) 

captures the features from these devices; (3) decides if it is 

possible to build applications that meet the captured features; 

(4) builds adapted versions of the desired applications 

considering the features from each device; and (5) sends the 

customized versions of the applications to each target device. 

This paper is organized as follows: a background of the 

concepts related to the proposal is provided in Section II, an 

overview of the proposed approach is described in Section III, 

Section IV contains the AppSpotter's architecture, and the 

implementation of the AppSpotter tool is presented in Section 

V, experimental results are discussed in Section VI, and 

concluding remarks are presented in Section VII. 

II. BACKGROUND 

In this section, the main concepts of Product Derivation 

(PD) in SPL that underpin this proposal are described. Section 

II.A presents an overview of the SPL and its main concepts. 

Section II.B describes the concepts related to Dependency 

Injection (DI) and data-driven composition (DDC). In 

addition, an overview on Linear-time Temporal Logic (LTL) 

is given in Section II.C.  

A. Software Product Lines 

The transition from single systems development to product 

families development seems to be a clear trend in software 

engineering [11], [12]. Product families were defined as sets 

of programs that have so many features in common that it is 

worthwhile to analyze the commonalities before exploiting the 

existing variability (i.e., the features that differentiate them). 

The main purpose of analyzing the common features is to 

reuse software artifacts over the entire family of programs, 

thus improving software quality while significantly reducing 

time-to-market and maintenance costs [21].  

In SPLE, product families are developed in a two stage 

development process [12], [22]. In the first stage, which is 

called domain engineering, there is an up-front investment to 

analyze the family and to build up the artifacts that comprise 

the platform, i.e., the foundation for creating new products. In 

the second stage, which is called application engineering, 

instances of the software products are constructed by 

exploiting the product line variability and reusing the artifacts 

that were previously obtained during the domain engineering 

phase. These instances are combined with application-specific 

artifacts in order to derive individual products for a particular 

market segment or customer needs [17], [23]. 

One possible way to derive individual software products in 

the mobile devices domain is by using annotative approaches 

to configure different features [24]. A typical example of 

annotative approaches is the #ifdef and #endif statements 

found in programming languages like C and C++.  

B. Dependency Injection and Data-Driven Composition 

SPL development requires the deployment of well designed 

components, which cover the scope of the product line. In 

addition, these components must also provide the possibility 

for developing functionalities beyond the normal SPL scope. 

In this context, high cohesion and loose coupling are software 

attributes that play an important role in reducing the 

dependency among components and facilitating the integration 

of new ones. These two attributes can be achieved by 

following the Dependency Inversion Principle (DIP).  

Using this approach, concrete implementations can 

manageably be replaced by alternative implementations 

without affecting the high level modules. DI, which is a form 

of DIP, is a compositional approach that provides a flexible 

way to indirectly wire the software components together [25]. 

It is a common feature of frameworks where the application 

objects are dynamically instantiated and configured for use 

[26]. A framework is responsible for resolving the 

dependencies and injecting them into the application without 

explicitly hard coding in the application classes.  

Data Driven Composition (DDC) is a compositional 

approach for specifying dependencies in component-based 

systems in which a designated object holds additional 

knowledge about the correctness of the composition. By using 

DDC, the relationship among objects or attributes contained 

within each object is specified through meta-data either in 

XML or in any appropriate scripting language.  

C. Linear-Time Temporal Logic 

Linear-time Temporal Logic (LTL) is a commonly used 

specification logic for expressing temporal properties of 

systems [27]. In this paper, LTL is used to specify (see Section 

IV.D) and verify (see Section VI.B) some temporal properties 

of the PD system, e.g., responsiveness or mutual exclusion.  

LTL extends propositional logic by including temporal 

operators that allow modeling time as a sequence of states, 

extending infinitely, according to the following definition: 

Definition 1. The syntax of LTL is defined over a set of atomic 

propositions, logical operators and temporal operators in the 

following form: 

            (  )  (     )  (     ) 
 (     )  (  )  (  )  (  )  (     )   (     ) 

where the symbols   and   represent true and false, 

respectively. p is any atomic proposition. The logical 

operators are: negation ( ), conjunction ( ), disjunction ( ), 

implication ( ) and biconditional ( ). 



 

The connectives X, F, G, U and R are called temporal 

operators. X means “neXt state”, F means “some Future state”, 

and G means “all future states (Globally)”. The next two, U 

and R, are called “Until” and “Release”, respectively.  

Software systems that are specified using LTL can be 

modeled as state transition systems by means of states and 

transitions. More formally: 

Definition 2. A state transition system   (      ) is 

defined by a set of states S, a set of transitions          

and a set of initial states      . 

A state transition system has a collection of states S, a 

relation R specifying how the system can move from state to 

state such that every     has some      with     . The 

semantics of an LTL formula is then defined along a 

computation path or simply a path                , 

which is an infinite sequence of states along   and represents 

a possible future of the system.  

In LTL, a labeling function      (     ) is assumed, 

mapping L from each state to the set of propositional variables 

represented by      .  (     ) denote the power set of 

     , a fixed set of atomic formulas (such as p, q, r,… or 

          ). Associated with each state s, one has a set of 

atomic propositions L(s) that are true for that particular state. L 

is just an assignment of truth values to all propositional 

variables. To formally describe the semantics of LTL 

formulas, Definition (2) is extended to include a labeling 

function       (     ), so that   now becomes a tuple 

  (        ), which is called a Kripke structure.  

Definition 3. A Kripke structure is a tuple   (        ) 

where S is a set of states of  , R is a set of transitions,    is a 

set of initial states and      (     ) is a labeling 

function, which defines for each state     the set L(s) of all 

propositional variables that belong to s. 

The set of all possible behaviors of a Kripke structure can 

be defined through the notion of computation trees: 

Definition 4. Let   (        ) be a Kripke structure over 

a set of variables       and      be a state. The 

computation tree for   is the following tree: 

1. The root of the tree is labeled by the state     ; 

2. The nodes of the tree are labeled by states in S; 

3. For every node s' in the tree, its children are exactly 

     , such that, (      )   . 

Given Definition (4), a computation tree for a Kripke 

structure   can be identified as the set of its paths. A 

computation path π for   is a sequence of states         

such that (       )    for all i. Additionally, if a sequence 

is finite, i.e., it has the form           , then there 

exists no state s such that (    )   .  

An intuitive interpretation of temporal operators over 

computation path formulas is as follows: 

    holds if   holds at the next state on the path; 

    holds if   eventually occurs at some future state on 

the path; 

    holds if   holds globally at every state along the path; 

     holds if   holds continuously until   occurs; 

     holds if either   holds globally on the path or   

occurs before the first state at which   is violated. 

LTL formulas are means for expressing properties of paths 

in computation trees, and are also conveniently used to discuss 

possible temporal behaviors of a system. For the 

understanding of the concepts described in this paper, the 

following properties are particularly important: reachability, 

mutual exclusion, and responsiveness. Reachability claims that 

a state is called reachable if there is a computation path from 

an initial state leading to this state. The mutual exclusion 

property must ensure that no two or more processes are 

allowed to be in the same critical section simultaneously. The 

responsiveness property is interested in verifying whether 

every request is eventually acknowledged in the system. 

III. OVERVIEW OF THE APPSPOTTER TOOL 

The approach presented in this paper applies to the 

consumer electronics domain, most specifically to the mobile 

applications domain, as it uses the knowledge of device 

features to support the derivation of software applications. It is 

based on the concept of DSPL and seeks to manage the 

software variants at deployment-time through the dynamic and 

automated binding of software components.  

Figure 1 presents an overview of the AppSpotter tool in 

which the product derivation process interacts with four 

illustrative mobile devices. In summary, the interaction takes 

place in five steps:  

1. In the first step, the AppSpotter tool searches for devices 

that are within the range of the wireless communication 

technology and captures the features of each device found 

(the four devices in the figure). The captured features 

(                  ) are then used in the next step.  

2. For each device, the features are used to prune away the 

software components that are not compatible with it. If 

the remaining components are enough to build an 

application, then the process proceeds to the next step. 

Otherwise, the user is informed that it is not possible to 

produce an application for his/her device. In such a 

situation, developers can log information expressing their 

demands for new components to future use.  

3. In the third step, the components that were selected for 

each device are configured by following the data-driven 

composition configurations (described further in Section 

V.B). These configurations are used to drive the 

application composition when wiring the components 

together. The result of this process is a configuration file 

for each target device. 

4. In the fourth step, the source code of the software 

components is compiled to each device. The instances of 

the components are dynamically loaded according to the 

resulting configuration files from the previous step. As a 

result, one application for each target device is generated 

(    ,     ,      and     ). 

5. The applications     ,     ,      and      are finally 

delivered to the devices that provided the features   ,   , 

    and   , respectively. 



 

The result is a dynamic and automated mechanism to 

provide custom applications to feature-rich devices. Using this 

approach, the role of the developer is to implement the 

software components and design the architecture of the mobile 

application by following the design principles of the 

“strategy” pattern [28]. The developer must also specify what 

components are related to each device feature and how the 

components are wired to each other by using the data-driven 

composition configurations. The AppSpotter tool is 

responsible for providing a process to integrate the 

components based on a set of features, thus producing a 

custom application for each target device.  

IV. APPSPOTTER'S ARCHITECTURE 

The AppSpotter's architecture has two main parts: Product 

Derivation Side (PDS), detailed in Figure 2(a), and Mobile 

Device Side (MDS), detailed in Figure 2(b). 

A. Product Derivation Side (PDS) 

The PDS is divided into four parts: communication, 

components' selection, components' configuration, and 

application building.  

1) Communication 

The Bluetooth technology was chosen to allow wireless 

communication between PDS and MDS since this technology 

is supported by a wide range of mobile devices. Thereby, the 

components of the communication part are: Services and 

Bluetooth. The Bluetooth component is an interface that is 

used by other components to establish communication with 

mobile devices. The Services component uses the Bluetooth 

component to send information to and request information 

from mobile devices through a set of services as follows: 

 notifyDevices. This service searches for nearby devices 

and informs about the availability of a custom application.  

 sendAppInformation. The user can request additional 

information about the application mentioned by 

notifyDevices service. sendAppInformation is used to send 

this information.  

 receiveDeviceFeatures. This service is used to receive the 

device features. 

2) Selection of software components 

The method for selecting the components intended to be 

reused for composing the application is based on a search 

engine for software components. Using search engines has 

proven to be very useful for organizing and retrieving software 

artifacts [29], [30]. The requirements for using each SPL 

artifact are stored and used to find the components that match 

those requirements.  

The components of the selection part are: Indexer and 

Searcher. The Indexer component stores and organizes the 

SPL artifacts into a repository aiming to enhance the search 

performance. The Searcher component has a set of operations 

that are used to query over the repository. It receives a set of 

device features that are matched with the component 

requirements. If any given component meets the devices 

features, it is selected.  

A query expression, which is used to find compatible 

software components, is created upon the device features. This 

expression is built by combining implicit logical disjunction 

(“OR” operator) and terms' exclusion (“-” operator). 

The configuration of components is based on the concept of 

data-driven composition. These configurations are defined by 

developers and represent the composition of software 

components for the whole SPL, i.e., how the components are 

wired together to deliver the required functionality.  

3) Configuration of software components 

The Components Configurator component parses the data-

driven configuration files and creates new files containing 

specific configurations for the set of components selected for 

each application. It provides flexibility during the composition 

of the software application since different implementations of 

components can be indirectly used without the need for 

changing the source code. 

4) Building the mobile application 

The construction of mobile application occurs after the 

configuration of software components. For each application, 

the Builder component receives both source code and 

dependency injection configuration, and performs the 

compilation and packing process. The result of this process is 

Fig. 1. Overview of the AppSpotter tool and its interaction with the mobile devices. 



 

an application that can be installed and executed on the target 

mobile device. The resulting file is sent to the mobile device 

through the Bluetooth component, which is also responsible 

for sending the application to the target device through the 

service sendApps. 

B. Mobile Device Side (MDS) 

The AppSpotter's MDS is divided into two parts: 

communication services and application. 

1) Communication services 

A precondition for using the AppSpotter's approach is the 

presence of a communication service running on the device. 

When the device receives a connection request on this 

communication service, the user is notified about the existence 

of an available application. Thus, using the mobile device, a 

user can interact with the PDS to receive additional 

information about the application or request the delivery of a 

customized application. 

As shown in Figure 2(b), the background service has three 

components: Features Sender, Information Receiver, and 

Bluetooth. The Bluetooth component has the same role as in 

PDS, which is to serve as interface for external 

communication. The Features Sender component uses the 

sendDeviceInformation method to send the device features to 

the PDS. The Information Receiver component requests 

additional information about the application by using the 

receiveAppsInformation method.  

2) Application 

On the mobile device, the components are dynamically 

loaded through a lightweight Dependency Injection (DI) 

framework embedded into each application. The created 

applications run on top of the platform layer using resources 

provided by the mobile device such as operating system and 

sensors. The components that compose the application are at 

the application layer, including the DI framework used to load 

these components at run-time. In fact, the DI framework can 

also be used to load both native and third party APIs to get 

access to the system resources.  

C. Interaction Between PDS and MDS 

PDS and MDS interact by means of Bluetooth 

communication technology, which is represented by the 

Bluetooth component shared by both parts. The interaction 

takes place in four distinct moments. 

1) Notifying devices 

Precondition. 1) At least one nearby device (within the 

range of the communication technology); and 2) The PDS 

needs to be ready for searching new devices.  

The Services component has a notifyDevices service, which 

is responsible for searching nearby devices and notifying them 

about the availability of a custom application. Once this 

service finds a device, it requests a connection to the 

background service running on the device side. The 

background service then starts an application that shows two 

options: “receive additional information” and “download a 

custom application”.  

2) Receiving information about the application 

Precondition. 1) A mobile device was found and notified; 

and 2) The user has selected the option “receive additional 

information”. 

If the user has selected the option “receive additional 

information”, the device uses the receiveAppsInformation 

service to request additional information from the PDS. When 

the Services component receives the request, it uses 

(a)  (b) 

Fig. 2. Architecture presenting the components that are present in both sides of the AppSpotter tool: (a) Product Derivation Side – PDS, and (b) 

Mobile Device Side – MDS. 



 

sendAppInformation service to send information describing 

the application back to the device. The information is received 

by the Information Receiver component and is presented on 

the device's screen to the user.  

3) Sending device features 

Precondition. 1) A mobile device was found and notified; 

and 2) The user has selected the option “download a custom 

application”. 

When the user selects the option “download a custom 

application”, the Features Sender component uses the 

sendDeviceFeatures service to request a connection and send 

the device features to PDS. When the request is received on 

the PDS side, the Services component uses the 

receiveDeviceFeatures service to receive the device´s features. 

These features are intended to be used in the PD process.  

4) Sending application 

Precondition. 1) The device features were received; and 2) 

A custom application was produced. 

After receiving the device features, PDS starts the process 

to produce the application. At the end of the process, when an 

installable package is obtained, the PDS uses the sendApps 

service to send the application to the target device. The 

application is sent over a conventional file transfer protocol 

using Bluetooth connection.  

D. State Transition System of the Derivation Process 

Since the derivation process can be represented by a state 

transition system (as described in Section II.C), LTL was used 

to specify the temporal properties and to show how the system 

changes from state to state. Let   (        ) be a Kripke 

structure that represents the system (recall Definition 3).  

Let                        be a set of atomic 

formulas. Each formula is denoted by one proposition, as 

follows: 

  : the system is searching for new devices; 

  : a new device has been found; 

  : the features of the new device are obtained; 

  : it is possible to create a valid application configuration 

(i.e., for the new device); 

  : the system is configuring a new application; 

  : the system is compiling the application; 

  : the system is sending the installable package of the 

application; 

  : the application has been sent. 

Through LTL, some temporal properties of the transition 

system of the derivation process can be formally express. The 

first one is the responsiveness property. The system starts the 

process by searching for new devices and it continues 

searching until a new device is found. This can be expressed 

by the following formula:  

 (  (     )) 

The second property that can be specified is related to 

reachability. At a certain point in the process, the system has 

to decide whether it is possible to continue the derivation 

process or it needs to restart. If the device features have been 

obtained and it is possible to create an application, then the 

system starts configuring the application. If it is not possible to 

create an application, the process is restarted and the system 

begins the search process again. This behavior can easily be 

expressed by the following formula:  

 (((   )    )  ((    )    )) 

A third property of the system is related to mutual 

exclusion. Since the system generates configuration files that 

are used to produce the application, it is recommended that 

these files are not handled by more than one process at a time. 

Thus, let   denote that a process is generating configuration 

files and let   denote that another process is compiling the 

application, a mutual exclusion property states that   and   

never hold simultaneously. This behavior can be described by 

the following LTL formula:  

  (    ) 

Another behavior related to responsiveness property is 

when the system is sending an application to the target device 

after compilation. The system must continue sending the 

application until it is fully sent. This property can be formally 

expressed by the following formula:  

 (  (  (    ))) 

The properties described for the state transition system in 

this section can be formally verified by using a model 

checking tool.  

V. IMPLEMENTATION OF THE APPSPOTTER TOOL 

The initial prototype of this work deals with the 

development of applications that can be executed on devices 

compatible with the J2ME platform, Mobile Information 

Device Profile (MIDP), and Connected Limited Device 

Configuration (CLDC) [31]. However, the proposed approach 

does not require uniquely J2ME and the use of this technology 

does not subtract the tool generality. Thereby, the 

development of applications can also be targeted toward 

different mobile platforms. For example, some programming 

languages and modern application frameworks have the ability 

to examine and modify the structure and behavior of objects at 

run-time. This ability is called reflection and it is used in the 

implementation of the AppSpotter tool. As a result, languages 

such as Python and Objective-C, which support object 

oriented programming and reflection are fully compatible with 

the proposed approach. 

A. Software Infrastructure 

One free API was used [32] to implement the storage and 

retrieval capabilities of software components. In fact, the 

software components are stored into a repository, which 

enables their latter retrieval based on the actual needs 

expressed in a query expression. When the device features are 

captured, a query expression (combining these features) is 

generated by the proposed tool. The query is built by first 

including all components that meet the device features and 



 

removing the ones that are not necessary. The removal is 

performed by using the minus signal (“-”) in the query 

criterion. For example, if a device contains the features screen 

equals 360x640 and accelerometer equals no, the query 

expression will include the following criteria:  

screen:360x640 -accelerometer:yes 

This expression retrieves only components that are 

compatible with devices that have 360x640 screen resolution. 

Additionally, the expression excludes all components that 

require accelerometer sensors so that the search removes the 

components that are not compatible with the criteria and 

retrieves only those that meet the set of features.  

The DI configurations of the SPL are specified by means of 

metadata in the XML format, which is easy to maintain and 

suitable for integrating with third party tools. An XML parser 

was developed to extract the data from the XML files. This 

data is used to generate new configuration files that are used 

during the instantiation of the components of each application 

on the mobile device.  

The compilation and packing process of the application is 

performed using automated scripts. The target of compilation 

is composed by devices that are compatible with the MIDP 

and the CLDC. Then, the compiled binaries are packed into 

a.jar file which is ready to be installed on the device.  

B. Data-Driven Composition 

The use of data-driven composition allows specifying the 

dependency among the software components in a declarative 

way, which avoids tight coupling among components and 

facilitates the parsing of data. An XML-based approach was 

used to represent the dependency among the components by 

means of metadata, defined through an XML Schema 

Definition (XSD).  

In the specification of components in XML, the root 

element of the configuration is application and it must contain 

the components that depend on each other in the SPL. The 

second element in the hierarchy is component, which describes 

the software components and contains two attributes: id, 

which is a unique identifier for each component, and class, 

which represents the class that must be instantiated. The 

component element consists of three elements:  

 composite, which describes how the component must be 

composed. It has one attribute called strategy, which 

specifies the interface of the component.  

 dependencies, which specifies a list of artifacts (through 

the artifact element) that the component needs to operate 

properly, like APIs.  

 constraints, which specifies the requirements for using a 

given component. The constraints element is composed of 

a list of feature elements, which contain two attributes: 

name, the name of the feature that a device must have; 

and value, the value of the feature. 

The goal is to model the dependency among the 

components using XML metadata. After selecting the 

components according to the features present in each device, 

the metadata that is not compatible with the device is removed 

during configuration process. Only components that are 

compatible with the device features will be processed by the 

DI framework, thus reducing the complexity of the application 

when running on the mobile device.  

C. Dependency Injection on the Mobile Application 

DI provides a flexible way to indirectly assemble the 

software components together [25]. By using DI in 

AppSpotter, the developer implements the dependency by 

declaring an attribute and specifying the composition through 

the composite element in XML.  

At the code level, the dependency is implemented by using 

the strategy design pattern [28]. This pattern defines a 

common interface for alternative implementations of a given 

feature and uses polymorphism of object-oriented 

programming to access the needed implementation. 

The dependency is automatically resolved at run-time by 

using lazy instantiation and its instance is assigned to the 

dependent component. There are two main advantages 

associated with this practice: (1) the source code becomes 

smaller and cleaner since it is not necessary to hard code the 

objects and their dependencies; and (2) fewer implementation 

errors since it is the responsibility of the framework to solve 

the dependencies. In addition, this implementation model 

contributes toward optimizing startup time, which is a 

desirable feature of consumer electronics applications [3], 

[33], [34]. 

D. Software Infrastructure on the Mobile Device 

In the mobile device side, a set of functionalities was 

developed in order to allow the exchange of data with the 

AppSpotter tool. One of these functionalities is able to gather 

information about the mobile device features and send this 

information to the tool. To achieve this, an XML file 

containing a description of the features was embedded into the 

device. Figure 3 presents an example of this file where each 

feature contains a name and a value associated with it. 

Another implemented functionality is the lightweight DI 

framework, which is packed into each application and is used 

to solve and instantiate the components at run-time, assigning 

them to the dependent components. While the prototype 

implementation of this lightweight DI framework was 

implemented using Java language, alternative versions can be 

implemented by using other programming languages to 

support other platforms of interest; however, they need to 

support dynamic class loading in order to load the needed 

components at run-time. Modern object-oriented programming 

languages and frameworks (e.g., C++, Objective-C and 

Python) frequently support this feature by loading classes 

directly from binary or shared library files. 

<device> 
<feature name="screen" value="360x640"/> 
<feature name="input" value="touch"/> 
<feature name="keypad" value="qwerty"/> 
<feature name="accelerometer" value="yes"/> 

</device> 

Fig. 3. Example of the XML file that is embedded into the device 

containing the features. 



 

VI. EXPERIMENTAL RESULTS 

To motivate the need for using AppSpotter in consumer 

electronics applications, a scenario where users can buy movie 

tickets through their mobile devices right from home or 

anywhere else will be explained. Aiming to reduce queues for 

ticket-booking, a movie theatre would like to deploy such 

system online. Someone wanting to watch a movie can use 

his/her mobile device to check the time-table and tickets' 

availability. After choosing the desired movie, this person can 

purchase the ticket and receive a key to enter in a booking 

machine in order to receive the printed tickets.  

The system consists of an application that must be installed 

on the client side (i.e., mobile devices). Through this 

application, the user is able to connect to an online server 

aimed at requesting information related to the movie of 

interest and ordering the tickets. The application must suit the 

device configuration. That is, for each device configuration, an 

alternative version of the application must be deployed aiming 

to fully explore the device capabilities (e.g., screen size). In 

this way, a user with a tablet would probably have an 

alternative version of the application, which is different from 

the one installed on a conventional smartphone.  

A set of components was developed in order to implement 

the scenario described above. They were used as a prototype 

of the application on the mobile devices. Each component has 

alternative versions for different device configurations.  

A. Performance of the components selection 

A performance experiment focused on the selection time to 

find the components that met a given device configuration was 

executed. This experiment was performed on an idle PC with a 

dual-core processor, 2.4 GHz of clock speed and 4 GB RAM, 

running a UNIX-based operating system. 

During the mapping of components and their dependencies, 

it was ensured that a given alternative implementation of a 

component could not be simultaneously selected by two or 

more different device configurations. By doing this, it was 

avoided conflicts during the instantiation of a component in 

the final application. A set of test cases ranging from 20 to 

10,000 components was created. These test cases were used to 

create two scenarios: worst case selection time (WCST) and 

best-case selection time (BCST). WCST happens when all of 

the SPL components have at least one requirement that is part 

of the device configuration. BCST happens when, given a 

device configuration, only the needed components have the 

necessary requirements for selection. About 200 rounds of 

experiments were executed for each test case in each test 

scenario. The performance results can be seen in Figure 4, 

where it is presented the average time to perform a selection 

based on predefined criteria, i.e., device configuration. The 

results show a fast selection time even in the worst scenario. 

B. Verification of the LTL temporal properties 

Given the specifications of the LTL temporal properties of 

PD process in Section IV.D, some experiments to verify the 

consistency of these properties were realized. A symbolic 

model checker tool was used [27]. This is an open source tool 

actively supported by the software engineering community 

that provides a language for implementing the transition 

relations of models and directly checks the validity of LTL 

formulas on these models. As a result of the experiment, it was 

possible to verify that the LTL properties hold for the state 

transition system of the product derivation process (Section 

IV.D). The used model checker tool took less than one second 

to verify the specified LTL formulas.  

VII. CONCLUSIONS 

The automated selection and composition of software 

components for the creation of consumer electronics software 

applications is very useful when the SPL contains a large 

number of components. This high number of components may 

result in a significant number of software variants, and solving 

this variability manually is a time-consuming and error-prone 

process. Taking this into account, a tool called AppSpotter 

was idealized and developed. This tool can be used for 

selecting software components in a dynamic and automated 

way by using the device features along with a search engine of 

components. The tool can also be used for composing 

software applications using only the components that are 

compatible with the electronic device features. 

The main results that were achieved with this work are: 

 A mechanism for selecting software components 

compatible with the particular features of a mobile device.  

 A data-driven approach based on XML for defining the 

dependencies of software components of SPL and how 

they are wired together to compose the application.  

 A lightweight DI framework to instantiate the 

components at run-time.  

 The possibility of building mobile applications by using 

the device features rather than the device model. 

A set of experiments was realized in order to check the 

performance of the tool. The experiments included the 

selection of components in scenarios with up to 10,000 

artifacts. The tool achieved very low selection times, in the 

worst case scenario, the selection time takes less than 50ms, 

while in the best case scenario, it takes about 10ms. 
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