

Dynamic and Automated Product Derivation for

Consumer Electronics Software Applications
Ricardo E. V. de S. Rosa, Vicente F. de Lucena Jr., Member, IEEE, Lucas C. Cordeiro, and João E. Chaves Filho

Abstract — Software Product Lines (SPL) is an efficient

software engineering approach for dealing with reusable

components in products that not only share common features,

but also support specific functionalities that satisfy a

particular market segment. This approach is interesting for

the consumer electronics industry, particularly for mobile

device applications. Despite having a significant common

core, software applications developed for that domain have to

be frequently adapted to different device features, such as

operating systems and screen resolution. Thus, developers

need to select proper software components to suitably

compose the applications for each new device in a family of

devices. In this paper, an approach that is able to customize

consumer electronics software applications for different

devices, in a dynamic and automated way, is presented. It

results in a tool called AppSpotter that composes applications

by selecting software components according to the features of

each target device. To check the tool’s performance, a set of

experiments were realized in order to simulate different

scenarios with up to 10,000 components
1
.

Index Terms — Product derivation, Dynamic software

product lines, Mobile applications, Dependency injection.

I. INTRODUCTION

Since diverse consumer electronic devices started providing

interactive services, the amount of applications and possible

uses for these devices grow exponentially [1]. This trend has

been established throughout recent years supported by the

increasing evolution of existing infrastructure and the even

more powerful new generation of devices and applications [2],

[3]. In fact, the development of software for such system is an

even more challenging task [4], [5].

The growing need for providing support for a variety of

platforms available in the market (from low-end to high-end

devices) is perhaps one of the most important challenges faced

by consumer electronics software application developers [6],

[7]. These developers need to produce several versions of the

1 This work was developed at Electronics and Information Technology

R&D Center (CETELI) at the Federal University of Amazonas (UFAM). The

authors are with UFAM and would like to thank the following institutions:
FAPEAM, CAPES and CNPq for their financial support.

Ricardo E. V. de S. Rosa is with the Graduate Program in Electrical

Engineering (PPGEE) at UFAM, Manaus, Amazonas, Brazil (e-mail:
ricardoerikson@ufam.edu.br).

Vicente F. de Lucena Jr. is with the PPGEE, PPGI, and CETELI at UFAM,

Manaus, Amazonas, Brazil (e-mail: vicente@ufam.edu.br).

Lucas C. Cordeiro is with the PPGEE and CETELI at UFAM, Manaus,

Amazonas, Brazil (e-mail: lucascordeiro@ufam.edu.br).

João E. Chaves Filho is with the PPGEE and CETELI at UFAM, Manaus,
Amazonas, Brazil (e-mail: jo_edgar@ufam.edu.br).

same application in order to deal with particular features.

Indeed, the variation in features among devices suggests that

portability requirements play an important role, as it is not

economically viable to produce software only for a few

devices (i.e., a small fraction of customers) [8]. Moreover, the

poor adaptation of content for consumer electronics device

might negatively affect users’ Quality of Experience (QoE)

[9]. For example, an application designed to smartphones may

face problems related to screen size and resolution when

running on a tablet. Therefore, one important requirement is to

adapt the content according to the capabilities of target devices

[10]. For such cases, Software Product Lines (SPL) seems to

be a promising development technique, since it explores the

similarities and diversities among related products.

In fact, SPL Engineering (SPLE) is a software engineering

approach focused on improved productivity and efficiency,

i.e., it reduces costs and time-to-market while improving the

quality and reliability of the resulting products [11], [12].

SPLE aims at building a unique platform of software-related

assets to be used during the development of individual

products. As a result, a family of related products can be built

by large-scale reuse of that unique platform.

Several authors have addressed SPLE, in its various aspects,

to the consumer electronic devices domain and most

specifically to the mobile devices domain [8], [13]-[15]. One

of the most frequently discussed topics is the large number of

features present in those devices. The variation of these

features may result in a significant amount of variability in

software. That is, besides market or users needs, the selection

of alternative versions of software components also depends

on technical limitations that include factors such as device

capabilities, e.g., sensors, processing power, screen resolution,

communication technologies, and operating systems [16].

Hence, the development of mobile applications becomes even

more complex and the process of selecting proper software

components becomes error-prone, time-consuming, and

manually impracticable [17]. In addition, it is difficult to

anticipate all possible versions of applications and it is

improbable that applications specially designed for one device

can be fully compatible with a different one without

adjustments. These problems bring about the need for an

approach to address the construction of software applications

for this domain in a dynamic and automated way.

Product Derivation (PD) in SPLE refers to the construction

of individual products from the software-related assets of a

SPL [17]. It includes the selection, composition, and

customization of these assets to deal with a specific SPL

product and to satisfy the customer's requirements [18]. The

mailto:lucascordeiro@ufam.edu.br

dynamic and automated PD associated with Dynamic SPL

(DSPL) techniques [19] seems to be a promising approach for

the handheld domain. It can be used for building mobile

applications through a combination of existing software

artifacts by adapting them to the features that are present on

each mobile device without prior knowledge of the platform,

or adapting the software according to the resources that are

available on the consumer device using techniques based on

dynamic resources management [20].

In this paper, an approach to support the automated

composition of software applications will be presented. This

approach results in a tool called AppSpotter that uses DSPL

concepts for the dynamic and automated derivation of mobile

applications. To achieve this, AppSpotter performs five steps

in an automated way: (1) identifies the target devices within

the range of the local wireless communication technology; (2)

captures the features from these devices; (3) decides if it is

possible to build applications that meet the captured features;

(4) builds adapted versions of the desired applications

considering the features from each device; and (5) sends the

customized versions of the applications to each target device.

This paper is organized as follows: a background of the

concepts related to the proposal is provided in Section II, an

overview of the proposed approach is described in Section III,

Section IV contains the AppSpotter's architecture, and the

implementation of the AppSpotter tool is presented in Section

V, experimental results are discussed in Section VI, and

concluding remarks are presented in Section VII.

II. BACKGROUND

In this section, the main concepts of Product Derivation

(PD) in SPL that underpin this proposal are described. Section

II.A presents an overview of the SPL and its main concepts.

Section II.B describes the concepts related to Dependency

Injection (DI) and data-driven composition (DDC). In

addition, an overview on Linear-time Temporal Logic (LTL)

is given in Section II.C.

A. Software Product Lines

The transition from single systems development to product

families development seems to be a clear trend in software

engineering [11], [12]. Product families were defined as sets

of programs that have so many features in common that it is

worthwhile to analyze the commonalities before exploiting the

existing variability (i.e., the features that differentiate them).

The main purpose of analyzing the common features is to

reuse software artifacts over the entire family of programs,

thus improving software quality while significantly reducing

time-to-market and maintenance costs [21].

In SPLE, product families are developed in a two stage

development process [12], [22]. In the first stage, which is

called domain engineering, there is an up-front investment to

analyze the family and to build up the artifacts that comprise

the platform, i.e., the foundation for creating new products. In

the second stage, which is called application engineering,

instances of the software products are constructed by

exploiting the product line variability and reusing the artifacts

that were previously obtained during the domain engineering

phase. These instances are combined with application-specific

artifacts in order to derive individual products for a particular

market segment or customer needs [17], [23].

One possible way to derive individual software products in

the mobile devices domain is by using annotative approaches

to configure different features [24]. A typical example of

annotative approaches is the #ifdef and #endif statements

found in programming languages like C and C++.

B. Dependency Injection and Data-Driven Composition

SPL development requires the deployment of well designed

components, which cover the scope of the product line. In

addition, these components must also provide the possibility

for developing functionalities beyond the normal SPL scope.

In this context, high cohesion and loose coupling are software

attributes that play an important role in reducing the

dependency among components and facilitating the integration

of new ones. These two attributes can be achieved by

following the Dependency Inversion Principle (DIP).

Using this approach, concrete implementations can

manageably be replaced by alternative implementations

without affecting the high level modules. DI, which is a form

of DIP, is a compositional approach that provides a flexible

way to indirectly wire the software components together [25].

It is a common feature of frameworks where the application

objects are dynamically instantiated and configured for use

[26]. A framework is responsible for resolving the

dependencies and injecting them into the application without

explicitly hard coding in the application classes.

Data Driven Composition (DDC) is a compositional

approach for specifying dependencies in component-based

systems in which a designated object holds additional

knowledge about the correctness of the composition. By using

DDC, the relationship among objects or attributes contained

within each object is specified through meta-data either in

XML or in any appropriate scripting language.

C. Linear-Time Temporal Logic

Linear-time Temporal Logic (LTL) is a commonly used

specification logic for expressing temporal properties of

systems [27]. In this paper, LTL is used to specify (see Section

IV.D) and verify (see Section VI.B) some temporal properties

of the PD system, e.g., responsiveness or mutual exclusion.

LTL extends propositional logic by including temporal

operators that allow modeling time as a sequence of states,

extending infinitely, according to the following definition:

Definition 1. The syntax of LTL is defined over a set of atomic

propositions, logical operators and temporal operators in the

following form:

 () () ()
 () () () () () ()

where the symbols and represent true and false,

respectively. p is any atomic proposition. The logical

operators are: negation (), conjunction (), disjunction (),

implication () and biconditional ().

The connectives X, F, G, U and R are called temporal

operators. X means “neXt state”, F means “some Future state”,

and G means “all future states (Globally)”. The next two, U

and R, are called “Until” and “Release”, respectively.

Software systems that are specified using LTL can be

modeled as state transition systems by means of states and

transitions. More formally:

Definition 2. A state transition system () is

defined by a set of states S, a set of transitions

and a set of initial states .

A state transition system has a collection of states S, a

relation R specifying how the system can move from state to

state such that every has some with . The

semantics of an LTL formula is then defined along a

computation path or simply a path ,

which is an infinite sequence of states along and represents

a possible future of the system.

In LTL, a labeling function () is assumed,

mapping L from each state to the set of propositional variables

represented by . () denote the power set of

 , a fixed set of atomic formulas (such as p, q, r,… or

). Associated with each state s, one has a set of

atomic propositions L(s) that are true for that particular state. L

is just an assignment of truth values to all propositional

variables. To formally describe the semantics of LTL

formulas, Definition (2) is extended to include a labeling

function (), so that now becomes a tuple

 (), which is called a Kripke structure.

Definition 3. A Kripke structure is a tuple ()

where S is a set of states of , R is a set of transitions, is a

set of initial states and () is a labeling

function, which defines for each state the set L(s) of all

propositional variables that belong to s.

The set of all possible behaviors of a Kripke structure can

be defined through the notion of computation trees:

Definition 4. Let () be a Kripke structure over

a set of variables and be a state. The

computation tree for is the following tree:

1. The root of the tree is labeled by the state ;

2. The nodes of the tree are labeled by states in S;

3. For every node s' in the tree, its children are exactly

 , such that, () .

Given Definition (4), a computation tree for a Kripke

structure can be identified as the set of its paths. A

computation path π for is a sequence of states

such that () for all i. Additionally, if a sequence

is finite, i.e., it has the form , then there

exists no state s such that () .

An intuitive interpretation of temporal operators over

computation path formulas is as follows:

 holds if holds at the next state on the path;

 holds if eventually occurs at some future state on

the path;

 holds if holds globally at every state along the path;

 holds if holds continuously until occurs;

 holds if either holds globally on the path or

occurs before the first state at which is violated.

LTL formulas are means for expressing properties of paths

in computation trees, and are also conveniently used to discuss

possible temporal behaviors of a system. For the

understanding of the concepts described in this paper, the

following properties are particularly important: reachability,

mutual exclusion, and responsiveness. Reachability claims that

a state is called reachable if there is a computation path from

an initial state leading to this state. The mutual exclusion

property must ensure that no two or more processes are

allowed to be in the same critical section simultaneously. The

responsiveness property is interested in verifying whether

every request is eventually acknowledged in the system.

III. OVERVIEW OF THE APPSPOTTER TOOL

The approach presented in this paper applies to the

consumer electronics domain, most specifically to the mobile

applications domain, as it uses the knowledge of device

features to support the derivation of software applications. It is

based on the concept of DSPL and seeks to manage the

software variants at deployment-time through the dynamic and

automated binding of software components.

Figure 1 presents an overview of the AppSpotter tool in

which the product derivation process interacts with four

illustrative mobile devices. In summary, the interaction takes

place in five steps:

1. In the first step, the AppSpotter tool searches for devices

that are within the range of the wireless communication

technology and captures the features of each device found

(the four devices in the figure). The captured features

() are then used in the next step.

2. For each device, the features are used to prune away the

software components that are not compatible with it. If

the remaining components are enough to build an

application, then the process proceeds to the next step.

Otherwise, the user is informed that it is not possible to

produce an application for his/her device. In such a

situation, developers can log information expressing their

demands for new components to future use.

3. In the third step, the components that were selected for

each device are configured by following the data-driven

composition configurations (described further in Section

V.B). These configurations are used to drive the

application composition when wiring the components

together. The result of this process is a configuration file

for each target device.

4. In the fourth step, the source code of the software

components is compiled to each device. The instances of

the components are dynamically loaded according to the

resulting configuration files from the previous step. As a

result, one application for each target device is generated

(, , and).

5. The applications , , and are finally

delivered to the devices that provided the features , ,

 and , respectively.

The result is a dynamic and automated mechanism to

provide custom applications to feature-rich devices. Using this

approach, the role of the developer is to implement the

software components and design the architecture of the mobile

application by following the design principles of the

“strategy” pattern [28]. The developer must also specify what

components are related to each device feature and how the

components are wired to each other by using the data-driven

composition configurations. The AppSpotter tool is

responsible for providing a process to integrate the

components based on a set of features, thus producing a

custom application for each target device.

IV. APPSPOTTER'S ARCHITECTURE

The AppSpotter's architecture has two main parts: Product

Derivation Side (PDS), detailed in Figure 2(a), and Mobile

Device Side (MDS), detailed in Figure 2(b).

A. Product Derivation Side (PDS)

The PDS is divided into four parts: communication,

components' selection, components' configuration, and

application building.

1) Communication

The Bluetooth technology was chosen to allow wireless

communication between PDS and MDS since this technology

is supported by a wide range of mobile devices. Thereby, the

components of the communication part are: Services and

Bluetooth. The Bluetooth component is an interface that is

used by other components to establish communication with

mobile devices. The Services component uses the Bluetooth

component to send information to and request information

from mobile devices through a set of services as follows:

 notifyDevices. This service searches for nearby devices

and informs about the availability of a custom application.

 sendAppInformation. The user can request additional

information about the application mentioned by

notifyDevices service. sendAppInformation is used to send

this information.

 receiveDeviceFeatures. This service is used to receive the

device features.

2) Selection of software components

The method for selecting the components intended to be

reused for composing the application is based on a search

engine for software components. Using search engines has

proven to be very useful for organizing and retrieving software

artifacts [29], [30]. The requirements for using each SPL

artifact are stored and used to find the components that match

those requirements.

The components of the selection part are: Indexer and

Searcher. The Indexer component stores and organizes the

SPL artifacts into a repository aiming to enhance the search

performance. The Searcher component has a set of operations

that are used to query over the repository. It receives a set of

device features that are matched with the component

requirements. If any given component meets the devices

features, it is selected.

A query expression, which is used to find compatible

software components, is created upon the device features. This

expression is built by combining implicit logical disjunction

(“OR” operator) and terms' exclusion (“-” operator).

The configuration of components is based on the concept of

data-driven composition. These configurations are defined by

developers and represent the composition of software

components for the whole SPL, i.e., how the components are

wired together to deliver the required functionality.

3) Configuration of software components

The Components Configurator component parses the data-

driven configuration files and creates new files containing

specific configurations for the set of components selected for

each application. It provides flexibility during the composition

of the software application since different implementations of

components can be indirectly used without the need for

changing the source code.

4) Building the mobile application

The construction of mobile application occurs after the

configuration of software components. For each application,

the Builder component receives both source code and

dependency injection configuration, and performs the

compilation and packing process. The result of this process is

Fig. 1. Overview of the AppSpotter tool and its interaction with the mobile devices.

an application that can be installed and executed on the target

mobile device. The resulting file is sent to the mobile device

through the Bluetooth component, which is also responsible

for sending the application to the target device through the

service sendApps.

B. Mobile Device Side (MDS)

The AppSpotter's MDS is divided into two parts:

communication services and application.

1) Communication services

A precondition for using the AppSpotter's approach is the

presence of a communication service running on the device.

When the device receives a connection request on this

communication service, the user is notified about the existence

of an available application. Thus, using the mobile device, a

user can interact with the PDS to receive additional

information about the application or request the delivery of a

customized application.

As shown in Figure 2(b), the background service has three

components: Features Sender, Information Receiver, and

Bluetooth. The Bluetooth component has the same role as in

PDS, which is to serve as interface for external

communication. The Features Sender component uses the

sendDeviceInformation method to send the device features to

the PDS. The Information Receiver component requests

additional information about the application by using the

receiveAppsInformation method.

2) Application

On the mobile device, the components are dynamically

loaded through a lightweight Dependency Injection (DI)

framework embedded into each application. The created

applications run on top of the platform layer using resources

provided by the mobile device such as operating system and

sensors. The components that compose the application are at

the application layer, including the DI framework used to load

these components at run-time. In fact, the DI framework can

also be used to load both native and third party APIs to get

access to the system resources.

C. Interaction Between PDS and MDS

PDS and MDS interact by means of Bluetooth

communication technology, which is represented by the

Bluetooth component shared by both parts. The interaction

takes place in four distinct moments.

1) Notifying devices

Precondition. 1) At least one nearby device (within the

range of the communication technology); and 2) The PDS

needs to be ready for searching new devices.

The Services component has a notifyDevices service, which

is responsible for searching nearby devices and notifying them

about the availability of a custom application. Once this

service finds a device, it requests a connection to the

background service running on the device side. The

background service then starts an application that shows two

options: “receive additional information” and “download a

custom application”.

2) Receiving information about the application

Precondition. 1) A mobile device was found and notified;

and 2) The user has selected the option “receive additional

information”.

If the user has selected the option “receive additional

information”, the device uses the receiveAppsInformation

service to request additional information from the PDS. When

the Services component receives the request, it uses

(a) (b)

Fig. 2. Architecture presenting the components that are present in both sides of the AppSpotter tool: (a) Product Derivation Side – PDS, and (b)

Mobile Device Side – MDS.

sendAppInformation service to send information describing

the application back to the device. The information is received

by the Information Receiver component and is presented on

the device's screen to the user.

3) Sending device features

Precondition. 1) A mobile device was found and notified;

and 2) The user has selected the option “download a custom

application”.

When the user selects the option “download a custom

application”, the Features Sender component uses the

sendDeviceFeatures service to request a connection and send

the device features to PDS. When the request is received on

the PDS side, the Services component uses the

receiveDeviceFeatures service to receive the device´s features.

These features are intended to be used in the PD process.

4) Sending application

Precondition. 1) The device features were received; and 2)

A custom application was produced.

After receiving the device features, PDS starts the process

to produce the application. At the end of the process, when an

installable package is obtained, the PDS uses the sendApps

service to send the application to the target device. The

application is sent over a conventional file transfer protocol

using Bluetooth connection.

D. State Transition System of the Derivation Process

Since the derivation process can be represented by a state

transition system (as described in Section II.C), LTL was used

to specify the temporal properties and to show how the system

changes from state to state. Let () be a Kripke

structure that represents the system (recall Definition 3).

Let be a set of atomic

formulas. Each formula is denoted by one proposition, as

follows:

 : the system is searching for new devices;

 : a new device has been found;

 : the features of the new device are obtained;

 : it is possible to create a valid application configuration

(i.e., for the new device);

 : the system is configuring a new application;

 : the system is compiling the application;

 : the system is sending the installable package of the

application;

 : the application has been sent.

Through LTL, some temporal properties of the transition

system of the derivation process can be formally express. The

first one is the responsiveness property. The system starts the

process by searching for new devices and it continues

searching until a new device is found. This can be expressed

by the following formula:

 (())

The second property that can be specified is related to

reachability. At a certain point in the process, the system has

to decide whether it is possible to continue the derivation

process or it needs to restart. If the device features have been

obtained and it is possible to create an application, then the

system starts configuring the application. If it is not possible to

create an application, the process is restarted and the system

begins the search process again. This behavior can easily be

expressed by the following formula:

 ((()) (()))

A third property of the system is related to mutual

exclusion. Since the system generates configuration files that

are used to produce the application, it is recommended that

these files are not handled by more than one process at a time.

Thus, let denote that a process is generating configuration

files and let denote that another process is compiling the

application, a mutual exclusion property states that and

never hold simultaneously. This behavior can be described by

the following LTL formula:

 ()

Another behavior related to responsiveness property is

when the system is sending an application to the target device

after compilation. The system must continue sending the

application until it is fully sent. This property can be formally

expressed by the following formula:

 ((()))

The properties described for the state transition system in

this section can be formally verified by using a model

checking tool.

V. IMPLEMENTATION OF THE APPSPOTTER TOOL

The initial prototype of this work deals with the

development of applications that can be executed on devices

compatible with the J2ME platform, Mobile Information

Device Profile (MIDP), and Connected Limited Device

Configuration (CLDC) [31]. However, the proposed approach

does not require uniquely J2ME and the use of this technology

does not subtract the tool generality. Thereby, the

development of applications can also be targeted toward

different mobile platforms. For example, some programming

languages and modern application frameworks have the ability

to examine and modify the structure and behavior of objects at

run-time. This ability is called reflection and it is used in the

implementation of the AppSpotter tool. As a result, languages

such as Python and Objective-C, which support object

oriented programming and reflection are fully compatible with

the proposed approach.

A. Software Infrastructure

One free API was used [32] to implement the storage and

retrieval capabilities of software components. In fact, the

software components are stored into a repository, which

enables their latter retrieval based on the actual needs

expressed in a query expression. When the device features are

captured, a query expression (combining these features) is

generated by the proposed tool. The query is built by first

including all components that meet the device features and

removing the ones that are not necessary. The removal is

performed by using the minus signal (“-”) in the query

criterion. For example, if a device contains the features screen

equals 360x640 and accelerometer equals no, the query

expression will include the following criteria:

screen:360x640 -accelerometer:yes

This expression retrieves only components that are

compatible with devices that have 360x640 screen resolution.

Additionally, the expression excludes all components that

require accelerometer sensors so that the search removes the

components that are not compatible with the criteria and

retrieves only those that meet the set of features.

The DI configurations of the SPL are specified by means of

metadata in the XML format, which is easy to maintain and

suitable for integrating with third party tools. An XML parser

was developed to extract the data from the XML files. This

data is used to generate new configuration files that are used

during the instantiation of the components of each application

on the mobile device.

The compilation and packing process of the application is

performed using automated scripts. The target of compilation

is composed by devices that are compatible with the MIDP

and the CLDC. Then, the compiled binaries are packed into

a.jar file which is ready to be installed on the device.

B. Data-Driven Composition

The use of data-driven composition allows specifying the

dependency among the software components in a declarative

way, which avoids tight coupling among components and

facilitates the parsing of data. An XML-based approach was

used to represent the dependency among the components by

means of metadata, defined through an XML Schema

Definition (XSD).

In the specification of components in XML, the root

element of the configuration is application and it must contain

the components that depend on each other in the SPL. The

second element in the hierarchy is component, which describes

the software components and contains two attributes: id,

which is a unique identifier for each component, and class,

which represents the class that must be instantiated. The

component element consists of three elements:

 composite, which describes how the component must be

composed. It has one attribute called strategy, which

specifies the interface of the component.

 dependencies, which specifies a list of artifacts (through

the artifact element) that the component needs to operate

properly, like APIs.

 constraints, which specifies the requirements for using a

given component. The constraints element is composed of

a list of feature elements, which contain two attributes:

name, the name of the feature that a device must have;

and value, the value of the feature.

The goal is to model the dependency among the

components using XML metadata. After selecting the

components according to the features present in each device,

the metadata that is not compatible with the device is removed

during configuration process. Only components that are

compatible with the device features will be processed by the

DI framework, thus reducing the complexity of the application

when running on the mobile device.

C. Dependency Injection on the Mobile Application

DI provides a flexible way to indirectly assemble the

software components together [25]. By using DI in

AppSpotter, the developer implements the dependency by

declaring an attribute and specifying the composition through

the composite element in XML.

At the code level, the dependency is implemented by using

the strategy design pattern [28]. This pattern defines a

common interface for alternative implementations of a given

feature and uses polymorphism of object-oriented

programming to access the needed implementation.

The dependency is automatically resolved at run-time by

using lazy instantiation and its instance is assigned to the

dependent component. There are two main advantages

associated with this practice: (1) the source code becomes

smaller and cleaner since it is not necessary to hard code the

objects and their dependencies; and (2) fewer implementation

errors since it is the responsibility of the framework to solve

the dependencies. In addition, this implementation model

contributes toward optimizing startup time, which is a

desirable feature of consumer electronics applications [3],

[33], [34].

D. Software Infrastructure on the Mobile Device

In the mobile device side, a set of functionalities was

developed in order to allow the exchange of data with the

AppSpotter tool. One of these functionalities is able to gather

information about the mobile device features and send this

information to the tool. To achieve this, an XML file

containing a description of the features was embedded into the

device. Figure 3 presents an example of this file where each

feature contains a name and a value associated with it.

Another implemented functionality is the lightweight DI

framework, which is packed into each application and is used

to solve and instantiate the components at run-time, assigning

them to the dependent components. While the prototype

implementation of this lightweight DI framework was

implemented using Java language, alternative versions can be

implemented by using other programming languages to

support other platforms of interest; however, they need to

support dynamic class loading in order to load the needed

components at run-time. Modern object-oriented programming

languages and frameworks (e.g., C++, Objective-C and

Python) frequently support this feature by loading classes

directly from binary or shared library files.

<device>
<feature name="screen" value="360x640"/>
<feature name="input" value="touch"/>
<feature name="keypad" value="qwerty"/>
<feature name="accelerometer" value="yes"/>

</device>

Fig. 3. Example of the XML file that is embedded into the device

containing the features.

VI. EXPERIMENTAL RESULTS

To motivate the need for using AppSpotter in consumer

electronics applications, a scenario where users can buy movie

tickets through their mobile devices right from home or

anywhere else will be explained. Aiming to reduce queues for

ticket-booking, a movie theatre would like to deploy such

system online. Someone wanting to watch a movie can use

his/her mobile device to check the time-table and tickets'

availability. After choosing the desired movie, this person can

purchase the ticket and receive a key to enter in a booking

machine in order to receive the printed tickets.

The system consists of an application that must be installed

on the client side (i.e., mobile devices). Through this

application, the user is able to connect to an online server

aimed at requesting information related to the movie of

interest and ordering the tickets. The application must suit the

device configuration. That is, for each device configuration, an

alternative version of the application must be deployed aiming

to fully explore the device capabilities (e.g., screen size). In

this way, a user with a tablet would probably have an

alternative version of the application, which is different from

the one installed on a conventional smartphone.

A set of components was developed in order to implement

the scenario described above. They were used as a prototype

of the application on the mobile devices. Each component has

alternative versions for different device configurations.

A. Performance of the components selection

A performance experiment focused on the selection time to

find the components that met a given device configuration was

executed. This experiment was performed on an idle PC with a

dual-core processor, 2.4 GHz of clock speed and 4 GB RAM,

running a UNIX-based operating system.

During the mapping of components and their dependencies,

it was ensured that a given alternative implementation of a

component could not be simultaneously selected by two or

more different device configurations. By doing this, it was

avoided conflicts during the instantiation of a component in

the final application. A set of test cases ranging from 20 to

10,000 components was created. These test cases were used to

create two scenarios: worst case selection time (WCST) and

best-case selection time (BCST). WCST happens when all of

the SPL components have at least one requirement that is part

of the device configuration. BCST happens when, given a

device configuration, only the needed components have the

necessary requirements for selection. About 200 rounds of

experiments were executed for each test case in each test

scenario. The performance results can be seen in Figure 4,

where it is presented the average time to perform a selection

based on predefined criteria, i.e., device configuration. The

results show a fast selection time even in the worst scenario.

B. Verification of the LTL temporal properties

Given the specifications of the LTL temporal properties of

PD process in Section IV.D, some experiments to verify the

consistency of these properties were realized. A symbolic

model checker tool was used [27]. This is an open source tool

actively supported by the software engineering community

that provides a language for implementing the transition

relations of models and directly checks the validity of LTL

formulas on these models. As a result of the experiment, it was

possible to verify that the LTL properties hold for the state

transition system of the product derivation process (Section

IV.D). The used model checker tool took less than one second

to verify the specified LTL formulas.

VII. CONCLUSIONS

The automated selection and composition of software

components for the creation of consumer electronics software

applications is very useful when the SPL contains a large

number of components. This high number of components may

result in a significant number of software variants, and solving

this variability manually is a time-consuming and error-prone

process. Taking this into account, a tool called AppSpotter

was idealized and developed. This tool can be used for

selecting software components in a dynamic and automated

way by using the device features along with a search engine of

components. The tool can also be used for composing

software applications using only the components that are

compatible with the electronic device features.

The main results that were achieved with this work are:

 A mechanism for selecting software components

compatible with the particular features of a mobile device.

 A data-driven approach based on XML for defining the

dependencies of software components of SPL and how

they are wired together to compose the application.

 A lightweight DI framework to instantiate the

components at run-time.

 The possibility of building mobile applications by using

the device features rather than the device model.

A set of experiments was realized in order to check the

performance of the tool. The experiments included the

selection of components in scenarios with up to 10,000

artifacts. The tool achieved very low selection times, in the

worst case scenario, the selection time takes less than 50ms,

while in the best case scenario, it takes about 10ms.

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

C
o
m

p
o
n
e

n
t

se
le

ct
io

n
 t
im

e
(m

s)

Total components

BCST

WCST

Fig. 4. Performance results for best and worst case selection time.

REFERENCES

[1] M. Vidakovic, T. Maruna, N. Teslic, and V. Mihic. “A Java API

interface for the integration of DTV services in embedded multimedia
devices,” IEEE Trans. Consumer Electron., vol. 58, no. 3, pp. 1063-

1069, Aug. 2012.

[2] N. Kuzmanovic, V. Mihic, T. Maruna, M. Vidakovic and N. Teslic,
“Hybrid broadcast broadband TV implementation in Java based

applications on digital TV devices,” IEEE Trans. Consumer Electron.,

vol. 58, no. 3, pp. 1056-1062, Aug. 2012.
[3] H. Kasai, “Embedded middleware and software development kit for

area-based distributed mobile cache system,” IEEE Trans. Consumer

Electron., vol. 59, no. 1, pp. 281-289, Feb. 2013.
[4] V. F. de Lucena Jr., J. E. Chaves Filho, N. S. Viana, and O. B. Maia, "A

home automation proposal built on the Ginga middleware and the OSGi

framework," IEEE Trans. Consumer Electron., vol. 55, no. 3, pp. 1254-
1262, Aug. 2009.

[5] V. F. de Lucena Jr., N. S. Viana, O. B. Maia, J. E. Chaves Filho, and W.

S. da Silva Jr, "Design an extension API for bridging Ginga iDTV
applications and home services," IEEE Trans. Consumer Electron., vol.

58, no. 3, pp. 1077-1085, Aug. 2012.

[6] S. Spinsante, and E. Gambi, “Remote health monitoring by OSGi
technology and digital integration,” IEEE Trans. Consumer Electron.,

vol. 58, no. 4, pp. 1434-1441, Nov. 1998.

[7] F. Almenárez, P. Arias, D. Díaz-Sánchez, A. Marín and R. Sánchez,
“fedTV: Personal networks federation for IdM in mobile DTB,” IEEE

Trans. Consumer Electron., vol. 57, no. 2, pp. 499-506, May 2011.

[8] V. Alves, G. Santos, F. Calheiros,V. Nepomuceno, D. Pires, A. C. Neto,
and P. Borba, “Beyond code: handling variability in art artifacts in

mobile game product lines,” Proc. of the Workshop on Managing

Variability for Software Product Lines: Working With Variability
Mechanisms (SPLC 2006), pp. 124-132, 2006.

[9] B.-Y. Lee, “Provisioning of adaptive rich media services in

consideration of terminal capabilities in IPTV environments,” IEEE
Trans. Consumer Electron., vol. 57, no. 3, pp. 1120-1127, Aug. 2011.

[10] N. Kim, J.-Y. Yoo, N. L. Kim, J. W. Kim, “A visual-sharing switching

device supporting programmable in-network content adaptation,” IEEE
Trans. Consumer Electron., vol. 58, no. 2, pp. 413-418, Jul. 2012.

[11] K. Pohl, G. Böckle, and F. J. Linden, Software product line engineering:

foundations, principles and techniques, 1st ed., Springer: New York,
2005, pp 3-18.

[12] F. J. Linden, K. Schmid, and E. Rommes, Software product lines in

action: the best industrial practice in product line engineering, 1st ed.,
Springer-Verlag: New York, US, 2007, pp. 3-20.

[13] V. Alves, “Identifying variations in mobile devices,” Journal of Object

Technology, vol. 4, no. 3, pp. 47-52, Apr. 2005.
[14] K. Geihs, M. U. Khan, R. Reichle, A. Solberg, and S. Hallsteinsen,

“Modeling of component-based self-adapting context-aware applications

for mobile devices,” Software Engineering Techniques: Design for
Quality (IFIP), Springer: Boston, US, vol. 227, 2007, pp.85-96.

[15] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko,

“Automatically composing reusable software components for mobile
devices,” J. Braz. Comp. Soc., vol. 14, no. 1, 2008, pp.25-44.

[16] R. Rosa and V. Lucena Jr., “Smart composition of reusable software

components in mobile application product lines,” Proceedings of the 2nd

International Workshop on Product Line Approaches in Software

Engineering, ACM: New York, USA,, pp. 45-49, 2011.
[17] S. Deelstra, M. Sinnema, M., and J. Bosch, “Product derivation in

software product families: a case study,” J. Syst. Softw., Elsevier, vol.

74, no. 2, pp. 173-194, Jan. 2005.
[18] R. Rabiser, P. O'Leary, and I. Richardson, “Key activities for product

derivation in software product lines,” J. Syst. Softw., Elsevier, vol. 84,

no. 2, pp. 285-300, Feb. 2011.
[19] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid, “Dynamic

software product lines,” Computer, IEEE, vol. 41, no. 4, pp. 93-95, Abr.

2008.
[20] C. Hentschel, R. J. Bril, Y. Chen, R. Braspenning and T.-H. Lan “Video

Quality-of-Service for consumer terminals – a novel system for

programmable components,” IEEE Trans. Consumer Electron., vol. 49,
no. 4, pp. 1367-1377, Nov., 2003.

[21] P. Clements and L. Northrop, Software product lines: practices and

patterns, 3rd ed., Addison-Wesley Longman Publishing Co., Inc.:
Boston, MA, USA, 2002, pp. 29-50.

[22] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,

tools, and applications, 1st ed., Addison-Wesley Publishing Co.: New

York, NY, USA, 2000, pp. 17-81.

[23] R. Rabiser, P. Grünbacher, and D. Dhungana, “Requirements for product

derivation support: results from a systematic literature review and an
expert survey,” Inf. Softw. Technol., Elsevier, vol. 52, no. 3, pp. 324-

346, Mar. 2010.

[24] L. M. Nascimento, E. S. Almeida, and S. R. L. Meira, “A case study in
software product lines - the case of the mobile game domain,” Software

Engineering and Advanced Applications, (Euromicro Conference), IEEE

Computer Society: Los Alamitos, CA, USA, pp. 43-50, 2008.
[25] M. Fowler, “Module assembly,” IEEE Softw., IEEE, vol. 21, no. 2, pp.

65-67, Mar. 2004.

[26] M. Mattsson, J. Bosch, and M. E. Fayad, “Framework integration
problems, causes, solutions,” Commun. ACM, ACM, vol. 42, no. 10, pp.

80-87. Oct. 1999.

[27] M. Huth and M. Ryan, Logic in computer science: modelling and
reasoning about systems, 2nd ed., Cambridge University Press: New

York, NY, USA. 2004, pp. 187-206.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

elements of reusable object-oriented software, 1st ed., Addison-Wesley

Longman Publishing Co., Inc.: Boston, MA, USA, 1995, pp. 315-324.

[29] H. I. Alsawalqah, K. S. Abotsi, and D. H. Lee, “An automated
mechanism for organizing and retrieving core asset artifacts for product

derivation in SPL,” Proc. of the 2nd Int. Conf. on Interaction Sciences

Information Technology, Culture and Human, ACM Press: New York,
NY, USA, pp. 80-485, 2009.

[30] O. Hummel, W. Janjic, C. Atkinson, “Code Conjurer: Pulling Reusable
Software out of Thin Air,” IEEE Software, vol. 25, no.5, pp.45-52, Sep.-

Oct. 2008.

[31] C. E. Ortiz and Giguere, E., Mobile information device profile for Java 2
micro edition, 1st ed., John Wiley & Sons: New York, NY, USA, 2011,

pp. 12-26.

[32] M. McCandless, E. Hatcher, and O. Gospodnetic, Lucene in action,
second edition: covers Apache Lucene 3.0, 2nd ed., Manning

Publications Co.: Greenwich, CT, USA, 2010, pp. 74-109.

[33] H. Jo, H. Kim, J. Jeong, J. Lee, S. Maeng, “Optimizing the startup time

of embedded systems: a case study of digital TV,” IEEE Trans.

Consumer Electron., vol.55, no.4, pp. 2242-2247, Nov. 2009.

[34] E. J. Jang, R. Woo, and D. S. Han, “Improvement of Connectivity
between Infrastructure and consumer devices for infotainment services,”

IEEE Trans. Consumer Electron., vol. 59, no. 2, pp. 329-334, May 2013.

BIOGRAPHIES

Ricardo E. V. de S. Rosa received his M.Sc. degree in electrical engineering

in 2010 from the Federal University of Amazonas. He is currently a Ph.D.
candidate at Federal University of Minas Gerais. His research interests include

development of applications for mobile devices, reuse based software

engineering and application of computational intelligence techniques for
content personalization.

Vicente F. de Lucena Jr. (M’94) received his Ph.D. degree (Dr.-Ing) in 2002

from the University of Stuttgart in Germany. Since 1990, he has been a

Faculty Member with the Engineering College at the Federal University of
Amazon (UFAM) in Manaus – Brazil. He is also with the Electronics and

Information Technology R&D Center a research group that works with

consumer electronics. His research interests include automation systems, new
software engineering approaches, and the development of embedded systems.

Lucas C. Cordeiro received the B.Sc. degree in electrical engineering and the
M.Sc. degree in informatics from the Federal University of Amazonas

(UFAM), in 2005 and 2007, respectively. He received the Ph.D. degree in

computer science from the University of Southampton in 2011. Since 2011 he
has been an adjunct professor in the Electrical and Computer Engineering

Department at UFAM. His work focuses on software verification, model

checking, satisfiability modulo theories, and embedded systems.

João E. Chaves Filho received his Ph.D. degree in Electrical Engineering in

1997 from the Universidade Federal de Campina Grande (UFCG), Paraíba,
Brazil. His M.Sc. was also obtained from UFCG in 1991. Since 1980, he has

been a Faculty Member with the Electrical Engineering Department at

UFAM. His research interests include new industrial automation proposals,
artificial intelligence, control systems, and system identification.

