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Abstract—Deploying Neural networks (NNs) in low-resource
domains is challenging because of their high computing, memory,
and power requirements. For this reason, NNs are often quan-
tized before deployment, but such an approach degrades their
accuracy. Thus, we propose the counterexample guided neural
network quantization refinement (CEG4N) framework, which
combines search-based quantization and equivalence checking.
The former minimizes computational requirements, while the
latter guarantees that the behavior of an NN does not change
after quantization. We evaluate CEG4N on a diverse set of
benchmarks, including large and small NNs. Our technique
successfully quantizes the networks in the chosen evaluation set,
while producing models with up to 163% better accuracy than
state-of-the-art techniques.

Index Terms—Equivalent Quantization, Neural Network
Quantization, Neural Network Equivalence

I. INTRODUCTION

Neural networks (NNs) are becoming essential in many ap-
plications such as autonomous driving [1], medicine, security,
and other safety-critical domains [2]. However, current state-
of-the-art NNs often require substantial computing, memory,
and power resources, limiting their applicability [3]. As a
result, resource-constrained systems may not be able to run
complex NNs, leading to high opportunity cost for businesses.

Quantization techniques can help reduce the resource re-
quirements of NNs [3–5] by decreasing the bit width required
to represent their parameters and intermediate computation
steps [4]. In general, different quantization strategies can be
used. On the one hand, some studies consider only the quanti-
zation of NN weights [6–8]. On the other hand, other studies
provide entire NN frameworks in integer precision, including
weights, activation functions, and convolutional layers [4, 9].

Overall, the goal is compressing an NN to the smallest pos-
sible bit-width. However, doing so may affects the functional
behavior of the resulting NN, making it prone to errors and
loss of accuracy [5, 9]. For this reason, existing techniques
usually monitor the accuracy degradation of a quantized NN
(QNN) with statistical measures defined on the training set [5].
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Nonetheless, statistical accuracy measures do not capture
a network’s vulnerability to adversarial inputs. Indeed, there
may exist specific inputs for which a network’s performance
degrades significantly [5, 10]. Consequently, the only way to
guarantee accuracy for a QNN is reformulating the problem
under the notion of equivalence checking (EC) [11–13]. This
property states that two NN are equivalent when they produce
similar outputs for inputs in a given domain [12, 13].

This paper extends a previous work [14], which tackles the
problems of NN quantization and equivalence checking in a
modular fashion within the CEG4N framework, by iterating
between two stages: searching for QNN candidates over a
finite set of counterexamples, and verifying the QNN to either
prove equivalence or generate more counterexamples. Here,
we present a number of additional contributions:

• we describe the equivalent quantization (EQ) problem as
a general optimization-verification iterative framework;

• we show that CEG4N works with multiple verification
engines by employing neural network equivalence verifi-
cation (NNEV) and satisfiability modulo theories (SMT);

• we extend the experimental evaluation of CEG4N by
considering a larger set of ACAS Xu networks [15],
deeper fully-connected networks for MNIST [16] and
convolutional networks for CIFAR-10 [17]. Furthermore,
we explore the effect of different architectures on small
networks trained on the Iris [18] and Seeds [19] datasets.

• we show that CEG4N can successfully quantize NNs and
produce models with up to 163% better accuracy, when
compared with state-of-the-art quantization techniques.

The structure of this paper is as follows. In Section II,
we introduce some preliminary information on QNNs and
equivalence verification. In Section III, we give a broad survey
of related work. In Section IV, we propose our improved
CEG4N framework. In Section V, we present the results of our
extensive experimental evaluation. In Section VI, we conclude
and outline potential future work.

II. PRELIMINARIES

A. Neural Networks

In general, NNs are non-linear multivariate functions

f : I ⊂ Rn → O ⊂ Rm, (1)

where I ⊂ Rn and O ⊂ Rm are the input and output
domains with dimensions n and m, respectively. Internally, a
NN is structured as a direct graph with a set of H hidden
layers. In a feedforward NN, the neurons in each layer
h = {0, 1, ...,H + 1} are connected to those in the preceding
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layer h− 1. Additionally, the neurons in the first layer h = 0
are just a placeholder for the input of the NN, while the
neurons in the last layer h = H+1 hold the output of function
f . Fig. 1 shows a feedforward NN with H = 3 hidden layers.
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Fig. 1. A simple feed-forward NN that has three hidden layers with k neurons
in each, which accepts an input of size n and produces an output of size m.

In this paper, we assume that the output a(h) of each
layer is computed by combining an affine and a non-linear
transformation as follows. The non-activated and activated
outputs of layer h, respectively z and a(h), are:

z(h) = W(h) · a(h−1) + b(h), (2)

a(h) = σ(z(h)), (3)

where W(h) ∈ Rmh−1×mh is weights’ matrix, b(h) ∈ Rmh is
the bias vector, σ : Rmh → Rmh is the non-linear activation
function, a(0) = x is the NN input, and the layers dimensions
satisfy n = m0 and mH+1 = m. The most popular activation
functions σ are the rectified linear unit (ReLU), the sigmoid
(Sigm), the hyperbolic tangent (TanH), and the max pooling
operator [13]. While our framework is agnostic to the specific
choice of σ, in our experiments we focus on ReLU:

ReLU(z(h)) = max
{
0, z(h)

}
. (4)

Our framework support both fully-connected and convolu-
tional layers. More specifically, (2) can be written as follows:
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where the matrix W(h) is dense in fully-connected layers and
sparse in convolutional ones [20].

B. Quantization

Quantization is the process of constraining high-precision
values (e.g., single-precision floating-point values) to a fi-
nite range of low-precision ones (e.g., integers) [5, 21]. The
quantization quality is usually determined by a scalar n (the
available number of bits) that defines a finite range’s lower
and upper bounds. Let us define quantization as a mapping
function Qn : Rm×p → Im×p, which is formulated as

Q (A,n) = clip

(⌊
A

q (A,n)

⌉
,−2n−1, 2n−1 − 1

)
, (5)

where A ∈ Rm× p denotes a high-precision (i.e., single scalar,
vector, or matrix) value; n is the number of bits used for
quantization; q(A,n) means a function that computes the
scaling factor for A concerning a number of bits n; clip
denotes a clipping function that ensures the values being
mapped by the quantization function are bounded by some
upper lower and upper values; ⌊·⌉ denotes rounding to the
nearest integer; and −2n−1 and 2n−1 − 1 indicate lower and
upper bounds of the clipping function, respectively. Defining a
scaling factor (see Eq. 6) is an important aspect when dealing
with uniform quantization [9, 22]. Moreover, the original high-
precision values to be quantized are floating-point ones, given
that NNs are usually designed using this representation.

The scaling factor divides a given range of values A into
an arbitrary number of partitions. Thus, let us define a scaling
factor function q(A,n), a number of bits (bit-width) n to be
used for quantization, and a clipping range given by [α, β],
which leads to a scaling factor defined as

q (A,n) =
β − α

2n − 1
. (6)

We use symmetric quantization, thus the clipping values
are β = −α = max([|min (A)|, |max (A)|]). A quantization
process can produce an integer value outside the quantized
range. To prevent that, an additional clipping step is necessary.
A de-quantization process computes back original values as:

Â = q (A,n)Q (A,n) . (7)

However, both clipping and rounding cause permanent loss of
information. Consequently, de-quantization can only approxi-
mate original values, i.e., A ≈ Â.

C. Neural Network Quantization

When we quantize a NN, we can follow a number of
different strategies [4, 9] Here, we will consider only the
strategy of storing all NN weights in quantized format to
reduce the memory requirements [6–8]. At inference time, we
assume that the weights are de-quantized and all the operations
in the NN are executed in floating point.

Consider a feedforward NN f as defined in (2) and (3). Call
Nf the set whose elements n(h) ∈ Nf are the bit widths for
each layer h in f . Given the de-quantization process in (7)
and the non-activated output in (2), we can describe the non-
activated output ẑ(h) of a quantized layer h as:

ẑ(h) = q
(
W(h), n(h)

)
Q
(
W(h), n(h)

)
· a(h−1)

+ q
(
b(h), n(h)

)
Q
(
b(h), n(h)

)
.

(8)

D. Neural Network Equivalence

Let f : I → O and f ′ : I → O be two arbitrary NNs,
where I ∈ Rn and O ∈ Rm are their common input and
output spaces, respectively. Currently, the literature reports the
following definitions of equivalence [11–13, 23, 24].

Definition 2.1 (Top-Equivalence): Consider two NNs f :
I → O and f ′ : I → O. Then, f and f ′ are Top-1-equivalent,
i.e., f ≡ f ′, if and only if the following holds:

∀ x ∈ I, f(x) = f ′(x). (9)
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Definition 2.2 (ϵ-Equivalence): Consider two NNs f : I →
O and f ′ : I → O, and an ϵ > 0. Then, f and f ′ are ϵ-
equivalent, i.e., f ∽p,ϵ f

′, if and only if the following holds:

∀ x ∈ I, ||f(x)− f ′(x)||p ≤ ϵ. (10)

Definition 2.1 is a strict form of equivalence and imposes a
hard requirement [13]. Definition 2.2, in turn, is a flexible form
of equivalence [12]. As noted by Eleftheriadis et al.[13], Top-
Equivalence is a true equivalence relation, that is, it is reflexive
(f ≡ f for any NN f ), symmetric (f ≡ f ′ iff f ′ ≡ f ),
and transitive (f ≡ f ′ and f ′ ≡ f ′′ implies f ≡ f ′′).
However, ϵ-Equivalence is only reflexive and symmetric.

E. Verification of equivalence properties

The goal of NNEV verification is to check if f ⋍ f ′.
Then, we define NNEV as follows.

Definition 2.3 (Neural network verification problem): Given
two NNs f and f ′ and an equivalence relation ⋍∈ {≡,∽ϵ},
NNEV consists in checking if f ⋍ f ′.

This paper uses two paradigms: SMT and reachability
analysis (RA). With SMT, the equivalence property and the
NN model are encoded as a first-order logic formula. SMT
restricts the full expressive power of first-order logic to a
decidable fragment. With RA, in the form of GPE, the property
to be checked and the model are encoded as linear constraints.

1) SMT Encoding: SMT formulas can capture the complex
relationship between variables holding real, integer, and other
data types. If it is possible to assign values to them so that a
formula is evaluated as true, then it is said to be satisfiable.
However, if assigning such values is impossible, the mentioned
formula is considered unsatisfiable.

The following steps show how to reduce neural network
equivalence (NNE) to a logical satisfiability problem: (1)
encoding f into an SMT formula ϕ; (2) encoding f ′ into an
SMT formula ϕ′; (3) encoding the relation f ⋍ f ′ into an SMT
formula Φ, such that f ⋍ f ′ iff Φ is not satisfiable; and (4)
checking, via SMT solver, whether Φ is satisfiable. If the latter
is true, f and f ′ are not equivalent, and the solver provides a
counterexample. Otherwise, f and f ′ are equivalent.

Checking NNE becomes possible by relying on the negation
of f ⋍ f ′, i.e., by encoding it as a formula that asserts the
existence of an input x ∈ I and two outputs y, y′ ∈ O
(y = f(x) and y′ = f ′(x)) such that they do not satisfy
the conditions imposed by ⋍. Indeed, we check if

(∃x ∈ I; y, y′ ∈ O; y = f(x) ∧ y′ = f ′(x) ∧ y ̸= y′) ,

or, regarding the ϵ-Equivalence definition, if

(∃x ∈ I; y, y′ ∈ O; y = f(x) ∧ y′ = f ′(x) ∧ ||y − y′||p > ϵ) .

In summary, checking whether the formula y = f(x)∧y′ =
f ′(x) ∧ y ̸= y′ is unsatisfiable can be further expressed as

ϕ := y = f(x)

ϕ′ := y′ = f ′(x)

Φ := ϕ ∧ ϕ′ ∧ y ̸= y′.

(11)

Similarly, checking whether the formula y = f(x) ∧ y′ =
f ′(x) ∧ ||y − y′||p > ϵ is unsatisfiable can be expressed as

ϕ := y = f(x)

ϕ′ := y′ = f ′(x)

Φ := ϕ ∧ ϕ′ ∧ ||y − y′||p > ϵ.

(12)

In addition, the input of an NN f is a vector x⃗ =
[x1, ..., xn] ∈ Rn, and some limitation regarding it may be
necessary. This constraint can then be added as

n∧
j=1

xj − r ≤ xj ≤ xj + r. (13)

In practice, we define a limiting region between xj − r and
xj + r around every point xj ∈ x, where equivalence is more
likely. It works as another relaxation factor for equivalence
because the associated properties should hold only for a
restricted input domain. It is also corroborated by the notion
that we expect the same behavior from a close neighbor of
an input. In addition, it can also be linked to real conditions
of a given application, such as its equivalence method and
input deviation and magnitude. However, this does not mean
that our technique is limited to small input ranges. Instead, it
is important to choose a range that preserves the relationship
between x and y and is also according to a specific application.

A possible way to use SMT is to employ a verifier based
on it and then provide a suitable model. One example is
the efficient SMT-based bounded model checker (ESBMC),
which supports SMT solvers natively. It generates verification
conditions for a given C or C++ program, i.e., its input model,
encodes them using different SMT background theories (i.e.,
linear-integer, real arithmetic, and bit-vectors), and employs
different solvers (e.g., Boolector [25] and Z3 [26]).

2) Geometric Path Enumeration (GPE) Encoding: Tran et
al., 2019 [27] proposed GPE, a methodology for verifying
NNs’ safety properties and the verification approach used by
the tool proposed by Teuber et al. [12], namely NNEQUIV.
We briefly describe NNEQUIV and how it encodes NNs and
equivalence property (EP) into a verification problem.

Definition 2.4 (Generalized Star Set [27]): A generalized
start set Θ is a tuple ⟨ c,G, P ⟩ where c ∈ Rn is the center,
G = (g1, ..., gm) ∈ Rn×m is the generator matrix, and P ⊆
Rm is a polytope defining a conjunction of linear constraints.
The set represented by Θ is then defined as

Θ = {x ∈ Rn | ∃α ∈ P : x = c+Gα}.

Assume we have two NNs f and g representing piecewise
linear functions. Furthermore, assume that we want to verify
whether f(x) = g(x) for the input domain I ≡ ⟨ c,G, P ⟩.
Since f and g are piecewise linear, there exist a tiling T ≡
{P ′} of the input domain I such that I = {x ∈ Rn | ∃P ′ ∈
T ∧ α ∈ P ′ : x = c+Gα}. Moreover, for each tile P ′ ∈ T ,
we require both f and g to be linear, i.e., f(x) = cf + Gfα
and g(x) = cg + Ggα for α ∈ P ′, where (cf , cg, Gf , Gg)
are specific to each tile P ′. The neural networks f and g are
equivalent if cf = cg and Gf = Gg for each tile P ′.

The NNEQUIV’s algorithm [12] computes the tiling T
via repeated reachability analysis as follows. First, the input
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domain I is propagated through NN f , outputting a union of
star sets. Then, each set is projected back onto the input space
and propagated through NN g, leading to a further union of star
sets whose elements, once projected onto the input domain,
represent the tiles P ′ ∈ T .

III. RELATED WORK

A. Neural Network Quantization

There are many aspects to consider when deciding to deploy
a quantization scheme [5]. For instance, if the goal is to
reduce an NN’s size, one can consider quantizing only its
weights and biases [5, 9, 28]. However, if the goal is to reduce
computation and memory requirements, one can consider
quantizing weights, biases, and activation functions [9, 28].

Indeed, the quantization of activation functions can reduce
computational and memory costs [9, 28]. However, it raises
challenges as it usually requires a calibration step using
representative data, prior to quantization, to correctly compute
quantization ranges [5, 28]. Conservative approaches based on
neurons’ transfer functions can also be used [29], but they
might lead to poorly quantized regions. In this regard, the
technique proposed here aims to reduce an NN’s size as it
applies a method that only quantizes its weights and biases.

In fact, several studies have focused specifically on quantiz-
ing weights of NNs [6, 8, 30–33] For instance, Courbariaux et
al. [30] proposed a method called binarized neural networks,
which lowers the storage costs of an NN’s weight parame-
ters by reducing them to binary values. Other studies have
also explored mixed-precision quantization techniques, which
quantize NN weights while retaining activation functions in
full precision. Yuan et al. [32] proposed EvoQ, which uses
evolutionary search to achieve mixed precision quantization
without access to complete training datasets. Zhou et al. [6]
proposed the incremental network quantization, which con-
verts a convolutional NN into a lower precision version whose
weights can only be either powers of two or zero, considering
weight importance to keep high accuracy. Finally, some studies
store quantized weights with floating-point precision, thus
facilitating integration for inference and generalization [8, 33].

B. Quantization-Aware Training

Another important aspect to consider is whether to employ
a post-training quantization strategy, as we do in the present
paper, or allow for some form of weight retraining. The latter
may recover some of the performance lost due to the quan-
tization and has been a very active area of research [34–36].
One of the fundamental problem is expressing the underlying
optimization problem in a gradient-friendly form. In this way,
the quantization objective can be included in the regular loss
function during training [35].

As the size of neural networks has grown larger, more
recent work attempts to quantize the training gradients too.
As an example, Zhou et al. [37] proposed a method called
DoReFa-Net for training convolutional neural networks with
low bitwidth weights, activations, and gradients. During the
training process, parameter gradients are quantized to low
bitwidth values, allowing faster training and inference using

bit convolution kernels. This approach is efficient on various
hardware platforms like CPU, FPGA, ASIC, and GPU.

Alternatively, higher rates of compression can be achieved
by using different quantization schemes on different regions
of the input. For instance, Huang et al. [38] propose a
dynamic quantization strategy that avoids a non-uniform usage
of the available computational resources. Their technique is
particularly suited to deployment on hardware accelerators.

Unfortunately, quantization-aware training may break the
assumptions of the existing NNE verification tools [11–13, 39].
Thus, in this paper, we focus on post-training quantization.

C. Verification of Quantized Neural Networks

Giacobbe et al. [40] are the first to formally investigate the
impact of quantization on NNs. They explore how quantization
affects the NNs’ robustness and formal verification. They pro-
pose a bit-precise SMT-solving approach for determining the
satisfiability of first-order logic formulas where variables rep-
resent fixed-size bit-vectors. Their study shows that there is no
simple and direct correlation or pattern between the robustness
and the number of bits of a QNN. and makes several significant
contributions, including revealing non-monotonicity in QNN
robustness, introducing a complete verification method, and
highlighting the limitations of existing approaches.

Henzinger et al. [41] proposed an SMT-based verifica-
tion method for QNNs, using bit-vector specifications. It
requires translating an NN and its safety properties into closed
quantifier-free formulae over the theory of fixed-size bit-
vectors. It performs verification only, focusing on robustness,
while CEG4N tackles both NN quantization and verification,
trying to find a more compact representation that is sound,
with NN translation into formulae done by a verifier.

Mistry et al. [42] discusses the formal verification of QNNs
implemented using fixed-point arithmetic. The authors propose
a novel methodology for encoding the verification problem
into a mixed-integer linear programming (MILP) problem,
focusing on the bit-precise semantics of QNNs. Their results
demonstrate that their MILP-based technique outperforms
state-of-the-art bit-vector encodings by a significant margin.

Song et al. [43] proposed QNNVerifier, which performs
SMT-based verification of QNNs. Their technique relies on
fixed-point operational models for using the C language as an
abstract model, which allowed operations to be encoded in
their quantized form, explicitly, thus providing compatibility
with SMT solvers. Although this study presents some simi-
larities with ours, the main difference lies in the properties
being verified. It checks if a QNN is invariant to adversarial
inputs, while CEG4N iteratively verifies if an NN is invariant
to quantization, with decoupled quantization and verification.

D. Neural Network Equivalence

Our CEG4N framework can in principle accommodate
multiple equivalence verification techniques. In addition to
those, we mention in Section II, all the following are viable
alternatives. First, Büning et al. [11] defined the notion of
relaxed equivalence, because exact equivalence (see Section
II-D) is hard to solve. They choose to encode equivalence
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properties into MILP. First, the input domain is restricted to
radii around a point, where equality is more likely. Then, a less
strict relation is used. Finally, two NNs R and T are equivalent
if the classification result of R is amongst the top-K largest
results of T. It was later extended by Teuber et al. [12].

Furthermore, Eleftheriadis et al. [13] proposed an SMT-
based NNE checking scheme based on strict ϵ-Equivalence.
The key differences between their work and the equivalence
checking techniques we use are as follows. We also consider
Top-Equivalence, and we encode NNs, EP, and equivalence
relation either as a C program or Python code along with
a structured description. More recently, Zhang et al. [39]
introduced QEBVerif, a method that is capable of verifying
the equivalence between a NN and its quantized counterpart
when both the weights and the activation tensors are quantized.
QEBVerif consists of differential reachability analysis (DRA)
and MILP-based verification. Similar to the work by Eleftheri-
adis et al. [13], they mainly focus on ϵ-Equivalence, and their
technique cannot be easily extended to Top-Equivalence.

IV. COUNTEREXAMPLE GUIDED NEURAL NETWORK
QUANTIZATION REFINEMENT

This work aims to provide a methodology for creating com-
pressed NNs that are as small as possible, from a quantization
point of view. We provide the definition of EQ as follows.

Definition 4.1 (NN Quantization Vector): Let N =
(n0, . . . , nH−1) be a vector that contains the bit width nh

for the weights of each layer h of a QNN fq .
Definition 4.2 (Equivalent Quantization): Let f be the

reference NN, H ∈ Rn be a set of input instances, and
⋍∈ {≡,∽p,ϵ} an NNE relation. A vector of bit widths N
can be used to quantize f and obtain its quantized version fq .
Thus, EQ searches for a vector N for which f and fq satisfy
the following equivalence constraint: f(x) ⋍ fq(x) ∀ x ∈ H.

From the definitions of NNE discussed in Section II-D, we
preserve the equivalence between the mathematical functions
f and fq associated with the original and QNNs, respectively.
In more detail, consider an NN f with H layers. As stated in
Definition 4.1, its quantization assumes that there is a vector N
whose elements nh represent the bit width that should be used
to quantize the h-th layer in f , with h = [0, 1, 2, ...,H − 1].
In our EQ problem, we obtain a vector N whose elements nh

are minimized while keeping f and fq equivalent. To obtain
N , one can apply an optimization algorithm.

A. EQ as a Minimization Problem

We consider the EQ processing of an NN as an iterative
minimization problem. Specifically, each iteration is composed
of two complementary sub-problems. First, we need to op-
timize the numbers of bits for quantization, i.e., finding a
candidate vector N that holds all minimum bit widths. Second,
we need to verify the equivalence property, i.e., checking if
an NN quantized with the bit widths in N is equivalent to its
original model. If the latter fails, we iteratively return to the
minimization sub-problem with additional information. More
formally, we define the first sub-problem as follows.

Optimization sub-problem o:

Objective: N o = argmin
n0
o,...,n

H−1
o

∑
h∈Nh<H

p(h) ∗ n(h)

s.t: f(x) ⋍ fq(x), ∀ x ∈ Ho
CE

n(h) ≥ N ∀ n(h) ∈ N o

n(h) ≤ N ∀ n(h) ∈ N o

(14)

Here, f is the function associated with NN F , fq is the
quantized function associated with NN F , and Ho

CE is a set
of counterexamples that may be available at iteration o.

Consider N and N as the minimum and maximum bit
widths allowed for quantization that ensure two aspects as
follows. First, they provide lower and upper bounds for the
quantization bit width, which guarantees correctness for the
quantization process and the generation of valid quantized
models. Second, they can be regarded as initialization and
termination criteria, the latter if a candidate N o such that
n(h) = N for every n(h) ∈ N o is reached. When it happens,
the optimization process is stopped as no valid quantized
model could be generated. In any case, if CEG4N proposes
a quantization solution where n = N for every n ∈ N o, it
is verified as well. Besides, if the verification process returns
a counterexample, CEG4N finishes with failure. Finally, note
that Ho

CE is an iterative parameter updated at each iteration o
and based on the verification sub-problem.

Moreover, the function being minimized represents a
weighted summation of the bit widths in the solution candidate
Ho, where p(h) is a constant value associated with the bit
width n(h). These constants allow the optimization algorithm
to prioritize layers based on their sizes. In our case, we have
defined weights proportional to the number of neurons in a
given layer h: more extensive layers, in terms of neurons, have
bigger weights. This way, the optimizer searches for solutions
with smaller bit widths associated with larger layers, which
straightly represent their complexities.

Our search-based technique is very simple as a unique
precision is adopted for an entire NN layer, i.e., we do not
differentiate channels in a single convolution layer. Since it
favors the combination of quantization and formal verification,
we prioritize the feasibility of the overall framework.

Verification sub-problem o:

Φ := ϕ ∧ ϕ′ ∧ ¬(y ⋍ y′)

In the verification sub-problem o, we check whether N o

generated by the optimization sub-problem o satisfies one of
the properties presented in Section II-E, depending on the
chosen form of equivalence. If Φ holds for the candidate
N o, the optimization halts and N o is presented as a solution;
otherwise, a new counterexample xCE is generated. Then, the
iteration o+1 starts where the iteration o stops. Consequently,
the optimization sub-problem o + 1 receives as parameter a
set of Ho+1

CE such that Ho+1
CE = Ho

CE ∪ xCE, which is used as
additional information for successful execution.

B. The CEG4N Framework Implementation

We propose the CEG4N framework, a counterexample-
guided optimization approach to solve the EQ problem pre-
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Timeout, etc.

Fig. 2. An overview of CEG4N’s architecture, highlighting the relationship between main modules and their inputs and outputs.

sented here. It integrates different techniques to tackle the two
sub-problems described in Section IV-A: the optimization of
bit widths and the verification of NN equivalence. Indeed,
CEG4N is designed to combine three modules, each character-
ized by a specific role in EQ. Fig. 2 illustrates its architecture.

1) Bits Search Module (BSM): The first element, namely
bits search module (BSM), is an instance of the optimization
algorithm, e.g., a genetic algorithm (GA). BSM expects three
main inputs: the original NN, a set of counterexamples HCE,
and a set of equivalence properties (see Equation 14). Its
output is a vector of bits containing the bit width for each
layer in a given NN. We can also specify lower and upper
bounds to restrict the possible widths, and, depending on
the chosen optimization algorithm, other parameters may also
be required. For instance, if we use GAs, we may need to
specify the maximum number of generations they are allowed
to run. Besides, there is no limitation regarding optimization
algorithms, i.e., any technique could be used. However, in this
paper, we only support and describe a GA module.

2) Abstractions Module (AM): The second element, namely
abstractions module (AM), encodes the original and QNNs
into a format the third module can handle. Depending on
the choice for the latter, the functional behavior of an NN
is represented at different levels of abstraction. Specific ex-
amples include the open neural network exchange (ONNX)
file format, which stores the architecture of an NN and its
weights, and a C/C++ source file, which provides a low-level
NN implementation. Generally, we encode the original neural
network and its quantized counterpart separately.

At this point, it is important to explain the internal NN
representations used in CEG4N. Specifically, it handles two
functional versions of the same NN, at the same time:

• a version for optimization written in Python, in BSM;
• a version for verification written in C, when ESBMC is

used, or Python, when NNEQUIV is employed, in VM.
Such versions are equivalent as they share the same pa-

rameters (i.e., weights, bias, and activation functions), while
the major difference resides in how their operations are im-
plemented. BSM works with an NN representation written in
Python, in addition to an ONNX model. It is loaded along with
its weights into the Pytorch framework, which implements all
NN mathematical operations. The other two representations
are created in AM and used in VM. If ESBMC is chosen as
verifier (see Section II-E1), a functional NN version written
in C/C++ and adapted to it is used. However, if NNEQUIV is

chosen (see Section II-E2), a functional version written in
Python is employed. The latter implements all mathematical
operations directly in Python, with no additional framework.

3) Verifier Module (VM): The third and final element,
which we call the verifier module (VM), receives as inputs the
previously mentioned NN abstractions and a set of equivalence
properties. Then, it checks whether the latter holds for the for-
mer. When any given property does not hold, a counterexample
is provided by VM. Currently, CEG4N supports two options:
1) a bounded model checker, namely ESBMC [44, 45]), and a
GPE encoder, namely NNEQUIV [12].

In summary, NN equivalence is checked using SMT or
GPE. In the first, an NN is encoded into a C program that
is translated into SMT by ESBMC. In the second, NNEquiv
takes an NN description in Python, encodes it into star sets,
and handles the result as a linear programming problem.

However, there is no essential restriction regarding verifi-
cation techniques as long as counterexamples are provided.
That is an interesting compromise configuration regarding
any desired aspect, such as scalability, accuracy, or speed. In
addition, we believe CEG4N is the first framework to combine
quantization and equivalence checking, with formal guarantees
for the equivalence between quantized and original NNs.

An important aspect is that spurious counterexamples may
be generated in VM (see Section II-E2). To prevent them from
being added to Ho+1

CE , after each step o, we double-check them
using the original and QNNs. If their predictions diverge, the
respective counterexamples are discarded.

4) High-level overview of a CEG4N run: A successful
CEG4N run can be summarized in the following steps:

1) CEG4N starts with NN, a set of counterexamples, the
BSM’s parameters, and the VM’s equivalence properties;

2) BSM runs to look for a set of bit widths;
3) if none is found, CEG4N stops;
4) otherwise, AM creates NN abstractions based on the set

of bit widths found by BSM;
5) VM runs with the previously generated NN abstractions

and the equivalence properties specified in Step 1);
6) if these properties hold, CEG4N stops and produces a

QNN based on the bit widths found in Step 2);
7) otherwise, a new set of counterexamples, consisting

of elements specified in Step 1) and also new ones
produced by VM in Step 4), is created;

8) the execution goes to Step 2), until a timeout is reached;
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5) Discussion: We will now discuss some aspects of
CEG4N. First, BSM relies on a GA module to find QNN
candidates. It guarantees termination, using timeouts, but not
that the most compact model will be found. Then, we need
to consider VM, which, due to verification aspects, does
not ensure completeness; however, it is sound. If a given
property is satisfied for a QNN candidate, it will produce
a counterexample as proof that it is not equivalent to its
original counterpart; otherwise, this QNN candidate satisfies
the specified equivalence properties. Therefore, CEG4N can
find, when possible, a QNN that satisfies the equivalence
requirements regarding its original counterpart.

One may also argue that encoding the quantization problem
into SMT formulae could be used to replace our search-based
module. However, it is clear that handling only NN verification
with SMT solvers already leads to large state spaces [29],
complex encoding [41], and long run times, the latter shown
here, which indicates that a possible unified framework includ-
ing quantization will be even more complex. Consequently,
we believe that the decomposition strategy resulting from
decoupling quantization and verification makes EQ tractable.

V. EXPERIMENTAL EVALUATION

A. Description of the Benchmarks

We evaluate our methodology based on feedforward and
convolutional NN classification models extracted from the
literature [13, 15, 16]. We have chosen them mainly based
on their popularity in previous verification studies [12, 13].
Additionally, we have included other NN models to cover a
broader range of NN architectures (e.g., size and number of
neurons). The chosen benchmarks are presented below.

1) ACAS Xu: This dataset is derived from eight specifica-
tions, including features, decision boundaries, and expected
outputs [15]. Its features are sensor data indicating the speed
and course of the monitored aircraft and the position and
speed of any nearby intruder. Its NNs are expected to give
appropriate navigation advisories for input sensor data. The
expected outputs indicate that either the aircraft is clear of
conflict or it should take soft or hard turns to avoid a collision.
We have evaluated CEG4N on nine pre-trained NNs [46], each
containing 6 layers and a total of 300 ReLU nodes, which were
obtained from the VNN-COMP 2021 ’s benchmarks1.

2) MNIST: This is a popular dataset for image classifi-
cation [16]. It contains 70, 000 gray-scale images of size
28x28, where the original integer pixel values ([0, 255]) are
re-scaled to the floating-point range [0, 1]. We have evaluated
CEG4N on nine NNs, from which three models contain a
single layer with 10, 25, and 50 ReLU nodes, following the
architecture described by Eleftheriadis et al. [13]. Three other
models, obtained from the VNN-COMP 2021’s benchmarks,
have 2, 4, and 6 layers, each with 256 ReLU nodes. The
remaining three models were trained using resized MNIST
images, similar to the first three single-layer ones we described
here. In addition, we have employed 8x8 resized images to
reduce dimensionality and also give invariance to small image
distortions. In summary, three of the mentioned models were

pre-trained, the VNN-COMP 2021’s ones, while the remaining
elements were trained specifically for our experiments.

3) Seeds: This dataset consists of 210 samples of wheat
grain belonging to three different species, namely Kama,
Rosa, and Canadian [19]. Its input features include seven
measurements of the wheat kernel geometry scaled between
[0, 1]. We have evaluated CEG4N on four NNs containing a
single layer with 4, 6, 10, and 15 ReLU nodes. These four
NNs were specifically trained for evaluating CEG4N.

4) Iris: This dataset consists of 50 samples from three
species of Iris flower (Iris setosa, Iris virginica, and Iris
versicolor) [18]. It is a popular benchmark in machine learning
for classification, where data is composed of records of real
value measurements of the width and length of sepals and
petals of flowers. Its data were scaled to [0, 1]. We have
evaluated CEG4N on three NNs containing two layers with
4, 10, and 15 ReLU nodes in each. These three NNs were
trained specifically for evaluating CEG4N.

5) CIFAR-10: This is a dataset for image classification
composed by 60, 000 color images with 32x32 pixels for
10 different classes [17]. We have evaluated CEG4N on two
pre-trained NNs made fromVNN-COMP 2021. One has 3
convolutional and 2 linear layers, each with 250 neurons, while
the other has 2 convolutional and 2 linear layers, each with
250 neurons. Both use only ReLU activations.

B. Setup

1) BSM: As explained in Section IV-A, we use a search-
based optimization algorithm to find bit widths for NN quan-
tization. We have experimented with non-dominated sorting
genetic algorithm II (NSGA-II) [47], with the lower and upper
bounds for the allowed bit widths set to 2 and 32. The
choice for the lower bound relies on the first valid integer
that does not break our quantization scheme. In addition, the
mentioned upper bound was selected to match the maximum
number of bits usually employed for integer representation in
many different NN frameworks, such as PyTorch and ONNX,
and programming languages, such as C. Moreover, the upper
bound could also be higher, depending on the precision of NN
weights. However, the single-precision floating-point format
is the standard choice to train NNs and store their weights.
Another important factor backing our choice is that some
NN frameworks may not support other floating-point precision
types, which is the case of ONNX. Since the NNs used in our
experiments are stored using it, their associated floating-point
values are actually represented with single precision.

Furthermore, we have allowed our GA instance to run for
1000 generations for every time BSM was run. Such a figure
was found by empirically and incrementally checking if it
was able to produce QNNs in initial experiments with our
benchmarks. That was done by providing an empty HCE to
BSM and a given number of generations: if the outputted N
matches a vector such that n = 2 ∀n ∈ N , then GA can find a
solution with the given number of generations. In our case, GA
was able to find solutions for every benchmark when allowing

1The pre-trained weight for the ACAS Xu benchmarks can be found in the
following repository: https://github.com/stanleybak/vnncomp2021

https://github.com/stanleybak/vnncomp2021
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it to run for 1000. Notice that this number of generations may
not be optimal for smaller NNs, but it does not negatively
impact the correctness of CEG4N.

Lastly, we randomly selected the initial set H0
CE for each

dataset, with one sample for each class (e.g., we have selected
10 samples for MNIST and 3 for Iris). The samples in H0

CE

do not necessarily have to be selected from the benchmarks
dataset (train or test), and any concrete input can indeed be
specified (e.g., synthetic data). Specifically, in our experiments,
we have employed only real data, i.e., data from the chosen
datasets, Consequently, we have opted to keep one sample
per class. In summary, our choice is further justified by three
conditions: (1) the practical aspect of using samples from the
benchmarks set, (2) a test set that holds representative data,
and (3) the attempt to add variability to our experiments.

2) Equivalence properties: Regarding equivalence, we need
to choose from input samples and input constraints of each
property, under Definitions 2.1 and 2.2.

The equivalence properties (EPs) for Iris, Seeds, MNIST,
and CIFAR-10 were defined by: (1) selecting one real input
sample for each class (similar to the definition of H0

CE),
at random; (2) choosing Top-Equivalence; and (3) setting
input constraints. Regarding the latter, we have defined three
possible values for r (see Eq. 13): r = [0.01, 0.03, 0.05]. Such
values were selected empirically, based on input data and
experiments, and reflect the full structure here: benchmarks
with narrow input range and Top-Equivalence, which usually
leads to tighter input regions. In addition, studies in the
literature usually adopt only one, while our work provides
a margin for its discussion. Taking as an example MNIST,
which has 10 output classes, we were able to define a total of
3 sets with 10 input constraints each.

For Acas Xu, we followed the same strategy used by Teuber
et al. [12], i.e., ϵ-Equivalence as equivalence form, while r =
[0.1, 0.3, 0.5]. Again, three different values were adopted for
r, also empirically, but now taking into account Acas Xu’s
aspects: broader input range and ϵ-Equivalence.

If we revisit the Definition 2.2, we must choose two addi-
tional parameters, namely p and ϵ. The value for ϵ is usually
chosen according to the application domain of the NNs being
verified, in such a way that it is possible to prove equivalence
and, at the same time, the resulting NNs are useful, i.e., they
present tolerable output differences. It is also possible to find
an optimal ϵ by incrementally looking at counterexamples
and deciding if, from the user perspective, their outputs are
equivalent[46]. Ultimately, we decided for ϵ = 0.05 as it
means a maximum difference of 10% in Acas Xu’s scores. In
addition, such a value was also adopted by Teuber et al. [12].
Finally, we chose p = ∞ due to efficiency reasons [48] and
also aimed at consistency across different verifiers, which was
also adopted by Teuber et al. [12].

3) Time Limits: A timeout is important to ensure termina-
tion and should not be arbitrary. In our case, each equivalence
property verification takes at most 20 minutes, which is
consistent across all verifiers used in our experiments. It was
based on hardware configuration, expected run time, and other
aspects, but different limits can be set to suit distinct scenarios.

4) Availability of Data and Tools: Our experiments are
based on publicly available benchmarks. All tools, bench-
marks, and results employed here are available on the sup-
plementary web page https://zenodo.org/record/7126601.

C. Objectives

This work explores the concept of EQ, i.e., a safety property
that defines an equivalence relation between an original NN
and its quantized form. Then, we propose CEG4N, a frame-
work that quantizes NNs while accounting for EQ.

EG1 Is the CEG4N framework able to generate QNNs
that respect the EQ concept?

EG2 How is CEG4N comparable to other quantization
techniques?

Due to our research’s novelty, no existing similar techniques
lend themselves to a fair comparison. Indeed, the present
framework is a pioneer one and intends to pave the way for
integrating compression into practical NN deployment cycles.

D. Results

In our first set of experiments, we want to achieve our first
experimental goal EG1. We want to show that CEG4N can
successfully generate QNNs that are verifiably equivalent to
their original counterparts, i.e., respecting the EQ concept. As
secondary goals, we want to: 1) perform an empirical scal-
ability study to help us evaluate the computational demands
for quantizing and verifying the equivalence of NN models,
and (2) evaluate different equivalence checking techniques and
their impacts on the performance of CEG4N.

Our findings are summarized in Tables I, II, III, IV,
and V, which show results for benchmarks Iris, Seeds,
MNIST, CIFAR, and ACAS Xu, respectively. Regarding the
columns available in each Table, Model tells the specific
benchmark, Verifier informs if ESBMC or NNEQUIV was
used, r discloses the parameter r (see Eq. (13)), No. Iter.
shows the number of iterations taken by our GA instance, Bits
informs the last bit width passed to VM, and Status tells the
final CEG4N’s status. Moreover, the proposed methodology
presents inherent flexibility, such that verifiers and constraints
can be easily changed and promptly evaluated, as follows.

Our experiments show results for CEG4N executions clas-
sified into four possible outcomes: 1) Success (S), meaning
that CEG4N ran for one or more iterations and was able to
produce a QNN that respects the EQ property; 2) Timeout
(TO), which means CEG4N was unable to verify the equiv-
alence property within a given time limit previously set; 3)
Quantization Failure (QF), which means that CEG4N was
unable to find a suitable set of bit widths to quantize a given
NN; and 4) Verification Failure (VF), which means that some
error occurred during the equivalence verification step, e.g.,
exceptions thrown by the VM have occurred.

In summary, CEG4N running with ESBMC
(CEG4N+ESBMC) was able to successfully generate
QNNs for 17 out of 81 runs, considering all datasets,

https://zenodo.org/record/7126601
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TABLE I
SUMMARY OF THE CEG4N’S RESULTS FOR THE IRIS BENCHMARK.

Model Verifier r No. Iter. Bits Status

iris 4x2 ESBMC 0.01 1 3,3,3 S
0.03 1 3,3,3 S
0.05 11 12,10,10 S

NNEQUIV 0.01 1 3,3,3 S
0.03 1 3,3,3 VF
0.05 3 4,2,3 S

iris 10x2 ESBMC 0.01 2 3,3,2 S
0.03 3 4,2,4 S
0.05 7 8,7,9 S

NNEQUIV 0.01 2 2,3,4 S
0.03 3 2,3,4 S
0.05 2 3,2,4 S

iris 15x2 ESBMC 0.01 1 2,2,3 S
0.03 1 2,2,3 S
0.05 8 QF

NNEQUIV 0.01 1 2,2,3 S
0.03 1 2,2,3 S
0.05 1 2,2,3 S

TABLE II
SUMMARY OF THE CEG4N’S RESULTS FOR THE SEEDS BENCHMARK.

Model Verifier r No. Iter. Bits Status

seeds 4x1 ESBMC 0.01 1 3,3 S
seeds 4x1 ESBMC 0.01 1 3,3 S
seeds 4x1 ESBMC 0.01 1 3,3 S

0.03 1 3,3 S
0.05 9 12,13 S

NNEQUIV 0.01 1 3,3 S
0.03 1 3,3 S
0.05 2 4,4 S

seeds 6x1 ESBMC 0.01 1 4,2 S
0.03 4 12,12 S
0.05 8 12,12 S

NNEQUIV 0.01 1 4,2 S
0.03 2 4,3 S
0.05 2 4,3 S

seeds 10x1 ESBMC 0.01 2 3,4 S
0.03 13 18,12 S
0.05 3 6,4 TO

NNEQUIV 0.01 2 3,4 S
0.03 2 4,3 S
0.05 2 4,4 S

seeds 15x1 ESBMC 0.01 4 5,2 S
0.03 5 8,6 TO
0.05 7 8,7 TO

NNEQUIV 0.01 2 5,2 S
0.03 2 4,4 S
0.05 3 5,3 S

which accounts for 20.99% of all processes. In addition,
CEG4N running with NNEQUIV (CEG4N+NNEQUIV) was
successful in 33 out of 81 runs, representing 40.74% of all
processes. Most of the CEG4N’s failures, with ESBMC, was
due to timeouts, with 55 occurrences, representing 67.90% of
the total. In contrast, CEG4N with NNEQUIV resulted in 30
timeouts, i.e., 37% of the total.

Such a difference in timeouts can be attributed to many fac-
tors. For example, ESBMC, as an approach based on bounded
model checking (BMC), is known to suffer from scalability
issues, which greatly diminishes its ability to support larger

TABLE III
SUMMARY OF THE CEG4N’S RESULTS FOR THE MNIST BENCHMARK.

Model Verifier r No. Iter. Bits Status

mnist 64 10x1 ESBMC 0.01 1 4,5 TO
0.03 1 4,5 TO
0.05 1 4,5 TO

NNEQUIV 0.01 2 4,5 S
0.03 2 4,5 S
0.05 3 QF

mnist 64 25x1 ESBMC 0.01 1 3,3 TO
0.03 1 3,3 TO
0.05 1 3,3 TO

NNEQUIV 0.01 2 5,6 S
0.03 6 6,5 S
0.05 4 QF

mnist 64 50x1 ESBMC 0.01 1 2,3 TO
0.03 1 2,3 TO
0.05 1 2,3 TO

NNEQUIV 0.01 2 2,6 S
0.03 3 5,8 TO
0.05 1 2,3 TO

mnist 784 10x1 ESBMC 0.01 1 3,4 TO
F 0.03 1 3,4 TO

0.05 1 3,4 TO
NNEQUIV 0.01 1 3,4 S

0.03 2 3,6 S
0.05 7 17,21 S

mnist 784 25x1 ESBMC 0.01 1 3,5 TO
0.03 1 3,5 TO
0.05 1 3,5 TO

NNEQUIV 0.01 1 3,5 S
0.03 1 3,5 TO
0.05 1 3,5 TO

mnist 784 50x1 ESBMC 0.01 1 3,2 TO
0.03 1 3,2 TO
0.05 1 3,2 TO

NNEQUIV 0.01 1 3,2 S
0.03 1 3,2 TO
0.05 1 3,2 TO

mnist 256x2 ESBMC 0.01 1 4,3,5 TO
0.03 1 4,3,5 TO
0.05 1 4,3,5 TO

NNEQUIV 0.01 1 4,3,5 TO
0.03 1 4,3,5 TO
0.05 1 4,3,7 TO

mnist 256x4 ESBMC 0.01 1 3,2,3,3,4 TO
0.03 1 3,2,3,3,4 TO
0.05 1 3,2,3,3,4 TO

NNEQUIV 0.01 1 3,2,3,3,4 TO
0.03 1 3,2,3,3,4 TO
0.05 1 3,2,3,3,4 TO

mnist 256x6 ESBMC 0.01 1 3,2,3,3,4,3,4 TO
0.03 1 3,2,3,3,4,3,4 TO
0.05 1 3,2,3,3,4,3,4 TO

NNEQUIV 0.01 1 3,2,3,3,4,3,4 TO
0.03 1 3,2,3,3,4,3,4 TO
0.05 1 3,2,3,3,4,3,4 TO

NNs [29] and can be seen in more details in Tables I, II,
III, IV, and V. In the first two, which show information re-
garding CEG4N+ESBMC runs for the Iris and Seeds datasets
(at most two layers with less than 20 node each), respectively,
only three timeouts were noticed. However, if we take a look
at Tables III, IV, and V, which show information regarding
CEG4N+ESBMC runs for MNIST, CIFAR-10, and AcasXu,
respectively, and are composed mostly by medium to large
NNs (at most eight layers), the number of timeouts presents
a significant increase. Indeed, no successful execution could
even be identified. Moreover, the rare runs with a timeout,
with the dataset Seeds processed by CEG4N+ESBMC, also
happened with (1) NNs containing more than 10 neurons per
layer, (2) more than 4 iterations, and (3) larger constraint
regions (r = 0.03 and 0.05), which reinforces the explanation
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TABLE IV
SUMMARY OF THE CEG4N’S RESULTS FOR THE CIFAR BENCHMARK.

Model Verifier r No. Iter. Bits Status

cifar10 2 255 ESBMC 0.01 1 9,5,6,6,6 TO
0.03 1 7,8,6,6,6 TO
0.05 1 10,5,6,6,6 TO

NNEQUIV 0.01 1 7,8,6,6,6 VF
0.03 1 QF
0.05 1 9,5,6,7,7 VF

cifar10 8 255 ESBMC 0.01 1 4,8,6,7 TO
0.03 1 6,8,6,8 TO
0.05 1 4,8,6,7 TO

NNEQUIV 0.01 1 4,8,6,7 VF
0.03 1 4,8,6,7 VF
0.05 1 QF

based on NN complexity and BMC scalability. We can check
such cases in detail in Table II. In summary, combining
factors (1) and (3) mostly contributes to timeouts. The more
neurons an NN has, the more operations it has to perform (and
CEG4N). Besides, the bigger the r value, the bigger the search
space a verifier has to cover.

Although runs with CEG4N+NNEQUIV suffered
from fewer timeouts, it’s interesting to notice that
CEG4N+ESBMC required overall more iterations than
CEG4N+NNEQUIV. Considering only the successful runs,
CEG4N+ESBMC needed, on average, 4 iterations to produce
a QNN, while CEG4N+NNEQUIV used 2. The explanation
for this behavior is that ESBMC can find counterexamples
that NNEQUIV is not. Since ESBMC and NNEQUIV use
different verification approaches, i.e., SMT and reachability
analysis, respectively, the obtained results are expected
to eventually diverge for some verification instances. In
addition, NNEQUIV produces a high number of spurious
counterexamples, which is not beneficial to our scheme.
Indeed, CEG4N already expects that the verifiers can
eventually produce spurious counterexamples, which are
ruled out as explained in Section IV-B3. Therefore, our
results are entirely based on valid counterexamples only.

Quantization failures are another possible type of er-
ror, which can occur only in BSM. One may notice that
CEG4N+ESBMC presented only 9 cases, i.e., 11.11%, while
12 were identified for CEG4N+NNEQUIV. i.e., 14.81%. A
possible explanation is that the search for the bits sequence
is highly non-linear and highly dependent on the set of
counterexamples HCE BSM receives at a given iteration,
which makes this optimization problem a hard one to solve.
We should also consider that new constraints are added to
the search problem after each iteration, which makes it even
harder to solve. This is corroborated by the fact that most
quantization failures occurred after 2 or more runs.

Our experiments show a high number of quantization-failure
events for Acas Xu’s benchmarks. One explanation for that
relies on the fact that some of those NNs are highly sensitive to
errors introduced by quantization processes, in such a way that
it affects those NN’s behaviors. Thus, in such a context, NNs
may easily violate the constraint f(x) ⋍ fq(x), ∀ x ∈ Ho

CE

during the step performed by BSM. In addition, for other NNs,

TABLE V
SUMMARY OF THE CEG4N’S RESULTS FOR THE ACAS XU BENCHMARK.

Model Verifier r No. Iter. Bits Status

ACASXU 1 1 ESBMC 0.1 1 QF
0.3 1 QF
0.5 1 QF

NNEQUIV 0.1 1 QF
0.3 1 QF
0.5 1 10,9,9,7,12,10,8 S

ACASXU 1 2 ESBMC 0.1 1 12,9,8,9,7,9,5 TO
0.3 1 QF
0.5 1 11,7,7,8,9,9,7 TO

NNEQUIV 0.1 1 QF
0.3 1 7,8,7,8,9,9,5 TO
0.5 1 QF

ACASXU 1 3 ESBMC 0.1 1 QF
0.3 1 QF
0.5 1 QF

NNEQUIV 0.1 1 QF
0.3 1 QF
0.5 1 8,7,8,8,8,9,6 TO

ACASXU 1 4 ESBMC 0.1 1 5,6,5,6,6,8,4 TO
0.3 1 6,6,7,6,6,7,4 TO
0.5 1 QF

NNEQUIV 0.1 1 QF
0.3 1 5,6,5,6,6,8,4 TO
0.5 1 7,6,6,6,6,7,4 S

ACASXU 1 5 ESBMC 0.1 1 5,6,6,6,6,7,4 TO
0.3 1 5,6,6,6,6,7,4 TO
0.5 1 8,6,7,5,5,7,4 TO

NNEQUIV 0.1 1 7,8,5,6,7,7,8 TO
0.3 1 5,6,6,6,6,7,4 S
0.5 1 QF

ACASXU 1 6 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 5,9,4,2,6,4,4 TO
0.5 1 2,2,2,2,2,6,4 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,6,4 TO

ACASXU 1 7 ESBMC 0.1 1 2,2,2,2,2,4,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 VF
0.5 1 2,2,2,2,2,2,2 TO

ACASXU 1 8 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

ACASXU 1 9 ESBMC 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

NNEQUIV 0.1 1 2,2,2,2,2,2,2 TO
0.3 1 2,2,2,2,2,2,2 TO
0.5 1 2,2,2,2,2,2,2 TO

a higher value for ϵ can also help increase the chance of a
successful quantization. However, in the specific scenario used
here, we used an ϵ that should result in applicable QNNs [12].

Indeed, the conditions presented in the last paragraph prob-
ably prevented CEG4N from producing QNN candidates for
VM. Moreover, successful runs mostly failed with timeouts.
The main factors behind the latter are (1) the size of the input
NNs, in neurons, and (2) the number of features in the input
space. Indeed, Acas Xu’s NNs are mostly affected by the NN
size problem, as they present 300 neurons in total. MNIST, in
turn, NNs have 64 or 784 features in the input space that, from
the verification perspective, resulting in a very large search
space dimension to cover. In addition, CIFAR-10’s NNs are
affected by both factors, having 1024 features in the input
space, and thousands of neurons in total.

Regarding ACAS Xu, we find it possible to tune p and ϵ so
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we mitigate most of the associated quantization failures. How-
ever, it should be done carefully so the resulting NNs are still
applicable and the chosen verifier can perform accordingly.

The last possible failures are the verification ones, which
only occur in VM. We have noticed them only when running
CEG4N+NNEQUIV, with a total of 6 cases, i.e., a failure
rate of 7.4%. They were caused by exceptions thrown by the
NNEQUIV’s software dependencies. However, it is unclear
that a flaw in NNEQUIVcaused those exceptions. As we did
not notice any verification failures with ESBMC, this can
indicate its maturity, when comparing it with NNEQUIV.

Finally, the VM choice is also important. As shown here,
CEG4N+ESBMC and CEG4N+NNEQUIV present different
behaviors, which may be suitable for a given scenario. For
instance, regarding large NNs, CEG4N+NNEQUIV seems to
be a clear choice. Moreover, if new verification techniques
are introduced, one may consider other VM options, which
our framework can accommodate due to its modularity.

These results answer our EG1. Overall, these exper-
iments show that CEG4N can successfully produce
equivalent QNNs. However, scalability should be a
point of concern for larger NN models, which is very
related to the chosen verifier.

In our second set of experiments, we want to achieve our
second experimental goal, i.e., EG2. We primarily want to
understand the impact of quantization processes performed by
CEG4N on the accuracy of the resulting NNs compared with
other post-training quantization techniques.

We selected the models for which CEG4N presented suc-
cessful quantization processes and proceeded to quantize
them also using GPFQ. Next, we collected the accuracy of
the original and QNNs to compare them. Tables VI VII,
and VIII summarize the accuracy of the models quantized with
CEG4N+NNEQUIV, CEG4N+ESBMC, and GPFQ, using the
Iris, Seeds, and MNIST benchmarks. However, there was no
successful run regarding CEG4N+ESBMC with MNIST, as
already mentioned. Note that we do not report the accuracy
of CIFAR-10’s NNs from VNNCOMP since CEG4N could
not quantize them. Also, we do not report the accuracy of
Acas Xu’s models. It happened partially because of the same
problem identified with the VNNCOMP’s models, but mainly
because GPFQ requires access to training and test datasets,
which are not public for Acas Xu.

The tables are organized as follows. Column Model shows
the name of the NN models, Quantizer tells the name quanti-
zation technique (i.e., CEG4N+ESBMC, CEG4N+NNEQUIV,
or GPFQ), r informs the value used to define quantization
EPs, and columns Original Accuracy, Quantized Accuracy,
and Accuracy Drop show the accuracy of the original and
QNNs and their difference, respectively. Lastly, the column
Equivalence Status tells whether original and QNNs are equiv-
alent. The Accuracy Drop is positive if the QNN has a worse
accuracy when compared with its original model. Otherwise,
it is negative.

Our findings show that the highest drops in accuracy for

TABLE VI
COMPARISON USING TOP-1 ACCURACY FOR NNS FROM DATASET IRIS

QUANTIZED USING CEG4N AND GPFQ

Model Quantizer r Original
Accuracy

Quantized
Accuracy

Accuracy
Drop

Equivalence
Status

iris 4x2 GPFQ 0.010 86.667 60.000 -26.667 True
iris 4x2 CEG4N+ESBMC 0.010 86.667 86.667 0.000 True
iris 4x2 CEG4N+NNEQUIV 0.010 86.667 86.667 0.000 True
iris 4x2 GPFQ 0.030 86.667 60.000 -26.667 True
iris 4x2 CEG4N+ESBMC 0.030 86.667 86.667 0.000 True
iris 4x2 GPFQ 0.050 86.667 40.000 -46.667 False
iris 4x2 CEG4N+ESBMC 0.050 86.667 86.667 0.000 True
iris 4x2 CEG4N+NNEQUIV 0.050 86.667 93.333 6.667 True

iris 10x2 GPFQ 0.010 90.000 36.667 -53.333 False
iris 10x2 CEG4N+ESBMC 0.010 90.000 96.667 6.667 True
iris 10x2 CEG4N+NNEQUIV 0.010 90.000 93.333 3.333 True
iris 10x2 GPFQ 0.030 90.000 36.667 -53.333 False
iris 10x2 CEG4N+ESBMC 0.030 90.000 86.667 -3.333 True
iris 10x2 CEG4N+NNEQUIV 0.030 90.000 93.333 3.333 True
iris 10x2 GPFQ 0.050 90.000 36.667 -53.333 True
iris 10x2 CEG4N+ESBMC 0.050 90.000 90.000 0.000 True
iris 10x2 CEG4N+NNEQUIV 0.050 90.000 96.667 6.667 True

iris 15x2 GPFQ 0.010 90.000 93.333 3.333 False
iris 15x2 CEG4N+ESBMC 0.010 90.000 86.667 -3.333 True
iris 15x2 CEG4N+NNEQUIV 0.010 90.000 86.667 -3.333 True
iris 15x2 GPFQ 0.030 90.000 93.333 3.333 False
iris 15x2 CEG4N+ESBMC 0.030 90.000 86.667 -3.333 True
iris 15x2 CEG4N+NNEQUIV 0.030 90.000 86.667 -3.333 True
iris 15x2 GPFQ 0.050 90.000 93.333 3.333 False
iris 15x2 CEG4N+NNEQUIV 0.050 90.000 86.667 -3.333 True

TABLE VII
COMPARISON USING TOP-1 ACCURACY FOR NNS FROM DATASET SEEDS

QUANTIZED USING CEG4N AND GPFQ

Model Quantizer r Original
Accuracy

Quantized
Accuracy

Accuracy
Drop

Equivalence
Status

seeds 4x1 GPFQ 0.010 88.095 64.286 -23.810 True
seeds 4x1 CEG4N+ESBMC 0.010 88.095 85.714 -2.381 True
seeds 4x1 CEG4N+NNEQUIV 0.010 88.095 85.714 -2.381 True
seeds 4x1 GPFQ 0.030 88.095 64.286 -23.810 True
seeds 4x1 CEG4N+ESBMC 0.030 88.095 85.714 -2.381 True
seeds 4x1 CEG4N+NNEQUIV 0.030 88.095 85.714 -2.381 True
seeds 4x1 GPFQ 0.050 88.095 64.286 -23.810 True
seeds 4x1 CEG4N+ESBMC 0.050 88.095 88.095 0.000 True
seeds 4x1 CEG4N+NNEQUIV 0.050 88.095 88.095 0.000 True

seeds 6x1 GPFQ 0.010 83.333 59.524 -23.810 False
seeds 6x1 CEG4N+ESBMC 0.010 83.333 73.810 -9.524 True
seeds 6x1 CEG4N+NNEQUIV 0.010 83.333 73.810 -9.524 True
seeds 6x1 GPFQ 0.030 83.333 85.714 2.381 False
seeds 6x1 CEG4N+ESBMC 0.030 83.333 83.333 0.000 True
seeds 6x1 CEG4N+NNEQUIV 0.030 83.333 80.952 -2.381 True
seeds 6x1 GPFQ 0.050 83.333 57.143 -26.190 False
seeds 6x1 CEG4N+ESBMC 0.050 83.333 83.333 0.000 True
seeds 6x1 CEG4N+NNEQUIV 0.050 83.333 80.952 -2.381 True

seeds 10x1 GPFQ 0.010 90.476 42.857 -47.619 False
seeds 10x1 CEG4N+ESBMC 0.010 90.476 90.476 0.000 True
seeds 10x1 CEG4N+NNEQUIV 0.010 90.476 90.476 0.000 True
seeds 10x1 GPFQ 0.030 90.476 80.952 -9.524 False
seeds 10x1 CEG4N+ESBMC 0.030 90.476 90.476 0.000 True
seeds 10x1 CEG4N+NNEQUIV 0.030 90.476 90.476 0.000 True
seeds 10x1 GPFQ 0.050 90.476 80.952 -9.524 True
seeds 10x1 CEG4N+NNEQUIV 0.050 90.476 90.476 0.000 True

seeds 15x1 GPFQ 0.010 90.476 76.190 -14.286 False
seeds 15x1 CEG4N+ESBMC 0.010 90.476 69.048 -21.429 True
seeds 15x1 CEG4N+NNEQUIV 0.010 90.476 69.048 -21.429 True
seeds 15x1 GPFQ 0.030 90.476 88.095 -2.381 True
seeds 15x1 CEG4N+NNEQUIV 0.030 90.476 90.476 0.000 True
seeds 15x1 GPFQ 0.050 90.476 78.571 -11.905 False
seeds 15x1 CEG4N+NNEQUIV 0.050 90.476 85.714 -4.762 True

NNs generated by CEG4N+nnequiv where 3.3% for Iris,
21.43% for Seeds, and −6.20% for MNIST. For NNs quan-
tized with CEG4Nesbmc, the highest drops were 3.3% for
Iris and 21% for Seeds. Regarding GPFQ, the highest noticed
drops were 53.3% for Iris, −47.61% for Seeds, and −3.41%
for MNIST. Such results are interesting and show that an
increase in accuracy is even possible, which will be briefly
discussed in the following text.
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TABLE VIII
COMPARISON USING TOP-1 ACCURACY FOR NNS FROM DATASET MNIST

QUANTIZED USING CEG4N AND GPFQ

Model Quantizer r Original
Accuracy

Quantized
Accuracy

Accuracy
Drop

Equivalence
Status

mnist 64 10x1 GPFQ 0.010 79.040 79.480 0.440 False
mnist 64 10x1 CEG4N+NNEQUIV 0.010 79.040 77.900 -1.140 True
mnist 64 10x1 GPFQ 0.030 79.040 79.480 0.440 False
mnist 64 10x1 CEG4N+NNEQUIV 0.030 79.040 77.900 -1.140 True

mnist 64 25x1 GPFQ 0.010 83.420 81.960 -1.460 False
mnist 64 25x1 CEG4N+NNEQUIV 0.010 83.420 82.820 -0.600 True
mnist 64 25x1 GPFQ 0.030 83.420 81.960 -1.460 False
mnist 64 25x1 CEG4N+NNEQUIV 0.030 83.420 83.220 -0.200 True

mnist 64 50x1 GPFQ 0.010 84.600 82.410 -2.190 False
mnist 64 50x1 CEG4N+NNEQUIV 0.010 84.600 77.280 -7.320 True

mnist 784 10x1 GPFQ 0.010 90.260 86.850 -3.410 False
mnist 784 10x1 CEG4N+NNEQUIV 0.010 90.260 89.170 -1.090 True
mnist 784 10x1 GPFQ 0.030 90.260 86.850 -3.410 False
mnist 784 10x1 CEG4N+NNEQUIV 0.030 90.260 89.940 -0.320 True
mnist 784 10x1 GPFQ 0.050 90.260 90.330 0.070 True
mnist 784 10x1 CEG4N+NNEQUIV 0.050 90.260 90.260 0.000 True

mnist 784 25x1 GPFQ 0.010 91.940 91.660 -0.280 False
mnist 784 25x1 CEG4N+NNEQUIV 0.010 91.940 91.350 -0.590 True

mnist 784 50x1 GPFQ 0.010 92.150 91.240 -0.910 False
mnist 784 50x1 CEG4N+NNEQUIV 0.010 92.150 85.950 -6.200 True

On the one hand, the highest accuracy drop for CEG4N-
generated NNs coincides with r = 0.01 (See Table VI).
Indeed, small r values increase the chance of not finding coun-
terexamples to drive the quantization process, which favors
the generation of poorly QNNs. For higher r values (r = 0.03
and r = 0.05), we notice that the highest accuracy drop is
3.3%. On the other hand, for GPFQ, the highest accuracy
drops involve the Iris and Seeds benchmarks. We believe the
GPFQ’s performance is due to two factors: 1) GPFQ relies on
representative data (e.g., data from the training dataset), which
is more difficult for small datasets; and 2) small models are
more sensitive to quantization.

Overall, the accuracy of models quantized with CEG4N is
better for the Iris and Seeds benchmarks, while the accuracy
of models quantized with GPFQ is better for the MNIST
benchmarks, but only by a small margin. We find that the
CEG4N’s performance, in terms of NN accuracy, presents
interesting results, given that it can produce QNNs relying
only on a small set of representative data.

We have also conducted another experiment in which
NNEQUIV was used to verify equivalence between QNNs
generated by GPFQ and their original counterparts. For ev-
ery case, when at least one counterexample was found, we
considered the QNN not equivalent to the original one. We
have noticed that, out of 31 NNs generated by GPFQ, only
8 were in fact equivalent, which represents only 25.8% of
the total amount of resulting NNs. Indeed, GPFQ was not
designed to consider EPs in its quantization approach as
happened with CEG4N. Anyway, these experiments serve as
evidence that statistical accuracy measures do not capture
equivalence aspects. Moreover, it reinforces the benefits of
formulating guarantees for properties (e.g, equivalence and
robustness) that formal verification techniques can offer.In
addition, we noticed that both CEG4N and GPFQ produced
QNNs with better accuracy when compared with their original
counterparts. Indeed, that is possible and has already been
reported in the literature, since the quantization techniques act

as favorable weight regularization mechanisms that help NNs
prevent biased behavior and provide better generalization [49].

These results answer our EG2. Overall, these exper-
iments show that CEG4N can successfully produce
QNNs that present accuracy figures similar to what
is obtained with other state-of-the-art techniques.

E. Limitations

Although CEG4N can generate QNNs while keeping equiv-
alence with the original ones, the NNs we have used for eval-
uation may not fully reflect the state-of-the-art. Indeed, they
have a few layers and hundreds of ReLU nodes, while state-
of-the-art ones may have hundreds of layers and thousands of
ReLU nodes. The main bottleneck lies in the state-of-the-art
verification algorithms (e.g., SMT or GPE), which currently do
not scale to large NNs. Consequently, CEG4N+ESBMC and
CEG4N+NNEQUIV were able to quantize only 20% and 40%
of the chosen benchmarks, respectively, due to timeouts. Still,
we have shown that CEG4N is both viable and flexible, which
opens room for improvements with verifiers beyond ESBMC
and NNEQUIV.

The research field of NN equivalence is a relatively new one
and there is no well-established set of benchmarks [13]. In
this respect, our choices are a good starting point, but there is
ample scope for further contributions. Additionally, our work
is innovative by proposing a framework for NN quantization
that integrates NN equivalence verification as an essential part
of the process. As such, there is no similar methodology in
literature which we can directly compare our approach with.
Also, our work focuses on the practical and feasible aspect of
this new quantization approach and the formalization of NN
equivalence in terms of functional equivalence. Thus, we are
not centering the discussion at a conceptual level, and for such,
we could not discuss in depth the relationship between NN
equivalence, functional equivalence, robustness verification,
their impact, and implication in NN accuracy and error.

VI. CONCLUSION

We have presented a new method for NN quantization,
named CEG4N, which is a post-training quantization tech-
nique that provides formal guarantees regarding NN equiv-
alence. It relies on a counterexample-guided optimization
technique, where an optimization-based quantizer produces
compressed NN candidates. A state-of-the-art verifier then
checks such candidates to either prove the equivalence be-
tween quantized and original NNs or refute it by providing
a counterexample. The latter is then fed to the quantizer to
guide it in the search for a viable candidate.

In the proposed framework, scalability is tightly related to
the underlying verifier, which, in our experiments, took two
forms: SMT solver and GPE. SMT solvers are sensitive to
NN complexity [29], which leads to large state spaces, while
GPE may face exponential growth in the number of associated
star sets [12]. Although that may look like an obstacle, both
optimization efforts and different quantization strategies have
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the potential to alleviate these issues. At the same time, it is
worth mentioning that our main target was to demonstrate the
feasibility of our methodology, which employed the mentioned
verifiers as possible solutions, but it is not restricted to them.

In our future work, we will explore other quantization
approaches not limited to the search-based ones and different
equivalence-verification techniques based on reachability anal-
ysis [12] and SMT encoding [13]. For instance [39] provides
a new perspective and interpretation of NN behavior centered
around error bound verification. This interpretation is different
than ours and may have implications and provide new perspec-
tives and conclusions to our quantization problem. Possible
future works may provide a more concise formalization of NN
equivalence, incorporate QEBVerif approach into CEG4N and
provide a comparison work. Combining new quantization and
equivalence-verification techniques will help CEG4N achieve
better results while providing a more suitable compromise
between accuracy and scalability. Furthermore, we will con-
sider quantization approaches that operate entirely on integer
arithmetic, which can potentially improve the scalability of
the CEG4N’s verification step. The SMT-encoding of the
quantization problem will also be considered, with the goal
of both comparing its cost with the one presented by our
current proposal and devising a unified framework for NN
compression and equivalence.
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[11] M. K. Büning, P. Kern, and C. Sinz, “Verifying equivalence properties
of neural networks with relu activation functions,” in Principles and
Practice of Constraint Programming, ser. Lecture Notes in Computer
Science, vol. 12333. Springer, 2020, pp. 868–884.

[12] S. Teuber, M. K. Buning, P. Kern, and C. Sinz, “Geometric path
enumeration for equivalence verification of neural networks,” in ICTAI,
Nov 2021.

[13] C. Eleftheriadis, N. Kekatos, P. Katsaros, and S. Tripakis, “On neural
network equivalence checking using SMT solvers,” in Formal Modeling
and Analysis of Timed Systems. Cham: Springer, 2022, pp. 237–257.

[14] J. B. P. Matos, I. Bessa, E. Manino, X. Song, and L. C. Cordeiro,
“CEG4N: Counter-example guided neural network quantization refine-
ment,” in Software Verification and Formal Methods for ML-Enabled
Autonomous Systems. Cham: Springer, 2022, pp. 29–45.

[15] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer,
“Policy compression for aircraft collision avoidance systems,” in DASC,
2016, pp. 1–10.

[16] Y. LeCun and C. Cortes, “The MNIST database of handwritten digits,”
2005.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, pp. 84 – 90, 2012.

[18] R. A. Fisher, “The use of multiple measurements in taxonomic prob-
lems,” Annals of Eugenics, vol. 7, pp. 179–188, 1936.

[19] M. Charytanowicz, J. Niewczas, P. Kulczycki, P. A. Kowalski,
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