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Formal Non-Fragile Stability Verification of
Digital Control Systems with Uncertainty

Iury Bessa, Hussama Ismail, Reinaldo Palhares, Lucas Cordeiro, and João Edgar Chaves Filho

Abstract—A verification methodology is described and evaluated to formally determine uncertain linear systems stability in digital
controllers with considerations to the implementation aspects. In particular, this methodology is combined with the digital-system
verifier (DSVerifier), which is a verification tool that employs Bounded Model Checking based on Satisfiability Modulo Theories to check
the stability of digital control systems with uncertainty. DSVerifier determines the control system stability, considering all the plant
interval variation set, together with the Finite Word-length (FWL) effects in the digital controller implementation; DSVerifier checks the
robust non-fragile stability of a given closed-loop system. The proposed methodology and respective tool are evaluated considering
non-fragile control examples from literature. Experimental results show that the approach used in this study is able to foresee fragility
problems in robust controllers, which could be overlooked by other existing approaches due to underestimating of FWL effects.

Index Terms—Formal methods, model checking, finite word-length effects, controller fragility, robustness.
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1 INTRODUCTION

There has been a gap between two research fields: con-
trol theory and formal methods [1], [2]. There is clearly a
substantial difference between hierarchy level and specifica-
tions, which are considered by both areas. Formal methods
ensure that all types of specifications for relatively (high-
level) systems are represented by finite (or infinite) states
transition systems, while control theory treats dynamical
systems using mathematically grounded techniques. How-
ever, both areas aim at achieving reliable systems, in order
to check whether implementation meets specification. The
diversification and flexibility of verification tools and in-
troduction of hybrid automata to represent hybrid systems
have allowed a close convergence of both research areas.

Hybrid systems (HS) and cyber-physical systems (CPS),
which are the two important parts of the actual indus-
trial evolution trends, are usually represented by hybrid
automata, for which several formal verification methods
have been proposed. Alur et al. [3] present the earliest
application of model checking for timed automata using the
Timed Computation Tree Logic (TCTL) as an extension of
CTL model checking for real-time systems. Those initiatives
inspired the development of formal methods and model
checking tools for verifying timed automata and for repre-
senting any control system by finite state machines; notable
model checking tools include UPPAAL and HyTech [4].

Although formal methods provide applicability to check
high-level specifications in all sorts of CPS, there is not much
application of model checking for verifying different control
goals, which are related to robust stability, robust per-
formance, and non-fragility. Previous related work [5]–[8]
developed symbolic execution methods for control systems
to check the closed-loop performance and safety properties
violations in hybrid systems. In recent work [9]–[11], formal
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robustness verification for CPS is proposed, considering
continuous and discrete disturbance (no model uncertainty).

The main goal here is to propose a comprehensive model
checking procedure, which is able to formally verify stabil-
ity, fragility, and robustness of closed-loop systems with-
out employing hybrid automata. Bounded Model Check-
ing (BMC) based on Satisfiability Modulo Theories (SMT),
showed to be suitable for investigating the fragility problem
in control systems. In particular, the stability verification
method does not demand the execution/simulation of the
plant behavior and simultaneously considers the controllers’
fragility and the closed-loop robustness to exogenous distur-
bances and to plant model uncertainties.

As a result, a verification methodology and respective
tool implementation to deal with stability verification of
closed-loop system using an SMT-based approach are pro-
posed. The present approach considers finite-word length
(FWL) effects over controllers and also parameter uncertain-
ties in the context of verifying the (so-called) robust non-
fragile stability. This approach extends previous studies in
which the digital control design is verified and re-adjusted
iteratively until it reaches a digital controller, which is safe
w.r.t. implementation problems, such as overflows, limit
cycles, round-off errors, poles and zeros sensitivity [12].

The proposed verification methodology is implemented
in the digital-system verifier (DSVerifier) tool1 that uses
the Efficient SMT-Based Context-Bounded Model Checker
(ESBMC) as a verification engine for checking digital system
properties [13], [14]. DSVerifier builds a closed-loop model,
associating the controller model with FWL effects and the
plant model with non-deterministic coefficients related to
model uncertainties. DSVerifier then performs a symbolic
analysis to verify certain properties, e.g., stability, for all
the plant family defined by the uncertainties. If there is a
property violation, then DSVerifier indicates a failure and
presents a counterexample, a plant model belonging to the
plant family, which violates the property.

This work makes two major contributions. First, a new
methodology for verifying closed-loop linear time-invariant

1. Available at http://dsverifier.org/
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systems is presented considering FWL effects for non-fragile
control studies. In particular, a stability verification algo-
rithm of uncertain systems considering FWL effects to aid
control system designers in validating (digital) controllers
is described. Second, the efficiency and effectiveness of the
verification methodology and respective tool using control
system benchmarks from literature are evaluated.

2 PRELIMINARIES

2.1 Transfer Function for Discrete Systems
There are various mathematical representations for discrete-
time systems, e.g., difference equations, state-space, and
transfer functions (or matrices). Here, linear time-invariant
(LTI) systems with single-input and single-output (SISO) are
discussed and represented by transfer functions as:

H(z) =
b0 + b1z

−1 + ...+ bMz
−M

a0 + a1z−1 + ...+ aNz−N
, (1)

where the roots of numerator are called zeros of G(z) and
the roots of denominator are called poles of G(z).

For convenience, a vector notation for the coefficients of
H(z) will be used, where a vector h, called coefficient vector
of H(z), is built by the numerator coefficients followed by
the denominator coefficients as described by:

h = [b0 b1 ... bM a0 a1 ... aN ] (2)

2.2 Stability of Discrete Systems
A discrete-time system as (1) is said to be (asymptotic)
stable if every pole lies inside the unit circle, i.e., a circle
in z complex plane with unitary radius and center in origin
[15]. Additionally, a discrete-time linear system is said to
be Bounded-Input and Bounded-Output (BIBO) stable if
and only if every pole of its transfer function lies inside
the unit circle. Another important concept about stability is
the internal stability. A system is internally stable if all its
internal variables are bounded in addition to the stability of
the closed-loop transfer function itself [15].

Fig. 1: Digital Control System with Disturbance and Mea-
surement Noise.

As an example, consider the standard configuration de-
scribed in Fig. 1 and choose as outputs Y (z), the closed-
loop system output and U(z), the controller output; and as
inputs R(z), the reference input, D(z), input disturbance,
and W (z), measurement noise, then[

Y
U

]
=

[
G(z)C(z)

1+G(z)C(z)
G(z)

1+G(z)C(z)
1

1+G(z)C(z)
C(z)

1+G(z)C(z)
−G(z)C(z)
1+G(z)C(z)

−C(z)
1+G(z)C(z)

][
R
D
W

]
.

(3)

Definition 1. [15] – If all transfer functions, which relate the
system inputs to the possible system outputs are BIBO stable, then
the system is said to be internally stable, i.e., the system outputs

U(z) and W (z) are still bounded (stable) for any R(z), D(z),
and W (z).

Theorem 1. [15] – The system in Fig. 1 is internally stable if
and only if every closed-loop pole lies inside the open unit circle.

A conclusion of Theorem 1 is the Lemma 1.

Lemma 1. [15] – A feedback digital control system as shown
in Fig. 1, with transfer functions C(z) = NC(z)/DC(z) and
G(z) = NG(z)/DG(z), is internally stable if and only if:

• the roots of characteristic polynomial S(z) are inside the
open unit circle, where S(z) is:

S(z) = NC(z)NG(z) +DC(z)DG(z); (4)

• the direct loop product NC(z)
DC(z) ·

NG(z)
DG(z) has no pole-zero

cancellation on or outside the unit circle.

Throughout this paper, all controllers C(z) are supposed
to be asymptotic stable and they are not susceptible to
overflow and limit cycles oscillation.

2.3 Digital Control System Design and Implementation
A notable issue related to digital control systems is con-
cerned with their computational implementation, which
should be considered in addition to the control performance.
Issues related to digital control systems design are: sam-
ple period, quantization, computer arithmetic, word-length,
memory usage, delays, controllers’ realization, anti-windup
action, and bumpless transfer.

2.3.1 Model Uncertainty
As control systems are usually based on linear models,
referred to as approximate real-world plants, then control
design should comply with uncertainties (parametric varia-
tions, non-modeled dynamics, and nonlinearities) and check
properties related to robustness. Among the different strate-
gies to represent uncertainties, the usual additive uncertain
representation was adopted so that the transfer function of
the plant G(z) in Fig. 1 can be expressed in its uncertain
version

Ĝ(z) = G(z) + ∆G(z), (5)

where ∆G(z) is a bounded additive uncertain, Ĝ(z) is the
uncertain model of G(z), and ĝ is the coefficient vector of
Ĝ(z).

2.3.2 Digital Controllers Implementation and Fragility
Among the several issues related to digital controller imple-
mentation, FWL effects due to round-offs and quantization
should be carefully considered since they might lead to
(small) imprecision and even instability. A realistic model
to deal with FWL effects must include the quantization
of every numerical value, including each arithmetic result
(sums and products), input signals, and system coefficients.
A notable effect is that the error accumulation might af-
fect the representation of the digital controller poles and
zeros [16] and possibly leading to closed-loop instability or
performance degradation. This system sensitivity with re-
spect to its implementation is called fragility. Keel and Bhat-
tacharyya show that some robust and optimum controllers
might present fragility characteristics and under some con-
ditions might destabilize the closed-loop system [17]. Sev-
eral techniques to deal with non-fragility control design (or
reliable control) have been described [18]–[20].
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Some non-fragile techniques describe FWL effects in the
digital controller implementation as a perturbation such
that it can be modeled as an uncertainty. Thus, the same
representation of uncertain systems given in Eq. (5) can be
used with the controller transfer function represented as

Ĉ(z) = C(z) + ∆C(z), (6)

where ∆C(z) is a bounded additive uncertain, Ĉ(z) is the
FWL model of C(z), and ĉ is the coefficient vector of Ĉ(z).

In contrast to the uncertain model presented before,
the controller perturbation due to FWL effects might be
precisely computed if the implementation characteristics
are known. Indeed, a more realistic model should neither
consider FWL effects as a non-deterministic perturbation
nor the plant model as a discrete model, once FWL effects
may be predicted and most plants are analog.

An important contribution of this study is to consider
FWL effects in digital controllers. In this study, it is as-
sumed that the implementation aspects are well-known (e.g.,
number of bits, realization form, and sample time), and
for each implementation of C(z), there exists a function
FWL[·] : Rn → Q[Rn], which applies the FWL effects to
a digital-system, where Q[R] represents the quantized set
of representable real numbers in the chosen implementation
format. Therefore, ĉ might be appropriately computed by
means of

ĉ = FWL[C(z)]. (7)

2.4 Stability Verification as a Decision Problem
A robust non-fragile decision problem about the stability of
a hybrid control system, with a digital controller that suffers
from FWL effects and a plant with an uncertain model is
resolved.

Problem description. Given a nominal plant model
G(z), an additive uncertainty over this model ∆G(z),
a nominal digital controller C(z), and a FWL function
FWL[·] implementation, decide about the internal stability
of a closed-loop system constituted by G(z) and C(z).

Proposed solution. Assuming that Ĝ(z) =
ˆNG(z)
ˆNG(z)

is

given by (5) and Ĉ(z) =
ˆNC(z)
ˆNC(z)

has the coefficient vector
given by (7), and considering Lemma 1, the decidability
can be summarized as a decision problem about the roots
computation of

S(z) = FWL[NC(z)] · N̂G(z) +FWL[DC(z)] · D̂G(z), (8)

where the closed-loop control system is stable if and only if
all the roots of S(z) are inside the unit circle.

The Jury’s criteria represent a necessary and sufficient
condition to ensure that all polynomial roots are inside the
unit circle [15]; the non-fragile robust stability verification
consists in verifying, by means of SMT queries, the fulfill-
ment of that condition by checking its satisfiability. In this
paper, DSVerifier [13], which is an SMT-based BMC tool
used for verifying digital systems, is employed in order to
check the satisfiability of the Jury criteria.

2.4.1 Model Checking Digital Systems with DSVerifier
SMT-based BMC was successfully applied to verify single-
and multi-threaded programs [21]. However, the applica-
tion of BMC to ensure correctness of discrete-time systems

considering FWL effects (i.e., verifying system robustness
related to implementation aspects) is somewhat recent [12],
[22], [23]. The basic idea behind BMC is to check the nega-
tion of a given property at a given depth.

Definition 2. [24] – Given a transition system M , a property
φ, and a bound k; BMC unrolls the system k times and translates
it into a verification condition (VC) ψ, which is satisfiable if and
only if φ has a counterexample of depth less than or equal to k.

One prominent BMC tool is ESBMC [14], which is an
SMT-based context-bounded model checker for C/C++
programs. DSVerifier uses ESBMC as its verification engine
to check a digital-system [13]. In ESBMC, the associated
problem is formulated by constructing the logical formula:

ψk = I(S0) ∧
k∨

i=0

i−1∧
j=0

γ(sj , sj+1) ∧ φ(si) (9)

where φ is a property (e.g., overflow and limit cycle) and
S0 is a set of initial states of M , and γ(sj , sj+1) is the
transition relation of M between time steps j and j + 1.
Hence, I(S0)∧

∧i−1
j=0 γ(sj , sj+1) represents the executions of

a transition system M of length i. The above VC, ψ, can be
satisfied if and only if, for some i ≤ k there exists a reachable
state at time step i in which φ is violated. If the logical
formula (9) is satisfiable (i.e., returns true), then the SMT
solver provides a satisfying assignment, from which the
values of the digital controller’s variables can be extracted
to construct a counterexample.

3 STABILITY VERIFICATION OF CLOSED-LOOP
DIGITAL CONTROL SYSTEMS WITH UNCERTAINTY
The proposed methodology for verifying the stability of
closed-loop digital control systems with uncertainty is de-
scribed as follows. The plant model must be represented by
a parametric uncertain model, i.e., plant intervals. Suppose
that the digital controller C(z) and the plant model are
given as in (10) and (11), respectively:

C(z) =
β0 + β1z

−1 + ...+ βMC
z−MC

α0 + α1z−1 + ...+ αNC
z−NC

, (10)

G(z) =
b0 + b1z

−1 + ...+ bMG
z−MG

a0 + a1z−1 + ...+ aNG
z−NG

, (11)

and c and g, respectively, are the parameter vectors of C(z)
and G(z).

The uncertain plant Ĝ(z) expressed by (5), whose uncer-
tain parameters vector ĝ can be expressed as follows

ĝ = g + ∆g =



b0 + ∆b0
b1 + ∆b1

...
bMG

+ ∆bMG

a0 + ∆a0
a1 + ∆a1

...
aNG

+ ∆aNG


, (12)

where ∆g represents plant uncertainties and ∆g% corre-
sponds to maximum variation coefficients percentage vector
of g, where 0 ≤ i ≤MG and 0 ≤ j ≤ NG such that

‖∆bi‖ ≤
∆bi% · bi

100
, (13)



IEEE TRANSACTIONS ON COMPUTERS, AUGUST, 2016 4

Fig. 2: DSVerifier Verification Flow.

‖∆aj‖ ≤
∆aj% · ai

100
, (14)

∆p% =



∆b0%
∆b1%

...
∆bMG

%
∆a0%
∆a1%

...
∆aNG

%]


. (15)

The possible values polynomial set of g is denoted by P.
The DSVerifier verification process is shown in Fig. 2.

Steps from 1 to 5 are performed by users and Steps A to D
are automatically performed by DSVerifier, which accepts
the digital controller transfer functions together with the
plant model. For any digital controller, implementation de-
tails should also be incorporated into this symbolic analysis,
which contain the FWL format, e.g., number of bits, compu-
tational realization, and sample time.

In Step 1, the user provides inputs g and ∆g%, which
contain the plant model and the uncertainty interval. In
Step 2, a digital controller must be designed with any pre-
ferred method, where c is obtained. The controller numerical
representation and realization form are chosen in Steps 3
and 4, respectively. In Step 5, the user finally configures the
verification parameters, choosing verification time, proper-
ties to be verified, model checker, and SMT solver, and the
verification engine is finally invoked.

DSVerifier performs an automatic verification of the
desired property φ. In Step A, DSVerifier builds a non-
deterministic model to represent the plant family P using
g and ∆g%, which are provided in Step 1. DSVerifier
then formulates FWL[·] in Step B using implementation
details provided from Steps 2 and 3, and then computes
FWL[C(z)] (that is equivalent to ĉ in Step C). Addition-
ally, DSVerifier symbolically checks a given property w.r.t.
closed-loop systems, which are composed of FWL[C(z)]
and a non-deterministic p ∈ P, using a BMC tool. If any vi-
olation is found, then DSVerifier reports a counterexample,
which contains system inputs or the uncertain parameter
vector ĝ%, which leads to a failure. A successful result is
reported if the system is safe w.r.t. φ up to the bound k.

Note that the verification performed by DSVerifier can
produce false alarms due to rounding effects or it can miss

a bug due to the (chosen) loop unwinding bound k. For the
robust non-fragile stability verification, there is no need for
loop unwinding, so the chosen bound k does not influence
the verification result. Thus, the internal stability verifica-
tion of closed-loop system is valid for any time-varying
disturbances, and it does hold for an unbounded execution
trace. However, in this paper, stability verification method is
incomplete, given that false alarms can be produced due to
the rounding effects, which are accumulated along the chain
of arithmetic machine operations. Since DSVerifier employs
a fixed-point format with 64 bits, of which 32 are precision
bits (i.e. precision of 10−10), no false alarm is observed
throughout the experimental evaluation.

3.1 Closed-loop Stability Verification Algorithm
To obtain a decision about the internal stability (Theorem 1),
the characteristic polynomial S(z) given in (4) is used. There
are two different algorithms in DSVerifier that can be used
for stability verification, one based on Schur’s decomposi-
tion and another one based on Jury’s criteria [12]; here, the
Jury’s method is chosen due to its efficiency.

Due to the interest in ensuring the stability for any model
inside uncertain intervals and considering also the FWL
effects, the basic steps of the verification algorithm are as
follows: the application of FWL effects on the numerator
and denominator of the controller and the use of the Jury’s
criteria to determine the stability of the characteristic poly-
nomial S(z) given in (4). Algorithm 1 presents the steps of
the closed-loop stability verification process.

3.1.1 SMT Encoding of Jury’s Criteria
Jury’s algorithm is used to check the stability in the z-
domain for a given characteristic polynomial of the form

S(z) = a0z
N + a1z

N−1 + ...aN−1z + aN = 0, a0 6= 0 (16)

In particular, Jury stability test is already explained in the
control system literature (e.g. [15]). This study, however,
limits itself to explain the SMT encoding of Jury’s criteria.
For the stability test procedure, the following Jury matrix
M = [mij ](2N−2)×N is built from S(z) coefficients:

M =


V (0)

V (1)

...
V (N−2)

 , (17)
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Data: NC(z), NG(z), DC(z), DG(z), implementation
settings, and plant parameters intervals in
percentage ∆g%.

Result: Stability decision: SUCCESS for stable systems
and FAILED for unstable systems together with a
counterexample.

1 begin
2 Formulate a FWL effect function FWL[·]
3 Construct the plant interval set P
4 Obtain FWL[NC(z)] and FWL[DC(z)]
5 Check ¬φstability for

S(z) = FWL[NC(z)] · N̂G(z) + FWL[DC(z)] · D̂G(z)
in P

6 if ¬φstability is satisfiable then
7 return UNSTABLE and a counterexample
8 end
9 else

10 return STABLE
11 end
12 end

Algorithm 1: Closed-loop stability verification

where V (k) = [v
(k)
ij ]2×N such that

v
(0)
ij =

{
aj−1, if i = 1

v
(0)
(1)(N−j+1), if i = 2

, and (18)

v
(k)
ij =


0, if j > n− k
v
(k−1)
1j − v(k−1)

2j · v
(k−1)
11

v
(k−1)
21

, if j ≤ n− k and i = 1

v
(k)
(1)(N−j+1), if j ≤ n− k and i = 2

,

(19)
where k ∈ Z, such that 0 < k < N − 2. S(z) is the
characteristic polynomial of a stable system if and only if
the following four propositions hold:

• R1: S(1) > 0;
• R2: (−1)NS(−1) > 0;
• R3: |a0| < aN ;
• R4: m11 > 0 ⇐⇒ m31 ∧m51 ∧ · · · ∧m(2N−3)(1).

The stability property is then encoded by creating a
constraint using the fixed size bit-vector theory, typically
supported by state-of-the-art SMT solvers [25]:

φstability ⇐⇒ (R1 ∧R2 ∧R3 ∧R4), (20)

where the literal φstability represents the validity of the
stability condition; in particular, the SMT-solver checks
whether Jury criteria hold for the characteristic polynomial
coefficients.

In the robust non-fragile verification presented in this
study, S(z) is computed by (8) and coefficients of N̂G(z) and
D̂G(z) are non-deterministic fixed-point values within the
range defined by (12),(13) and (14). If the system is unstable,
i.e., if ¬φstability is satisfiable for S(z), then the SMT-solver
provides values for each coefficients of N̂G(z) and D̂G(z),
which make the closed-loop system into unstable.

The present closed-loop stability verification is suitable
for discrete LTI systems. The plant and the digital con-
troller models have to be linear. The verification result is
unsound if nonlinearities are considered. Although most
real-world plants are nonlinear, a simplified linear model
is often sufficient to describe the system dynamics and

behavior in its operating region. However, the digital con-
troller might present various nonlinearities due to FWL
effects, e.g., saturation and wrap-around due to overflow;
limit cycle oscillation (LCO) due to successive round-offs;
and truncation due to underflow. The verification is consid-
ered to be sound if controllers are not susceptible to both
overflow and LCO. Underflow does not affect the system
stability, since it only occurs for small control actions, i.e.,
low-level signals from the digital controller output. Round-
offs are serious problems only if they affect poles and zeros
position; our verification algorithms check for that effect
type. Actually, DSVerifier is able to check the occurrence of
overflow and LCO in digital controllers implementations;
despite successfully preventing many FWL effects in digital
controllers using the methodology presented in [12], DSVer-
ifier cannot ensure the absence of overflow and LCO, unless
some induction technique is used.

4 EXPERIMENTAL EVALUATION

To evaluate the proposed verification methodology and the
respective tool performance, classical examples previously
presented in [17] and [26] regarding fragility, stability, and
inter-sample response of hybrid systems are considered.

4.1 Example A
Consider the following description for the plant G1(s) with
the controller C1(s):

G1(s) =
s− 1

s2 − s− 2
(21)

C1(s) =
11.44974739s+ 11.242640066

s− 7.03553383
(22)

The DSVerifier must receive the discrete model of plant
and controller. The plant sampled model with zero-order
hold was employed (Step 1) and the controller was dis-
cretized using Tustin method with seven different sample
times (0.5, 0.1, 0.05, 0.03, 0.01, 0.005, 0.001, 0.00001, and
0.000001 seconds) (Step 2) and implemented using three
different FWL formats, 4, 8, and 12-bits (Step 3), and direct-
form I realization (Step 4). The DSVerifier was configured
using the ESBMC model checker with Z3 solver (Step 5)2.

First, FWL effects are considered over stability. Alg. 1
is applied to this closed-loop system despite the plant un-
certainties, i.e. considering ∆p% = 0 (Step 1). Hence, the
stability verification is repeated for every combination of
FWL format and sample time. In this experiment, DSVerifier
generates the verification results presented in Table 1 for
controller C1; the verification time takes less than 1s .

The results confirm the conclusions in [26], which claims
that this hybrid system becomes unstable for high sample
times (e.g., Ts = 0.5s) and presents low stability margins
for lower sample times. As a result, it presents fragility
and may easily loss the stability for numerical reasons,
e.g., quantization noise caused by a FWL format with small
precision due to insufficient number of bits. Note that the
experimental results also show instability for T = 0.5s and
even worse results for less bits representations with low
sample periods (e.g., Ts ≤ 0.01). Fig. 3 shows the FWL

2. DSVerifier is called as: dsverifier <filename>
--realization DFI --property STABILITY_CLOSED_LOOP
--bmc ESBMC --solver z3
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Sample Time (s) FWL Format
4-bits 8-bits 12-bits

0.5 U U U
0.1 S S S
0.05 S S S
0.03 S S S
0.01 U S S
0.005 U S S
0.001 U U S

0.00001 U U U
0.000001 U U U

TABLE 1: Closed-loop stability verification results using
controller C1(s) with different sample times and FWL for-
mats. S= Stable and U= Unstable

effect in the controller stability, the same control system,
composed by the plant G1(s) and digital controller C1(s)
discretized with a sample period of 0.01s, which is stable for
a digital controller implementation of a 12-bit (right frame),
but it is unstable for a 4-bit implementation (left-frame). If
the controller implementation uses 8 bits, then the system is
still stable but it presents a greater settling time.
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Fig. 3: Step response of G1(s) and C1(s) for sample time of
0.01s. FWL formats: 4-bits (left), 8-bits (center), and 12-bits
(right).

The verification for a different scenario can also be
considered. Controller C1 implemented with 12-bits of pre-
cision and sample time of 0.03s produced a stable behavior
in the previous tests, as shown in Table 1. However, if a max-
imum deviation of ±0.25% is considered in each coefficient
of G(s), then DSVerifier shows that this controller cannot
ensure robustness, given that it presents as counterexample:

∆p% =


−0.18660
−0.06731
−0.21599
0.06569
0.06567

 . (23)

The closed-loop step response in Fig. 4 confirms the
results provided by DSVerifier; this closed-loop system is
stable for nominal parameters, but it is unstable for the
parametric variation given by the counterexample in (23).

4.2 Example B
Consider the plant and controller given by:

G2(s) =
s− 1

s2 + 0.5s− 0.5
(24)
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Fig. 4: Step response of G1(s) and C1(s) for sample time of
0.03s and 12-bits. Left: Nominal system. Right: System with
uncertainty in (23).

C2(s) =
−124.5s3 − 364.95s2 − 360.45s− 120

s3 + 227.1s2 + 440.7s+ 220
(25)

Table 2 presents the verification results without uncer-
tainties and is in compliance with the conclusions in [26].

Sample Time (s) FWL Format
4-bits 8-bits 12-bits

0.5 U S S
0.1 U U S
0.05 U U S
0.03 U U U
0.01 U U U
0.005 U U U
0.001 U U U
0.0004 U U U

TABLE 2: Closed-loop stability verification results for exam-
ple B, considering different sample times and FWL formats.
S= Stable and U= Unstable

Fig. 5 shows the step responses of the closed-loop system
with G2(s) and C2(s) discretized with sample time of 0.5s.
The FWL implementation with higher number of bits (12-
bits) is stable, but the same closed-loop system with 4-bits
implementation is unstable. The implementation with 8-bits
is also stable; however, it presents a greater overshooting if
compared to the 12-bits implementation.
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Fig. 5: Step response of G2(s) and C2(s) for sample time of
0.5s. FWL formats: 4-bits (left), 8-bits (center), and 12-bits
(right).

Note further that for the controller in the FWL format of
8-bits, assuming a sample time of 0.5s and each coefficient
for plant G2 varying ±1%, DSVerifier determines that the
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system is unstable, returning the following counterexample:

∆p% =


0.54336
−0.12631
0.66145
0.97228
0.79776

 . (26)

Fig. 6 compares the step response for the closed-loop
system with nominal parameters and with variation given
in (26). Note that a digital controller, apparently non-fragile
(i.e., it stabilizes the closed-loop system even in the face of
FWL effects), may not work properly for uncertain systems.
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Fig. 6: Step response of G2(s) and C2(s) for sample time of
0.5s and 8-bits. Left: Nominal system. Right: System with
uncertain in (23).

These examples show that a specific FWL implemen-
tation of a control system may not affect the stability and
performance for a nominal system with well-known param-
eters; however, a small deviation in these parameters may
fatally affect the system behavior. DSVerifier may consider
simultaneously plant uncertainties and controllers fragility
for providing an efficient diagnosis about the stability of
closed-loop systems for a specific FWL format by means of
the verification methodology presented.

5 RELATED WORK

The symbolic verification of closed-loop system had an
important advance in the last decades. Relevant studies
(e.g., [5], [7], [8], [27]) about the performance and safety ver-
ification of closed-loop systems propose verification meth-
ods based on symbolic execution of a plant model. As
example, the Closed-Loop Symbolic Execution (CLSE) [8]
performs a bounded-time symbolic execution of the plant
dynamic, which is represented by ordinary difference equa-
tions (ODEs) combined with a concolic execution of the
controller software. Additionally, a robustness analysis is
also performed in [8], where the deviation on the plant states
is computed due to a deviation on the sensor signals (mea-
surement noise). The approach used in this study differs
from CLSE given that its internal stability analysis does not
require the system execution; it is based on Jury’s Criteria,
which is applied to the plant and controller model.

Costan [28] verifies the stability of closed-loop systems
on an embedded C code controller, comparing the Simulink
implementation of the control system with the code gen-
erated by Mathworks Fixed-Point Advisor and Real-Time
Workshop [29]. One notable feature of Costan is the error
calculation by means of static analysis in the controller code

for bounded loops unrolling. The deviations are compared
to a pre-computed error bound, which indicates the maxi-
mum admissible error for what the closed-loop system re-
mains stable. If any violation is found, then Costan provides
a concrete test input that leads the system to the failure. In
contrast, DSVerifier computes the quantization effects and
checks the stability in the closed-loop function for all the
plant family without handling the usual stability margin
concept; this makes DSVerifier slower than Costan, but
DSVerifier presents an improved accuracy, which is suitable
for systems that require a correct-by-design approach [30].

SAHVY simulates the systems execution, solving ODEs
represented by Taylor models, for a range of initial states,
and performs SMT-based BMC inside of this range, to check
safety properties expressed by CTL formulas. The BMC tool
is similar to the verification engine used by DSVerifier, but
SAHVY is limited to hybrid systems with zero order holding
sampling and not taking into account FWL effects in the
controller, in contrast to Costan and DSVerifier.

Barnat et al. [31], [32] present a very promising approach,
which uses Simulink diagrams to open up new possibilities
towards verification properties beyond the standard sta-
bility tests for first-order system. This approach, however,
is still under development; there are limitations mainly
related to the theorem’s proof (Why3). The use of Why3 can
solve problems of previous studies related to the state-space
explosion [31]; however, differently from model checking
tools, Why3 is not fully automatic, i.e., the user has to manu-
ally change parameters to produce new proofs; additionally,
there is neither counterexample nor error trace generation.
Any comparison to their work may not be seen as an easy
task since the verification is over Simulink models, while in
this study, the focus is on the controller C code.

A drawback of DSVerifier, if compared to aforemen-
tioned tools, is the limited class of systems that it can ac-
tually verify, i.e., only linear systems represented by transfer
functions, but that can describe a huge amount of real-world
systems. DSVerifier is a unique tool since it is the only one to
consider simultaneously the model uncertainties and FWL
effects in the controller. In particular, DSVerifier is able to
verify the robust non-fragile properties, while other existing
approaches are unable to handle them. Additionally, other
model checking tools are not capable of performing robust
analysis and deal with FWL effects together. DSVerifier uses
model checking techniques and presents the advantages of
these tools, e.g., higher reliability and precision, counterex-
amples for failures, and it is completely automated.

Recently, some studies presented SMT applications for
the verification of control software and correct-by-design
controller synthesis. Pajic et al. use input-output invariants
that allow the representation of inexact controllers rep-
resentation. Bessa et al. [12] employed DSVerifier to find
FWL problems in controllers implementations in direct- and
delta-form realizations. Recent studies [10], [33], [34] apply
SMT-based verification to controllers synthesis.

Finally, Tabuada et al. [11] establish the important notion
of robustness for CPS and propose a methodology for veri-
fying the robust input-output stability for those systems. It
is a first step towards the application of formal verication to
ensure the CPS robustness. In contrast to the present robust-
ness verication, Tabuada et al. consider only the robustness
to exogenous continuous and discrete disturbances. The
present methodology ensures the internal stability, which
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includes the robustness to exogenous signals, considering
plant model uncertainties and the fragility issue.

6 CONCLUSION

A verification methodology for checking stability of un-
certain linear control systems is described and evaluated,
considering FWL effects in fixed-point digital controllers.
This methodology offers an alternative approach to check
the fragility problem, which computes the exact effect of
the FWL implementation and investigates the robustness
maintenance under FWL effects. A suitable verification tool
(DSVerifier) to support this methodology is also presented.

A few previous studies proposed the investigation of
FWL effects in the stability of closed-loop systems; all
those studies incorporate FWL noise as uncertainties or
perturbations, but none of them presented a verification
methodology and respective tool to verify simultaneously
the systems fragility and robustness. This study, in turn,
presents a verification methodology supported by a formal
verification tool, which considers the FWL as deterministic
effects and determines the stability maintenance for the
plant interval represented by non-deterministic coefficients.

The experimental results show that the proposed
methodology is efficient and effective for verifying robust-
ness and fragility of closed-loop systems, with automatism
and correctness provided by model checking techniques.
Further studies include the extension of this verification ap-
proach for different classes of systems, performance require-
ments verification, and controller implementation synthesis.
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