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Abstract. Identifying vulnerabilities in source code is crucial, especially
in critical software components. Existing methods such as static analysis,
dynamic analysis, formal verification, and recently Large Language Mod-
els are widely used to detect security flaws. This paper introduces CAS-
TLE (CWE Automated Security Testing and Low-Level Evaluation), a
benchmarking framework for evaluating the vulnerability detection ca-
pabilities of different methods. We assess 13 static analysis tools, 10
LLMs, and 2 formal verification tools using a hand-crafted dataset of
250 micro-benchmark programs covering 25 common CWZEs. We propose
the CASTLE Score, a novel evaluation metric for fair comparison. Our
results reveal key differences: ESBMC (a formal verification tool) min-
imizes false positives but struggles with vulnerabilities beyond model
checking, such as weak cryptography or SQL injection. Static analyz-
ers suffer from high false positives, increasing manual validation efforts
for developers. LLMs perform exceptionally well in the CASTLE dataset
when identifying vulnerabilities in small code snippets. However, their ac-
curacy declines, and hallucinations increase as the code size grows. These
results suggest that LLMs could play a pivotal role in future security so-
lutions, particularly within code completion frameworks, where they can
provide real-time guidance to prevent vulnerabilities. The dataset is ac-
cessible at https://github.com/CASTLE-Benchmark.

Keywords: Security - Static Code Analysis - Security Analysis - Gen-

erative Al - Large Language Models

1 Introduction

Rapid advancements in artificial intelligence (AI) have sparked both excitement
and concern about the future of traditional software engineering. For instance,
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Meta’s recent announcement that Al could soon replace many software engineer-
ing roles highlights a shifting landscape in code development [1]. While Al-driven
code generation offers remarkable efficiency, a study by Tihanyi et al. found that
all examined Large Language Models (LLMs) produced vulnerable C code [2].
Similar conclusions have been reached in studies examining other programming
languages, such as PHP and Python [3,4]. These large-scale studies consistently
indicate that such vulnerabilities arise partly because LLMs lack contextual un-
derstanding during the generation process. x‘Several studies highlight that once
the code is generated, and a vulnerability is identified, LLMs are highly effec-
tive at resolving these issues [5,6]. The real challenge is: how do we identify the
vulnerabilities? Numerous studies have explored methods for identifying vulner-
abilities in large-scale codebases, and various static analysis tools are available
on the market. Despite the growing importance of automated software verifica-
tion, developers and security practitioners lack clear guidance on which tools are
most reliable for detecting vulnerabilities in C code. Several interrelated issues
contribute to this uncertainty, such as:

1. Diverse vulnerability types. Security flaws in C code range from classic memory
management issues (e.g., buffer overflows) to subtler logical errors. We need to
understand which detection methods can reliably detect different categories.

2. Emergence of LLMs. While LLMs exhibit promise in automated code genera-
tion, bug fixing, and vulnerability detection, their reliability in different vulnera-
bilities and coding scenarios is unclear.

3. Lack of standardized benchmarks. Existing datasets often contain too many
samples with imbalanced CWE representations, and fail to represent the breadth
of CWE vulnerabilities. Tools that rely on compilable code—particularly formal
verification (FV) methods—are especially disadvantaged without realistic, fully
functional programs. To gauge each tool’s performance accurately, a benchmark
must be rigorously validated, contain clearly labeled vulnerabilities, and support
line-level detection granularity.

1.1 Motivation

Today, there are two major directions emerging in software engineering, which
inspired us to design an entirely new benchmark. Existing benchmarks were
no longer adequate to reflect or support these trends. First, code completion
and real-time bug detection frameworks are becoming increasingly popular in
many Integrated Development Environments (IDEs), as they accelerate appli-
cation development by automatically correcting common errors and suggesting
relevant lines of code. In these scenarios, the focus is typically on small code
snippets—usually between 20 and 100 lines—rather than scanning thousands of
lines of code. Second, many developers are now utilizing LLMs to assist with
various tasks during the software development process. In these cases, LLMs are
often tasked with generating simple functions—such as creating a small prime
number generator or reading user input to perform basic arithmetic—rather than
producing complex systems like full-scale accounting software with tens of thou-
sands of lines of code. In both scenarios, whether code is written by a human in



CASTLE: Benchmarking Static Code Analyzers, and LLMs 3

an IDE or generated by an LLM, the result is typically a small code snippet, and
our goal is to accurately identify potential vulnerabilities within that snippet.
Given these challenges, a robust and compilable benchmark dataset that accu-
rately captures major CWE vulnerabilities is paramount to answer the following
research questions:

RQ1: How do state-of-the-art static analysis tools, formal verification methods,
and LLM-based approaches compare to effectively detecting C code vulnera-
bilities?

RQ2: Are combinations of tools more effective than using a single tool?

RQ3: What metrics can reliably demonstrate these differences among various
tools?

1.2 Main Contributions

Our study holds the following contributions:

— We introduce CASTLE (CWE Automated Security Testing and Low-
Level Evaluation), a curated collection of 250 compilable, compact C programs,
each containing a single CWE. This benchmark is aimed at enabling direct compar-
isons among current and future vulnerability scanning tools, including traditional
static analyzers, F'V techniques, and LLM-based approaches. The small code snip-
pets in the dataset resemble those typically produced by humans or LLMs during
the software development lifecycle.

— We conduct a broad comparison of the most widely used static code analyzers and
popular LLMs to assess their effectiveness in detecting important vulnerabilities
in the C language, using a new metric called CASTLE Score, thereby providing
crucial insights into their relative strengths and weaknesses.

The rest of this work is structured as follows: Section 2 reviews related liter-
ature and outlines the current state of vulnerability scanning tools and Al-based
code analysis. Section 3 details the construction of the CASTLE benchmark,
including the selection criteria for CWEs and the methodology for creating the
curated C programs. Section 4 discusses the results, and presents the experimen-
tal setup and comparative analysis of the 13 static code analyzers, 2 format
verification tools and 10 LLMs. Section 5 overviews limitations. Finally, Sec-
tion 6 concludes the paper and outlines potential directions for further research.

2 Related Work

Ensuring software correctness, safety, and security is central to software engineer-
ing. Examining related literature on the role of Al in software development, most
of the existing work and benchmarking approaches focused on testing LLMs’ ca-
pabilities in producing functionally correct code. However, safety and security
are just as important.
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2.1 Datasets and Benchmarks

Existing vulnerability datasets are frequently used for fine-tuning machine learn-
ing models, yet they exhibit several shortcomings that make them unsuitable for
comprehensive benchmarking. First, many datasets offer imbalanced represen-
tations of CWE categories, failing to provide adequate test coverage of certain
vulnerability types. Second, an extreme or uneven distribution of vulnerable
versus non-vulnerable samples either hinders accurate false-positive evaluation
(when nearly all samples are vulnerable) or fails to capture diverse false-negative
scenarios (when some vulnerability types remain underrepresented).

Table 1: C/C++ Datasets for Vulnerability Detection

Dataset Size #Multiple Vuln. Compilable Granularity Labelling Source
Vuln./File Snippets

Draper [7] 1274k vV 5.62} X function Stat mixed
Big-Vul [8] 264k X 100% X function Patch real-world
DiverseVul [9] 349k } 4 7.02% X function Patch real-world
FormAI-v2 [2] 331k VvV 62.07% v file FV AT Gen.
PrimeVul [10] 235k X 3% X function Manual real-world
SARD [11] 101k b 4 100% v file B/S/M mixed
Juliet (C/C++) [12] 64k X 100% v file BDV synthetic
Devign [13] 28k X 46.05% X function Manual real-world
REVEAL [14] 23k b 4 9.85% X function Patch real-world
CVEfixes [15] 20k X 100% X commit Patch real-world

Legend: Patch: GitHub Commits Patching a Vulnerability, Stat: Static Analyzer,
BDV: By Design Vulnerable, FV: Formal Verification with ESBMC, Manual: Manual Labeling
by Human Experts

Furthermore, a key challenge is that many popular datasets lack compilable
programs, making it impossible to meaningfully assess formal verification tools
such as the Efficient SMT-based Context-Bounded Model Checker(ESBMC) [16].
In datasets like SARD [11], which includes the Juliet [12] test cases and 45,437
C samples mapped to CWE categories, many files exceed 3,000 lines of code.
This introduces three key constraints:

1. Large token sizes impose high computational costs on LLM-based approaches
and limit the use of smaller-parameter models;

2. The complexity and volume of large files can overwhelm formal verification
tools, dramatically increasing runtime and impeding direct comparisons with
other analyzers;

3. The code samples differ significantly from the small snippets typically gen-
erated by LLMs or written by humans within an IDE framework.

Another example is FormAl, a large-scale dataset labeled using ESBMC itself.
As a result, it excludes crucial vulnerability classes, such as cross-site scripting
(X8SS), SQL injection or OS command injection, which exceed the capabilities
of current FV tools. One more important point to highlight: most well-known
datasets, such as SARD and Juliet, are widely used by tool developers and
are also included in LLM training. To avoid bias and to accurately assess the
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true capabilities of current tools in identifying vulnerabilities, the creation of a
new dataset is essential. This will provide an accurate snapshot of the current
strengths and weaknesses of various tools.

2.2 The CASTLE Benchmark

CASTLE provides a collection of compilable code snippets, deliberately crafted
to cover major CWEs while minimizing the number of queries required for effec-
tive analysis. This design enables the straightforward deployment of LLM-based
methods and traditional static analyzers with specialized wrappers, facilitat-
ing rapid, automated evaluation across various tools. Additionally, the newly
introduced CASTLE score provides a more detailed comparative metric than
conventional pass/fail assessments, allowing for clearer differentiation of sub-
tle performance variations among state-of-the-art tools. The CASTLE dataset
balances vulnerable and non-vulnerable samples, permitting more robust evalu-
ations of false positives and negatives.

2.3 Traditional Vulnerability Scanning Overview

Traditional approaches have long relied on static analysis methods, such as pat-
tern matching, data flow analysis, and taint analysis, as well as dynamic anal-
ysis techniques like fuzz testing [17]. Likewise, Formal Verification (FV) meth-
ods [18], including Bounded Model Checking (BMC) [19] and theorem proving,
are widely employed to detect security flaws such as buffer overflows. The NIST-
led Static Analysis Tool Exposition (SATE) [20,21] provided large-scale eval-
uations on open-source code, confirming that while these scanners could spot
certain weaknesses, no single method excelled across all vulnerability types.

Academic and industrial benchmarks reveal similar shortcomings. Early work
by Wilander and Kamkar [22] showed that five tools missed most C function vul-
nerabilities and produced many false positives, a trend later echoed by Emanuels-
son and Nilsson [23]. Johns and Jodeit [24] demonstrated synthetic benchmarks
to distinguish genuine alerts from false alarms, while Bennett [25] reported de-
tection rates of 11.2%-26.5% for standard SAST tools, improved to 44.7% by
augmenting them with enhanced Semgrep rules.

2.4 LLM-Based Vulnerability Detection

Recent years have witnessed a growing interest in using LLMs for automated
vulnerability detection [26,27,28]. Although these models are often praised for
handling diverse code repositories, they primarily rely on pattern-based sequence
learning rather than (neuro-)symbolic reasoning. As a result, LLMs can detect
certain coding flaws effectively, yet they remain susceptible to overlooking com-
plex or context-dependent vulnerabilities. Recent developments, particularly in
decoder-only models such as OpenAIl’s ChatGPT and Meta’s Code Llama, high-
light a shift in how researchers and practitioners approach vulnerability detec-
tion. Their larger context window and on-demand text generation facilitate pow-
erful few-shot or prompt-based strategies that, for specific benchmarks, surpass
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classical fine-tuned detectors. For instance, properly designed chain-of-thought
prompts have been reported to increase F1 scores on real-world vulnerabilities by
providing step-by-step guidance for analyzing the code [4]. Vulnerability detec-
tors typically leverage transformer-based code models trained on massive code
corpora spanning multiple languages. These training datasets frequently include
insecure code, which can lead to biases or even issues such as model collapse [29].
Broadly, transformer models are categorized into three groups [30]:

1. Encoder-Only: Used for classification tasks. Early work on vulnerability
detection often fine-tuned these models to label code snippets as “vulnerable”
or “safe.” They generally require full retraining for each new task.

2. Encoder—Decoder: Useful for sequence-to-sequence tasks, such as code
summarization or refactoring, but they can also be adapted for classification.

3. Decoder-Only: Increasingly favored due to large context windows and flex-
ible in-context learning. These models can be prompted to identify vulner-
abilities (and sometimes even propose potential fixes) without parameter
updates, relying on the knowledge captured during pre-training.

The trend toward decoder-only architectures aligns with industry practices,
where state-of-the-art LLMs (e.g., GPT-4) are often served via specialized prompts
rather than exhaustive retraining. This approach leverages in-context learning,
enabling the model to understand and analyze security issues on demand. Care-
fully constructed prompts—such as chain-of-thought instructions—can improve
detection accuracy by guiding the model’s attention toward specific code patterns
or CWE categories [4]. Existing work indicates that LLM-based solutions can
outperform traditional static analyzers on well-defined benchmarks [27,28,26].
However, these improvements do not translate uniformly across all vulnerability
types, and use cases: LLMs often fail at detecting nuanced, multi-function flaws
or to interpret extensive code segments.

3 Methodology

This section overviews the dataset creation process and introduces our research’s
newly developed evaluation metrics. Figure 1 provides a visual overview of the
dataset creation and testing framework.

3.1 Dataset

The CASTLE dataset comprises 250 small programs in C, each crafted man-
ually by cybersecurity experts. It encompasses 25 distinct CWEs, with 10 test
cases per CWE (6 vulnerable and 4 non-vulnerable). This balanced distribution
facilitates focused assessments of each tool’s vulnerability detection capabilities
while accurately measuring false positives. In ambiguous cases, experts selected
a higher-level CWE category or iteratively refined the test until only the most
relevant CWE remained. Each program was required to compile without errors,
although compiler warnings were permitted. All benchmarks were written in C
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Fig.1: The CASTLE Benchmark Framework.

and selected for their capacity to accommodate a wide range of vulnerability
types, including intricate memory management issues. Furthermore, each test
case was restricted to a single file (with optional external libraries) and designed
to contain exactly one or zero vulnerabilities. This structure simplifies the iden-
tification of vulnerabilities and helps prevent confusion when validating false
positives.

When incorporating the system prompt alongside the source code, the total
input tokens across the dataset amount to approximately 115,620 tokens using
the cl100k_ base encoding scheme. This total reflects the resource considerations
required when running evaluations with token-sensitive language models. The
dataset was intentionally capped at 250 benchmarks to make thorough manual
verification feasible. This rigorous verification process is indispensable for de-
tecting false positives and confirming line-level detections. Moreover, this selec-
tive approach supports the cost-effective evaluation of computationally intensive
tools, including advanced LLMs (e.g., GPT-01, GPT-03, DeepSeek R1).

The benchmarks exhibit substantial variability in complexity. Code lengths
range from 7 to 164 lines, yielding 10,392 lines (an average of 42 lines). Each
includes 1-8 functions (2.2 on average), with cyclomatic complexity values span-
ning 1-29 (mean 6.3). Halstead volumes range from approximately 89.9 to over
5,246.7, averaging 1,104.8. This breadth ensures the dataset covers a wide spec-
trum of vulnerabilities, from lower-level issues (e.g., memory management flaws,
race conditions) to higher-level security risks (e.g., command injections, hard-
coded credentials). Most CWEs were chosen based on their prevalence in the Top
25 CWEs of 2023-2024. Each test underwent iterative validation by human ex-
perts to ensure overall quality and reliability. Table 2 provides a comprehensive
list of the included CWEs.
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Top 25 4 g
CWE Rank Vulnerability Description
CWE-22 5 Improper Limitation of a Pathname to a Restricted Directory
CWE-78 7 Improper Neutralization of Special Elements used in an 0S Command
CWE-89 3 Improper Neutralization of Special Elements used in an SQL Command

CWE-125 6 Out-of-bounds Read
CWE-134 12 Use of Externally-Controlled Format String
CWE-190 23 Integer Overflow or Wraparound

CWE-253 - Incorrect Check of Function Return Value

CWE-327 - Use of a Broken or Risky Cryptographic Algorithm

CWE-362 - Concurrent Execution using Shared Resource with Improper Synchronization
CWE-369 23 Divide By Zero

CWE-401 - Missing Release of Memory after Effective Lifetime

CWE-415 21  Double Free

CWE-416 8 Use After Free

CWE-476 21 NULL Pointer Dereference

CWE-522 14 Insufficiently Protected Credentials

CWE-617 - Reachable Assertion

CWE-628 - Function Call with Incorrectly Specified Arguments
CWE-674 24 Uncontrolled Recursion

CWE-761 20 Free of Pointer not at Start of Buffer

CWE-770 24 Allocation of Resources Without Limits or Throttling
CWE-787 2 Out-of-bounds Write

CWE-798 14 Use of Hard-coded Credentials

CWE-822 20 Untrusted Pointer Dereference

CWE-835 24 Loop with Unreachable Exit Condition

CWE-843 Access of Resource Using Incompatible Type

Table 2: CWEs in the benchmark mapped to MITRE’s 2024 Top 25 list [31].

3.2 Test Format and Wrappers

Each test in the dataset comprises two components: a metadata block and the
source code. Both are stored in a single file for streamlined development and
validation, as illustrated in Listing 1.

The metadata, formatted in YAML, precedes the source code and is removed
during preprocessing. All lines containing vulnerabilities are marked using the
comment string // {!LINE}, ensuring consistent identification across different
tools. We note that for LLM evaluation, all side-channel information that could
introduce bias is removed during the analysis. Additionally, the metadata spec-
ifies the vulnerability’s CWE classification and other contextual information.
After processing, each test is converted into a JSON-formatted dictionary that
includes the code, metadata, and computed software metrics (e.g., cyclomatic
complexity, Halstead volume). This unified structure simplifies integration with
the various wrappers, facilitating automated execution and standardized result
reporting. To ensure a uniform and reproducible evaluation across all tools, we
developed custom wrappers that automate installation, configuration, execution,
and result retrieval. Each tool was containerized via Docker, alongside its depen-
dencies for freely available static analyzers. We then used Python scripts to run
each tool on all test cases, collecting and parsing the results into a standardized
report format.

For closed-source solutions such as CodeThreat and Aikido, we uploaded the
micro-benchmarks to secure repositories or dashboards accessible via proprietary
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Listing 1 An example of a micro-benchmark illustrating a buffer overflow

CASTLE-787-1.c Test Source Code

3 dataset: CASTLE-Benchmark

4 name: CASTLE-787-1.c

5 version: 1.1

6 compile: gcc CASTLE-787-1.c -o CASTLE-787-1

7 vulnerable: true

8 description: Buffer overflow in scanf function copying into a fized length buffer.
9 cwe: 787

11 */
12 #include <stdio.h>
13 int main(int argc, char *argv[])

14 A

15 char reg_name[12];

16 printf ("Enter your username:");

17 scanf ("%s", reg_name); // {!LINE}

18 printf("Hello %s.\n", reg_name);

19 return 0;

20 }

L J

APIs. The returned results were automatically parsed, and manual consistency
checks were performed to verify alignment between reported findings and the
tools’ web interfaces.

LLM-based vulnerability detection was driven by a generic script that inter-
acted with standard OpenAI APIs. Each model was prompted to return JSON-
formatted detection results. Smaller models (fewer than 6B parameters) often
struggled to generate well-structured JSON, suggesting limitations in handling
detailed output formats. Additionally, models were sensitive to line-specific de-
tections, occasionally identifying the correct vulnerability but offsetting the line
number. We also prompted LLMs to provide the corresponding code lines to ad-
dress minor positioning errors, allowing minimal adjustments during evaluation.

All wrappers developed for this research are publicly available in the main
repository. However, intermediate analysis reports are not provided, as they may
include proprietary information protected by the respective tool vendors. Each
wrapper saves the results in a custom report format, which is later used to
process the results and calculate the metrics for the tools.

3.3 The CASTLE Score

In this section, we introduce the CASTLE score, a new metric for evaluating
the performance of vulnerability detection tools with the CASTLE-Benchmark.
The CASTLE score integrates both true- and false-positive rates, awards bonus
points for detecting high-impact vulnerabilities (based on the Top 25 CWEs),
and rewards correct identification of non-vulnerable code. By incorporating these
factors, the metric better captures a tool’s overall reliability than standard
pass/fail evaluations.
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Let d" = {dy,ds,...,d,} denote a dataset of n € N* micro-benchmark tests.
Each test d; targets a specific security weakness (e.g., buffer overflow) or contains
no vulnerabilities. Let v; denote the correct vulnerability label associated with
d;. If it does not contain a vulnerability, then v; = (} For any given tool ¢, let
t(d;) represent the set of vulnerabilities reported by ¢ when analyzing d;.

Bonus Formula: Following the Top 25 CWE list released by MITRE [31],
let S : CWE — {1,2,...,25} U {oo} be a function that returns the rank of a
given weakness if it appears in the top 25 list, with S(c¢) = co assigned to any
CWE not in the list. Define by,x = 5 as the maximum bonus for detecting a
Top-25 CWE. For a found vulnerability labeled cwe = t.ype, the bonus B(tewe)
is computed as:

'max

Doy — [MJ . if S(tewe) < 25

Btewe) = { (1)

0, otherwise

Thus, a tool detecting a highly ranked CWE (e.g., Top 5) receives the full bonus
of 5 points, while lower-ranked CWEs yield a proportionally reduced bonus.
CWEs outside the Top 25 list receive no bonus.

Scoring Formula: For each test d;, a tool’s performance is scored according
to whether it correctly identifies the vulnerability or the true negative sample.
The final CASTLE score for a tool ¢ over the CASTLE benchmark is:

5 — (|t(dz)| — 1) + B(tcwe); if v, 7& 0 A v; € t(dz)
CASTLE(t,d") = Y _ <2, ifo; =0 A t(d;) =0
i=1

— [t(dy)], otherwise

(2)

Interpretation:

— Correct Vulnerability Detection (True Positive): If a sample (d;) is vulnerable
(v; # 0) and the tool detects exactly that vulnerability, the tool scores 5 points
plus an additional bonus B(t.y.) depending on the CWE’s standing in the top
25. However, multiple reported findings (|¢(d;)| > 1) reduce the score by one
for each, penalizing extraneous detections.

— Correct Non-Vulnerability Detection (True Negative): If the sample is non-
vulnerable (v; = () and the tool reports no vulnerabilities, it earns 2 points.

— All Other Cases. If the tool misses a vulnerability (failing to report v;), or
incorrectly flags any vulnerability (including false positives in a non-vulnerable
test), the score is reduced by one for each false-positive finding (—|t(d;)]).
Notably, it does not incur additional penalties if the tool reports nothing on
a vulnerable benchmark.

We note that assigning zero points for false negatives does not mean the tool
avoids penalty for missing a vulnerability. Instead, the absence of points itself
acts as the penalty, indicating that no valid finding was made.
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3.4 The CASTLE Combination Score

An additional feature of the CASTLE score is its applicability to tool combina-
tions. Specifically, if two or more tools exhibit high overlap in detected CWEs,
their combined false positives may outweigh any marginal gain from additional
true positives, thus lowering the overall score. Conversely, if tools complement
each other’s coverage without substantially increasing false-positive rates, their
combination can yield higher net performance. To compute the CASTLE Com-
bination Score, one considers the union of reported vulnerabilities and awards
true positives and true negatives once while aggregating penalties for all false
positives. This ensures that overlapping detections do not artificially inflate the
combined score and that the negative impact of extraneous findings remains
cumulative. The combination score can be calculated for any number of tool
combinations.

4 Discussion

We evaluated 13 static code analyzers, 2 formal verification tools, and 10
LLMs on the CASTLE benchmark. The results, including the CASTLE Scores,
are presented in Table 3.

Results Evaluation Metrics
‘Name Version ‘TP TN FP FN‘ P R A ‘CASTLE Score‘
ESBMC 7.8.1 53 99 12 97 |82% 35% 58% 697
CodeQL 2.20.1 35 84 43 115|45% 23%
Snyk 1.1295.4 | 30 86 28 120(52% 20%
CBMC 5.95.1 41 97 12 109|77% 27%
SonarQube 25.3.0 45 73 104 105|30% 30%
GCC Fanalyzer 13.3.0 41 81 74 109(36% 27%
Semgrep Code 1.110.0 26 76 76 124|26% 17%
Aikido N/A* 12 85 31 138|28% 8%
Coverity 2024.12.1| 31 87 61 119|34% 21%
Jit N/A* 13 85 58 137|18% 9% «
Cppcheck 2.13.0 18 100 5 132|78% 12%
Clang Analyzer 18.1.3 13 99 2 137|87% 9%
GitLab SAST 15.2.1 18 67 259 132| 6% 12%
Splint 3.1.2 23 36 1029 127| 2% 15%
CodeThreat N/A* 21 2 1104 129| 2% 14%
GPT-03 Mini - 121 61 72 29 [63% 81%
GPT-ol - 114 66 72 36 [61% T6%
DeepSeek R1 - 133 43 163 17 [45% 89%
GPT-40 - 113 45 141 37 |44% 75%
QWEN 2.5CI (32B) - 106 31 226 44 [32% 7T1%
GPT-40 Mini - 117 27 276 33 [30% 78%
Falcon 3 (7B) - 36 76 70 114|34% 24%
Mistral Ins. (7B) - 54 23 218 96 |20% 36%
Gemma 2 (9B) - 42 42 288 108|13% 28%
LLAMA 3.1 (8B) - 56 22 374 94 |13% 37%

Legend: TP = True Positive; TN = True Negative; FP = False Positive; FN = False Negative;
P = Precision; R = Recall; A = Accuracy;
* Online API-based tools with unavailable version information (evaluation date: 02/2025)

Table 3: The results from 250 C tests and their CASTLE Scores.



12 R. A. Dubniczky, et.al.

Tools and LLMs are distinctly separated, and the reasoning behind this will
be discussed in this chapter. The CASTLE Score is designed to provide a bal-
anced assessment of a tool’s effectiveness by considering both true and false posi-
tives and the severity of vulnerabilities. Consequently, not finding a high-severity
vulnerability leads to larger penalties than less impactful ones. A negative CAS-
TLE Score could indicate that the volume of false positives generated by a tool
imposes a significant triage burden on developers, outweighing its potential ben-
efits. Overall, both the benchmark dataset and the introduced evaluation metric
helped highlight various static analyzers’ strengths and weaknesses.

4.1 Tool Evaluation on the CASTLE Benchmark

Figure 2 presents the results for tools without LLMs, along with their best-
performing combinations.

I Static Application Security Tester I Formal Verification

Em Generic Code Analyzer Tool Combination
Tools Combinations
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Fig. 2: CASTLE Scores for tools tested on 250 C programs, including the top five
tool combinations. Tools reporting no issues score 200 points. The theoretical
maximum of a perfect score is 1250 points.

The highest-performing individual tool in our analysis was ESBMC, a for-
mal verification tool. Formal Verification methods have the main disadvantage
of being unable to detect non-formal issues, such as SQL Injection, Path traver-
sal, or hard-coded credentials. However, they compensate for this with their low
false positive rate. Theoretically, bounded model checkers cannot produce false
positives, as they always provide a counterexample to their findings, except in
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cases where the tool itself has bugs or reports esoteric scenarios. Both ESBMC
and CBMC reported 12 similar but not identical false positives (see Figure 3).
These bugs in three categories, some of which we submitted as bug reports to the
project [32] [33] [34] [35], fixes are already available for some issues. While this
dataset with its short code samples allowed relaxed setting for ESBMC with a
longer timeout; -overflow -no-unwinding-assertions -memory-leak-check
-timeout 60 -multi-property -show-stacktrace, with larger codebases for-
mal verification tools could potentially struggle to finish the verification process
in reasonable time, thereby limiting their thoroughness and reliability in giving
accurate results. The best-performing SAST tool is CodeQL, which found 23%
of the weaknesses in the code (35/150), the highest of the average of 17% among
other SASTs. SonarQube found the most, around 30%, but it was dragged down
by reporting 2.5 times as many false positives than CodeQL. Several tools, in-
cluding Clang Analyzer and Cppcheck, displayed high precision (87% and 78%
respectively) but struggled with low recall (9% and 12%). This trade-off implies
they excel at correctly labeling the few issues they detect, yet they fail to iden-
tify a substantial portion of vulnerabilities. Conversely, CodeQL’s more balanced
approach (45% precision, 23% recall) often provides a more reliable day-to-day
detection rate for developers. Splint and CodeThreat generated exceptionally
high false positives (1,029 and 1,104, respectively). Their negative CASTLE
Scores (-600 and -710) illustrate how overwhelmingly false alerts can erode a
tool’s practical utility. Although both tools still produced a modest number of
true positives, the excessive manual triage effort likely outweighs any marginal
benefits for most real-world applications.

Another advantage of the CASTLE score over traditional metrics is that it
provides a comparison between using tool combinations. If a pair of tools has a
high overlap in the CWEs they can detect, the CASTLE Score of their combi-
nation will yield a lower result than the individual tools because of the oversized
impact of increasing the rate of false positives. When looking at combination
scores, the biggest increase happens with ESBMC and CodeQL, yielding 831
points. This is a 134 point increase over the higher performing ESBMC’s base
score of 697, and a 19% increase in the effectiveness of using both tools instead
of just ESBMC, with a 39% increase above just using CodeQL. This shows
that selecting tool combinations with different strengths significantly boosts the
efficacy of the static analysis process.

4.2 LLM Evaluation on the CASTLE Benchmark

On the CASTLE dataset, LLMs exhibited notably strong performance. In par-
ticular, GPT-03-mini achieved the highest overall score of 955 points, correctly
identifying 121 out of the 150 known vulnerabilities. When examining the true
positives across different LLM variants, we observed that GPT-40 and GPT-
4o-mini generated a similar number of detections than GPT-01 or GPT-03-mini
for true positives. However, the reasoning-oriented models consistently produced
fewer false positives, suggesting that their internal steps for “validating” potential
vulnerabilities lead to more precise outcomes.
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Fig. 3: True Positive vs False Positive rates across tools

Our findings indicate that modern LLMs can pinpoint vulnerabilities in short,
self-contained C programs. We conjecture that their neural architectures confer
an inherent advantage in pattern recognition, whereas more advanced reasoning
models are more effective at minimizing false detections. As a result, LLM-based
approaches rival—and often surpass—several classical static analysis tools in
detecting common software flaws within compact code segments. However, the
next section highlights several limitations and issues for LLMs.

5 Limitations

Microbenchmark Scope: A fundamental concern with any microbenchmark-based
study is its limited scope. Although the CASTLE dataset covers 25 distinct
CWEs, each test typically focuses on a single vulnerability in an isolated con-
text. Real-world software often exhibits multi-faceted security flaws spanning
tens or hundreds of files. Consequently, tools optimized for detecting specific
vulnerabilities may perform artificially well on microbenchmarks while missing
complex, cross-file weaknesses that only arise in large-scale applications. Regard-
less, tools did not perform well on even this small test, indicating that their high
false positive rates would be a problem for longer contexts.

Lack of Large Code Samples: Preliminary testing with a synthetic 400+ line
C program created by merging multiple non-vulnerable test cases, revealed that
LLMs tend to report false positives when dealing with larger codebases. Simi-
larly, when one hidden vulnerability was introduced into this combined file, most
LLMs failed to detect it reliably, suggesting that these models’ effectiveness may
taper off with increasing code length. Formal verification approaches also suffer
from scalability issues, such as state explosion, and may require lowered bounds
that reduce their thoroughness. By contrast, classical static application security
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testers (SAST) can handle extensive projects more efficiently, yet their propen-
sity for false positives undercuts overall usefulness in large-scale deployments.

Potential Overfitting: Because CASTLE test contents are fixed, tool vendors
could theoretically fine-tune their analyzers to excel on known benchmarks, in-
flating reported accuracy while not generalizing to unseen software. Although
this consideration does not impact the integrity of our current study, it un-
derscores the importance of periodically refreshing the dataset or incorporating
dynamic test-generation approaches for the future. Furthermore, while repeated
evaluations of the same code typically yield consistent results (with observed
deviations below 3%), the inherent stochasticity of model-based systems stands
in contrast to the deterministic nature of many static analyzers.

6 Conclusion

In this study, we introduced the CASTLE benchmark, a curated collection of
250 compilable C micro-benchmarks covering 25 major CWEs. We proposed the
CASTLE Score to evaluate diverse vulnerability detection tools, including static
analyzers, formal verification methods, and Large Language Models (LLMs).
Our work aimed to address the following research questions:

— RQ1: How do state-of-the-art static analysis tools, formal verification methods, and
LLM-based approaches compare in effectively detecting vulnerabilities in C code?
Answer: LLMs exhibit high effectiveness on compact code snippets, with GPT-03-
mini scoring the highest (955 points) by identifying 121 out of 150 vulnerabilities.
However, their performance may decline on larger codebases, where false positives
increase and hidden vulnerabilities often remain undetected. Static analyzers per-
form moderately but produce numerous false positives, creating substantial manual
triage overhead. Formal verification tools yield minimal false positives within their
supported classes (e.g., memory safety) but cannot detect certain higher-level vul-
nerabilities such as SQL injection, limiting their coverage.

— RQ2: Are combinations of tools more effective than using a single tool?
Answer: Tool combinations frequently outperform individual tools, particularly
when they offset each other’s weaknesses. For instance, ESBMC (formal verifica-
tion) combined with CodeQL achieved the highest two-tool CASTLE Score (831).
Although overlapping detections can inflate false positives, well-chosen pairs lever-
age complementary detection strategies, enhancing overall reliability.

— RQ3: What metrics can reliably demonstrate these differences among various tools?
Answer: As shown in Table 3, neither precision, accuracy, nor recall could have
produced the same results and insights. The CASTLE Score integrates true pos-
itives, false positives, and CWE frequency, providing a single, clear measure of
tool performance. This setup enables transparent evaluation and straightforward
comparisons across diverse methods, even for tool combinations.

Implications and Future Work. Although micro-benchmarks efficiently re-
veal how tools behave on targeted vulnerabilities, they may not reflect the full
complexity of production-scale systems. Preliminary experiments indicate that
LLMs and formal verification tools both face significant scalability barriers when
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analyzing large codebases. Ultimately, the insights gained through CASTLE un-
derscore the importance of selecting and combining tools to fit specific project
requirements rather than relying on any single method for comprehensive secu-
rity assurance.

6.1 Conclusion Remark

Finally, we would like to highlight an important point regarding small code snip-
pets. We received feedback from members of the research community expressing
concerns that such snippets may not fully reflect real-world scenarios. While it’s
true that small code snippets may not represent complete, realistic applications,
they are sufficient for evaluating the types of vulnerabilities a tool is capable of
detecting.

If a tool fails to identify a buffer overflow in a five-line snippet, we cannot rea-
sonably expect it to succeed in detecting the same issue within a larger and more
complex codebase. In this sense, the CASTLE-Benchmark provides a valuable
theoretical upper bound on a tool’s detection capability.

We acknowledge that the rankings presented in Table 3 may vary if these tools
are evaluated on larger programs. However, the ability—or inability—of a tool to
detect certain vulnerability types will remain consistent. If a tool cannot detect
a specific issue in a small snippet, it is unlikely to detect it in a larger context
either. For this reason, the CASTLE benchmark is well suited for evaluating
methods and tools to determine which are most appropriate for code completion
frameworks, where small code snippets are typically analyzed.
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