
EBF 4.2: Black-Box Cooperative Verification for
Concurrent Programs

(Competition Contribution)

Fatimah Aljaafari1,2, Fedor Shmarov1, Edoardo Manino1, Rafael Menezes1, and
Lucas C. Cordeiro1

1 The University of Manchester, UK
2 King Faisal University, SA

Abstract. Combining different verification and testing techniques together could,
at least in theory, achieve better results than each individual one on its own. The
challenge in doing so is how to take advantage of the strengths of each technique
while compensating for their weaknesses. EBF 4.2 addresses this challenge for
concurrency vulnerabilities by creating Ensembles of Bounded model checkers
and gray-box Fuzzers. In contrast with portfolios, which simply run all possible
techniques in parallel, EBF strives to obtain closer cooperation between them.
This goal is achieved in a black-box fashion. On the one hand, the model check-
ers are forced to provide seeds to the fuzzers by injecting additional vulnerabili-
ties in the program under test. On the other hand, off-the-shelf fuzzers are forced
to explore different interleavings by adding lightweight instrumentation and sys-
tematically re-seeding them.

1 Overview

Finding vulnerabilities in concurrent programs presents the combined challenge of ex-
ploring the search space of program inputs and execution schedules, or interleavings.
Recently, there have been attempts at solving complex verification problems by com-
bining different techniques into hybrid verification tools [1,2,3]. More generally, these
attempts belong to a larger trend in automated software analysis called cooperative ver-
ification [4,5]. In this paradigm, the main idea is implementing some form of communi-
cation interface between different tools (i.e., a common information exchange format),
which allows the exchange of partial results (artifacts). In this way, we can harness the
strengths of multiple verification techniques and solve more complex problems [6,7,8].

In EBF [9], we are the first to implement a cooperative approach that combines
Bounded Model Checking (BMC) and concurrency-aware Gray-Box Fuzzing (GBF)
for finding vulnerabilities in concurrent C programs. In order to simplify the communi-
cation interface between the cooperating tools, we adopt a black-box design philosophy
where verification artifacts are implicitly shared via appropriate transformation and in-
strumentation of the program under test (PUT). The advantage of this design philosophy
is its universality: in fact, EBF can incorporate any BMC or GBF tool that takes a C
program as input.

More specifically, EBF 4.2 expands the cooperative verification capabilities of pre-
vious versions of EBF. First, we introduce a new seed generation module for the GBF.

1



C program
+

Safety
property

BMC

Results Aggregation Stage
OpenGBF

Bug Unknown
Safe Conflict Safe
Bug Unsafe Unsafe

B
M

C

Unknown Unsafe Unknown

Counter-
example

Seeds

Controlled
Errors Injection

BMC

LLVM
Instrumentations

Sanitizers

Fuzzer
Fuzz Inputs

Fuzz Delays

Verdict Bug

Bug

Verdict

Bug

Safety Proving Stage Seed Generation Stage Falsification Stage

Fig. 1: The workflow of EBF 4.2 comprises four stages (dashed rectangles). The safety
proving and seed generation stages use a BMC tool. The falsification stage uses
our OpenGBF tool. The result aggregation stage generates a verification verdict and
counter-example (if any). Areas of improvement over EBF 4.0 [9] are shown in blue.

This module works by injecting additional vulnerabilities in critical areas of the PUT,
and then using a BMC engine to generate program inputs that trigger them. These inputs
represent higher quality seeds for the fuzzer than randomly-generated ones. Second, we
propose an improved light-weight instrumentation based on the Clang/LLVM toolchain
that turns any compatible off-the-shelf GBF into a concurrency-aware fuzzer. We do so
by injecting fuzzer-controlled delays in the PUT, which implicitly force the exploration
of different interleavings.

2 Architecture

Figure 1 illustrates the workflow of EBF, which comprises four verification stages:
safety proving, seed generation, falsification and results aggregation. Each of these
stages take a concurrent C program and a given safety property as input.

Safety Proving Stage. During this stage, EBF calls the BMC engine with the given
inputs. The BMC tool produces one of the three possible verdicts: Safe if the model
checker deems the PUT safe with respect to the given property, Bug if a vulnerability is
detected, or Unknown encompassing a variety of different outcomes including reaching
a timeout, running out of memory, or crashing unexpectedly. If the BMC tool finds
a bug, it generates a counter-example – a sequence of program inputs and a thread
schedule leading to the vulnerability. The input values are stored for later use as a seed.

2



Seed Generation Stage. This is a new feature of EBF 4.2, which harnesses the strength
of BMC in resolving complex path conditions. For instance, the branch if(x*x -2*x
+1 == 0) may be extremely difficult for the fuzzer to explore. EBF tackles this issue
by repeatedly injecting the error statement assert(0) in each conditional branch
of the PUT (similar to the approach in [2]). Then, each transformed program (which
contains one unique error statement) is independently verified with the BMC tool. If the
BMC reaches the error within a timeout, EBF converts the resulting counter-example
into a fuzzing seed. The seed generation process continues until all injected errors have
been detected or the stage timeout has been reached. The seeds we collect during this
stage greatly improve the fuzzer performance in the next stage.

Falsification Stage. During this stage, EBF checks whether the PUT contains any
vulnerabilities by fuzzing its inputs and thread interleavings. Due to the current lack of
open-source GBF tools for concurrent programs [9], EBF uses our own concurrency-
aware gray-box fuzzer OpenGBF. Its implementation extends AFL++, a state-of-the-
art GBF for single-threaded programs, by introducing the following concurrency-aware
lightweight instrumentation in the PUT.

First, OpenGBF injects delays after each instruction at the LLVM intermediate rep-
resentation level. The value of these delays (typically several micro-seconds) is con-
trolled by the fuzzer and implicitly forces the execution of different thread interleav-
ings. Second, OpenGBF inserts functions for recording all the information needed for
witness generation: assumption values, thread ID, variable names, and function names.
Third, OpenGBF supports the use of UndefinedBehaviorSanitizer [10], AddressSani-
tizer [11] and ThreadSanitizer [12] for the detection of vulnerabilities that cannot be
expressed as reachability errors (e.g., buffer overflows, thread leaks).

Results Aggregation Stage. Finally, EBF aggregates the outcomes of the Safety Prov-
ing and the Falsification stages as depicted in the table in Fig. 1. The majority of cases
are straightforward: if one of the tools produces an inconclusive verdict (i.e., Unknown),
then EBF relies on the decision provided by the other tool. However, if OpenGBF finds
a bug in the PUT that is deemed to be safe by BMC, EBF reports a Conflict. In this case
extra information can be obtained from the counter-example produced by the fuzzer.

3 Strengths and Weaknesses

EBF 4.2 participated in the ConcurrencySafety category of SV-COMP 2023, which
comprises four subcategories: ConcurrencySafety-Main, NoDataRace-Main, Concur-
rencySafety-NoOverflows and ConcurrencySafety-MemSafety.

Regarding the ConcurrencySafety-Main subcategory, EBF 4.2 provided 357 cor-
rect results out of 692, with only 1 incorrect false and the rest unknown. More in de-
tail, EBF correctly identified 67 safe benchmarks and 249 unsafe benchmarks, thus
highlighting the EBF strengths in bug-finding. In addition, EBF labeled an extra 41
benchmarks as unsafe, which were not confirmed by the witness validator. Among
these benchmarks, there are 10 verification tasks (beginning with goblint-regression/28-
race reach *) where only two tools can find bugs: EBF and Infer [13]. At the same time,

3



we hypothesise that the counter-examples provided by EBF are more trustworthy than
those provided by Infer for these 10 tasks. This is because EBF is very conservative
in its bug-finding claims, with 290 correct false outcomes, 41 unconfirmed, and only
1 incorrect. In contrast, Infer produces 330 correct false outcomes and 331 incorrect
ones.

Regarding the NoDataRace-Main subcategory, EBF 4.2 only offered partial support
for data race detection by enabling ThreadSanitizer inside OpenGBF. Unfortunately,
the BMC engine we used in this year’s competition, ESBMC, does not yet maintain
full support of this safety property. As a consequence, EBF provided only 199 correct
verification verdicts out of 904, of which 112 were correct true and 87 correct false.
At the same time, EBF also reported 46 incorrect verdicts (23 incorrect true and 23
incorrect false), which resulted in a negative score for this subcategory.

Regarding the ConcurrencySafety-NoOverflows and ConcurrencySafety-MemSafety
subcategories, EBF 4.2 did provide support for detecting arithmetic overflows and mem-
ory safety violations by enabling UndefinedBehaviorSanitizer and AddressSanitizer.
However, we did not succeed in providing an implementation that was compliant with
the competition standards in time. As a result, EBF did not feature in these subcate-
gories.

4 Tool Setup and Configuration

In order to use EBF3, the user must set the architecture (32 or 64-bit) with flag -a,
the property file path with flag -p, the benchmark file paths, and run the following
command from the EBF root directory:

./scripts/RunEBF.py [-h] [-a {32,64}] [-p PROPERTY_FILE]
[benchmark]

Furthermore, there are optional flags that can be enabled (e.g., set the time and mem-
ory limit for each engine). In SV-COMP 2023 we divided the allotted 15 minutes of
CPU time per verification task across the verification stages inside EBF 4.2 as follows:
400s for the safety proving stage, 120s for the seed generation stage, 240s for the
falsification stage, and the remaining 140s were allocated for the results aggregation,
counter-example generation and potential execution overheads.

5 Software Project

We released EBF 4.2 under the MIT License, and its code is publicly available on
GitHub4. All dependencies and installation instructions are listed in the repository README.md
file.

3 https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/
2023/ebf.zip

4 https://github.com/fatimahkj/EBF

4

https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/ebf.zip
https://gitlab.com/sosy-lab/sv-comp/archives-2023/-/blob/main/2023/ebf.zip
https://github.com/fatimahkj/EBF


6 Data-Availability Statement

The tool and all necessary files are available5 on Zenodo [14].

References

1. Ognawala, S., Hutzelmann, T., Psallida, E., Pretschner, A.: Improving function coverage
with munch: A hybrid fuzzing and directed symbolic execution approach. In: SAC. (2018)
1475–1482

2. Alshmrany, K.M., Menezes, R.S., Gadelha, M.R., Cordeiro, L.C.: Fusebmc: A white-box
fuzzer for finding security vulnerabilities in c programs. FASE (2020)

3. Chowdhury, A.B., Medicherla, R.K., Venkatesh, R.: Verifuzz: Program aware fuzzing. In:
International Conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, Springer, Cham (2019) 244–249

4. Beyer, D., Wehrheim, H.: Verification artifacts in cooperative verification: Survey and uni-
fying component framework. In Margaria, T., Steffen, B., eds.: Leveraging Applications of
Formal Methods, Verification and Validation: Verification Principles, Cham, Springer Inter-
national Publishing (2020) 143–167

5. Beyer, D., Spiessl, M., Umbricht, S.: Cooperation between automatic and interactive soft-
ware verifiers. In Schlingloff, B.H., Chai, M., eds.: Software Engineering and Formal Meth-
ods, Cham, Springer International Publishing (2022) 111–128

6. Stephens, N., Grosen, J., Salls, C., Dutcher, A., Wang, R., Corbetta, J., Shoshitaishvili, Y.,
Kruegel, C., Vigna, G.: Driller: Augmenting fuzzing through selective symbolic execution.
In: NDSS. Volume 16. (2016) 1–16

7. Yun, I., Lee, S., Xu, M., Jang, Y., Kim, T.: {QSYM}: A practical concolic execution engine
tailored for hybrid fuzzing. In: USENIX). (2018) 745–761

8. Li, J., Zhao, B., Zhang, C.: Fuzzing: a survey. Cybersecurity 1(1) (2018) 1–13
9. Aljaafari, F.K., Menezes, R., Manino, E., Shmarov, F., Mustafa, M.A., Cordeiro, L.C.: Com-

bining bmc and fuzzing techniques for finding software vulnerabilities in concurrent pro-
grams. IEEE Access 10 (2022) 121365–121384

10. Zannoni, E.: Improving application security with undefinedbehaviorsanitizer (ubsan) and
gcc. Accessed: 2022-11-01.

11. Serebryany, K., Bruening, D., Potapenko, A., Vyukov, D.: Addresssanitizer: A fast address
sanity checker. In: USENIX, USA (2012) 28

12. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: Data race detection in practice. In:
WBIA. (2009) 62–71

13. Kettl, M., Lemberger, T.: The static analyzer Infer in SV-COMP (competition contribution).
In: Proc. TACAS (2). LNCS 13244, Springer (2022) 451–456

14. Aljaafar, F.: Ebf a participated version in sv-comp 2023 (December 2022)

5 https://doi.org/10.5281/zenodo.7467746

5

https://doi.org/10.5281/zenodo.7467746

	EBF 4.2: Black-Box Cooperative Verification for Concurrent Programs

