
Wit4Java: A Violation-Witness Validator for Java
Verifiers (Competition Contribution)

Tong Wu1*, Peter Schrammel2 , and Lucas C. Cordeiro(B)1

1 University of Manchester, Manchester, United Kingdom
2 University of Sussex, Brighton, and Diffblue Ltd, Oxford, United Kingdom

lucas.cordeiro@manchester.ac.uk

Abstract. We describe and evaluate a violation-witness validator for Java ver-
ifiers called Wit4Java. It takes a Java program with a safety property and the
respective violation-witness output by a Java verifier to generate a new Java
program whose execution deterministically violates the property. We extract the
value of the program variables from the counterexample represented by the violation-
witness and feed this information back into the original program. In addition, we
have two implementations for instantiating source programs by injecting coun-
terexamples. Experimental results show that Wit4Java can correctly validate the
violation-witnesses produced by JBMC and GDart in a few seconds.

Keywords: Witness Validation · Software Verification · Java Bytecode.

1 Overview

Witness validation is the process of checking whether the same results can be repro-
duced independently according to the given program, specification, verification result,
and the generated witness, improving the trust level of the software verifiers [2].

Here, we describe and evaluate a new violation-witness validator for Java programs
called Wit4Java. We take an approach similar to Rocha et al. [5] and Beyer et al. [1]
for C programs and apply it to Java programs. As a result, we implement Wit4Java as a
Python script that creates a new Java program or a unit test case using Mockito with the
program variable values extracted from the counterexample. As input, Wit4Java uses the
violation-witness in the GraphML format to extract the value of the non-deterministic
variables in Java programs. Lastly, Wit4Java runs the new created program using the
Java Virtual Machine (JVM) to check the assert statements.

There are some validators for C programs in the literature [6, 12]. For example,
NitWit is an interpretation-based witness validator that can execute each statement step-
by-step without compiling the entire program [12]. The concept of MetaVal is to gener-
ate a new program based on the input and then use any checker to check for specifica-
tions [6]. CPA-witness2test and FShell-witness2test are execution-based validators for
C programs that can process the witness in GraphML format and generate a test harness
that drives the program to the specification violation [1]. Rocha et al. focus on the coun-
terexample produced by ESBMC [4] while CPA-witness2test and FShell-witness2test
can process GraphML files. However, witness validation for SV-COMP’s Java track [7]

*Jury Member

http://orcid.org/0000-0002-5713-1381
http://orcid.org/0000-0002-6235-4272

2 Tong Wu et al.

is still at an early stage. GWIT is another validator that uses assumptions to prune the
search space for dynamic symbolic execution, limiting the analysis to paths where a
given assumption holds [10, 11].

Fig. 1. Wit4Java Architecture. The grey boxes represent the inputs and outputs, and the white
boxes represent the validation process.

2 Validation Approach

The architecture of Wit4Java is illustrated in Fig. 1. First, Wit4Java takes the Java pro-
gram and the witness as input. Then, it uses the Python package NetworkX to read the
graph content of the witness and extracts the counterexample values of the variables
corresponding to the source program from the violation-witness and saves them. After
that, it generates new programs that contain the witness’s assumptions. Finally, the val-
idation process is performed by the JVM (using the -ea option) to check whether the
execution of the generated program exhibits the detected assertion failure.

There are two implementations (Wit4Java 1.0 and Wit4Java 2.0) to extract and use
counterexamples. The first version is to save them as tuples (linenum, counterexample).
Then it reads the source program and replaces the variables of the program statements
with counterexamples if the line number and variable in the program match the tuple,
thus generating a new created Java program. In comparison, the second version records
the data types and values of the counterexamples and saves them sequentially into two
lists. Moreover, only the assumptions made in the witness for the non-deterministic
variables (as determined by Verifier.nondet) are recorded. Then, it builds a unit test
case and employs the Mockito framework to mock the Verifier.nondet calls in the
source program to make them return deterministic counterexample values from the lists.
This makes the execution of the source program follow the path described in the witness
and eventually reach the violated property.

Listing 1.1. Analyzed program
int v1 = Verifier.nondetInt();
int v2 = Verifier.nondetInt();
assert v1 == v2;

Listing 1.2. Output of Wit4Java 1.0
int v1 = 1;
int v2 = 0;
assert v1 == v2;

We show examples for both implementations in Listings 1.1 to 1.4. Wit4Java 1.0
(the naive version) saves the counterexamples in witness in line number order. It directly
replaces the variable values in the source program, thus generating a new program (cf.

Wit4Java: A Violation-Witness Validator for Java Verifiers (Competition Contribution) 3

Listing 1.2). Wit4Java 2.0 (We name it the Mockito version) generates a test case that
returns the counterexample value when the mocked function is called (cf. Listing 1.4).

Listing 1.3. Violation witness
<edge source="203.167" target="207.186">

<data key="originfile">
Main.java
</data>
<data key="startline">
13
</data>
<data key="assumption">
v1 = 1;
</data>

</edge>
<edge source="207.186" target="252.201">

<data key="originfile">
Main.java
</data>
<data key="startline">
14
</data>
<data key="assumption">
v2 = 0;
</data>

</edge>

Listing 1.4. Output of Wit4Java 2.0
List_type = [int, int];
List_value = [1, 0];
Mockito.mockStatic(Verifier.class);
int n = List_type.length;
OngoingStubbing <Integer>
stubbing_int = Mockito.
when(Verifier.nondetInt());

for (int i = 0; i < n; i++) {
if ("int".equals(List_type[i])) {

stubbing_int = stubbing_int.
thenReturn(Integer.
parseInt(List_value[i]));

}
}
Main.main(new String[0]);

3 Discussion of Strengths and Weaknesses

Fig. 2 on the left compares the validation results of the two validation tools Wit4Java
and GWIT. The former is based on version 1.0 (naive version). The latter is based on
violation-witnesses produced by GDart. The results indicate that Wit4Java has success-
fully validated 140 out of 302 witnesses, while GWIT correctly validates 150 results.
Version 2.0 handles counterexamples with different values for each iteration within a
loop better than version 1.0. This is because version 1.0 skips the counterexamples be-
fore the last iteration. However, version 2.0 can fully use the counterexamples generated
by each iteration. Fig. 2 on the right compares the validation results of the two versions
of Wit4Java, which shows that version 2.0 (Mockito version) has a better validation
ability (168 out of 302), thereby outperforming both version 1.0 and GWIT. However,
the tool can only handle witnesses with concrete counterexamples. There are two main
reasons why Wit4Java shows the result unknown: JBMC [3, 8] produces an empty wit-
ness, or the witness does not contain a counterexample for a non-deterministic value.
Besides, the validation for strings is not supported yet, which occurs in almost half of
witnesses because JBMC does not yet output counterexample values for strings. Thus
we were not able to test it. Generally, there are not enough witnesses of high quality for
testing the witness validator yet because JBMC sometimes correctly terminates without
producing a witness in SV-COMP. The witness support in the Java verifiers requires
further development work so that they are able to produce complete violation witnesses
whenever they terminate with verdict false.

4 Tool Setup and Configuration

The competition submission is based on Wit4Java version 1.0 (naive version).1 For
the competition [9], Wit4Java is called by executing the script wit4java.py. It reads

1https://github.com/Anthonysdu/wit4java

https://github.com/Anthonysdu/wit4java

4 Tong Wu et al.

Fig. 2. Validation results based on 302 witnesses. The x-axis represents the names of the two tools
and the y-axis represents the number of witnesses. A green “false” indicates a confirmed correct
result.

.java source files and corresponding witnesses in the given benchmark directories.
The answer would be false if the assertion failure was found. As an example, we can
validate the witness by executing the following command:

./wit4java.py -witness <path-to-sv-witnesses>/witness.graphml <path-to-
sv-benchmarks>/java/jbmc-regression/return2

where witness.graphml indicates the witness to be validated, and return2 indi-
cates the benchmark name. The Benchexec tool info module is called wit4java.py and
the benchmark definition file wit4java-validate-violation-witnesses.xml. NetworkX
should be installed separately in the SV-COMP machines. If a validation task does not
find a property violation, it will return unknown.

5 Software Project and Contributors

Tong Wu maintains Wit4Java. It is publicly available under a BSD-style license. The
source code is available at https://github.com/Anthonysdu/wit4java, and instructions for
running the tool are given in the README file.

Acknowledgment

The work in this paper is partially funded by the EPSRC grants EP/T026995/1,
EP/V000497/1, EU H2020 ELEGANT 957286, and Soteria project awarded by the UK
Research and Innovation for the Digital Security by Design (DSbD) Programme.

References

[1] Beyer et al. “Tests from Witnesses - Execution-Based Validation of Verifica-
tion Results”. In: Tests and Proofs - 12th International Conference, TAP@STAF.
Vol. 10889. Lecture Notes in Computer Science. 2018, pp. 3–23. DOI: 10.1007/
978-3-319-92994-1_1.

https://github.com/Anthonysdu/wit4java
https://doi.org/10.1007/978-3-319-92994-1_1
https://doi.org/10.1007/978-3-319-92994-1_1

Wit4Java: A Violation-Witness Validator for Java Verifiers (Competition Contribution) 5

[2] Beyer et al. “Witness validation and stepwise testification across software veri-
fiers”. In: ESEC/FSE. 2015, pp. 721–733. DOI: 10.1145/2786805.2786867.

[3] Cordeiro et al. “JBMC: A Bounded Model Checking Tool for Verifying Java
Bytecode”. In: CAV. Vol. 10981. LNCS. 2018, pp. 183–190. DOI: 10.1007/978-
3-319-96145-3_10. URL: https://doi.org/10.1007/978-3-319-96145-3%5C_10.

[4] Gadelha et al. “ESBMC v6.0: Verifying C Programs Using k-Induction and In-
variant Inference - (Competition Contribution)”. In: TACAS: vol. 11429. LNCS.
2019, pp. 209–213. DOI: 10.1007/978-3-030-17502-3_15.

[5] Rocha et al. “Understanding Programming Bugs in ANSI-C Software Using
Bounded Model Checking Counter-Examples”. In: IFM. Vol. 7321. LNCS. 2012,
pp. 128–142. DOI: 10.1007/978-3-642-30729-4_10. URL: https://doi.org/10.
1007/978-3-642-30729-4%5C_10.

[6] Dirk Beyer and Martin Spiessl. “MetaVal: Witness Validation via Verification”.
In: CAV Part II. Vol. 12225. LNCS. 2020, pp. 165–177. DOI: 10.1007/978-3-
030-53291-8_10.

[7] Lucas C. Cordeiro, Daniel Kroening, and Peter Schrammel. “Benchmarking of
Java Verification Tools at the Software Verification Competition (SV-COMP)”.
In: ACM SIGSOFT Softw. Eng. Notes 43.4 (2018), p. 56. DOI: 10.1145/3282517.
3282529.

[8] Lucas C. Cordeiro, Daniel Kroening, and Peter Schrammel. “JBMC: Bounded
Model Checking for Java Bytecode - (Competition Contribution)”. In: TACAS.
Vol. 11429. LNCS. 2019, pp. 219–223. DOI: 10.1007/978-3-030-17502-3_17.
URL: https://doi.org/10.1007/978-3-030-17502-3%5C_17.

[9] D. Beyer. “Progress on Software Verification: SV-COMP 2022”. In: Proc.
TACAS. Springer, 2022.

[10] Falk Howar and Malte Mues. “GWIT (Competition Contribution)”. In: Proc.
TACAS (2). Springer, 2022.

[11] Falk Howar and Malte Mues. Tudo-Aqua/gwit. URL: https://github.com/tudo-
aqua/gwit.

[12] Jan Svejda, Philipp Berger, and Joost-Pieter Katoen. “Interpretation-Based Vio-
lation Witness Validation for C: NITWIT”. In: TACAS. Vol. 12078. LNCS. 2020,
pp. 40–57. DOI: 10.1007/978-3-030-45190-5_3.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which per-
mits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chap-
ter’s Creative Commons license, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder.

https://doi.org/10.1145/2786805.2786867
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-96145-3_10
https://doi.org/10.1007/978-3-319-96145-3%5C_10
https://doi.org/10.1007/978-3-030-17502-3_15
https://doi.org/10.1007/978-3-642-30729-4_10
https://doi.org/10.1007/978-3-642-30729-4%5C_10
https://doi.org/10.1007/978-3-642-30729-4%5C_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1007/978-3-030-53291-8_10
https://doi.org/10.1145/3282517.3282529
https://doi.org/10.1145/3282517.3282529
https://doi.org/10.1007/978-3-030-17502-3_17
https://doi.org/10.1007/978-3-030-17502-3%5C_17
https://github.com/tudo-aqua/gwit
https://github.com/tudo-aqua/gwit
https://doi.org/10.1007/978-3-030-45190-5_3
http://creativecommons.org/licenses/by/4.0/

	Wit4Java: A Violation-Witness Validator for Java Verifiers (Competition Contribution)

