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Abstract. Map2Check is a software verification tool that combines fuzzing, sym-
bolic execution, and inductive invariants. It automatically checks safety proper-
ties in C programs by adopting source code instrumentation to monitor data (e.g.,
memory pointers) from the program’s executions using LLVM compiler infras-
tructure. For SV-COMP 2020, we extended Map2Check to exploit an iterative
deepening approach using LibFuzzer and Klee to check for safety properties. We
also use Crab-LLVM to infer program invariants based on reachability analysis.
Experimental results show that Map2Check can handle a wide variety of safety
properties in several intricate verification tasks from SV-COMP 2020.

1 Overview

Fuzzing involves providing random data as input to a program and then checks for
crashes. By contrast, path-based symbolic execution is an entirely static method that
symbolically explores the program state-space [1]. Due to a focus on single runs, fuzzing
techniques scale up relatively well. Path-based symbolic execution gives more confi-
dence in the verification results, but it suffers from the path-explosion problem, thus
limiting scalability. Here we exploit an iterative approach using fuzzing and symbolic
execution to implement a tool named Map2Check v7.3.1 . Our main original contribu-
tions include: (i) use LibFuzzer [7] to provide random data as input to C programs to
quickly expose ‘““shallow” bugs, i.e., those that do not require complex data input; (ii)
implement a new runtime library and instrumentation approach to monitor for crashes,
failing built-in assertions and pointer safety; (iii) adopt Crab-LLVM [11] to infer invari-
ants; (iv) exploit a sequential approach with LibFuzzer and KLEE [3] to check safety
properties in a novel way; and (v) adopt MetaSMT as a wrapper around various SMT
solvers, e.g., Boolector [2] and Yices [4], previously not supported by our tool. The SV-
COMP’20 results show that Map2Check can be useful in both falsifying and proving
reachability error and pointer safety-related properties.
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2 Verification Approach

Map2Check uses compiler techniques to analyze C programs using LLVM compiler in-
frastructure, thereby tracking pointer addresses and variable assignments in the LLVM
bitcode [8]. In order to hold all values used in the analysis, a container API is employed
in Map2Check. The tool also generates built-in assertions and checks them adopting an
approach with fuzzing (to falsify properties) and symbolic execution (to prove the cor-
rectness). Fig. 1 illustrates the Map2Check flow, which has the following main steps:
(i) convert the C code into the LLVM IR using Clang [5]; (ii) simplify the code via
constant propagation and dead code elimination after the code instrumentation; (iii) to
apply further Clang optimizations (e.g., canonicalize natural loops and promote mem-
ory to register); (iii) add Map2Check library functions to check the analyzed LLVM
bitcode; (iv) generate inputs for Map2Check instrumented functions by executing Lib-
Fuzzer and then KLEE with Crab-LLVM; and (v) generate the witness file by identify-
ing each basic block executed in the control-flow graph of the LLVM IR.
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Fig. 1. Map2Check Verification Flow.

In order to explore the program states and to generate inputs for the Map2Check in-
strumented functions, the LibFuzzer implementation works by creating a custom entry
point, which contains an array of bytes (of uint8_t). Thus, our implementation con-
sists of generating concrete values from non-deterministic inputs that are our fuzzy tar-
gets. Additionally, we run multiple libFuzzer processes in parallel, where N fuzzing jobs
should run to completion, i.e., until a bug is found or time/iteration limits are reached.
Our fuzzing is coverage-guided (e.g., clang coverage), which tries to maximize the code
coverage of a program. In our case, we adopted an inline-8bit-counters option
from LLVM (SanitizerCoverage) for code coverage instrumentation built-in, where the
compiler will insert inline counter that should be incremented on every edge.

The KLEE implementation works by creating a variable for the used data type,
makes it symbolic, and then returns its value. As a result, KLEE produces concrete in-
puts for different program executions. We extend our KLEE implementation by adopt-
ing MetaSMT [6], which is an Embedded Domain Specific Language for SMT solvers.
The API provided by MetaSMT is translated at compile-time, through template meta-
programming, into the native APIs provided by the SMT solvers [9]. Therefore, the
overhead introduced by MetaSMT is small.
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In order to improve the KLEE core solver execution, the KLEE tool is ran adopt-
ing: counterexample caching solver, which can be used to avoid calling the underlying
solver in certain situations; and MetaSMT, which is employed to construct expressions
that will be cached for each constraint to facilitate expression reuse. Note that symbolic
execution often requires concrete solutions for satisfiable queries, e.g., before calling an
external function, all symbolic bytes need to be replaced by concrete values, simplify
constraints, and reuse query results [9]. Therefore, the KLEE cache solver is an impor-
tant optimization, mainly of the counterexample cache that is based on the observation
that many constraint sets are in a subset/superset relation.

To check the unreachability of an error location, we reduced the number of states
in the analyzed program to be explored, thereby supplying invariants to the back-end
solvers. We adopted Crab-LLLVM [11] to infer inductive invariants as constraints to the
error location. Therefore, the invariants are automatically introduced into the program
as assumptions (before verification), and then KLEE receives the code as input. Crab-
LLVM is a static analyzer that employs an abstract interpretation engine over LLVM
bitcode based on the Crab library, which uses abstract domains such as intervals, oc-
tagon, and polyhedra. Crab is built on the top of IKOS' (Inference Kernel for Open
Static Analyzers) to support a collection of abstract domains and fixpoint iterators.

3 Software Architecture

Map2Check v7.3.1 is implemented as a source-to-source transformation tool in C/C++
using LLVM (v6.0). Map2Check uses Clang (v6.0) as a front-end to parse a C program
and to generate the respective LLVM bitcode to be used in the code transformation
to track pointers and variable assignments. It uses LibFuzzer [7] (v6.0) and KLEE [3]
(v2.0, as a symbolic execution) to automatically produce inputs to execute different pro-
gram paths. MetaSMT (v4.rc2) is the API of reasoning engines. For SV-COMP’20, we
adopt Yices (v2.5.1) that is used by KLEE to check constraints over bit-vectors and ar-
rays, which substantially improved our results. Crab-LLVM [11] is used on reachability
mode to infer inductive invariants for LLVM bitcode.

4 Strengths and Weaknesses of the Approach

Map2Check analyzed intricate verification tasks. The tool achieved the 2nd place in the
ReachSafety-Arrays subcategory; in the ReachSafety-BitVectors category, Map2Check
achieved a score of 46, thereby presenting better results than Pinaka, UKojak, VeriFuzz,
and DIVINE. In other subcategories, our tool generated correct-unconfirmed and incor-
rect true results. These results are, in part, explained due to the Map2Check bugs in
the witness generation and limitation to handle Crab-LLVM invariants from the over-
approximations. We are investigating how to extend our tool by combining the data
from fuzzing with KLEE as program assumptions using template invariant.

In the MemSafety category, Map2Check achieved a score of —68. However, our
tool achieved essential results in comparison with the state-of-art tools, e.g., in the
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MemSafety-heap subcategory achieved a score of 174, which outperforms UAutomizer,
ESBMC, DIVINE, and CBMC. Most incorrect results are, in part, explained due to bugs
in the pointer tracking from our memory model, which could be improved by a trace
semantics with program optimizations as relations on sets of the trace. Sadly, in the
NoOverflows category, the score was —89. The incorrect results are, in part, explained
due to bugs in the overflow analyzer. One way to improve this result is by combining
the CPU flag postcondition test (LLVM supports several intrinsic functions, e.g., an add
operation returns a structure with the result and overflow flag) with Sanitizers checking.

S Tool Setup and Configuration

In order to run our map2check-wrapper . py script [10],2 one must set the property file
(-p) and the verification task; it provides as result: TRUE + Witness, FALSE + Witness,
or UNKNOWN. For each error-path or correctness witness, a file (called witness.
graphml) with the witness proof is generated in the Map2Check root-path folder. The
dependencies, e.g., Clang and Yices tools, are included in the Map2Check distribution.
The Benchexec tool info module is named map2check . py and Map2Check participates
in SV-COMP’20 (as in the map2check. xml benchmark definition) in the following cat-
egories: ReachSafety-Arrays, ReachSafety-BitVectors, ReachSafety-ControlFlow, Reach
Safety-Heap, ReachSafety-Loops, ReachSafety-Recursive, MemSafety, and NoOver-
flows.

6 Software Project

Map2Check v7.3.1 3 is open source software distributed under the GPL license. We
provide instructions for building Map2Check from the source in the file README
(including the description of all dependencies). Map2Check is a joint project with the
Federal University of Roraima and the Federal University of Amazonas in Brazil.
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