
JBMC: Bounded Model Checking
for Java Bytecode

(Competition Contribution)

Lucas Cordeiro1[0000−0002−6235−4272],
Daniel Kroening2,3[0000−0002−6681−5283], and
Peter Schrammel2,4[0000−0002−5713−1381]

1 University of Manchester, Manchester, United Kingdom
2 Diffblue Ltd, Oxford, United Kingdom

3 University of Oxford, Oxford, United Kingdom
4 University of Sussex, Brighton, United Kingdom

Abstract. JBMC is a bounded model checking tool for verifying Java
bytecode. It is built on top of the CPROVER framework. JBMC processes
Java bytecode together with a model of the standard Java libraries. It
checks a set of desired properties, such as assertions and absence of
uncaught exceptions, under given bounds on loops, recursion and data
structures. Internally, it uses the same bounded model checking engine as
its sibling tool CBMC and discharges the generated verification conditions
with the help of MiniSAT 2.2.1.

1 Overview

JBMC is a bounded model checker based on Boolean Satisfiability (SAT) and
Satisfiability Modulo Theories (SMT), which allows the verification of Java
programs [3]. JBMC inherits memory model, symbolic execution engine and
SAT/SMT backends of its sibling tool CBMC [2]. In particular, JBMC consists
of a frontend for parsing Java bytecode and a Java operational model (JOM),
which is an exact but verification-friendly model of the standard Java libraries.
Thus, JBMC supports Java bytecode and can verify programs that make use of
classes, inheritance, polymorphism, arrays, bit-level operations and floating-point
arithmetic using CBMC’s verification engine.

JBMC can reason about array bound violations, unintended arithmetic over-
flows, and other kinds of functional and runtime errors. However, as with other
bounded model checkers, JBMC is in general incomplete, i.e., can only be used
to find property violations up to a given bound k but not to prove properties,
unless we know an upper bound on the depth of the state space by checking
whether all loops have been fully unrolled; this is accomplished by inserting a
so-called unwinding assertion at the end of each loop and recursion to check for
termination.

JBMC natively supports MiniSAT as its main solver to discharge verification
conditions (VCs) and check for their satisfiability, but can also be used with other



Unwinding 
assertion 
holds 

Property 
violation 

Counterexample 

Verification 
Successful 

Scan 
GOTO 

Converter 
GOTO 
Symex 

SAT 
Solver 

IR Parse 
Tree 

GOTO 
Program 

Logical 
Formula Bytecode 

Parser 
User Java 
bytecode / 

JAR file 

JOM Jar file 

Fig. 1. JBMC Architecture. Grey rectangles represent input and output while white
rectangles represent the JBMC main verification steps.

incremental SAT solvers such as Glucose. For SV-COMP 2019, however, JBMC
does not use incremental bounded model checking to verify Java programs with
(multiple) loops, i.e., it does not check the VCs in iteration k + 1 by building
upon the work done for iteration k [5].

2 Architecture

JBMC’s architecture is illustrated in Figure 1. JBMC accepts Java bytecode class
files or JAR files as input together with the JOM to parse the Java bytecode
and translate it into the CPROVER control-flow graph representation, which
is called a GOTO program; this transformation simplifies the Java bytecode
representation (e.g., replacement of switch and while by if and goto statements)
as well as lowering of exceptional control flow.

The GOTO Symex component performs a symbolic execution of the program,
which thus handles dynamic memory allocation, encoding of virtual method dis-
patch, unrolling of the loops and unfolding of recursive method calls. In particular,
JBMC uses two functions that compute the constraints C (i.e., assumptions and
variable assignments) and properties P (i.e., built-in and user-defined assertions);
it automatically generates safety conditions that check for null dereference, array
bounds errors, type cast errors and other kinds of functional and runtime errors.
Both functions accumulate the control-flow predicates at each program point
and use these predicates to guard both the constraints and the properties, so
that they properly reflect the Java bytecode’s semantics. JBMC’s VC generator
then derives the VCs from these; the resulting bit-vector formula (i.e., C ∧ ¬P )
is then passed on to the configured SAT solver to check for satisfiability. If this
formula is satisfiable, then JBMC produces a counterexample; otherwise, if the
formula is unsatisfiable, then a successful verification result is reported.



3 Features

JBMC uses an abstract representation of the standard Java libraries, called the
Java operational model (JOM), which consists of simplified models of the most
common classes from java.lang and a few from java.util; these models remove
verification-irrelevant performance optimizations (e.g., in the implementation
of container classes), exploit declarative specifications (using assume statement)
and functions that are built into the CPROVER framework (e.g., for array and
string manipulation).

JBMC also implements a solver for strings to determine the satisfiability of a
set of constraints involving strings [4]. Specifically, our string solver implements a
decision procedure for string operations that are typically used by Java programs,
such as concatenation, search, extract and conversions to other data types. This
decision procedure uses incremental SAT solving to lazily instantiate quantifiers.

JBMC also provides API classes that allow users to define non-deterministic
verification harnesses and stub functions as used in the SV-COMP benchmarks.
The API5 contains such methods for primitive data-types (e.g. nondetDouble())
and strings (e.g. nondetString()). The API also provides an assume(condition)
method, which advises JBMC to ignore paths that do not satisfy a user-specified
condition. JBMC is able to check for array bounds, division by zero, unintended
arithmetic overflows, runtime errors in Java (e.g. illegal memory access) and
user-specified assertions.

Current development efforts include improving support for regular expressions,
multi-threaded programs and enabling output of VCs using the SMT-LIB format
to be checked by SMT solvers such as Z3, CVC4, Boolector, MathSAT and Yices.

4 Strengths and Weaknesses

JBMC does not produce any incorrect result for any of the Java verification tasks
available in SV-COMP 2019 [1]; it correctly claims 139 benchmarks correct and
finds existing errors in 192. However, JBMC crashes (and returns unknown) in
37 benchmarks due to time or memory exhaustion, or due to missing models
of the Java standard library. JBMC can handle most Java basic features (e.g.,
inheritance, polymorphism and exceptions) and strings manipulations (but regexes
are not fully supported yet). However, JBMC’s concurrency support is still limited
and there is no support for Java 8 lambdas, reflection and Java Native Interface
(JNI). As its sibling CBMC, JBMC can only prove bounded programs unless an
upper bound is known on the depth of the state space, which is not generally
the case. Lastly, our JOM does not cover the entire Java standard library.

5 https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/
sosy lab/sv benchmarks/Verifier.java

https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/sosy_lab/sv_benchmarks/Verifier.java
https://github.com/diffblue/java-models-library/blob/master/src/main/java/org/sosy_lab/sv_benchmarks/Verifier.java


1 import org.sosy_lab.sv_benchmarks.Verifier;

2 public class Main {

3 public static void main(String [] args) {

4 String arg = Verifier.nondetString ();

5 float floatValue = Float.parseFloat(arg);

6 String tmp = String.valueOf(floatValue );

7 assert tmp.equals("2.50");

8 }

9 }

Fig. 2. Illustrative Java code extracted from SV-COMP 2019 (StringValueOf08).

5 Tool Setup

The competition submission is based on JBMC version 5.10.6 For the competition,
JBMC is called from a wrapper script.7 The wrapper script compiles the .java
source files in the given benchmark directories and then invokes the jbmc binary
repeatedly with increasing values for the unwinding bound until the property has
been refuted (answering false) or the program has been fully unwound without
finding a property violation (answering true). See the wrapper script for the
relevant command line options given to JBMC. As an example, we can run the
JBMC wrapper script to check for a reachability property in the program shown
in Figure 2 by executing the following command:

./jbmc --propertyfile <path-to-sv-benchmarks>/properties/assert.prp
<path-to-sv-benchmarks>/java/jbmc-regression/StringValueOf08

where assert.prp indicates the specification to be verified for StringValueOf08.
Note that this program invokes in line 4 a non-deterministic method (Veri-
fier.nondetString();) to produce an arbitrary string value; this method is provided
by SV-COMP in org.sosy_lab.sv_benchmarks.Verifier. The JOM (core-models.jar)
is also part of the submission archive. If a verification task uses a Java library
method that is not part of the JOM then the wrapper script returns unknown.
The Benchexec tool info module is called jbmc.py and the benchmark definition
file jbmc.xml. The competition submission of JBMC uses MiniSAT 2.2.1 as SAT
backend. JBMC competes in the Java category.

6 Software Project

JBMC is maintained by Peter Schrammel together with numerous contributors8

from the community. It is publicly available under a BSD-style license. The source
code is available at http://www.github.com/diffblue/cbmc in the jbmc directory.
Instructions for building JBMC from source are given in the file COMPILING.md.
6 Executable available at https://gitlab.com/sosy-lab/sv-comp/archives/tags/svcomp19
7 Can be built from https://github.com/diffblue/cprover-sv-comp/tree/svcomp19
8 https://github.com/diffblue/cbmc/graphs/contributors



References

1. Beyer, D.: Automatic Verification of C and Java Programs: SV-COMP 2019. In:
Proc. TACAS, part 3. LNCS 11429, Springer (2019)

2. Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Tools and Algorithms for the Construction and Analysis of Systems, TACAS. LNCS,
vol. 2988, pp. 168–176. Springer (2004)

3. Cordeiro, L.C., Kesseli, P., Kroening, D., Schrammel, P., Trtík, M.: JBMC: A
bounded model checking tool for verifying Java bytecode. In: Computer Aided
Verification, CAV. LNCS, vol. 10981, pp. 183–190. Springer (2018)

4. Li, G., Ghosh, I.: PASS: string solving with parameterized array and interval au-
tomaton. In: HVC. LNCS, vol. 8244, pp. 15–31 (2013)

5. Schrammel, P., Kroening, D., Brain, M., Martins, R., Teige, T., Bienmüller, T.:
Incremental bounded model checking for embedded software. Formal Asp. Comput.
29(5), 911–931 (2017)


	JBMC: Bounded Model Checking for Java Bytecode

