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Abstract. Map2Check is a bug hunting tool that automatically checks safety
properties in C programs. It tracks memory pointers and variable assignments
to check user-specified assertions, overflow, and pointer safety. Here, we extend
Map2Check to: (i) simplify the program using Clang / LLVM; (ii) perform a
path-based symbolic execution using the KLEE tool; and (iii) transform and in-
strument the code using the LLVM dynamic information flow. The SVCOMP’18
results show that Map2Check can be effective in generating and checking test
cases related to memory management of C programs.

1 Overview

Map2Check v7.1 uses source code instrumentation based on dynamic information flow,
to monitor data from different program executions. Map2Check automatically produces
concrete inputs to the program via symbolic execution, in order to execute different
program paths and to detect failures related to arithmetic overflow, invalid deallocation,
invalid pointers, and memory leaks. Map2Check uses Clang [5] as a front-end, which
supports the main C standard, e.g., C99 according to the standard ISO/IEC 9899:1990.
In its previous version [7], Map2Check was able to automatically generate test cases
to check memory management using bounded model checkers (e.g., ESBMC [4]). The
main original contributions of Map2Check v7.1 are: (i) added Clang [5] as a front-end to
improve the symbolic execution of C programs; (ii) adopted the LLVM [6] framework
as a code transformation engine; and (iii) integrated the KLEE [1] tool as a symbolic
execution engine to automatically explore different program paths.

2 Verification Approach

The Map2Check tool is inspired by LEAKPOINT [3] and Symbiotic 4 [2], which use
compiler techniques to analyze C programs using code instrumentation. The main nov-
elty of Map2Check v7.1 is the integration of the LLVM Intermediate Representation
(IR) to analyze and verify C programs. This LLVM IR is based on the static single
assignment representation and provides type safety, low-level operations, and the capa-
bility of representing high-level languages. If we compare Map2Check to other related
tools, e.g., Symbiotic 4, it does not perform static program slicing and does not use the
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symbolic execution of KLEE to directly explore the program state space. Map2Check
applies source code instrumentation to monitor and gather areas of data memory from
different concrete program executions; this code instrumentation focuses on exploring
dynamic information flow to avoid the need for an approximate static analysis. Similarly
to LEAKPOINT, Map2Check taints program data (e.g., variables or memory locations)
with a taint mark metadata and then propagates the taint marks over the concrete pro-
gram executions. Fig. 1 shows an overview of the Map2Check verification flow. The
tool input is a C program and a safety property (e.g., overflow and pointer safety); it re-
turns TRUE (if there is no path that violates the safety property), FALSE (if there exists
a path that violates the safety property), or UNKNOWN otherwise.

Fig. 1. Map2Check Verification Flow.

The Map2Check verification flow has the following main steps: (A) convert the C
code into the LLVM IR using Clang [5]; (B) apply specific code optimizations, e.g.,
dead code elimination and constant propagation; (C) add Map2Check library functions
to track pointers, and add assertions into the LLVM bitcode; (D) connect the code in-
strumented by Map2Check to support the execution of its functions; (E) apply further
Clang optimizations to improve the symbolic execution (e.g., canonicalize natural loops
and promote memory to register); (F) generate concrete inputs for the Map2Check in-
strumented functions by performing symbolic execution of the analyzed code in LLVM
IR using KLEE; and (G) generate witnesses: if a safety property is violated, then a “vi-
olation witness” is produced using the KLEE output to trace the error location; if there
is no path that violates the safety property, then a “correctness witness” is produced,
which identifies each basic block executed in the control flow graph of the LLVM IR
using the concrete inputs produced by KLEE (LLVM syntactically enforces some of
those basic blocks as invariants from its assignments).

Map2Check v7.1 tracks important data of the analyzed C code to identify func-
tions and operations over pointers. Then, it checks the respective assertions via sym-
bolic execution, which produces inputs to concretely execute the program. In particular,
Map2Check tracks the heap memory used by the analyzed code using the following data
log lists: Heap log tracks the allocated memory address (i.e., arguments of functions,
functions, and variables) and its memory size in the heap memory; Malloc log tracks
the addresses that are dynamically allocated/deallocated, their size and pointer actions
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(allocation and deallocation), executed at the current program location; and List log
stores data about operations over pointers, e.g., the code line number for each opera-
tion, program scope, variable name, memory addresses, and addresses pointed to by
program variables.

Map2Check v7.1 implements a function map2check_non_det_xwith x in the sup-
ported C data types (e.g., char, int, and float), which is interpreted by KLEE to model
non-deterministic values. In this respect, Map2Check v7.1 differs from its previous ver-
sion, which implements for non-deterministic values, a function that returns a random
number based on a probabilistic distribution. To check the unreachability of an error
location, Map2Check identifies a given target function (e.g., __VERIFIER_error) and
then replaces that by an error assertion, where the target function is called. To check
overflow, Map2Check adds an assertion before all arithmetic instructions over integers
to analyze the results over the signed operations and the maximum and minimum inte-
ger values. To check pointer safety, Map2Check checks whether a given address to be
deallocated is tracked in the Malloc log list and then identifies whether the dealloca-
tion of memory was already performed for that program location (invalid deallocation);
Map2Check also identifies whether allocated memory was not released at the end of
the program execution (memory leak); Additionally, Map2Check analyzes the memory
addresses in the Malloc log and Heap log lists to identify if those addresses point to
a valid address (invalid pointer). Map2Check does not distinguish between the usual
“valid-memtrack” and “valid-memclean” properties in SV-COMP.

3 Proposed Architecture

Map2Check v7.1 is implemented as a source-to-source transformation tool in C/C++

using LLVM (v3.8.1). It uses Clang (v3.8.1) as a front-end to parse a C program and
to generate the respective LLVM bitcode to be used in the code transformation to track
pointers to areas of memory and variable assignments (Fig. 2). It uses KLEE (v1.2.0)
as a path-based symbolic execution engine; STP1 (v2.1.2) is used as the SMT solver by
KLEE to check constraints over bit-vectors and arrays. The Boost2 C++ library is used
as a helper library, e.g., to generate the witness in the GraphML format. Map2Check
participates in SVCOMP’18 (as in the map2check.xml benchmark definition) in the fol-
lowing categories: ReachSafety-Arrays, ReachSafety-BitVectors, ReachSafety-Heap,
ReachSafety-Loops, ReachSafety-Recursive, MemSafety, and NoOverflows.

3.1 Availability and Installation
Map2Check v7.1 (for 64-bit Linux) is available3 under the GPL license. The Clang,
LLVM, KLEE, and STP tools are included in the Map2Check distribution. Map2Check
is invoked via a command-line (as in the map2check.py module for BenchExec) as:
./map2check-wrapper.py -p propertyFile.prp file.i
Map2Check accepts the property file and the verification task and provides as result:
TRUE + Witness, FALSE + Witness, or UNKNOWN. For each error-path or correctness
witness, a file (called witness.graphml) with the witness proof is generated in the
Map2Check root-path folder.

1 http://stp.github.io
2 http://www.boost.org
3 https://github.com/hbgit/Map2Check/archive/map2check_v7.1_svcomp18d.zip
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Fig. 2. Map2Check Architecture Flow.

4 Strengths and Weaknesses of the Approach

Map2Check exploits dynamic information flow by tainting program data. It uses Clang
/ LLVM as an industrial-strength compiler to simplify and instrument the code; and also
employs KLEE to produce concrete inputs for different program executions. The inte-
gration between LLVM and KLEE opens up several possibilities to implement new test-
ing and verification techniques in Map2Check. Particularly, we intend to improve our
symbolic execution by synthesizing inductive invariants to prove properties of loops and
recursive programs and also to prune the search-space, given that Map2Check bounds
the loops and recursion up to a given depth k. The SVCOMP’18 results show that
Map2Check can be effective in generating and checking test cases of memory man-
agement for C programs. Map2Check achieved a score of 228 in the MemSafety cat-
egory with no single incorrect result; in particular, Map2Check produced the highest
score (i.e., 106) in the MemSafety-Arrays subcategory. In the NoOverflows category,
Map2Check achieved a score of −263; some incorrect results are due to our imprecise
overflow check. In the ReachSafety category, we noted that Map2Check claims 312 cor-
rect results; however, it reported 16 incorrect true and 1 incorrect false. Some of these
incorrect results are related to Map2Check limitation to handle loops and recursion.
Acknowledgments. We thank C. Cadar, D. Poetzl, and the anonymous reviewers for their com-
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