
DepthK: A k-Induction Verifier Based on Invariant
Inference for C Programs

(Competition Contribution)

Williame Rocha1, Herbert Rocha2, Hussama Ismail1,
Lucas Cordeiro1,3, and Bernd Fischer4

1Electronic and Information Research Center, Federal University of Amazonas, Brazil
2Department of Computer Science, Federal University of Roraima, Brazil

3Department of Computer Science, University of Oxford, UK
4Division of Computer Science, University of Stellenbosch, South Africa

Abstract. DepthK is a software verification tool that employs a proof by in-
duction algorithm that combines k-induction with invariant inference. In order
to efficiently and effectively verify and falsify safety properties in C programs,
DepthK infers program invariants using polyhedral constraints. Experimental re-
sults show that our approach can handle a wide variety of safety properties in
several intricate verification tasks.

1 Overview

DepthK is a software verification tool that employs bounded model checking (BMC)
and k-induction based on program invariants, which are automatically generated us-
ing polyhedral constraints. DepthK uses ESBMC, a context-bounded symbolic model
checker that verifies single- and multi-threaded C programs [1, 2], as its main verifica-
tion engine. More specifically, it uses ESBMC either to find property violations up to
a given bound k or to prove correctness by using the k-induction schema [3–5]. How-
ever, in contrast to the “plain” ESBMC, DepthK first infers program invariants using
polyhedral constraints. It can use the PAGAI [8] (employed in the SVCOMP’17) and
PIPS tools [9, 10] to infer these invariants. DepthK also integrates the witness check-
ers CPAchecker [6] (employed in the SVCOMP’17) and Ultimate Automizer [7] for
checking verification results.

DepthK pre-processes the C program to classify (bounded and unbounded) loops
by tracking variables in the loop header. Based on that categorization, DepthK verifies
the C program using either plain BMC or k-induction, together with invariant inference
and witness checking. The k-induction uses an iterative deepening approach and checks,
for each step k up to a maximum value, three different cases, called base case, forward
condition, and inductive step, respectively. Intuitively, in the base case, DepthK searches
for a counterexample of the safety property φ with up to k iterations of the loop. The
forward condition checks whether loops have been fully unrolled and whether φ holds
in all states reachable within k iterations. The inductive step verifies that if φ is valid
for k iterations, then φ will also be valid for the next iteration. In order to improve the
effectiveness of the k-induction algorithm, DepthK tries to infer invariants that prune
the state space and strengthen the induction hypothesis.

2 Williame Rocha, Herbert Rocha, Hussama Ismail, Lucas Cordeiro, Bernd Fischer

2 Verification Approach

DepthK extends ESBMC to falsify or prove correctness of a given (safety) property for
any depth without manual annotation of loops with invariants. In our preliminary ex-
periments, the integration of the inferred program invariants, in the form of polyhedral
constraints, with the k-induction algorithm allows DepthK to solve more verification
tasks than plain ESBMC.

Figure 1 shows an overview of the DepthK tool, with the k-induction algorithm,
invariant generation, and witness validation components. The tool’s inputs are a C pro-
gram P (without invariants) and a safety property φ. It returns TRUE (if there is no path
that violates the safety property), FALSE (if there exists a path that violates the safety
property), or UNKNOWN otherwise.

int x = 0 ;
int t = 0 ;
int phase = 0 ;
while (t < 100) {

(phase == 0)if

x = x + 2;
if(phase == 1)

x = x - 1;
phase = 1 - phase;
++t;

}
assert(t <= 100);

PAGAI PIPS

ESBMC

Invariant

Translation

Instrumentation with:
__ESBMC_ASSUME()invariant

Witness Validator

CPAChecker3*phase-2*x+t==0 && 49+2*phase-x>=0
&& -2*phase+x>=0 && 1-phase>=0
&& phase>=0

TRUE
r1

FALSE
r1

UNKNOWN

Parser

TRUE
r1

Verification Result

FALSE ==
r1 r2

FALSETRUE TRUE
r1 r2

==

UNKNOWN

Verifier

Invariant

Generator

Automatizer

Pycparser

Fig. 1. Flow of the proposed method.

DepthK infers program invariants using the PAGAI and PIPS tools, which are both
inter-procedural source-to-source transformation tools for C programs and rely on a
polyhedral abstraction of the program behavior. PAGAI applies source code analysis to
infer invariants for each control-flow point of a C program using the LLVM infrastruc-
ture (see http://llvm.org), focusing on path distinction inside the control-flow graph,
while avoiding a systematic exponential path enumeration [8]. PIPS performs a two-
step analysis [9]. (1) Each program instruction is associated to an affine transformer,
representing its underlying transfer function. This is a bottom-up procedure, starting
from elementary instructions, then working on compound statements and up to func-
tion definitions. (2) Polyhedral invariants are propagated along with instructions, using
the previously computed transformers.

In DepthK, PAGAI and PIPS receive as input the program to be analyzed and gen-
erate as output C code that contains invariants written as comments around instructions.
These invariants are then translated into assume statements, to constrain all possible
values of those variables related to the invariants. DepthK needs to perform this step
since PAGAI and PIPS generate invariants represented as mathematical expressions,
which are not accepted by the syntax of C programs.

DepthK also checks the results provided by the ESBMC k-induction algorithm. In
particular, DepthK checks the results related to the forward condition and inductive step
using the witness validators. This re-checking procedure is needed due to the inclusion
of invariants, which over-approximates the analyzed program; otherwise, the invariants
could result in incorrect exploration of the states sets.

DepthK: A k-Induction Verifier Based on Invariant Inference for C Programs 3

Additionally, DepthK also checks the result provided by the base case of the ES-
BMC k-induction algorithm, using CPAchecker (as default) or Ultimate Automizer as
witness checkers via a graphml file. DepthK executes this step due to limitations in the
memory model adopted by ESBMC [11]. We observed that the use of witness check-
ers has significantly improved DepthK’s results, given that we are able to decrease the
number of wrong proofs and false alarms by an order of magnitude.

3 Architecture, Implementation and Availability

Architecture. DepthK is implemented as a source-to-source transformation tool in
Python (v2.7.1). It uses pycparser (v2.10) to parse a C program into an AST, and
then identifies and tracks variables for invariant translation and loop classification.
Ctags (v5.8, http://sourceforge.net/projects/ctags) identifies C language objects found
in C source and header files. Clang (v3.5.0, http://clang.llvm.org) compiles a C file
into LLVM bitcode that PAGAI takes as input. PAGAI (employed for SVCOMP’17,
http://pagai.forge.imag.fr) generates the program invariants. It uses Uncrustify (v0.60,
http://uncrustify.sourceforge.net) as a source code beautifier. ESBMC (v3.1) is em-
ployed as k-induction verifier, and CPAchecker (v1.3.10) as witness validator. In the
current submission, DepthK uses Z3 (v4.0, https://z3.codeplex.com) as SMT solver in
ESBMC’s k-induction schema. DepthK participates in all categories of SVCOMP’17.

Availability and Installation. DepthK is freely available under the GPL license. The
competition candidate DepthK v3 (for a 64-bit Linux environment) can be downloaded
from https://github.com/hbgit/depthk/archive/depthk v3.tar.gz. It must be installed as a
Python script; it also requires the installation of pycparser, Uncrustify, Ctags, Clang, and
open-jdk-7-jre (http://openjdk.java.net/install/). The verifiers ESBMC and CPAchecker,
and the invariant generator PAGAI are included with the DepthK distribution.

User Interface. DepthK is invoked via a command-line (as in the depthk.py module
for BenchExec) as follows: ./depthk-wrapper.sh -c propertyFile.prp file.i
DepthK accepts the property file and the verification task and provides as result: TRUE
+ Witness, FALSE + Witness, or UNKNOWN. For each error-path or correctness wit-
ness, a file that contains the witness proof is generated in the DepthK root-path graphml
folder; this file contains the same verification task name with the extension graphml.

4 Strengths and Weaknesses of the Approach

The strength of the tool lies in the combination of the proof by induction algorithm
with the program invariants inference to specify pre- and post-conditions, and witness
validation to check the verification results of the k-induction algorithm. DepthK uses
CPAchecker as a witness validator to confirm the verification results, which leads to
improvements in DepthK to avoid false alarms and wrong proof. However, DepthK is
in the initial development and there are still limitations on the structure of the programs
and the inference of strong program invariants to prove properties. In particular, in the
preliminary experiments with SV-COMP benchmarks, we observed that PAGAI/PIPS
tool could not generate strong invariants for the k-induction algorithm, either due to a

4 Williame Rocha, Herbert Rocha, Hussama Ismail, Lucas Cordeiro, Bernd Fischer

weak transformer or due to invariants that are not convex. All incorrect answers pro-
duced by our tool in the competition are due to bugs in its implementation.
Results. DepthK has proven to be a noticeable improvement over “plain” ESBMC.
In particular, it outperforms all ESBMC versions in the sub-categories ReachSafety-
BitVectors, ReachSafety-Heap, ReachSafety-Loops, and MemSafety-Arrays. It also out-
performs CPA-kInd, which implements a similar approach to DepthK, in the sub-cat-
egories ReachSafety-Heap, ReachSafety-Recursive, Overflows-BitVectors, as well as in
the category FalsificationOverall. In total, DepthK produced 1091 confirmed correct
true results and 1056 confirmed correct false results, with a further 467 unconfirmed
results. It also produced 20 incorrect true results and 32 incorrect false results, mostly
due to limitations in ESBMC’s memory model.

5 Software Project and Contributors

DepthK is an open-source project, mainly developed by members of the software verifi-
cation group from Federal University of Roraima and Federal University of Amazonas.
The script, source code, and self-contained binaries for 64-bit Linux environments are
available at https://github.com/hbgit/depthk/; versions for other operating sys-
tems are available on request. The current development of DepthK is funded by the
Amazonas State Research Funding Agency (FAPEAM).

References

1. Cordeiro, L., Fischer, B.: Verifying Multi-threaded Software Using SMT-based Context-
bounded Model Checking. ICSE, pp. 331–340, 2011.

2. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for Em-
bedded ANSI-C Software. ASE, pp. 137–148, 2009.

3. Morse, J., Cordeiro, L.C., Nicole, D., Fischer, B.: Handling Unbounded Loops with ESBMC
1.20 - (Competition Contribution). TACAS, LNCS 7795, pp. 619–622, 2013.

4. Gadelha, M.Y.R., Ismail, H.I., Cordeiro, L.C.: Handling Loops in Bounded Model Checking
of C Programs via k-Induction. STTT, to appear.

5. Rocha, H., Ismail, H., Cordeiro, L.C., Barreto, R.S.: Model Checking Embedded C Software
Using k-Induction and Invariants. SBESC, pp. 90–95, 2015.

6. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification.
CAV, LNCS 6806, pp. 184–190, 2011.

7. Heizmann, M., Dietsch, D., Greitschus, M., Leike, J., Musa, B., Schätzle, C., Podelski, A.:
Ultimate Automizer with Two-track Proofs - (Competition Contribution). TACAS, LNCS
9636, pp. 950–953, 2016.

8. Henry, J., Monniaux, D., Moy, M.: Pagai: A path sensitive static analyser. Electron. Notes
Theor. Comput. Sci., pp. 15–25, 2012.

9. Pips: Automatic parallelizer and code transformation framework. Available at
http://pips4u.org, 2013.

10. Maisonneuve, V., Hermant, O., Irigoin, F.: Computing Invariants with Transformers: Exper-
imental Scalability and Accuracy. NSAD, pp. 17–31, 2014.

11. Morse, J., Ramalho, M., Cordeiro, L.C., Nicole, D., Fischer, B.: ESBMC 1.22 - (Competition
Contribution). TACAS, LNCS 8413, pp. 405–407, 2014.

