Hunting Memory Bugs in C Programs with Map2Check

(Competition Contribution)

Herbert O. Rocha, Raimundo S. Barreto, and Lucas C. Cordeiro

Federal University of Roraima and
Federal University of Amazonas, Brazil
map2check.tool@gmail.com

Abstract. Map2Check is a tool for automatically generating and checking unit
tests for C programs. The generation of unit tests is based on assertions extracted
from (memory) safety properties, which are generated by the ESBMC tool. In
particular, Map2Check checks for SV-COMP invalid-free, invalid-dereference,
and memory-leak properties in C programs.

1 Overview

Map2Check automatically generates and checks unit tests for C programs [1]. The unit
test generation is based on assertions, which are extracted from the memory safety prop-
erties generated by ESBMC tool [2]. In particular, Map2Check checks for SV-COMP
properties “invalid-free”, “invalid-dereference”, and “memory-leak”. Map2Check adopts
source code instrumentation to create test cases from those properties, and monitors data
from program’s executions, in order to detect failures originating from the execution of
those (generated) test cases. Map2Check supports full C99, according to the standard
ISO/IEC 9899:1990, and checks programs that make use of arrays, pointers, structs,
unions, and dynamic memory allocation. ESBMC is adopted as a verification condition
(VC) generator, which translates a program fragment and its correctness property into
a logical formula that is automatically translated into a unit test. Map2Check does not
require the user to annotate C programs with pre/post-conditions to generate that VCs.

2 Verification Approach

Map2Check executes seven steps to generate and check test cases related to mem-
ory safety in C programs as shown in Figure 1. In step 1, Map2Check uses ESBMC
to identify memory safety properties via the option --show-claims, which shows
all safety properties that ESBMC automatically generates from the original C pro-
gram. In ESBMC, a claim represents a safety property; examples of claims include
invalid-free, invalid-dereference, and memory-leaks; a particular claim can be violated
by Map2Check if there is an execution that leads to the assertion failure.

In step 2, Map2Check analyzes the results produced in step 1 to collect several
important pieces of information needed in the following steps, e.g., identification of
the claim, comments about the claim, line number of the code where the claim oc-
curred, and the property identified by that claim. For example, the particular claim

2 Herbert O. Rocha, Raimundo S. Barreto, and Lucas C. Cordeiro

#include "map2check.h" Memory Tracking

5 .int *A = malloc(10); | Address | Points to ‘Dynamicl

6. list LOG = mark map(list_LOG, &, A, 1, 0, 1) ;—»|0x7ff32a334e8| 0x7b9010 | 1 |

C Program 7. int *B = malloc(10);
8. list LOG = mark map(list LOG, &B, B, 1, 0, 1) ;—»[0x7ff32a334e0] 0x7b9080 | 1 |
5. int *A = malloc(10);| [9. B = A;
6. int *B = malloc(10)/| |10. list LOG = mark map(list LOG, &B, B, 1, 0, 1);|»[0x7ffi32a334e0] 0x7b9010 | 1 |
7. B =A; B
8. free(a); 13. free(d); [ox7fi32a334e8] 0x7bo010 [1]
9. free(B);
e 14. _MAP_assex::t(! (IS_DYNAMIC(list_LOG, &B, B)) || Asserts Failed
U ey (ies jHos, B, B))E —*|Property Violation: FALSE(valid-free)
15. _ MAP assert (INVALID_FREE (list LOG), B);
A

16 . free(B); ! [ox7ft32a334e0] 0x7b2010 [0 |
E

ESBMC \
Verification Conditions (IS_DYNAMIC_OBJECT(B)) || VALID_OBJECT(B)|

Fig. 1. Example of the Map2Check steps.

I(IS_DYNAMIC_OBIJECT(B)) || VALID _OBJECT(B) states a potential invalid dy-
namic object of “B”, where an object can be represented by a pointer to a scalar vari-
able or to a (more complex) data structure [2]. In particular, [S_ DYNAMIC OBJECT
function checks whether the argument to any dereferencing operation is a dynamic ob-
ject; and VALID OBIJECT(B) checks if the argument for any free or dereferencing
operation is still a valid object. In Map2Check, we adopt regular expressions to find all
claims information related to invalid-free, invalid-dereference, and memory-leak.

In step 3, Map2Check translates the claims provided by ESBMC into assertions
written in C code, which are supported by a C library of Map2Check; this strategy is
similar to that performed by Delahaye ef al. [3], whose pre/post-conditions based on
formal program specification are translated into C code via assertions.

In step 4, Map2Check performs a memory tracking, which consists of two phases:

1. Track program variable operations and assignments in the analyzed source code.
Map2Check performs this tracking by means of the abstract syntax tree (AST),
which is generated from the analyzed C program;

2. Instrument the source code with functions that monitor the memory addresses and
the addresses pointed by these variables (identified in step 1) according to the pro-
gram execution. The assertions generated in step 3 are checked over the data, which
are generated by the functions that monitor the memory addresses.

In step 5, test cases are inserted into the program by adding assertions (generated
from step 3) into the new copy of the source code (of the analyzed program), with
their respective properties related to memory safety. In step 6, Map2Check applies a
template over the analyzed program to allow the validation of the test cases and to
insert directives of the Map2Check library into the new copy of the analyzed program.
Map2Check also provides a template for the CUnit framework [5].

Finally, in step 7, Map2Check executes that new copy of the analyzed C program,
together with the functions to monitor the memory addresses (added from step 4) and
the test cases, in order to check each assertion. Instead of calling a theorem-prover,
Map2Check executes the code to check whether the assertions fail. Map2Check pro-
vides a program execution trace log in case of the assertion violation (i.e., if the test
case fails), with data such as: the line number, memory addresses, pointer actions (e.g.,
allocation and deadlocation) already executed at the current point of the program.

3 Strengths and Weaknesses of the Approach

Map2Check participates in the Heap Data Structures category only. The strength of the
tool lies in the precision of its answers based on the concrete execution of the ana-
lyzed program over the VCs generated by ESBMC, i.e., ESBMC is adopted only as a
VC generator and it is not used to formally verify the properties. In preliminary experi-
ments, Map2Check outperforms ESBMC due to timeouts or memory model limitations.
Map2Check is in the initial development and there are still restrictions on the structure
of the programs (e.g., the C alloca function is not supported) that can be analyzed by
our memory tracking. Most incorrect answers produced by our tool are due to bugs in
the implementation. Additionally, our strategy based on random data to unwind loops
and their respective loop exit condition do not allow the correct execution of the pro-
gram. In particular, we implement a specific function to simulate the non-deterministic
values, which are generated from the function call nondet int().

4 Architecture, Implementation and Availability

Architecture. Map2Check is implemented as a source-to-source transformation tool
in Python (V2.7). It uses the pycparser ! to parse a C program into an AST, and then
identifies variables for tracking memory. The pyparsing 2 is used to create a parse of the
ESBMC claims. It adopts uncrustify as a source code beautifier. Map2Check also uses
networkx * to generate the witness format® in GraphML format, and GCC compiler.
Availability and Installation. Map2Check source code version 6 for 64-bit Linux envi-
ronment for the competition is available to freely download at https://github.com/hbgit/
Map2Check under GPL license. It must be installed as a Python script and it also re-
quires installation of pycparser, pyparsing, networkx, uncrustify, and GCC.

User Interface. Map2Check is invoked via a command-line interface to SV-COMP
as follows: ./map2check-wrapper.sh -c propertyFile.prp file.i. Map2Check
accepts the property file and the verification task and provides as verification result:
FALSE + Witness or UNKNOWN. For each error-path, a file that contains the violation
path is generated in Map2Check root-path graphml folder; this file has the same name
of the verification task with the extension graphml.

References

1. Rocha, H., Barreto, R., Cordeiro, L.: Memory Management Test-Case Generation of C Pro-
grams Using Bounded Model Checking. In: SEFM, LNCS 9276, pp. 251-267, 2015.

2. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for Em-
bedded ANSI-C Software. In: TSE, pp. 957-974, 2012.

3. Delahaye, M., Kosmatov, N., Signoles, J.: Common Specification Language for Static and
Dynamic Analysis of C Programs. In: SAC, pp. 1230-1235, 2013.

4. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact verification
conditions. In: POPL, pp. 193-205, 2001.

5. Rocha, H., Cordeiro, L., Barreto, R., Netto, J.: Exploiting Safety Properties in Bounded Model
Checking for Test Cases Generation of C Programs. In: SAST, pp. 121-130, 2010.

! https://github.com/eliben/pycparser

2 https://pyparsing.wikispaces.com

3 http://uncrustify.sourceforge.net

4 https://networkx.github.io

3 http://www.sosy-lab.org/~dbeyer/cpa-witnesses

