

Applying Scrum and Organizational Patterns to Multi-site

Software Development1

Lucas Cordeiro
2
, Cassiano Becker

3
, Raimundo Barreto

2

2Departamento de Ciência da Computação - Universidade Federal do Amazonas (UFAM), Brazil

3
BenQ Eletroeletrônica S.A, Manaus, Brazil

lcc@dcc.ufam.edu.br, cassiano.becker@benq.com, rbarreto@dcc.ufam.edu.br

1
 Copyright © 2007, Lucas Cordeiro, Cassiano Becker and Raimundo Barreto. Permission is granted to

copy for the SugarLoafPLoP 2007 conference. All other rights reserved.

Abstract. This paper describes a pattern language for managing multi-site

software projects which aims at minimizing the main problems present on the

multi-site software development context. The practices and patterns of the

proposed language were first identified from the literature and adapted

according to the authors’ experience after running some multi-site software

projects. This exercise has led to the identification of two new patterns:

“Stories Rework Subsystem”, and “Plan Bugs On a Sustainable Pace", as

well as to an alternative application of the existing “Inversion of Control”

pattern to the organizational context.

Keywords: Multi-site Software Development, Scrum Agile Methodology, Lean

Software Development, Organizational Patterns, Project Management.

1. Introduction

Large software projects are usually split into components and developed by different

teams, in some cases developed at different places. Software development projects, both

large and small, have been consistently difficult to control and manage. Recent studies

show that an average project take twice as long to do as its initial plans [Schwaber and

Beedle 2002]. Communication overhead and effort to create and update documentation

could be pointed as major sources of inefficiency behind project failures.

Communication overhead is often introduced by a mismatch in the functionalities

required by a given component and the way their development is assigned to separate

development teams. In this case, a high rate of communication among teams is

introduced, as components developed by one team depend on the services provided by

components developed by teams located at different places.

 Another problem in large software projects is the increased need for

communicating requirements with a higher degree of formality. Requirements are

essentially written to describe product characteristics that are proposed in response to a

set of business needs. However, customers/users are often not completely sure of what

they want, and their mind is likely to change during the time the product is being

developed. Moreover, external forces such as competitor’s products/services may also

lead to changes or enhancements in requirements. Still, many details of what must be

produced may be found out only during product development. Therefore, the fact that

several development teams may be involved in a project with evolving user

requirements calls for practices to efficiently manage the project (team size and

location) and embrace changes (scope flexibility), even late in the development process.

 Based on this context, we describe in this paper a pattern language composed of

Scrum [Schwaber and Beedle 2002], Lean Software Development [Poppendieck and

Poppendieck 2003] and Organizational patterns [Coplien and Harrison 2004] applied to

the domain of multi-site software development. In our definition, multi-site software

development can be described essentially by characteristics as follows: (i) the project is

split into components and assigned to different development teams, (ii) teams are

physically separated and may be part of different business organizations, (iii) there is a

limited number of teams, such that a two-level hierarchy of coordination is sufficient

(between two and five in our experience) (iv) teams are able to physically meet at non-

prohibitive cost, if required.

 The remainder of this paper is organized as follows: Section 2 provides an

overview of the Scrum agile methodology and Organizational patterns. Section 3

introduces the structure of a pattern language in which the proposed patterns are

included, and shows how these patterns relate to each other. Section 4 describes the

proposed patterns and finally, section 5 summarizes this paper and provides goals of

further research.

2. A Brief Look at the Agile Method and Patterns

This section looks briefly at the Scrum method and at the Organizational patterns that

were used as basis for the pattern language four our multi-site software environment.

2.1. Scrum

Scrum is a simple and straightforward approach to manage the software development

process based on the assumption that environmental (i.e. people) and technical (i.e.

technologies) variables are likely to change during the process [Schwaber and Beedle

2002]. In order to manage these variables, Scrum employs the empirical process control

model which strongly uses a feedback mechanism to monitor and adapt to the

unexpected. Scrum is composed of 14 practices and some of its main practices include:

Sprint practice which is the iteration work organized in 30-calendar-day. The Sprint

Planning practice that consists of two meetings as follows: In the first meeting, the

product backlog which contains a list of features, use cases, enhancements, and defects

of the system is refined and re-prioritized by the product owner, stakeholders and goals

for the next iteration are chosen. In the second meeting, the Scrum team figures out how

to achieve the requests and creates the sprint backlog that contains detailed tasks to be

accomplished in the current iteration. In the Sprint Review practice, the Scrum team

presents the results obtained at the end of each iteration by showing working software to

the product owner, customers and other stakeholders. In the Daily Scrum practice, daily

meetings are held at the same place and time with special questions to be answered by

the Scrum team.

 The Scrum process consists of three roles and the responsibility of each role is

described as follows: Scrum master is the person responsible for ensuring that Scrum

values, practices and rules are followed by the Scrum team. He/she is also responsible

for mediating between management and Scrum team, as well as listening to progress

and removes block points. Product owner is the person who is officially responsible for

the project. This person creates and prioritizes the product backlog and ensures that it is

visible to everyone. He/she is also responsible for choosing the goals for the next sprint

and reviewing the system with other stakeholders at the end of every iteration.

 Scrum team is responsible for working on the sprint backlog. The amount of

work that will be addressed in the sprint is solely up to the team. They must assess what

can be accomplished in the sprint during the sprint planning meeting. Therefore, the

team has the authority to make most decisions, and ask for any block points to be

removed.

2.2. Organizational Patterns

The organizational patterns described by [Coplien and Harrison 2004] can be combined

with Scrum agile methods with the purpose of structuring the software development

process of organizations. These patterns are split into four different pattern languages as

follows: The project management pattern language provides a set of patterns that

help the organization manage product development, clarify the product requirements,

coordinate project's activities, generate system builds, and keep the team focus on the

project's primary goals.

 The piecemeal growth pattern language provides a set of patterns that help the

organization define the overall management structure and amount of team members per

project, ensure and maintain customer satisfaction, communicate system requirements,

and ensure a common vision for all the people involved in the product development

team. The organizational style pattern language provides a set of patterns that help

the organization eliminate project's overhead and latency, ensure that the organization

structure is compatible with the product architecture, organize work for developing

products with geographically distributed teams, ensure that market needs will be met.

 The people and code pattern language provides a set of patterns that help the

organization define and keep the architecture style of the product, ensure that the

architect is materially involved in implementation, and assign feature development to

people in nontrivial projects. The software configuration management pattern

language is not part of the organizational patterns, but was integrated into the proposed

pattern language. These patterns were defined by [Berczuk 2002] and they offer patterns

that help the development team define mechanisms for managing different versions of

the work products, develop code in parallel, and identify what versions of code make up

a particular component.

3. The Proposed Pattern Language

As previously said, the proposed pattern language is composed by patterns identified

from languages with complementary concerns: the Scrum Methodology, Organizational

Patterns, and Software Configuration Management pattern language. Besides these, the

authors also identified from their experience the adoption of practices that pointed to

two additional patterns. The resulting pattern language diagram is depicted in Figure 1.

From the resulting set of twenty-one patterns, only a subset was elected for a full

description. These obeyed the following criteria:

• A pattern of fundamental importance to description of development process from the

multi-site and agile aspect (“Surrogate Customer”, “Code Line”, and “Integration

Build”).

• A pattern that had not yet been applied to this context before (c.f. “Inversion of

Control”).

• A proposed new pattern identified by the authors (“Stories Rework Subsystem” and

“Plan Bugs on a Sustainable Pace”).

 Although a greater number of patterns from the mentioned sources could be

indeed mapped to the practices in our cases, we restricted the language to the ones

which were more illustrative of the agile and multi-site aspects. It should be noted that

these patterns are not intended to be exclusive to the multi-site development context,

and will occur in many software development efforts.

 The six patterns that will be described are depicted in gray in the pattern

language diagram (see Figure 1). In the figure, the relationship PatternA→PatternB can

be read as “PatternA can exist once PatternB is in place”, that is, PatternA will find a

proper context for its application once PatternB has been applied. As an example, the

“Sprint Planning” pattern, (when the team sits to plan how to fulfill the goals selected

for the next iteration), can be applied and really makes more sense once “Scenarios

Define Problem” is in place (when the problem or product being targeted has been

decomposed in prioritized stories to be worked). In other words, the resulting context

once PatternA is applied can be understood as the initial context for PatternB as the

arrows are followed. In addition, the connections simply suggest the probability of

patterns occurring together.

 Traversing the pattern language diagram vertically also provides a hint on the

patterns positioning in the flow of development activities. On the top position, the first

pattern is the “Work Queue”, which describes the initial set of problems and

requirements intended to be addressed by the iterative and incremental development

effort. Following the arrows downward will present patterns moving into the solution

domain, such as structures for the temporal organization in sprints, multi-site team

distribution and the adoption of selected configuration management practices. The

traversal concludes at the bottom with the “Integration Build” pattern, which will

eventually materialize the results of all processes, practices and tools from each different

development cycle into a concrete and valid functionality increment. The patterns are

described in the next sections, following the sequence that they appear in the diagram.

Figure 1. Proposed Pattern Language Structure. Patterns marked with [a]
belong to Organization Patterns, [b] to Scrum and [c] to Software Configuration
Management Patterns.

4. Patterns for Multi-site Software Development

This section is concerned with describing the patterns presented in section 3 in the

following way: the context in which the pattern is applied, the problem that the pattern

will solve, the forces that limit the pattern application, the solution of the problem, the

related patterns, known uses and finally the resulting context that shows what happens if

the solution is applied. The stars after the pattern name indicate the confidence level for

the pattern in the multi-site environment. Moreover, we also indicate the pattern origin

as follows: “O.P.” (Organizational Patterns), “C.M.” (Configuration Management

Patterns), and “Authors” (the patterns proposed by the authors).

4.1. [**] Surrogate Customer [O.P.]

Alias: Surrogate Product Owner, Feature Leader

Context:

In a project adopting the Scrum methodology, the Product Owner is a central figure. He

is the ultimate reference for product content, and his inputs are a major influence on the

work performed at each sprint. For larger projects, however, when developed in a multi-

site configuration, a single central Product Owner is not likely to be able to respond

to all the demand generated by the distributed development teams to a satisfactory

level of detail.

Problem:

Agile projects rely on close interaction with the customer. Feedback is required at least

at each Sprint review and Release planning, but is encouraged to occur throughout the

sprint course. With the communication boundaries introduced in multi-site projects,

how to maximize information flow and feedback from customers to developers?

Forces:

• The development teams cannot take advantage of constant multi-mode

communication channels due to their physical separation.

• Practical solutions usually involve round-trips from requirements to implementation

in order to meet time and knowledge constraints.

• Domain knowledge cannot be expected to be fully available in the development

team.

• Depending on the project nature (a new solution), a customer might not even exist

yet.

• The product owner or customer might not have the necessary available time or

detailed knowledge to interact with the development team.

Solution:

Software system functionalities should be split and grouped into features. A “Feature

Leader” role is then defined, and will represent the product owner to all teams involved

in the implementation of his/her feature set. The set of Feature Leaders can take

advantage of closer interaction with the “master” product owner and at the same time

will support the remote development teams in specification and decision making in the

sprint planning and throughout its development. The Feature Leader role will influence

the development by:

• Defining stories and use case models: Stories and their prioritization are the

customer’s main contribution to the project in an agile environment. In a multi-site

organization, the feature leader will provide more specialized support, in the

subsystem or feature level than the product owner.

• Splitting stories: some stories, after their initial estimation, are found to exceed the

capacity left for the iteration at hand. The Feature Leader will be able to help

establish case by case criteria for decomposing the story (see description in Scenarios

Refactor Subsystem).

• Establishing and deciding against trade-offs: when considering different design and

implementation for fulfilling a given story, a set of solutions will present different

balances on product quality. Although trade-offs might have been laid out clearly at

the product-wide level, there might be specific local decisions to consider separately.

• Help establish a domain language: which represents the problem, concepts and

solution at hand and which is understandable for both the developer and customer,

enabling true two-way communication.

• Providing story acceptance criteria: Defining tests based on real examples for happy-

path flows. Additionally, running and looking at partial software releases will usually

provide valuable feedback.

 Figure 2 describes how a solution for multi-site Scrum teams was proposed in

projects the authors participated. In such a set-up, selected team members in the central

Product Team were all co-located, and while engaging in ordinary team member

activities at that level, acted as Product Owners for the separated subsystem teams.

Figure 2. Surrogate Product Owner in a Multi-site Scrum setup

Scrum
Master

Team
Member

Product
Owner

Scrum
Master

Team
 Member

acts as

Surrogate

 Product
Owner

Subsystem
Team

Product
Team

communication

Related Patterns:

The “Product Owner” role, summarized before in this article, and the “Engage

Customer” pattern are more general patterns which first described the need for closer

interaction and feedback from the customer throughout the entire duration of the

development cycle in agile environments.

Resulting Context:

Increased Feature Leader participation raises product perceived integrity, as the stories

implemented benefit from a synthesis of the interaction and feedback between the

feature leader and the developer.

Developers gain the possibility to discuss and clarify actual design and implementation

alternatives in light of product-wide trade-offs. The creation of a common domain

language representation is facilitated and is likely to emerge more naturally as a result of

the discussions between the Feature Leader and the developer.

However, care must be taken not to over-interact with the development team and cause

undesired congestion effects. These would result from an overflow or new requests or

changes due to reconsideration, if within a given sprint. In that case, the “Firewall”

pattern should be considered.

4.2. [**] Stories Rework Subsystems [Authors]

Context:

In multi-site project, different teams at separated locations will usually define and be

assigned different subsystems (see patterns “Conway’s Law” and “Organization Follows

Location”). For a new story to be fulfilled, usually changes and additional functionalities

must be implemented in more than one subsystem (see pattern:” Subsystem by Skill”).

Furthermore, when an agile process is applied, stories or feature increments must be

integrated and tested in the period of one time limited iteration. In the above

configuration, a tension will generally appear between the goals posed by a system-

wide increment and the goals that each subsystem team is likely to identify as most

important when looking only to their restricted scope.

Problem:

How to coordinate goals and tasks as viewed from the subsystem team standpoint so

that the system evolves as a whole and is integrated to fulfill product-wide stories within

a given iteration?

Forces:

• An integrated version of working software is expected to be available at the end of

each time-limited iteration. Within the course of the iteration, the teams have to make

a decision on where to invest their effort at each moment, if on the evolution of the

system, on or its stabilization for the integration.

• In a structure defined with “Subsystem per Skills”, a separated team will tend to

optimize the responsibilities assigned to their components. This will often conflict

with the goals of the whole system for that iteration, which depends on the

integration of the functionalities of each subsystem for a given story.

• The problem of suboptimization [Principia] is present: “When you try to optimize the

global outcome for a system consisting of distinct subsystems (…), you might try to

do this by optimizing the result for each of the subsystems separately. This is called

“suboptimization”. The principle of suboptimization states that suboptimization in

general does not lead to global optimization.”

• The more separated or independent the teams working in the system for a given

iteration are, more pronounced these forces will be.

Solution:

Introduce the notion to both subsystem and central teams that a level of rework should

be expected on their subsystems because of the division of the project in sprints. A

(perhaps too) simple analogy to this principle is the practice of fencing around a new

construction building. The fence will be torn down before the building gets inaugurated,

but it is the fencing that allows the construction work to proceed in a controlled way,

better integrating the construction to the surrounding environment while work proceeds.

Therefore, rework in this case should be understood as activities or code that is

produced during the sprint, but which will not be present in the final releases of the

product.

 From the standpoint of subsystem teams, these activities will usually come in the

form of local deviations from what the responsibilities of that subsystem would ideally

imply if that subsystem would be the only one being developed. In practice, these local

concessions are ultimately caused by the need to converge to integrated stories at the

end of each iteration. Examples of activities that could be understood as dimensions of

rework are next described:

• Splitting Stories: depending on the story estimates and on the load of each subsystem

team in the iteration, a given story can be split to still fit the current iteration. It could

be that the amount of work necessary for the split stories is greater than the work for

the original [Cohn 2005] provides valuable advice for establishing splitting criteria.

• Splitting Across Data Boundaries: for example, selecting a subset of fields supported

for a given form.

• Splitting On Operational Boundaries: for example, selecting a smaller number of

operations (CRUD – create, update, delete) or more simple conditions.

• Postponing Cross-Cutting Concerns: for example, leaving out logging, error

handling, or security treatment for the iteration being planned.

• Not meeting performance requirements: postponing non-functional requirement

aspects.

 Because each of these items will probably have to be revisited when the

remaining scope is reconsidered, and because there is at least a small volume of code

adaptation exclusive to the splitting, these practices might be interpreted as a source of

rework. On the other hand, for many larger stories, splitting will be indeed the most

efficient way to keep complexity and risk under control.

 Coding stubs and mock objects in order to compensate for the absence of

subsystem functionality might also be interpreted as unnecessary work for the goals of a

given subsystem. Mock objects or stub interface implementations might be interpreted

as “inventory” effort, as they will not eventually make it as functionality for that given

subsystem. However, when seen from the whole, having such mock objects timely

available to other subsystems might be essential for allowing the rest of the system to

grow optimally.

 Therefore, in order to enable incremental integration to happen in a multi-

site project environment, the notion that subsystems should expect a level of rework

between iterations should be introduced. Project management instruments and

measurement tools should be adapted to accommodate for those aspects, for example,

acknowledging each local concession causing local under-optimization to the affected

team, and focusing measurement on overall progress and performance, rather than local.

[Poppendieck 2003] provides good analysis and recommendation on contractual issues

that arise in an agile environment.

Related Patterns:

• The “Work Split”, “Named Stable Bases” and “Incremental Integration” patterns and

the “Thin Slice Story Writing” approach, all describe situations and techniques

applicable for incremental and iterative methods that focus on optimizing

development output in an environment with complexity and uncertainty

• “Architect Controls Product” has been proposed as a promoter of consensus and

conceptual integrity. It acts as a central role that looks at how the subsystems and

teams involved in the current iteration can integrate for best fulfilling the goals

selected. This integrating role takes the lead for facilitating each subsystem team to

see, within their own subsystem, what compromises they can identify so that the

stories as a whole are optimized, even if this means subsystem increments depart

from ideal. “Surrogate Product Owner” might also fulfill this need, if discussions

focus on the splitting of stories between iterations.

• The “Subsystem by Skill” pattern describes a common organizational pattern where

“Stories Rework Subsystem” is likely to appear.

Resulting Context:

In a multi-site configuration, having this notion included in the planning and design of

solutions at each iteration is a condition for achieving patterns “Named stable bases”

and “Incremental integration”. Blind denial or avoidance the notion of rework might

lead to poor strategies for identifying goals that are manageable within an iteration, and

can the prevent system from growing efficiently while maintaining close integration

points.

 The rework resulting from the compromises taken in each subsystem in a given

iteration will have to be considered and re-estimated on the following iterations,

reinforcing the need for adaptive planning. Within the limits of a single subsystem and a

given iteration, such activities are not generally considered as rework, and are instead

understood as regular refactoring.

 Also important to take into account, the implications for the measures of

performance and quality should be focused first on the feature as a whole, and only

secondarily on the performance of each subsystem. Otherwise, subsystem teams will

perceive a stronger incentive to optimize their characteristics, which will lead to sub-

optimization.

 Typical roles that should benefit from the awareness of this pattern are the ones

involved in the planning of features at the beginning of each sprint (mostly Scrum

Master, Architect and representatives of each distributed team in the planning session).

By acknowledging that some level of sub-optimization (in this context that means

rework between iterations) is natural and might even be required for the optimization of

the system as a whole, conflicting situations might have their causes recognized and

discussed more productively.

 The more predictable the project is (especially in technology and requirements),

the less intermediate integration points will it need, and more work will be able to be

performed by teams in parallel, leading to ideally minimum rework. However, for less

predicable projects, where a more iterative and adaptive approach is more appropriate,

allowing and accounting for rework activities as described in this pattern is likely to lead

to increased overall efficiency and lowered risk.

Known uses:

• The lean principle “See the Whole” from [Poppendieck 2003] emphasizes the

importance of carefully choosing system-wide variables to measure and optimize,

while stating that this will often be accompanied by a relaxation on performance at

the local (subsystem) level.

• [Lehman 2000] in his multi-year studies on software evolution proposes eight laws

for software evolution planning and management. His “Second Law: Growing

Complexity” states that “As an E-type system is evolved, its complexity increases

unless work is done to maintain or reduce it” and introduces the notions of

Progressive and Anti-regressive work. The rational behind the need for anti-

regressive work is closely related to the context and solution here presented.

• The practices of refactoring, as well as the use of stubs and mock objects, are well

established in agile software development. They share the notion of work that is

revisited or discarded as iterations evolve.

4.3. [*] Inversion of Control [Authors]

Aliases: Don’t Call Us We Call You

Context:

In a multi-site organization, communicating and assuring understanding of desired

product characteristics to development teams is further complicated by the added

communication boundaries. The Product Owner is the ultimate responsible for deciding

and prioritizing the stories which make up the solution to the problem. However,

depending on the size of the project, a number of details that will eventually affect the

perceived integrity of the product are likely to pop up during development, and cannot

be expected to be foreseen or discussed with a central product owner timely enough.

If “Surrogate Customer” is applied, as described in this article, the overall team structure

is scaled-up and a communication channel for product characteristics can be established

between the central product team (see Figure 2) and the subsystem teams.

If a degree of detailed specifications are expected for each selected feature during

each sprint, this can easily become a bottleneck in the timeframe of a given iteration.

The separation of teams occurring in a multi-site environment makes this problem even

more important.

Problem:

How to communicate desired product or feature functionality to distributed teams in an

agile context, where the selection of stories to be worked is decided at each iteration?

Forces:

• Users and customers are not able to completely state exactly what they want.

• Even if the software developers know all the requirements, many of the details they

need to develop the software become clear only as they develop the system.

• Even if all the details could be known up front, it is difficult for a developer to absorb

in productive way that many details.

• Even if we could understand all the details, product and project changes occur.

 While the software development literature has produced extensive

recommendations on the characteristics of well written requirements (concrete, testable,

realizable), achieving this in practice is usually easier said than done. Customer state

that describing requirements takes too much of their time, and developers often find that

they lack in detail or are ambiguous.

Solution:

The pattern “Inversion of Control” has been proposed by [Fowler 2004] as an object

oriented design pattern for web application frameworks, in order to eliminate unwanted

dependencies in the wiring between framework and application components. In our

multi-site and organizational context, the “Inversion of Control” analogy is suggested to

describe the way requirements activities can be alternatively handled between the

product definition team (Product Owners and it surrogates) and the distributed

subsystem development teams.

 The solution consists of having the implementing team responsible to

continuously refine and revise requirements and solution specification in the format and

level of detail of their preference (story writing, acceptance tests, schema matrices,

verbal and prose descriptions, diagrams). Documentation should only be produced to the

level of detail and formality which helps in the communication of the problem and its

proposed solution. More recently, developers and analysts have found a reason to move

further into each other’s territory in order to cause their language to overlap on top of

common domain knowledge representation.

 Also, another contribution from agile methods is to promote acceptance tests as

the preferred format for requirements. Acceptance test are usually easier to write than

requirements because they are based on concrete cases and are written by example,

which also helps eliminate ambiguity. If tests are written in such a way that they allow

for automatic execution, they will also provide for instant feedback and progress

measurement.

 In the “Inversion of Control” pattern, a typical flow of information between the

customer and the development team could be described as follows:

1) The Product Owner and its surrogates are initially involved in laying out the initial

story description, establishing the prioritization of the quality dimensions, providing

examples of happy path tests, and occasionally pointing to existing external standards

where applicable.

2) Based on the initial conversation and a subset of the information above, the

development team can analyze the problem and write an initial proposal for the solution.

In the process of analyzing and proposing a solution, the development team will be in a

better position to provide estimates and propose simplifying or splitting criteria in case

the estimates values or uncertainty level is too high. If a UI interface prototype has not

been given, a sketch can be proposed.

3) The first requirements-analysis-design-validation micro-cycle can be closed a few

days after the start of each iteration, when both the developers and product owner

surrogates meet to review and discuss with the help of the support material produced.

4) During the course of the sprint, details, alternative flows and corner cases will be

identified. The development team is encouraged to constantly feedback its findings and

doubts to be revised by the product owners. Each doubt or limitation raised during the

sprint refinement can be either accepted as part of the solution space provided or can be

fed back to the product backlog in order to be addressed in a further sprint.

Related Patterns:

• “Surrogate Customer”, in this article, established the organizational roles on top of

which this solution can be applied.

• “Community of Trust” is a pre-condition for the shift in the division of labor in the

requirements elicitation and solution creation between product owners and

developers to be effective.

Resulting Context:

When “Inversion of Control” is applied to multi-site requirements communication:

• The proposed solution will naturally include the judgment and limitations seen by the

implementing team for that iteration (could be reworked on a further it).

• Documentation effort will be prioritized only to the efficient and necessary level of

detail and formality which is relevant for the development in the iteration.

• The process of refining the requirements will allow for better estimates and will

increase the engagement from the implementing team.

• Early analysis will cause the development team to raise and communicate their

external dependencies to other subsystems.

Risks and downsides:

Over reliance on the inversion proposed in this pattern has its danger. The Product

Owner role has the ultimate knowledge and responsibility over the problem domain.

That is, at least the problem description, major constraints and trade-off dimensions

have to be clearly set out by the customer team at the beginning of each iteration,

otherwise the expected bootstrapping for the solution might be at risk. As potential risks

to the application of this pattern, the following items could be pointed:

1) Having the implementing team to deal with documentation requires analysis

capability, which cannot be taken for granted in all teams. In larger projects, however,

we felt that a higher number of individuals was willing to step in explore these skills.

This was sometimes even felt as a factor of motivation for those individuals inclined.

2) The idea of writing documentation is likely to cause discomfort in an agile

environment, and to accommodate for that, the notion of flexibility in both the format

and level of detail in the artifacts was introduced. Content produced focused on detailing

practical limits, exceptional cases, points of variance and screen refinements; all points

that developers felt was key to their technical decisions.

3) The boundary between eliciting requirements and solution providing has to be

agreed between product owners (and it surrogates) with developers so that decision

making is balanced to the level of detail each side has condition to provide. To the

extent of our experience, this balance point varies with team composition, the degree of

novelty (uncertainty) of the requirement being worked, and the level of trust between

teams. Therefore, for this shifting in balance to be effective, it is necessary that

“Community of Trust” [Organizational Patterns] be assured, which is a risk to be

analyzed and mitigated in a multi-site (or multi-company) environment.

4.4. [***] Codeline [C.M.]

Context:

Large software systems are usually split into components or subsystems and developed

by development teams that may be located at different places. Each development team is

responsible for a couple of components or subsystems. They have their own software

processes and tools to deal with software configuration management [Louzado and

Cordeiro 2005]. Each development team has to implement system tasks (e.g., implement

or enhance a requirement and fix a bug) and should not disrupt the activities of other

development teams.

Problem:

Components or subsystems making up the system have dependencies, i.e., component B

needs the services provided by component A. Changes in the interface or semantics of a

component may affect other components of the system. As the components are

developed by different development teams, how to keep them synchronized?

Forces:

• Development teams involved in the system development process have different

software processes and tools to deal with software configuration management.

• The partition of the system functionalities into components is likely to cause

dependencies among components.

• The allocation of these components among different development teams is likely to

require a high rate of communication among development teams.

• The work of different development teams must be integrated at least once a week in

order to provide feedback on the system functionalities to the customer/user.

Solution:

Components that have dependencies should be allocated to the same development team

or at least be allocated to the development teams that are at the same place and/or time

zone. Different codelines should be created, one for each development team in order to

isolate changes and do not disrupt the work of other development teams. Another

development line, called here mainline, should also be created to allow the development

teams to integrate their components and generate new system builds. Interface or

semantics changes in components must be communicated in advance through the

weekly meetings. If describing information is required, then the development team

should create an artifact that helps other development teams adapt to the change.

Related Patterns:

• The “Mainline” pattern [Berczuk and Appleton 2002] is applied when there are many

people to develop a product and merging must be kept as low as possible. Therefore,

it describes a mechanism to keep the number of active development line to a

manageable set.

• The “Active Development Line” [Berczuk and Appleton 2002] pattern is applied to

developers that want to integrate and test their changes very often during the

development process. Therefore, it describes a mechanism to create an active

development line by keeping a rapidly evolving development line stable enough to

developers.

Known Uses:

• The mainline pattern used by [Louzado and Cordeiro 2005] in a multi-site software

development project creates different codelines (one for each partner) and assigns a

codeline policy. Moreover, there is a mainline that allows the build manager to

integrate the components and generate new system builds.

• An agile codeline management proposed by [Berczuk 2003] creates codeline

structures that isolate the components that need to be kept stable from those that are

in active development. He also associates policies (how the codeline should be used)

for each codeline that is created during the project lifetime.

• The codeline practice proposed by [Wingerd and Seiwald 1998] instantiates this

pattern by assigning to each codeline an owner and a policy. They also create a

mainline which provides an ultimate destination for changes (e.g., bug fixing, new

features) and represents the linear evolution of the software product.

Resulting Context:

Components are grouped into subsystems. Each subsystem is allocated to a development

team. Still, there may remain dependencies among subsystems as a higher layer requires

services provided by lower layers. Therefore, after creating the codelines, each

development team is able to work on its own development line without disrupting the

work of other development teams. The weekly meetings make it possible to synchronize

the teams and improve communication. Weekly meetings enables planning which

system functionalities, enhancements and bug fixing will be part of the next delivery.

On a weekly basis, each development team delivers code to a build manager who is

responsible for generating new versions of the system. Each team delivery comes with

release notes that states what artifacts have been developed.

4.5. [***] Integration Build [C.M.]

Context:

The software is split into components and developed by teams, at different rates. Each

development team is composed by several developers that are responsible for a set of

systems requirements. Each developer works on its own private workspace and is

isolated from the work of other developers [Louzado and Cordeiro 2005]. On the other

hand, working software is expected to be delivered on a frequent basis to

customers/users. Therefore, a means for integrating code frequently is needed with the

purpose of reducing integration problems and providing early feedback to customers.

Problem:

There are several developers working on the production of the software. One developer

may depend on the work of another developer. If both developers take long without

integrating their code (components) into the product codeline, the number of integration

problems might increase substantially. These occur because the system code evolves

during the time between the task creation and completion. In this scenario, several tasks

are integrated into the main trunk and the code in which the team members started

working is different from the code currently available in the main trunk. How to

coordinate the contribution from subsystem teams so that changes in one subsystem are

integrated in a controlled way, while keeping development pace?

 Forces:

• Software integration should occur very often in order to reduce integration problems

and provide frequent feedback to customers/users.

• If developers integrate code and generate product builds very often then there is the

possibility to spend more time integrating than developing code.

• The most important software functionalities must be implemented and integrated as

earlier as possible during the development process in order to provide feedback to

customers/users.

• Software development takes months to be accomplished and if it is integrated very

often, stable versions of the system should be uniquely identified.

Solution:

Each development team should have a unique window to deliver and integrate the code

into the product codeline. For a large system, both daily builds may take place on the

codeline of each development team, as well as should one product build per week. For

each weekly delivery carried out by the development teams, they should assign a tag in

their codeline and provide the release notes. In addition, they should solve the

integration problems that may take place during the integration process.

 When different teams share a product codeline, “Integration Build” provides

most benefits when performed in a strict sequential mode. That is, only one subsystem

team integrates its changes into the main codeline at a time, even if their components

logically/physically separated from the remaining subsystems. Only after code

increments introduced by one subsystem team are integrated into the product codeline

should the next subsystem team by allowed to integrate its contribution. Integration in

this sense is typically composed by: (i) check-out (update) of latest version from product

codeline (ii) merging it with local changes in the workspace (iii) building and sanity-

testing of merged version in the workspace (iv) check-in of integrated version on the

product codeline. For the last activity, each development team can appoint an integrator

to be responsible for integrating the team’s code into the project’s mainline (see

Codeline pattern). Figure 3 describes a typical workflow with sequential integration.

Figure 3. Sequential Integration

 Moreover, specific dates/times can be assigned to each development team in

order for the integration process to take place. Therefore, this sequential integration

always allows a latest version of the system to be regularly identified. It is important to

emphasize that the sequential integration does not imply that the development team

cannot integrate the latest version of the code in its own codeline.

Related Patterns:

• The “Integration Build” pattern [Berczuk and Appleton 2002] is applied when it is

necessary to make sure that components work together in an iterative and incremental

approach. Therefore, it allows developers to frequently integrate their code by doing

an integration build periodically.

• The “Named Stable Bases” pattern is needed when developers want to integrate

software frequently with the purpose of keeping stability and progress. Therefore, it

locked

Task
creation

Product codeline

Susbsytem3
codeline

SS3 code evolves

locked locked

SS1
updates

SS1
checks in

(i) SS3
updates

(iv) SS3
checks in

SS2
updates

SS2
checks in

(ii)
merge

integration
is blocked

(iii)
tests

integration token

describes a mechanism to give the stable system a name by which developers can

work against.

• The “Build Prototypes” pattern is applied when requirements and design decision

must be verified in order to reduce the risk of wasted cost and missed expectations.

Therefore, it provides mechanisms to build prototype whose purpose is to help

validate requirements and assess risks.

Known Uses:

• The integration build described by [Louzado and Cordeiro 2005] instantiates this

pattern by adopting an “integration by stage” approach which provides a progressive

integration of the product.

• The incremental integration proposed by [Berczuk 1996] provides a mechanism to

allow developers to build the software periodically. This periodic build is also

checked for interface compatibility and testing. Therefore, it encourages developers

to build from the latest software release and provide time to fix incompatibilities.

• The continuous integration described by [Beck 1999] instantiate this pattern to

allow developers to integrate and release code into the repository every few hours.

One developer integrates at any time and it takes place only when all unit tests have

passed or a smaller piece of the functionality is implemented.

Resulting Context:

If this sequential integration process is adopted in the project, i.e. if one development

team has a specific date/time on the week to integrate the code that do not happen at the

same date/time of another development team then integration problems may

substantially be reduced. Another important benefit is that as the software is built on a

weekly basis then it can provide great feedback to customer/users that need working

software to clarify system requirements. The software that is produced on a weekly basis

receives a unique identification that helps developers identify stable versions of the

system. In addition, it allows customers/users to validate only stable versions of the

system.

4.6. [***] Plan Bugs on a Sustainable Pace [Authors]

Context:

During the sprint planning, each team member decides which system’s functionalities

he/she will implement for the next sprint. The system’s functionalities are decomposed

into activities and are estimated by the team members. At the end of the sprint, the

system’s functionalities (product backlog items) that were committed to that sprint

should be fulfilled by team members in order to be demonstrated to high-level

management and customers. The builds generated during the sprint are tested during the

same period in order to ensure the product’s quality. Therefore, a number of bugs are

likely to be found by the test team for the system’s functionalities that were

implemented in previous or in the current sprint.

Problem:

The test team is constantly testing and identifying bugs, which are added to an existing

unsolved bugs list found in previous iterations. Depending on the bugs’ criticality, the

team members are expected to solve them as soon as possible in order to ensure the

product quality. But as team members are committed to the activities of the current

sprint, how will they manage to fix these bugs and at the same time ensure that the

committed activities will be fulfilled at the end of the sprint?

Forces:

• The global software builds are generated and tested on a weekly basis. The bugs are

created and assigned directly to the responsible person through a collaborative

development environment tool (CDE).

• The team member responsible for the functionality in which the bug was found

should not be interrupted so often because he/she has to complete the activities that

were committed to the current sprint.

• The bug that was found at a given functionality might be so important to the

customer that it acquires a higher priority than the other activities which are currently

running. Therefore, this bug should be fixed as soon as possible by the responsible

team member.

• The bug that was found at a given functionality might also impact other important

functionalities or might affect the whole system. Therefore, this bug should acquire a

higher priority than the other activities which are currently running.

• The development team implements new features in the current sprint and at the same

time, it must keep the bug rate as low as possible.

Solution:

Introduce a bug planning process in order to control and manage the product’s bugs and

avoid project’s interruptions. In this process, the test team provides the most critical

bugs for each system’s component. After that, each feature leader (see Surrogate

Customer pattern) reviews the critical bugs, selects them based on the criticality, and

informs the project leader. Then the project leader communicates the bugs to be fixed to

the development teams. Each development team evaluates the list of bugs and informs

to the project leader if the bugs will be fixed in the current sprint. This process is

cyclical and its frequency can be higher than the sprint time, as effort for fixing a bug is

typically lower than the effort for implementing a new feature. For sprints of one month,

the recommended frequency is once a week. Also, as the software builds are generated

and tested on a weekly basis (following “Integration Build”), it makes sense for the bug

planning process to take place on a weekly basis (sustainable pace). When planning, the

bugs, priorities, status, and deadlines should be defined by the project leader or by the

person responsible for the feature in which that bug belongs.

 The priority may be classified as critical, high, medium, and low. The priority

level of the bug is according to the feature’s importance and the amount of test cases

that are blocked because of this bug. In addition, the status of the bug may be classified

as new, started, reopened, resolved, and closed. After planning the bugs, the leader of

each development team involved in the project should analyze if the bugs that are

planned can be fulfilled given the workload of its team members. If the bugs can be

fixed without compromising the goals committed to the current sprint then the leader

sends an e-mail informing that all the bugs are accepted. Otherwise, he/she commits

only the bugs that his/her team will be able to fix and deliver, taking into account

supporting information as priority, effort and risk. It is of utmost importance that

planning and bug-fixing be kept to a sustainable pace during project’s sprint. Frequent

overtime is usually considered a symptom of serious problems in a team. Therefore, if

bugs are planned frequently and according to the team’ workload, overtime is

substantially reduced. As a result, the correct application of this pattern may contribute

to higher code quality as well as happier, more creative, and healthier team.

 It is important to emphasize that in case the bug is committed during the bug

planning but not delivered on the specified deadline, then the leader of the team should

explain the reason why the bug was not fixed and delivered. This situation should not be

common, but can take place if the subsystem team does not investigate enough in detail

or if it is not able to easily reproduce the bug before it commits to it.

Related Patterns:

• The “Don’t Interrupt an Interrupt” pattern can be used when someone is already

working in “interrupt mode” on a critical issue of the project. Therefore, this pattern

advises that the person who is working on this issue should continue handling it

before moving on to the new one.

Known Uses:

• The bug planning described by [Churchville 2006] provides a mechanism to plan

bugs in distributed software development projects by defining the risk, frequency,

and severity. According to the [Churchville 2006], bugs with high-risk fix, low

frequency and severity may not be fixed earlier in the project iterations. Nevertheless,

bugs with high severity have always high priority to be fixed. Therefore, for each bug

to be fixed, the person who plans the bug should evaluate if the bug fixing provides

benefits. On the other hand, the bug fixing should be carried out later in the project.

• The test scripts technique used by [Fowler 2006] represent another approach to plan

bugs during the project’s iteration. In this scenario, the test scripts are written out

before the start of the iteration by a system analyst/tester. These test scripts are

written out based on the customer’s requirements that should be implemented for a

given iteration. During the iteration, regular builds are generated which allows the

customer to correct misunderstandings as well as refine their own understandings. As

the builds are generated, the customer runs the software and spot the bugs found in

the system. After that, the bugs pointed out by the customer are fixed in the same

iteration depending on the bug criticality.

Resulting Context:

If the “Plan Bugs on a Sustainable Pace” is adopted, then the goals committed to the

sprint by the development teams have a higher probability of being fulfilled. In addition,

this bug planning ensures that critical bugs are fixed during the sprint and consequently

it keeps the product’s quality as high as possible. Therefore, the zero-defect policy is

usually not achieved during the sprints. The zero defect policy requires a high effort to

fix the bugs which might directly impact the sprint goals. Nevertheless, the software’s

bugs should be prioritized according to the features importance, and the decision to

work on them should be evaluated in each project’s sprint.

 Another important result of the application of this pattern is that when the team

leader commits the bug then he/she allocates developers to fix it and ensure that the bug

will be fixed and delivered as promised at the beginning of the bug planning. Therefore,

the development teams concentrate on fixing the bug while carrying out the sprint’s

activities. Another result is that when a critical bug is found by the test team but not

planned, then the development team responsible for that bug is not interrupted to fix it.

5. Conclusions

This paper presented an application of the Scrum methodology, Lean software

development, as well as Organizational patterns in the context of multi-site software

development. This paper describes the application of six selected patterns, with two of

them being proposed as new patterns (“Plan Bugs on a Sustainable Pace” and “Stories

Rework Subsystem”) and one as an alternative application of an existing pattern

(“Inversion of Control”). The first proposed pattern “Plan Bugs on a Sustainable

Pace” is applied when the project is composed of several project’s issues and the level

of interruption is very high. Therefore, this pattern describes mechanisms to plan bugs

on a sustainable pace in order to control and manage the product’s quality and avoid

project’s interruptions.

 The second proposed pattern “Stories Rework Subsystem” is applied when

development teams are separated by layer (as in pattern "Subsystem by Skill") and

stories or feature increments must be integrated and tested within one time limited

iteration. Therefore, this pattern provides means to decompose, refine, and prioritize a

story in order to fit into one iteration. The pattern “Inversion of Control” can be used

in a multi-site organization when the need to communicate and assure understanding of

requirements is of primary concern. Therefore, this pattern describes a mechanism

where the team who will implement the functionality, will be responsible for writing the

detailed requirements of that functionality in their preferred format.

 As most agile practitioners advocate, we also believe that co-location is most

effective for the majority of software development endeavors. However, there are

still a number of reasons that require development to be performed in multi-site

configuration, some of them external to the team’s influence. The main drawback

that we found about this configuration is communication overhead. In this case,

excessive effort is spent to keep the development teams synchronized and to create and

update the documentation. With this paper, we proposed a set of good practices and

Software Engineering patterns that we expect can help minimize the main drawbacks

present on the multi-site context.

References
Beck, K. (1999). Extreme Programming Explained – Embrace Change. Addison-

Wesley.

Beedle, M.; Devos, M.; Sharon Y.; Schwaber, K.; Sutherland, J.; (1999). Scum: An

extension pattern language for hyperproductive software development. In: Harrison,

N.; Foote, B.; Rohnert, H. Pattern Languages of Program Design 4. Addison-Wesley.

Berczuk, S. (1996). Configuration Management Patterns. In the proceedings of the

1996 Pattern Languages of Programming Conference, PloP’96. Available at

http://www.berczuk.com/pubs/PLoP96/. Last visit [3
rd

 June 2007].

Berczuk, S.; Appleton, B. (2002). Software Configuration Management Patterns. First

Edition, Addison-Wesley.

Berczuk, S. (2003). Agile Codeline Management. This paper was published as a

StickyMinds Original article.

Bret, T. (2004). Parallel Development Strategies for Software Configuration

Management. Published at the Summer 2004 issue of Methods & Tools. Available at

http://www.methodsandtools.com/mt/download.php?summer04. Last Visit [3
rd

 June

2007].

Churchville, D. (2006). ExtremePlanner: Agile Project Management for Distributed

Software Teams. http://www.extremeplanner.com/blog/2006/06/biggest-

misconception-in-software.html. Last Visit [7
th

 July 2007].

Cohn, Mike (2005). Agile Estimating and Planning. Robert Martin Series, Prentice

Hall.

Coplien, J. O.; Harrison, N. B. (2004). Organizational Patterns of Agile Software

Development. First Edition, Prentice Hall.

Fowler, M. (2004). Inversion of Control Containers and the Dependency Injection

pattern. Available at http://www.martinfowler.com/articles/injection.html. Last visit

[28
th

 December 2006].

Fowler, M. (2006). Using an Agile Software Process with Offshore Development.

Available at http://www.martinfowler.com/articles/agileOffshore.html. Last visit [7
th

July 2007].

Lehman, M. M. (2000) - Rules and Tools for Software Evolution Planning and

Management http://www.doc.ic.ac.uk/~mml/feast2/papers/pdf/611_2.pdf

Louzado D. A.; Cordeiro, L. C. (2005). Aplicando Padrões de Gerência de

Configuração de Software em Projetos Geograficamente Distribuídos. Proceedings

of the 5º Latin American Conference on Pattern Languages of Programming

(SugarLoafPlop’2005).

Poppendieck, Mary and Poppendieck, Tom (2003) Lean Software Development: An

Agile Toolkit. First Edition, Addison Wesley.

Poppendieck, Tom (2003) The Agile Customer’s Toolkit. Available at

www.poppendieck.com/pdfs/Agile_Customers_Toolkit_Paper.pdf. Last visit [26
th

December 2006].

Principia Cybernetica. Available at http://pespmc1.vub.ac.be/SUBOPTIM.html. Last

visit [26
th

 December 2006].

Schwaber, K., and Beedle, M. (2002). Agile Software Development with Scrum. First

Edition, Series in Agile Software Development, Prentice Hall.

Wingerd L., Seiwald, C. (1998). High-level Best Practices in Software Configuration

Management. Springer Berlin, Vol. 1439, pp. 57-66.

