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Abstract. ESBMC is an SMT-based bounded model checker
that provides a bit-precise verification of both C and C++ pro-
grams. Bounded Model Checking (BMC) was developed to
provide faster results when finding property violations; BMC
achieves this by limiting the number of loop unwindings and
recursion depth. The technique, however, is unable to prove
correctness unless all loops and recursions are fully unwound,
which might not be possible for some programs (e.g., infinite
loops). The version of ESBMC described here is designed
to avoid the problem of guessing the number of unwindings,
which leads to a property violation; it incrementally verifies
the program, searching only for property violations. Once
ESBMC has found a property violation, it produces a test
suite that contains at least one test to expose a bug. ESBMC
can correctly produce 312 test cases, which are confirmed by
the test validator employed by Test-Comp 2019.

1 Overview

ESBMC is an SMT-based context-bounded model checker
that can verify single- and multi-threaded C programs [1].
The current ESBMC submission is configured to run in in-
cremental bounded model checking mode, which will incre-
mentally verify the benchmark, looking only for property vi-
olations with the goal of producing a test suite; this repre-
sents a novel application of ESBMC since we are now able to
automatically generate a test suite for single-threaded C pro-
grams, which can expose specific bugs related to reachability,
memory safety, and user-specified assertions.

There exist some related studies that describe how to ap-
ply bounded model checking (BMC) tools to generate test
cases automatically [2,3,4]. Petrov et al. [2] implement a
unit test generation tool using a working BMC solution called
Borealis. The authors evaluated their prototype over a set of
simple test programs. They showed that their solution allows
software developers to achieve adequate coverage based on

the generated test suite. However, their prototype does not
support dynamic memory or intraprocedural effects, which
are standard features found in C programs. Anielak et al. [3]
describe an approach to incrementally produce test cases us-
ing the C Bounded Model Checker (CBMC) [5]. In particular,
the authors focus on the task of rating solutions to a program-
ming exercise, namely automatic rating, and present positive
experimental results to confirm a substantial increase in rating
accuracy compared with rating based on manually designed
test cases. Rocha et al. [4] propose the closest approach to the
one described here. The authors present a method to automat-
ically generate and check memory management test cases for
unit tests based on assertions extracted from safety properties
automatically produced by BMC tools.

Our competition entry ESBMC is written in C++ and uses
clang [6] as its front-end. ESBMC supports various SMT
solvers as back-ends (Boolector [7], Z3 [8], Yices [9], Math-
sat [10] and CVC4 [11]) and for this submission ESBMC
uses Boolector v3.0.0 to check satisfiability.

2 Test-Generation Approach

Here we discuss (incremental) bounded model checking and
our approach to the competition: an incremental BMC model
focused only on finding bugs, named falsification mode.

The BMC technique was developed to reduce the com-
plexity that a system presents to a model checker; otherwise,
it might need an infinite amount of resources (e.g., proces-
sor, memory, time) to complete the verification of all possi-
ble states [12]. BMC tools drop completeness (i.e., the ability
to prove that a program does not contain a bug) in favor of
falsification [13]. They are used mainly to find bugs, as they
are only able to prove the absence of bugs if the whole state
space is explored (e.g., all loops have been fully unwound).
BMC tools have already been applied successfully in the ver-
ification of real-world software, including software written in
languages usually used for low- and medium-level develop-
ment, such as C [1,5,14] and C++ [15].
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When running a BMC tool, one usually has to specify a
bound k explicitly; this will be used to limit the visited re-
gions of data structures (e.g., arrays) or the number of re-
cursions and loop iterations. This limits the state space to be
explored during verification, leaving enough so that real er-
rors in applications can be found [5,15,16]; BMC tools are
still susceptible to exhaustion of time or memory limits for
programs with loops whose bounds are too large, but unlike
unbounded model checking tools, this can be prevented with
a smaller value of k.

The loop unwinding process is essential to the BMC tech-
nique, as it is responsible for restricting the state space ex-
plored by the algorithm. Given a bound k, it removes states
from the verification, which are only reachable for unwind-
ings > k, while preserving the program behavior for loop
unwindings ≤ k. This is done by using either unwinding as-
sumptions that symbolically encode state-space constraints or
unwinding assertions that can produce counterexamples to
indicate that the state space was not fully explored.

An unwinding assertion prevents a BMC tool from pre-
senting a false negative result; it detects if the states beyond
the loop bound were not evaluated. An unwinding assump-
tion removes states beyond the loop, and if ill-chosen may
remove all states, leading to false safety claims. In summary,
an unwinding assertion/assumption is an assertion/assump-
tion where the condition is the loop termination condition.

Formally, given a state transition system of a program P
unwound k times, a BMC procedure can be formulated as:

π = I(s0) ∧
k−1∧
i=0

tr(si, si+1) ∧
k∨

j=0

¬φ(sj) (1)

where a predicate I(s0) denotes that s0 is the initial state of
the unwound program P , a transition tr(si, si+1) is a transi-
tion from si to si+1, φ(sj) is a safety property. If the formula
is satisfiable then there is a sequence of states that triggers a
property violation; the sequence of states found by the deci-
sion procedure is called counterexample or witness.

Finding a good value of k, i.e., the minimum number of
unwinding to find a property violation, is a challenging task.
BMC tools can try to statically determine a value of k that will
fully unwind all the loops; if such a value is found, there is
no need for unwinding assertions, however, determining this
value is not always possible (e.g., for infinite loop programs
or loop conditions that depend on user input).

Incremental BMC was proposed to avoid this pitfall [17].
In an incremental BMC, the program is incrementally un-
wound until a bug is found or until the completeness thresh-
old [18] is reached, ensuring that smaller problems are solved
sequentially instead of guessing an upper bound for the ver-
ification. The incremental algorithm, however, has its limi-
tations. In particular, the BMC has to redo all the parsing,
generation and solving for each bound k, and no record of
previous step 1 to k-1 is used when solving for k. Even though
incremental solving first appeared in the 1990s [17], the prob-
lem of how to efficiently reuse information learned from pre-
vious instances remains.

1 i n t main ( ) {
2 unsigned i n t M = V E R I F I E R n o n d e t u i n t ( ) ;
3 i n t A[M] , B[M] , C[M] ;
4 unsigned i n t i ;
5 f o r ( i =0 ; i<M; i ++) A[ i ] = V E R I F I E R n o n d e t i n t ( ) ;
6 f o r ( i =0 ; i<M; i ++) B[ i ] = V E R I F I E R n o n d e t i n t ( ) ;
7 f o r ( i =0 ; i<M; i ++) C[ i ]=A[ i ]+B[ i ] ;
8 f o r ( i =0 ; i<M; i ++) V E R I F I E R a s s e r t (C[ i ]==A[ i ]−B[ i ] ) ;
9 }

Fig. 1. C program extracted from Test-Comp 2019.

1 <? xml v e r s i o n ="1.0" e n c o d i n g ="UTF-8" s t a n d a l o n e ="no"?>
2 <!DOCTYPE t e s t c a s e PUBLIC "+//IDN sosy-lab.org//DTD test-

format testcase 1.0//EN" "https://sosy-lab.org/test-
format/testcase-1.0.dtd">

3 < t e s t c a s e>
4 <i n p u t>1</ i n p u t>
5 <i n p u t>0</ i n p u t>
6 <i n p u t>2147483646</ i n p u t>
7 </ t e s t c a s e>

Fig. 2. Generated test case in XML.

Our new falsification approach uses an incremental BMC
approach to find property violations. Intuitively, we aim to
find a counterexample π with up to k loop unwindings. This
approach replaces all unwinding assertions (e.g., assertions
to check if a loop was completely unwound) with unwinding
assumptions. Normally, this would lead to unsound behavior
but, since the falsification algorithm cannot provide correct-
ness validation, it will not affect the search for bugs. This ap-
proach is focused on bug finding and does not care if a loop
was not completely unwound; it only cares if the number of
unwindings will lead to a property violation.

The falsification approach in ESBMC also offers the op-
tion to change the granularity of the increment; the default
value is 1, but can be increased to meet any expected behav-
ior. Note that changing the value of the increment can lead
to slower verification time and might not present the shortest
counterexample possible for a property violation.

When a property violation is found, a witness [19] is pro-
duced: it contains one path in the program from the entry
point to the property violation, with all non-deterministic as-
signments in that path replaced by concrete values found by
the underlying SMT solver. From the witness, we derive the
files required by the competition: a metadata file which spec-
ifies information about the tool and the verified program, and
one or more test case files, which specify the values to non-
deterministic assignments that lead to a property violation.
Our test-generation approach is focused on the ability to dis-
cover bugs. In particular, we produce a test suite,1 which con-
tains at least one test that exposes the bug. As an example,
Figure 1 shows a program extracted from the ReachSafety-
Loops subcategory.2 ESBMC produces a test case illustrated

1 We produce test suites that adhere to the exchange format described in
https://gitlab.com/sosy-lab/software/test-format/
blob/master/doc/Format.md

2 https://raw.githubusercontent.com/sosy-lab/
sv-benchmarks/master/c/loops/sum_array-1.c

https://gitlab.com/sosy-lab/software/test-format/blob/master/doc/Format.md
https://gitlab.com/sosy-lab/software/test-format/blob/master/doc/Format.md
https://raw.githubusercontent.com/sosy-lab/sv-benchmarks/master/c/loops/sum_array-1.c
https://raw.githubusercontent.com/sosy-lab/sv-benchmarks/master/c/loops/sum_array-1.c
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Fig. 3. ESBMC architecture customized for automated test-case generation.

in Fig. 2 where M = 1, A[0] = 0, B[0] = 2147483646,
which violates the VERIFIER assert in the program.

3 Architecture

Fig. 3 shows the current architecture of ESBMC customized
for the automated test-case generation of C programs; white
rectangles represent input and output while grey rectangles
represent the verification steps. The tool is composed of sev-
eral modules, each with a specific goal.
Front-end. Converts the program into an abstract syntax tree
(AST) [20]. Currently, ESBMC has three front-ends as fol-
lows: one clang-based [21] C front-end, one CBMC-based
C front-end and one CPROVER-based C++ front-end [5]. In
Figure 3, the C++ front-end is omitted but it works similarly
to the C front-end, with a parser [22] and a type-checker [23].
GOTO converter. Converts the AST generated by the front-
end into a state transition system called GOTO program. In
this module, the GOTO program can be changed to add prop-
erty checks and k-induction specific instructions.
Symbolic Engine. Converts the GOTO program into a se-
quence of static single assignments (SSA) [24]. This module
unwinds the loops of the GOTO program [25], propagating
constants to generate a minimal set of SSAs. This module
can also add property checks, most of them related to dynam-
ically allocated memory.
SMT encoding. Converts the set of SSAs into SMT and then
checks for satisfiability. If the formula is satisfiable, then the
SMT solver is queried for relevant information to build the
respective counterexample. ESBMC supports five state-of-
the-art SMT solvers: Z3 [8], MathSAT [10], Boolector [7],
Yices [9], and CVC4 [11].

ESBMC produces, as a result, a tuple (answer, test-suite).
If ESBMC has found a property violation, then it produces
“DONE + Test-Suite”, i.e., the returned test suite tries to ex-
pose the bug as defined in the test spec.; otherwise, ESBMC
returns “UNKNOWN”, i.e., it does not succeed in computing
a test suite due to a crash, time-out, or out-of-memory.

4 Strengths and Weaknesses

The falsification mode in ESBMC is a simple but effective ap-
proach to find property violations. The program is bit-precise

encoded into SMT and all property violations up to a given
bound k are checked in conjunction. The big advantage of
this approach is that we can jointly check all paths in one call
to the solver, instead of exploring and encoding them sepa-
rately. The falsification mode in ESBMC can find property
violations in a large number of programs, thereby strengthen-
ing our claim that this is an effective approach to test genera-
tion. Despite its effictiveness, however, due to bugs in our test
case generation, only a fraction of the results were validated.

One drawback of the falsification mode is that coverage
test generation support is non-trivial: some researches pro-
posed solutions for these issues with different degrees of suc-
cess [2] but ESBMC has yet to implement a solution. Sec-
ondly, our approach generates the full set of SSA from scratch
for every new unwinding: one would expect that using incre-
mental SMT solving offers better results but empirical exper-
iments show otherwise, as described by Henning et al. [26].

4.1 Results

When running in falsification mode, ESBMC can correctly
produce 312 test cases, which are confirmed by the test val-
idator employed by Test-Comp 2019. Our remaining results
are divided into 194 timeouts or memory outs, 136 uncon-
firmed test cases and 4 unknown results. As expected, falsifi-
cation provides no correctness claim.

In particular, the unconfirmed test cases were mainly due
to our approach of converting the ESBMC witnesses into test
cases, which does not convert all generated values of the C
primitive data-types into the test case format as expected by
the test validator employed by Test-Comp 2019; in particular,
our test case converter does not handle structs and unions cor-
rectly. Out of the 136 unconfirmed, 4 were because ESBMC
did not generate a witness file, 17 were due to the witness
not containing all variable values and 115 were due to wrong
encoding of primitive data-types (e.g., booleans and floats).

Most failures happened in the ReachSafety Floats (24)
and ReachSafety Sequentialized (88) categories; these cate-
gories contain massive use of float and booleans variables,
which led to various failures when validating our test cases.
Our best results are concentrated in the ReachSafety ECA; we
did not produce any invalid result, and thus we were able to
validate 251 test cases.
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5 Tool Setup and Configuration

We need to set the architecture (32 or 64 bits), the competition
strategy, the property file path, and the benchmark path, to our
new wrapper script as follows:

esbmc-wrapper.py [-h] -a {32,64}
-p PROPERTYFILE -s falsi BENCHMARK

-a sets the architecture, -p sets the property file path, -s
sets the strategy (in this case, falsi for falsification) and
BENCHMARK is the benchmark path.

When using the falsification mode, the following options
are set for every property: --no-div-by-zero-check,
which disables the division by zero check (required by Test-
Comp); --witness-output, which sets the witness out-
put path; --floatbv, which enables floating-point SMT
encoding; --unlimited-k-steps, which removes the
upper limit of iteration steps in the k-induction algorithm;
--no-align-check, which deactivates pointer alignment
checks; --falsification, which enables the falsifica-
tion mode; and --force-malloc-success, which sets
that all dynamic allocations must succeed (required by Test-
Comp).

The Benchexec tool info module is named esbmc.py
and the benchmark definition file is esbmc-falsi.xml.
For Test-Comp 2019, ESBMC uses Boolector v3.0.0 [27] and
competes in Cover-Error and Overall categories.

6 Software Project and Contributors

The ESBMC source code can be downloaded at https://
github.com/esbmc/esbmc, while self-contained binaries
for ESBMC v6.1 64-bit can be downloaded at https://
github.com/esbmc/esbmc/releases. ESBMC is avail-
able under the terms of the Apache License 2.0. Instructions
to build ESBMC from source are given in the file BUILDING
(including the description of all dependencies). ESBMC is a
joint project with the Federal U. of Amazonas (Brazil), U. of
Southampton (UK), U. of Manchester (UK), and U. of Stel-
lenbosch (South Africa).
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