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Abstract The first attempts to apply the k -induction
method to software verification are only recent. In this
paper, we present a novel proof by induction algorithm,
which is built on the top of a symbolic context-bounded
model checker and uses an iterative deepening approach
to verify, for each step k up to a given maximum, whether
a given safety property φ holds in the program. The pro-
posed k -induction algorithm consists of three different
cases called base case, forward condition, and inductive
step. Intuitively, in the base case, we aim to find a coun-
terexample with up to k loop unwindings; in the for-
ward condition, we check whether loops have been fully
unrolled and that φ holds in all states reachable within
k unwindings; and in the inductive step, we check that
whenever φ holds for k unwindings, it also holds after the
next unwinding of the system. The algorithm was imple-
mented in two different ways, a sequential and a parallel
one, and the results were compared. Experimental re-
sults show that both forms of the algorithm can han-
dle a wide variety of safety properties extracted from
standard benchmarks, ranging from reachability to time
constraints. And by comparison, the parallel algorithm
solves more verification tasks in less time. This paper
marks the first application of the k -induction algorithm
to a broader range of C programs; in particular, we show
that our k -induction method outperforms CPAChecker
in terms of correct results, which is a state-of-the-art
k -induction-based verification tool for C programs.

Keywords. software engineering, formal methods, ver-
ification, model checking, k-induction.

1 Introduction

Bounded Model Checking (BMC) techniques based on
Boolean Satisfiability (SAT) [1] or Satisfiability Mod-

ulo Theories (SMT) [2] have been successfully applied to
verify single- and multi-threaded programs and to find
subtle bugs in real programs [3,4,5]. The idea behind
the BMC techniques is to check for the violation of a
given property at a given depth, i.e., given a transition
system M, a property φ, and a limit of iterations k, BMC
unfolds the system k times and converts it into a Ver-
ification Condition (VC) ψ such that ψ is satisfiable if
and only if φ has a counterexample of depth less than or
equal to k.

Typically, BMC techniques are only able to falsify
properties up to the given depth k ; they are not able
to prove the correctness of the system, unless an up-
per bound of k is known, i.e., a bound that unfolds all
loops and recursive functions to their maximum possible
depth. In particular, BMC techniques limit the visited
regions of data structures (e.g., arrays) and the num-
ber of loop iterations to a given bound k. This limits the
state space that needs to be explored during verification,
leaving enough that real errors in applications [3,4,5,6]
can be found; BMC tools are, however, susceptible to
exhaustion of time or memory limits for programs with
loops whose bounds are too large or cannot be deter-
mined statically.

Consider for example the simple program in Fig. 1a,
in which the loop in line 2 runs an unknown number of
times, depending on the initial non-deterministic value
assigned to x in line 1. The assertion in line 3 holds in-
dependent of x’s initial value. Unfortunately, BMC tools
like CBMC [3], LLBMC [4], or ESBMC [7] typically fail
to verify programs that contain such loops. Soundness
requires that they insert a so-called unwinding assertion
(the negated loop bound) at the end of the loop, as in
Fig. 1b, line 5. This unwinding assertion causes the BMC
tool to fail if k is too small.

One technique typically used to prove properties, for
any given depth, is mathematical induction. In particu-
lar, the algorithm called k -induction was successfully ap-
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1 unsigned int x=∗;
2 while (x>0) x−−;
3 assert ( x==0);

(a) Simple unbounded loop program.

1 unsigned int x=∗;
2 i f (x>0)
3 x−−;

}
k copies

4 . . .
5 assert ( ! ( x>0)) ;
6 assert ( x==0);

(b) Finite unwinding done by BMC.

Figure 1: Unbounded loop and finite unwinding.

plied to ensure that (restricted) C programs do not con-
tain data races [8,9] and to respect time constraints spec-
ified during the design phase of a system [10]. Addition-
ally, the k -induction is a well-established technique in
hardware verification, where it is easier to be applied due
to the monolithic transition relation present in hardware
designs [10,11,12]. This paper contributes a new algo-
rithm to prove correctness of (a large set of) C programs
by mathematical induction in a completely automatic
way (i.e., the user does not need to provide the loop in-
variant). Although the inductive step of our k -induction
algorithm does not support heap-manipulating programs
and unbounded recursion, we show in our (extensive) ex-
periments that it is still useful for software verification.

The main idea of the algorithm is to use an iterative
deepening approach and check, for each step k up to a
maximum value, three different cases called here as base
case, forward condition, and inductive step. Intuitively,
in the base case, we intend to find a counterexample
of φ with up to k iterations of the loop. The forward
condition checks whether loops have been fully unrolled
and the validity of the property φ in all states reachable
within k iterations. The inductive step verifies that if φ
is valid for k iterations, then φ will also be valid for the
next unfolding of the system. The k -induction algorithm
was implemented in two different ways, a sequential and
a parallel one, where in the first, the three cases are
performed in a sequential manner, starting with the base
case, followed by the forward condition, and ending with
the inductive step. In the parallel implementation, three
processes are created and monitored by a main process to
exploit the availablity of multi-core processors in model
checking, as done by Holzmann et al. [13] and Kahsai et
al. [14]. Each of the three processes performs a case of
the k -induction algorithm and communicates the result
to a main process.

These algorithms were all implemented in the Effi-
cient SMT-based Context-Bounded Model Checker tool

(known as ESBMC1), which uses BMC techniques and
SMT solvers (e.g., [15,16]) to verify embedded systems
written in C/C++ [7,17]. In Cordeiro et al. [7,18] the
ESBMC tool is presented, which describes how the in-
put program is encoded in SMT; what the strategies for
unrolling loops are; what are the transformations/op-
timizations that are important for performance; what
are the benefits of using an SMT solver instead of a
SAT solver; and how counterexamples to falsify proper-
ties are reconstructed. Here we focus our contribution
on the k -induction algorithm. First, we describe the de-
tails of an accurate translation that extends ESBMC to
prove the correctness of a given (safety) property for any
depth without manual annotations of loops invariants.
Second, we use a multi-process implementation of the
k -induction algorithm, similar to Kahsai et al. [14], to
speedup the verification time and to improve the quality
of the results by solving more verification tasks in less
time. Third, we show that our present implementation is
also applicable to a broader range of verification tasks,
where other existing approaches are unable to support [8,
9,11,19].

To validate the implementations of the algorithm, we
used several benchmarks from the International Compe-
tition on Software Verification (SV-COMP) [20], where
the sequential k -induction algorithm (in combination with
the plain BMC) won the third place in the general rank-
ing as well as a real application of a bicycle computer [21].
The experimental results show that, both the sequential
and the parallel implementations, are able to verify that
the user-specified properties (e.g., asserting time con-
straints) are met, and also indicates if the program has
bugs related to the programming language (e.g., buffer
or arithmetic overflow, division by zero, and pointers
safety) [22]. The experiments also show that the paral-
lel implementation presents better results, which is able
to prove and falsify more properties in the verification
tasks, while it requires less verification time. Last but
not least, we show that we show that our k -induction
method outperforms CPAChecker [19] in terms of cor-
rect results, which is a state-of-the-art k -induction-based
verification tool for C programs.

The remainder of the paper is organized as follows.
We first give a brief introduction to BMC and k -induction
techniques that we will refer to the paper. In Section 4,
the k -induction algorithm, and its parallel implemen-
tation, is described in terms of transformations on each
step of the algorithm. In Section 5, we present the results
of our experiments using several SV-COMP benchmarks
and a real embedded system application. In Section 6,
we discuss the related work. We conclude and describe
future work in Section 7.

1 Available at http://esbmc.org/
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2 Background

This section provides the basic concepts for understand-
ing BMC and k -induction techniques, which are described
in terms of a state transition system.

2.1 State Transition System

A state transition system M = (S, T, S0) is an abstract
machine that consists of a set of states S, where S0 ⊆ S
represents the set of initial states, and T ⊆ S × S is the
transition relation, i.e., pairs of states specifying how
the system can move from state to state. A state s ∈ S
consists of the value of the program counter pc and the
values of all program variables. An initial state s0 assigns
the initial program location. We identify each transition
T = (si, si+1) ∈ T between two states si and si+1, with a
logical formula T (si, si+1) that captures the constraints
on the corresponding values of the program counter pc
and the program variables.

2.2 Bounded Model Checking (BMC)

In BMC, the program to be analyzed is modeled as
a state transition system, which is extracted from the
control-flow graph (CFG) [23]. This graph is built as
part of a translation process from program code to sin-
gle static assignment (SSA) form. A node in the CFG
represents either a (non-) deterministic assignment or a
conditional statement, while an edge in the CFG repre-
sents a possible change in the program’s control location.

Given a transition system M, a property φ, and a
bound k, BMC unrolls the system k times and trans-
lates it into a VC ψ such that ψ is satisfiable if and
only if φ has a counterexample of length k or less [1].
The associated model checking problem is formulated
by constructing the following logical formula:

ψk = I(s0) ∧
k∨

i=0

i−1∧
j=0

T (sj , sj+1) ∧ ¬φ(si), (1)

given that φ is a safety property, I is the set of ini-
tial states of M and T (sj , sj+1) is the transition rela-
tion of M between steps j and j + 1. Hence, I(s0) ∧∧i−1

j=0 T (sj , sj+1) represents the executions ofM of length
i and (1) can be satisfied if and only if for some i ≤ k
there exists a reachable state at step i in which φ is vio-
lated. If (1) is satisfiable, then the SMT solver provides
a satisfying assignment, from which we can extract the
values of the program variables to construct a counterex-
ample. A counterexample for a property φ is a sequence
of states s0, s1, · · · , sk with s0 ∈ S0 and T (si, si+1) with
0 ≤ i < k.

If (1) is unsatisfiable, we can conclude that no error
state is reachable in k steps or less. In this case, BMC
techniques are not complete because there might still be

a counterexample that is longer than k. Completeness
can only be ensured if we know an upper bound on the
depth of the state space, i.e., if we can ensure that we
have already explored all the relevant behaviour of the
system, and searching any deeper only exhibits states
that have already been checked [24].

2.3 k-Induction

A feasible alternative to check properties in BMC is to
prove that an invariant (assertion) is k -inductive [10,12].
The k -induction method has been successfully applied to
verify hardware designs (represented as finite state ma-
chines) using a SAT solver, but the first attempts to
apply this technique to software are only recent [8,9,
11,25,19]. In order to present the k -induction method,
we use the notation of Eén and Sörensson [10], which
describes the principle via temporal induction (i.e., the
induction is carried out over the steps of the finite state
machines). The simplest form of k -induction consists of
two steps: the base-case and the induction-step. Let I (s)
and T (s, s′) encode the set of initial states and the tran-
sition relation of the finite transition system M , respec-
tively. Let φ (s) denote states satisfying a safety property
φ. The strengthened induction, as originally proposed
in [10], is then defined by the following equation:

Basek = I (s1) ∧ T (s1, s2) ∧ . . . ∧ T (sk−1, sk)

∧ (¬φ (s0) ∨ . . . ∨ ¬φ (sk))

Stepk = φ (s1) ∧ T (s1, s2) ∧ . . . ∧ φ (sk)

∧T (sk, sk+1) ∧ ¬φ (sk+1) (2)

The intuitive interpretation of these two formulae are
as follows: in the base-case, we aim to check that φ holds
in all states reachable from an initial state within k steps
(we assume that k ≥ 0) and in the induction-step, we
aim to check that whenever φ holds in k consecutive
states s1, . . . , sk, φ also holds in the next state sk+1 of
the system. In both cases, we check whether formulae
Basek and Stepk, as described above, are unsatisfiable.
An algorithm can then be devised from these two formu-
lae, which unwinds the system incrementally and checks
whether Basek is satisfiable or Stepk is unsatisfiable in
order to determine termination. In particular, if Basek
turns to be satisfiable in step k, then we have found a
violation of the property. If Stepk is unsatisfiable in step
k, then the property holds.

Proving that an invariant is k -inductive with itera-
tive deepening is a technique that was already presented
by several authors [8,9,10,11,12,14,19,26]. The differ-
ence between the existing work and our present proposal
is that the present proposal uses an additional forward
condition to check whether loops have been fully un-
rolled and all states were reached within k iterations;
and that the referenced implementation succeeds with-
out manually providing program invariants.
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1 int main ( int argc , char ∗∗ argv ) {
2 u i n t 6 4 t i =1, sn =0;
3 u i n t 3 2 t n ;
4 assume (n>=1);
5 while ( i<=n) {
6 sn = sn + a ;
7 i ++;
8 }
9 assert ( sn==n∗a ) ;

10 }

Figure 2: Motivating example for the k -induction algo-
rithm.

Similar to Donaldson et al. [8,9], we havoc only the
variables that occur in the loop, i.e., all loops variables
are assigned non-deterministic values. Then the loop is
run k−1 times, where all post-loop states are assumed to
be different; in the loop body, all assertions are replaced
by assumptions, which ensures that the chosen values
satisfy a consequence of the (unknown) loop invariant.
Lastly, the loop is run one final time, before the invari-
ant is checked for the final state. Differently from our
approach, Große et al. [11] havoc all program variables,
which makes it difficult to check for the reachability of
an error since they do not provide enough information
to constrain the havocked variables in the program.

3 Motivating Example

As a motivating example, we use a program from the
SV-COMP [20] benchmarks; see Figure 2. Here, a is an
integer constant that is set to 2, and variables i and
sn are declared with a type larger than the type of the
variable n to avoid arithmetic overflow. Mathematically,
the code represents the implementation of the simple
sum Equation (3):

Sn =

n∑
i=1

a = na, n ≥ 1 (3)

We are required to show that the property repre-
sented by the assertion in line 9) holds for any value of n
(i.e., for any unfolding of the program). BMC techniques
find this difficult as the number of loop iterations, rep-
resented by n, is non-deterministically chosen; full un-
winding would require 232 − 1 unfoldings. The intent of
k -induction is to prove the property holds, without hav-
ing to fully unwind the loop.

4 Induction-based Verification of C/C++
Programs

In this section, the transformations in each step of the
k -induction algorithm are described using the Hoare no-

tation [27]. From the implementation point of view, these
transformations take place at the intermediate represen-
tation level, during the conversion of the C/C++ pro-
gram into a GOTO-program, which simplifies the rep-
resentation (e.g., replacement of switch and while by if
and goto statements), and handles the unrolling of the
loops and the elimination of recursive functions. For a
detailed description of how these simplifications occur
for C/C++ programs, we refer the reader to Cordeiro et
al. [7] and Ramalho et al. [28].

4.1 The Proposed k-Induction Algorithm

Figure 3 shows an overview of the proposed k -induction
algorithm. We do not add additional details about the
transformations on each step of the algorithm; we keep
it simple and describe the details in the next subsec-
tions so that one can have a big picture of the proposed
method. The input of the algorithm is a C/C++ pro-
gram P together with the safety property φ. The algo-
rithm returns true (if there is no path that violates the
safety property), false (if there exists a path that violates
the safety property), and unknown (it does not succeed
in computing an answer true or false).

In the base case, the algorithm tries to find a coun-
terexample up to a maximum number of iterations k. In
the forward condition, global correctness of the loop w.r.t.
the property is shown for the case that the loop iterates
at most k times; and in the inductive step, the algorithm
checks that, if the property is valid in k iterations, then
it must be valid for the next iterations. The algorithm
runs up to a maximum number of iterations and only
increases the value of k if it can not falsify the property
during the base case. Note that k is incremented only at
the start of the else branch in line 9 of Fig. 3. In our
benchmarks, we noted that computational resources are
wasted if we start with k = 1 in the forward condition
and the inductive step since loops are usually unfolded
at least two times.

4.1.1 Loop-free Programs

In the k -induction algorithm, the loop unwinding of the
program is done incrementally from one to max iterations,
where the number of unwindings is measured by count-
ing the number of backjumps [23]. On each step of the
k -induction algorithm, an instance of the program that
contains k copies of the loop body corresponds to check-
ing a loop-free program, which uses only if -statements
in order to prevent its execution in the case that the loop
ends before k iterations.

Definition 1 (Loop-free Program) A loop-free pro-
gram is represented by a straight-line program (without
loops) by providing an ite (θ, ρ1, ρ2) operator, which takes
a Boolean formula θ and, depending on its value, selects
either the second ρ1 or the third argument ρ2, where ρ1
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1 input : program P and s a f e t y property φ
2 output : true , f a l s e , or unknown
3 k = 1
4 while k <= max i t e r a t i on s do
5 i f bas e ca s e (P, φ , k ) then
6 show counterexample s [ 0 . . k ]
7 return f a l s e
8 else
9 k=k+1

10 i f f o rward cond i t i on (P, φ , k ) then
11 return t rue
12 else
13 i f i n d u c t i v e s t e p (P, φ , k ) then
14 return t rue
15 end−i f
16 end−i f
17 end−i f
18 end−while
19 return unknown

Figure 3: An overview of the k -induction algorithm.

represents the loop body and ρ2 represents either another
ite operator, which encodes a k-copy of the loop body, or
an assertion/assume statement.

Therefore, the forward condition and the inductive
step of our k -induction algorithm transform a program
with loops into a loop-free program, such that correct-
ness of the loop-free program implies correctness of the
program with loops.

If the program consists of multiple and possibly nested
loops, we simply set the number of loop unwindings glob-
ally, that is, for all loops in the program and apply these
aforementioned translations recursively. Figure 4 shows
how loop unwindings are applied to a program with
nested loops. Note, however, that each case of the k -
induction algorithm performs different transformations
at the end of the loop, e.g., either to find bugs (base case)
or to prove that enough loop unwindings have been per-
formed (forward condition).

4.1.2 Program Translations

In terms of program translations, which are all done com-
pletely automatic by our proposed method, the base case
simply inserts an unwinding assumption to the respec-
tive loop-free program P ′, consisting of the termination
condition σ after the loop, to ensure that it finds a coun-
terexample of depth k without reporting any false incor-
rect result (i.e., to avoid unfolding loops partially), as
follows

I ∧ T ∧ σ ⇒ φ

given that I is the initial condition, T is the transition
relation of P ′, and φ is a safety property to be checked.
The forward case inserts an unwinding assertion instead

of an assumption after the loop, as follows:

I ∧ T ⇒ σ ∧ φ

The forward condition, proposed by Große et al. [11],
introduces a sequence of commands to check whether
there is a path between an initial state and the current
state k, while in the algorithm proposed in this paper,
an assertion (i.e., the loop invariant) is automatically in-
serted by our algorithm, without the user’s intervention,
at the end of the loop to check whether all states are
reached in k steps. Our base case and forward condition
translations can easily be implemented on top of plain
BMC.

However, for the inductive step of the algorithm, sev-
eral transformations are carried out. In particular, the
loop

while(c) {E; }
is converted into

A;while(c) {S;E;U ;R; } (4)

given that A is the code (or sequence of commands) re-
sponsible for assigning non-deterministic values to all
loops variables, i.e., the state is havocked before the loop,
c is the termination condition of the loop while, S is the
code to store the current state of the program variables
before executing the statements of E, E is the original
body of the while loop, U is the code to update all state
variables with local values after executing E, and R is
the code to remove redundant states.

Definition 2 (Loop Variable) A loop variable is a
variable v ⊆ V , where V = Vglobal ∪ Vlocal given that
Vglobal is the set of global variables and Vlocal is the set
of local variables that occur in the loop of a program.

Definition 3 (Havoc Loop Variable) Nondetermin-
istic value is assigned to a loop variable v if and only if
v is used in the loop termination condition σ, in the loop
counter that controls iterations of a loop, or is written
to inside the loop body.

The intuitive interpretation of S, U , and R is that if
the current state (after executing E) is different from
the previous state (before executing E), then new states
are produced in the given loop iteration; otherwise, they
are redundant and the code R is then responsible for
preventing those redundant states from being included
in the vector of statets. Note further that the code A
assigns non-deterministic values to all loop variables so
that the model checker can explore all possible states
implicitly. In contrast, Große et al. [11] havoc all pro-
gram variables, which makes it difficult to apply their
approach to arbitrary programs since they do not pro-
vide enough information to constrain the havocked vari-
ables in the program.

Similarly, the loop for can easily be converted into
the loop while as follows:

for(B; c;D) {E; }
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Figure 4: (a) A program with nested loops. (b) Iteration-based unwinding of the program in (a).

is rewritten as

A;B; while(c) {S;E;D;U ;R; } (5)

given that B is the initial condition of the loop, c is the
termination condition of the loop, D is the increment of
each iteration over B, and E is the actual code inside
the loop for. No further transformations are applied to
the loop for during the inductive step.

Additionally, the loop do while can trivially be con-
verted into the loop while with one difference, the code
inside the loop must execute at least once before the
termination condition is checked. In particular, the loop

do {E; }while(c)

is converted into

A;E;while(c) {S;E;U ;R; } (6)

Finally, the expressions if-then-else are transformed as
follows:

if(c)X else Y

is rewritten as

(¬c ∧ Y ) ∨ (c ∧X)

given that c is the condition of the if expression; the vari-
ables involved in c are initialized to non-deterministic
values only whether that if expression is inside a given
loop; X is the code to be executed if c is evaluated to
true, and Y is the code to be executed if c is evaluated
to false.

The inductive step is thus represented by

γ ∧ σ ⇒ φ (7)

given that γ is the transition relation of P̂ ′, which repre-
sents a loop-free program (cf. Definition 1) after applying
transformations (4) and (5). The intuitive interpretation
of the inductive step is to prove that, for any unfolding of

Main 
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k=1

Base
Case

Forward
Condition

Inductive
Step

fork
fork

fork

k=2
k=2

k=2

k=3

k=4

k=3

k=4

k=3

k=4

terminate

terminate

Verification 
Failed

Figure 5: Base case falsified the property.

the program, there is no assignment of particular values
to the program variables that violates the safety prop-
erty being checked. Finally, the induction hypothesis of
the inductive step consists of the conjunction between
the postconditions (Post) and the termination condition
(σ) of the loop.

4.2 Parallel k-Induction Algorithm

After developing the k -induction algorithm (shown in
Figure 3), we observed that the translations and the ap-
plication of each step of the k -induction algorithm could
be done completely independently. Therefore, in addi-
tion to a sequential execution of the k -induction algo-
rithm, the execution of each step could also be carried
out in parallel; specifically by splitting each step to a
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Figure 6: Forward condition proved the property.
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k=3

k=3

k=4

k=3

terminate

terminate
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Successful

k=4
k=4

Figure 7: Inductive step proved the property.

different processing core, which could potentially divide
the verification wallclock time by a factor of three.

The approach chosen for the parallel implementation
of the k -induction algorithm is the use of four different
processes (running on different processing cores) instead
of using threads; this choice is forced as the SMT solver
currently used by ESBMC (Z3) is not thread safe. In
terms of the parallel implementation of the k -induction
algorithm, the parent process is responsible for initializ-
ing the three child processes, executing the logic of the
k -induction algorithm and showing the final result of
the verification process. Each child process is responsi-
ble for one step of the k -induction: base case, forward
condition, and inductive step. Pairs of pipes are used for

Main 
Process

k=1

Base
Case

Forward
Condition

Inductive
Step

fork
fork

fork

k=2
k=2

k=2
k=3

k=3

Verification 
Unknown

k=50
k=50

k=50
... ... ... ...

Figure 8: The algorithm could not prove or falsify the
property.

inter-process communication. For the inter-process com-
munication, two pipes are used in each process [29].

Figures 5, 6, 7 and 8 show four possible scenarios dur-
ing the parallel execution of the k -induction algorithm.
In these, the arrows determine the direction of the mes-
sage, from main process to child processes or vice versa;
a filled arrow means a synchronous message while an
open arrow means an asynchronous message.

Note that all child processes communicate the result
of each iteration to the parent process and it, in turn,
evaluates the decisions shown in Figure 3. This architec-
ture was designed so that, if a process crashes for some
reason, the other processes can still try to find bugs or
prove correcness of the program, i.e., if the inductive step
process crashes, the base case process can still find bugs
and report the correct result.

In the first scenario, shown in Figure 5, the parent
process starts three child processes and initiates the ver-
ification process. As an example, while checking the base
case, a bug is found for step k = 4. At this point, the
process of the base case communicates the result to the
parent process, which sends terminate signals to the for-
ward condition and the inductive step processes, to fi-
nalize them. At the end, the parent process shows that
a bug was found in the program.

Scenarios two and three, shown in Figures 6 and 7,
are similar to each other, with the difference that the
former represents the successful result from the forward
condition and the later, the successful result from induc-
tive step. In such cases, the process in question informs
the parent process that it has found a solution and then
finishes its execution. At this point, the parent process
sends terminate signals to the base case as well as to the
the inductive step process, in the Figure 6, or to the for-
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ward condition process, in the Figure 7. At the end, the
parent process shows which step was able to prove the
validity of the safety property successfully. Note that in
Figure 7, the base case process at least has to run to the
same number of steps k as the successful inductive step
process; otherwise, safety cannot be guaranteed.

The fourth and final scenario, shown in Figure 8,
occurs when the three child processes have reached the
maximum value of k and have not found a solution. In
this case, each child process communicates to the parent
process that it ended without finding a bug; and the
parent process reports that the k -induction algorithm
was unable to prove correctness.

4.3 Running Example

In this section, we explain how the k -induction algorithm
(see Figure 3) can prove correctness of the C program
shown in Figure 2.

4.3.1 The Base Case

In the base case, the k -induction algorithm attempts to
find a counterexample up to a maximum number of iter-
ations k. The pre- and postconditions of the loop shown
in Figure 2, in SSA form, are as follows:

Pre :=

[
n1 = nondet uint ∧ n1 ≥ 1
∧ sn1 = 0 ∧ i1 = 1

]
Post :=

[
ik > n1 ⇒ snk = n1 × a

]
given that Pre and Post are the pre- and postconditions
to compute the sum given by Equation (3), respectively,
and nondet uint is a non-deterministic function, which
can return any value of type unsigned int. In the precon-
ditions, n1 represents the first assignment to the vari-
able n, which is a non-deterministic value greater than
or equal to one. This ensures that the model checker ex-
plores all possible unwindings of the program. Addition-
ally, sn1 represents the first assignment to the variable
sn and i1 is the initial condition of the loop. In the post-
conditions, snk represents the assignment n1 + 1 for the
variable sn in Figure 2, which must be true if ik > n1.
The resulting code of the base case transformations can
be seen in Figure 9. Note that the assume (in line 11),
which consists of the termination condition, eliminates
all execution paths that do not satisfy the constraint
i > n. This ensures that the base case finds a counterex-
ample of depth k without reporting any false negative
results.

4.3.2 The Forward Condition

In the forward condition, the k -induction algorithm at-
tempts to prove that the loop is sufficiently unfolded
and whether the property is valid in all states reachable

1 int main ( int argc , char ∗∗ argv ) {
2 u i n t 6 4 t i , sn =0;
3 u i n t 3 2 t n=nondet u int ( ) ;
4 assume (n>=1);
5 i =1;
6 i f ( i<=n) {
7 sn = sn + a ;

}
k copies

8 i ++;
9 }

10 assume( i>n ) ; // unwinding assumption
11 assert ( sn==n∗a ) ;
12 }

Figure 9: Example code for the proof by mathematical
induction, during base case.

1 int main ( int argc , char ∗∗ argv ) {
2 u i n t 6 4 t i , sn =0;
3 u i n t 3 2 t n=nondet u int ( ) ;
4 assume (n>=1);
5 i =1;
6 i f ( i<=n) {
7 sn = sn + a ;

}
k copies

8 i ++;
9 }

10 assert ( i>n ) ; // check loop in va r i an t
11 assert ( sn==n∗a ) ;
12 }

Figure 10: Example code for the proof by mathematical
induction, during forward condition.

within k steps. The postconditions of the loop shown in
Figure 2, in SSA form, can then be defined as follows:

Post :=
[
ik > n1 ∧ snk = n1 × a

]
The preconditions of the forward condition are iden-

tical to the base case. In the postconditions Post, there
is an assertion to check whether the loop is sufficiently
expanded, represented by the constraint ik > n1, where
ik represents the value of the variable i at iteration n1+1.
The resulting code of the forward condition transforma-
tions can be seen in Figure 10. The forward condition at-
tempts to prove that the loop is unfolded deeply enough
(by checking the loop invariant in line 11) and whether
the property is valid in all states reachable within k it-
erations (by checking the assertion in line 11).

4.3.3 The Inductive Step

In the inductive step, the k -induction algorithm attempts
to prove that, if the property is valid up to depth k,
the same must be true for k + 1. Several changes are
performed in the original code during this step. First,
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a structure called statet is defined, containing all vari-
ables written within the loop. Then, a variable of type
statet named cs (current state) is declared, which stores
the values of a given variable in a given iteration; in
the current implementation, the cs data structure does
not handle heap-allocated objects. A statet vector of size
equal to the current number of iterations of the loop is
also declared, called sv (state vector) that will store the
values of all variables in each iteration of the loop.

Before starting the loop, all state variables are initial-
ized to non-deterministic values and stored in the state
vector on the first iteration of the loop so that the model
checker can explore all possible states implicitly. Within
the loop, after storing the current state and executing
the current iteration of the loop, all state variables are
updated with the current values of the current iteration
and an assume instruction is inserted with the condition
that the current state is different from the previous one,
to prevent redundant states from being inserted into the
state vector; in this case, we compare svj [i] to csj for
0 < j ≤ k and 0 ≤ i < k. In the example we add con-
straints as follows:

sv1 [0] 6= cs1

sv1 [0] 6= cs1 ∧ sv2 [1] 6= cs2

· · ·
sv1 [0] 6= cs1 ∧ sv2 [1] 6= cs2 ∧ . . . svk [i] 6= csk

(8)

Although we can compare svk [i] to all csk for i <
k (since inequalities are not transitive), we found the
encoding shown in Equation (8) to be more efficient,
leading to fewer timeouts when applied to the SV-COMP
benchmarks.

Finally, after the whole execution of the unrolled loop
an assume instruction is inserted, which is similar to that
inserted in the base case. The pre- and postconditions of
the loop shown in Figure 2, in SSA form, are defined as
follows:

Pre :=


n1 = nondet uint ∧ n1 ≥ 1
∧ sn1 = 0 ∧ i1 = 1
∧ cs1.v0 = nondet uint
∧ . . .
∧ cs1.vm = nondet uint


Post :=

[
ik > n1 ⇒ snk = n×a

]
In the preconditions Pre, in addition to the initial-

ization of the variables, the value of all variables con-
tained in the current state cs must be assigned with
non-deterministic values, where m is the number of loop
variables. The postconditions do not change, as in the
base case; they only contain the property that the al-
gorithm is trying to prove. To implement the transfor-
mation in Equation (4) we implement the loop body as
shown in instruction list Q, saving the statet vector cs
before the loop body, and updating it afterwards, as fol-
lows:

Q :=


sv[i− 1] = csi ∧ E
∧ csi.v0 = v0i
∧ . . .
∧ csi.vm = vmi


In the instruction set Q, sv[i−1] is the vector position

to save the current state csi, E is the actual code inside
the loop, and the assignments csi.v0 = v0i∧. . .∧csi.vm =
vmi represent the value of the variables in iteration i be-
ing saved in the current state csi. The modified code
for the inductive step, using the notation defined in Sec-
tion 4.1, can be seen in Figure 11. Note that the if -
statement (lines 17-24) in Figure 11 is copied k -times.
As in the base case, the inductive step also inserts an
assume instruction, which contains the exit condition.
In contrast to the base case, the inductive step proves
that the property, specified by the assertion, is valid for
any value of n.

Lemma 1 If the induction hypothesis {Post∧¬ (i ≤ n)}
holds for k + 1 consecutive iterations, then it also holds
for k preceding iterations.

After the loop while is finished, the induction hy-
pothesis {Post ∧ ¬ (i ≤ n)} is satisfied on any number
of iterations; in particular, the SMT solver can easily
verify Lemma 1 and conclude that sn == n ∗ a is an
inductive invariant relative to n.

5 Experimental Results

To evaluate the sequential and parallel implementation
of the k -induction algorithm, we initially used the SV-
COMP 2013 benchmarks from the loops, SystemC, Fea-
ture Checks, and BitVectors directories [20]. The loops
directory consists of 75 benchmarks. It was chosen be-
cause it has several programs that require analysis of
bounded and unbounded loops. The SystemC directory
consists of 62 programs derived from SystemC programs,
which contain several unbounded loops [30]; they are
converted into C programs by incorporating the sched-
uler into the C code. The Feature Checks directory con-
sists of 67 programs that require the analysis of pointer
aliases and function pointers for 32-bit machine model [31].
Finally, the BitVectors directory consists of 32 programs
for which treatment of bit-operations is necessary [32].
Since the sequential implementation of the k -induction
algorithm was already applied to all SV-COMP bench-
marks [20,33], further evaluation of other categories only
confirms the performance improvement of the parallel
implementation over the sequential one.

After evaluating our k -induction algorithm (both se-
quential and parallel implementation), we compare it
to CPAchecker (Configurable Software-Verification Plat-
form) [19] using a set of C benchmarks from SV-COMP
2015 [34]. The benchmarks that are used in our com-
parison consist of 5205 C programs from SV-COMP.
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1 // v a r i a b l e s i n s i d e the loop
2 typedef struct s t a t e {
3 u i n t 6 4 t i , sn ;
4 u i n t 3 2 t n ;
5 } s t a t e t ;
6 int main ( int argc , char ∗∗ argv ) {
7 u i n t 6 4 t i , sn =0;
8 u i n t 3 2 t n=nondet u int ( ) ;
9 assume (n>=1);

10 i =1;
11 // d e c l a r a t i on o f curren t s t a t e
12 // and s t a t e v ec t o r
13 s t a t e t cs , sv [ n ] ;
14 // A: a s s i gn non−de t e rm in i s t c va l u e s
15 cs . i=nondet u int ( ) ;
16 cs . sn=nondet u int ( ) ;
17 cs . n=n ;
18 i f ( cs . i<=cs . n) { // c
19 sv [ i−1]=cs ; // S
20 sn = sn + a ; // E
21 i = i + 1 ; // E

}
k copies

22 cs . i=i ; c s . sn=sn ; cs . n=n ; //U
23 assume( sv [ i −1]!= cs ) ; // R
24 }
25 assume( i>n ) ; //unwinding assumption
26 assert ( sn==n∗a ) ;
27 }

Figure 11: Example code for the proof by mathematical
induction, during inductive step.

The benchmarks are split into 13 suites, as follows: Ar-
rays contains 86 benchmarks with arrays, BitVectors
contains 47 benchmarks with bit-operations, Concur-
rency contains 1003 multi-threaded benchmarks, Con-
trolFlowInteger contains 48 benchmarks depend mostly
on the control-flow structure and integer variables, De-
viceDrivers64 contains 1650 benchmarks that require
the analysis of pointer aliases and function pointers (64-
bit machine model), ECA contains 1140 benchmarks that
represent event-condition-action systems, Floats contains
81 benchmarks to test float operations, HeapManipu-
lation contains 80 benchmarks that require the analy-
sis of data structures on the heap, pointer aliases, and
function pointers, Loops contains 142 benchmarks with
bounded and unbounded loops, Product Lines contains
597 benchmarks that represent ‘products’ and ‘prod-
uct simulators’ that are derived using different config-
urations of product lines, Recursive contains 24 bench-
marks with recursive functions, Sequentialized contains
261 benchmarks that were derived from SystemC pro-
grams, and Simple contains 46 benchmarks that, as the
ControlFlowInteger category, depend mostly on control-
flow structure and integer variables. Although SV-COMP
2015 consists of 15 categories, containing 5803 tests cases,
two categories (MemorySafety and Termination) are not
evaluated in this paper due to the lack of support on

CPAchecker for these categories using k -induction, as
reported by the authors.

Finally, we evaluate a bicycle computer program, which
was chosen because it represents a real embedded sys-
tem implementation and contains an unbounded loop
that controls all operations modes of the system.

All experiments were conducted on a computer with
Intel Core i7-2600, 3.40GHz with 24GB of RAM with
Ubuntu 11.10 64-bit. For each test case, we set a time
and a memory limit, of 900 seconds (15 minutes) and
16GB, respectively. We also set max iterations to 100
(cf. Fig. 3). The tool used, with the implementation of
the k -induction algorithm, is ESBMC v1.25.2 [33]. Al-
though ESBMC supports incremental SMT solving, it
did not work well in practice for the k -induction algo-
rithm since the overhead of repeatedly checking the for-
mulae satisfiability outweighs the amount of state space
that is pruned by reusing previously learned clauses.

5.1 Results of the Sequential and Parallel k-Induction
Algorithm

5.1.1 Results of the Category Loops

The set of programs is divided as follows: 49 benchmarks
contain valid properties, i.e., ESBMC must be able to
prove correctness; 50 benchmarks contain invalid prop-
erties, i.e., ESBMC must be able to falsify the property.

Figures 12 and 13 show the comparative result and
the total verification time, respectively, of the sequential
and parallel k -induction for the Loops, Feature Checks,
and SystemC categories. Regarding the Loops category,
it can be seen in Figure 12 that, using the sequential
implementation, the verification has failed in 20 bench-
marks, while using the parallel implementation, 7 bench-
marks have failed. Most of the failures occurred due
to time out since these benchmarks have many nested
loops, which increase substantially the complexity of the
generated VCs and hence the time required for checking
their satisfiability. In particular, during the verification
of the ludcmp bad program using the parallel implemen-
tation, the base case is able to find the bug in itera-
tion 7, while using the sequential implementation, the
algorithm does not reach this iteration due to time out.
The programs that caused ESBMC to abort, occurred in
the inductive step, and in particular during the symbolic
execution using the new intermediate representation re-
cently introduced by Morse et al. [35]. These errors did
not affect the verification of the parallel execution, be-
cause only the inductive step process aborts, and the
base case and forward condition processes continue the
verification process, which are later falsified by the base
case or proved by the forward condition. From a total
of 99 benchmarks, in the sequential implementation, the
base case has found the solution in 44 benchmarks, while
the forward condition has found the solution in 10 bench-
marks, and the inductive step has found the solution in
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Figure 13: Comparative results of the verification time for Loops, SystemC, Feature Checks, and BitVectors categories,
using both sequential and parallel k -induction.

25 benchmarks. In the parallel implementation, the base
case has found the solution in 49 benchmarks, while the
forward condition has found the solution in 13 bench-
marks, and the inductive step has found the solution in
30 benchmarks.

In some benchmarks, e.g., string, verisec sendmail ok
and vowel, each implementation of the algorithm has
found the solution in a different stage of the k -induction
algorithm. In these cases, using the sequential implemen-
tation, the proof occurs at a certain depth k during the

inductive step. In the parallel implementation, the proof
occurs at a depth k + 1 in the forward condition. As
the process of checking the forward condition is usually
faster than the inductive step, the parallel implementa-
tion finds the solution in a different step from that by
the sequential implementation.

As shown in Figure 13, in the sequential implementa-
tion, all benchmarks were verified in 7582 seconds, which
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correctly verifies 79 out of 99 (79%)2 while in the paral-
lel implementation, all benchmarks were verified in 6332
seconds, which correctly verifies 92 out of 99 (93%)3.
Note that the parallel implementation is able to solve
more verification tasks in less time than the sequential
implementation.

5.1.2 Results of the SystemC Category

The SystemC category contains 25 benchmarks with
valid properties and 37 benchmarks with invalid prop-
erties. As can be seen in Figure 12 that the sequential
implementation is able to find bugs in 34 benchmarks,
while the parallel implementation is able to find bugs in
all (37) benchmarks that are declared as unsafe. The se-
quential and parallel implementation of the k -induction
algorithm are not able to prove the correctness of any
test case in that category, failing in 28 and 25 bench-
marks, respectively; this happens mainly because of sev-
eral unbounded loops present in the safe programs that
do not produce redundant states; this makes it hard for
the inductive step to prove correctness. As shown in Fig-
ure 13, the sequential implementation verified all bench-
marks in 28865 seconds, which correctly verified 34 out
of 62 benchmarks (54%), while the parallel implemen-
tation verified in 22734 seconds, which correctly verified
37 out of 62 benchmarks (59%).

5.1.3 Results of the Feature Checks Category

The Feature Checks category contains 51 benchmarks
with valid properties and 16 benchmarks with invalid
properties. As can be seen in Figure 12 that the sequen-
tial implementation failed in 19 benchmarks, while the
parallel implementation failed in 16 benchmarks. Using
the sequential and parallel implementations, the base
case step has found bugs in 15 and 18 benchmarks, re-
spectively; while the inductive step proved correctness in
33 and 14 benchmarks, respectively. The forward con-
dition proved correctness in 19 benchmarks using the
parallel implementation, but it has not proved correct-
ness of any test case using the sequential implementa-
tion. Finally, as shown in Figure 13, the sequential im-
plementation verified all benchmarks in 9869 seconds,
which correctly verified 46 out of 67 benchmarks (68%),
while the parallel implementation verified in 988 seconds,
which correctly verified 49 out of 67 benchmarks (73%).
In this category, the base case verified incorrectly two
benchmarks that, in principle, fulfills the specification
(i.e., it produced a false alarm). However, these false
alarms do not happen because of the k -induction algo-
rithm; they happen due to the memory model adopted

2 The benchmarks were verified using the command-line: esbmc
file.c --k-induction --k-step 100 --memlimit 15g --timeout

900s
3 The benchmarks were verified using the command-line: esbmc

file.c --k-induction-parallel --k-step 100 --memlimit 15g

--timeout 900s

by ESBMC [35], which is also present when verifying
those two benchmarks using plain BMC.

5.1.4 Results of the BitVectors Category

The BitVectors category contains 28 benchmarks with
valid properties and 4 benchmarks with invalid proper-
ties. As can be seen in Figure 12, the sequential imple-
mentation was able to prove 17 correct results using the
inductive step, while the parallel implementation pro-
duced 27 correct results, where it solves 1 benchmark
using the base case, 14 using the forward condition, and
12 using the inductive step. The sequential implementa-
tion could not find a solution for 6 benchmarks (report-
ing verification unknown), while in the parallel imple-
mentation this number decreased for 2 benchmarks. In
this category, both implementations incorrectly verified
2 benchmarks that, in principle, fulfills the specification
(i.e., it produced a false alarm). As in the Feature Checks
category, these false alarms do not happen because of the
k -induction algorithm; they happen due to the memory
model adopted by ESBMC [35].

As shown in Figure 13, to verify all benchmarks of
this category, the sequential implementation spent 6523
seconds and the parallel implementation spent 5709 sec-
onds; it decreased 12% of the total verification time. An
important result is the number of timeouts: the sequen-
tial implementation had 7 timeouts, while the parallel
implementation had only 1 timeout.

5.2 Comparison to CPAchecker

This subsection describes the evaluation of ESBMC (se-
quential and parallel k -induction) against CPAchecker.
CBMC is another tool that provides a k -induction al-
gorithm to prove correctness [9] but the comparison of
CPAchecker and CBMC was already undertaken by Beyer
et al. [19] and will not be covered by this paper. We in-
voked the tools using three scripts: one for ESBMC’s
sequential k -induction4, one for ESBMC’s parallel k -
induction5 and one for CPAchecker’s k -induction, using
Continuously-Refined Invariants6.

Table 1 summarizes the results. Here, Correct re-
sults is the number of correct positive and negative re-
sults (i.e., the tool reports SAFE or UNSAFE correctly),
Wrong proofs is the number of false positive results (i.e.,
the tool reports SAFE incorrectly), Wrong alarms is

4 esbmc --k-induction --k-step 100 --z3

--no-unwinding-assertions --timeout 15m --memlimit 15g

--64 -DLDV ERROR=ERROR -Dassert=notassert -D Bool=int

--no-assertions --error-label ERROR
5 esbmc --k-induction-parallel --k-step 100 --z3

--no-unwinding-assertions --timeout 15m --memlimit 15g

--64 -DLDV ERROR=ERROR -Dassert=notassert -D Bool=int

--no-assertions --error-label ERROR
6 cpa.sh -bmc-induction -setprop cfa.useMultiEdges=true

-setprop bmc.addInvariantsByInduction=false -spec

PropertyERROR.prp
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the number of false negative results (i.e., the tool re-
ports UNSAFE incorrectly), Timeout/Unknown repre-
sents the number of time-outs (i.e., the tool was aborted
after 900 seconds) or when the tool could not provide
a proof or counterexample, Memory out represents the
number of memory outs (i.e., the tool was aborted after
the allocation of more than 15 GB), Fail is the number
of internal errors during the verification of each bench-
mark and Time is the total verification time of all 5205
benchmarks.

Both ESBMC’s sequential and parallel k -induction
implementations are able correctly verify more bench-
marks than CPAchecker, with the ESBMC’s parallel k -
induction providing 82 more correct results than ES-
BMC’s sequential k -induction, and 804 more correct re-
sults than CPAchecker. However, ESBMC’s sequential
k -induction is able to provide fewer wrong alarms, 16
fewer than k -induction and 2 fewer than CPAchecker,
and CPAchecker is able to provide fewer wrong proofs,
85 fewer than ESBMC’s sequential k -induction and 239
fewer then ESBMC’s parallel k -induction. Most of the
incorrect results provided by ESBMC are related to bugs
in the coding of the inductive step transformations, be-
cause we do not support continue and return (from in-
side a loop) statements. CPAchecker provides fewer time-
outs/unknown results than the sequential k -induction
implementation of ESBMC (252 fewer timeouts/unknown
results) and ESBMC’s parallel k -induction (737 fewer
timeouts/unknown results).

ESBMC’s parallel k -induction is able to verify all
benchmarks without reporting any memory out or abort.
This is due to the multiprocess approach; as the main
process is responsible for reporting the result of the veri-
fication, if the other three processes are killed due to the
allocation of more than the memory limit, or abort for
some reason, the main process presents an unknown re-
sult. This behaviour also explains the increased number
of correct results (as, if a process ends without providing
a result, the other processes do not stop the verification),
incorrect results (due to bugs mentioned earlier), and the
number of timeout/unknown results. The parallel algo-
rithm converts memory outs and aborts into successful,
unsuccessful or unknown results.

Overall, ESBMC’s sequential k -induction completed
all categories in 1224634 seconds (approximately 14 days
and 4 hours), the parallel k -induction completed all cat-
egories in 1384773 seconds (approximately 16 days) and
CPAchecker’s k -induction implementation completed all
categories in 1041696 seconds (approximately 12 days).
ESBMC’s sequential k -induction correctly verifies 3071
benchmarks and presents 111 wrong proofs and 32 wrong
alarms, while the parallel k -induction correctly verifies
3153 benchmarks and presents 265 wrong proofs and 48
wrong alarms, and CPAchecker correctly verifies 2349
benchmarks and presents 26 wrong proofs and 34 wrong
alarms.

5.3 Verification of a Bicycle Computer

A proof of concept is also developed using the k -induction
algorithm, in a bicycle computer, which uses the em-
bedded platform Raspberry Pi [36] with the processor
ARM1176JZF-S [37]. Note that this system is chosen
since it contains an unbounded loop in the control soft-
ware, which consists of a data acquisition stage, the ap-
plication of an algorithm, and the output of a result.
In particular, the system consists of a screen and two
buttons, one for the circular modes of the computer op-
eration and another button to restart the current mode
of the computer. The operation modes of the computer
include: travel (prints the current mileage of the trip),
speed (shows the current speed), total (shows the total
mileage traveled), and time (shows the total trip time).
The bicycle computer control software contains approx-
imately 125 lines of C code.

For each operation mode of this system, there are
time constraints between the time of processing the in-
formation and on-screen display. In the travel mode,
mileage should be shown every 200ms with a tolerance
of 100ms. In the speed mode, the actual speed should
be shown every 100ms. In total mode, the total mileage
must be shown every 500ms and in time mode, the travel
time should be displayed every second.

To verify the time constraints of the program, it is
necessary to insert assertions into the program over the
processing time of each travel mode. For example, if the
computer is in speed mode, the scan time of the sen-
sor and the speed calculation should be less than 100ms,
which is the time to update the screen in this partic-
ular mode. To identify the processing time information
of each mode, the code is converted into assembly in-
structions and, from the number of instructions, we cal-
culate the CPU time. The CPU time is calculated as
follows [38]:

T. de CPU = Nins × CPI × Tc (9)

given that Nins is the generated number of instructions,
CPI is the average number of processor cycles per in-
struction and the TC is the cycle time of the processor
(the inverse of the processor clock). In the experiments,
values of CPI and TC are obtained from the technical
manual of the processor ARM1176JZF-S, presented in
the platform Raspberry Pi used by the system. The val-
ues are as follows: CPI = 1.1 and TC = 1.42857× 10−9

sec (i.e., inverse of 700MHz).
The modified program with statements about the

temporal properties is shown in Figure 14, where Tp is
the processing time, Tb is the time in which the button
is pressed (changing the system’s mode), and Rt repre-
sents the temporal constraint of the current mode. The
current time() returns the timer register value (i.e., the
number of processor clock ticks) multiplied by the cycle
time of the processor; this measures the elapsed time.
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Tool results ESBMC
Sequential

ESBMC
Parallel

CPAchecker
cont. refined

Correct results 3071 3153 2349

Wrong proofs 111 265 26

Wrong alarms 32 48 34

Timeout/Unknown 1254 1739 1002

Memory out 383 0 67

Fail 348 0 1727

Total time (days) 14 16 12

Table 1: Results of k -induction tools.

1 . . .
2 Tb=cur r en t t ime ( ) ;
3 /∗ Process ing and d i s p l a y in format ion ∗/
4 Tp=cur r en t t ime ( ) ;
5 assert (Tp − Tb < Rt ) ;
6 . . .

Figure 14: Modified program with assertions.

The assert statement then checks whether the elapsed
time is less than the constraint for the current mode.

The k -induction algorithm is able to successfully ver-
ify all properties in less than one second and no bug has
been found7. It was also noted that the processing time
and the time to display the information on-screen is ex-
tremely small in relation to the time constraints. For
example, in the travel mode, only 55 instructions are
necessary to calculate the speed and to show the results
on the display. The calculated CPU time for this partic-
ular case is:

T. de CPU = 55 × 1, 1 × 1, 42857× 10−9

= 86ns
(10)

This means that the CPU speed of the system, which
determines how many instructions it can perform in one
second of time, is faster than what is needed for the
implementation of the bicycle computer.

6 Related Work

The application of the k -induction method is gaining
popularity in the software verification community. Re-
cently, Bradley et al. introduced “property-based reach-
ability” (or IC3) procedure for the safety verification of
systems [39,40]. The authors have shown that IC3 can
scale on certain benchmarks where k -induction fails to
succeed. We do not compare k -induction with IC3 as this

7 The benchmarks are verified using the command-line: esbmc
file.c −−k-induction −−k-step 10

was performed by Bradley [39]; we focus our comparison
on related k -induction procedures.

Other work has explored some proofs by mathemat-
ical induction of hardware and software systems with
some limitations, e.g., requiring changes in the code to
introduce loop invariants [8,9,11]. This complicates the
automation of the verification process, unless other meth-
ods are used in combination to automatically derrive
the loop invariant [41,42,43,44,45]. Similar to the ap-
proach proposed by Hagen and Tinelli [26], our method
is completely automatic and does not require the user
to provide loops invariants as the final assertions af-
ter each loop. On the other hand, state-of-the-art BMC
tools have been widely used, but as bug-finding tools
since they typically analyze bounded program runs [3,
4]; completeness can only be ensured if the BMC tools
know an upper bound on the depth of the state space,
which is not generally the case. This paper closes the gap
between these literatures, providing clear evidence that
the k -induction algorithm can be applied to a broader
range of C programs without manual intervention.

Große et al. describe a method for proving proper-
ties of TLM designs (Transaction Level Modelling) in
SystemC [25,11]. The approach consists of three steps;
starting with the transformation of a SystemC program
into a C program, followed by the generation and ad-
dition of logics to monitor TLM properties (using as-
sertions and finite state machines), and the verification
of the C program using the CBMC tool [3]. In CBMC,
the proof of the properties is done by mathematical in-
duction, using the k -induction algorithm implemented
by the authors. A producer-consumer program is tested,
however, with various restrictions. The tool is not able
to finalize the verification in the given time with the
increase of the number of producers and consumers; ad-
ditionally, the technique can only prove correctness for a
limited number of iterations. The k -induction algorithm,
implemented by the authors, is similar to the one de-
scribed in this paper, which uses three steps: base case,
forward condition, and inductive step. The difference lies
on the transformations carried out in the forward condi-
tion. In the k -induction algorithm, proposed by Große et
al., during the forward condition, transformations sim-



M. Gadelha et al.: Handling Loops in Bounded Model Checking of C Programs via k -Induction 15

ilar to those inserted during the inductive step in our
approach, are introduced in the code to check whether
there is a path between an initial state and the current
state k; while the algorithm proposed in this paper, an
assertion is inserted at the end of the loop to verify that
all states are reached in k steps. Although the tool is
targeted at SystemC programs, it needs to convert the
SystemC program into a C program instead of directly
verifying in the target language; this introduces addi-
tional delays before starting the verification process; in
our k -induction algorithm, this an additional step does
not occur.

Sheeran et al. describe a tool called Lucifer to verify
hardware designs based on mathematical induction [12].
The proposed algorithm consists of two steps, the base
case and the inductive step. Several forms of the algo-
rithm are presented, in a incremental way, always pre-
senting improvements over the previous version. The pro-
blem is modeled as a graph; the base case checks whether
a property holds in the first i states, and the inductive
step then checks the disjunction of two expressions, the
first is the negation of the satisfiability of the shortest
path between the initial states and a i+ 1 state, and the
second is the negation of the satisfiability of the shortest
path between the initial state and the negation of the
property. There are several differences between the algo-
rithm proposed by Sheeran et al. to our k -induction al-
gorithm. The first is that our algorithm has an extra step
before the inductive step (i.e., the forward condition) to
check whether the loops are sufficiently unrolled. The
second difference is that, in their algorithm, no transfor-
mation is made during the inductive step; and the induc-
tive step only checks whether the next state is reachable,
whereas our algorithm checks that, if the property holds
for the current state, it should hold for the next unwind-
ings of the program. Moreover, since at that time, so-
phisticated SMT solvers built over efficient SAT solvers
were just about to be born, the authors did not exploit
the use of SMT solvers to check the satisfiability of the
generated VCs, as done by the ESBMC tool [7,17]. Since
Lucifer is a hardware verification tool, the authors also
do not handle directly programs written in the C/C++
programing languages.

Similar to Sheeran et al., Hagen and Tinelli describe
a k -induction algorithm for Lustre programs that does
not require the user to provide loops invariants [26,41].
Kahsai and Tinelli also propose a parallel k-induction
based model checker for Lustre programs [14]. Differ-
ently from Sheeran et al., Hagen and Tinelli approach
automatically translates Lustre programs into a first-
order logic (FOL) specification language. In particular,
Hagen and Tinelli exploit decidable fragments of FOL
supported by typical SMT solvers: uninterpreted func-
tions, linear arithmetic, arrays, tuples, and records. How-
ever, the authors do not exploit bit-vector arithmetic in
their k -induction algorithm, which limits its analysis. If
the program variables are modeled as bit-vectors of a

fixed size, then the result of the analysis can be precise
(w.r.t. the program semantics) depending on the size
considered for the bit-vectors [7]. In contrast, if the pro-
gram variables are modeled using the abstract numer-
ical domains, as proposed by Hagen and Tinelli, then
the result of the analysis is independent from the actual
binary representation, but it may not be precise when
arithmetic expressions are involved.

Eén et al. propose a verification method based on
SAT solvers to check properties, using temporal induc-
tion, in hardware designs modeled as finite state ma-
chines [10]. This verification method is implemented in
the TIP tool and some benchmarks, written in the SMV
(symbolic model verification) language [46], are verified.
Simplifications are implemented to the algorithm to prune
the state space explored during the proof by induction,
which considerably reduced the verification time. Differ-
ently from our work, the induction algorithm uses only
two steps for the proof, i.e., the base case and the induc-
tive step; the latter includes the forward condition, but
not as an (independent) step. Additionally, the inductive
step does not perform any transformation in the origi-
nal program and the proof condition of the algorithm
is simply a conjunction of the negation of the inductive
step result and the forward condition result. The main
conclusion of this paper is that the iterative and deep-
ening verification, starting from a low iterations limit,
is usually more effective than using a random iterations
limit. However, Eén et al. do not apply this approach to
the verification of software systems and they focus only
on hardware designs written in the SMV language.

Donaldson et al. describe a verification tool called
Scratch [8] to detect data races during Direct Memory
Access (DMA) in the CELL BE processor from IBM [8].
The approach used to verify C programs is the k -induction
technique. The tool inserts assertions into the program
to model the behavior of the memory control-flow, and it
attempts to prove the correctness of the program, using
the k -induction algorithm. The k -induction algorithm
implemented in the Scratch tool uses two steps, the base
case and the inductive step. The tool is able to prove
the absence of data races, but it is restricted to ver-
ify that specific class of problems for a particular type
of hardware. Differently from the algorithm proposed in
this paper, Donaldson et al. proposed the k -induction
with two steps, the base case and the inductive step.
The steps of the algorithm are similar to the one pro-
posed in this paper, but it requires annotations in the
code to introduce loops invariants. The tool supports C
programs, which is used to program the CELL processor.
In this paper, in addition to check C/C++ programs, a
more general class of problems is evaluated, using the
(traditional) SV-COMP benchmarks.

In another related work, Donaldson et al. describe
two tools for proving correctness of programs: K-Boogie
and K-Inductor [9]. The K-Boogie is an extension to the
model checker of the Boogie language and allows the
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proof of correctness, using the k -induction method, of
several programming languages, including Boogie, Spec,
Dafny, Chalice, VCC, and Havoc. K-Inductor is a model
checker for C programs, which is built on top of the
CBMC tool [3]. The authors use an algorithm called
combined-case k -induction, which uses the base case and
the inductive step, but optimizations are inserted into
the code to remove nested loops, turning them into pro-
grams with only one loop. K-Inductor is used to verify
the same benchmarks shown in a previous work of the
authors, in which the tool Scratch is presented [8]. The
K-inductor has shown similar results in terms of cor-
rect verification of programs, but with gains in verifica-
tion time. The difference between the work of Donald-
son et al. and the work proposed in this paper, appears
when the algorithm of mathematical induction is ana-
lyzed. Their k -induction algorithm uses two steps, the
base case and the inductive step. The absence of the
forward condition in the algorithm proposed by the au-
thors does not interfere in the verification of the cases
described in the paper. However, the benchmarks are
manually changed, in order to model data races, which
thus complicates the automation of the verification pro-
cess.

Kahsai et al. describe PKIND, a parallel version of
the tool KIND [41], used to verify invariant properties
of programs written in Lustre [14]. PKIND makes use
of a multi-process approach, similar to ESBMC, with
the difference that the communication between process
is message-based for PKIND (using MPI API [47]), and
pipe-based for ESBMC [29]. In order to verify a Lus-
tre program, PKIND starts three processes, one for base
case, one for inductive step and one for invariant gen-
eration [41], note that unlike ESBMC, the k-induction
algorithm used by PKIND does not have a forward con-
dition step. The base case starts the verification with
k = 0, and increments its value until it finds a coun-
terexample or it receives a message from the inductive
step process that a solution was found. Similarly, the
inductive step verifies the program with increasing val-
ues of k until it receives a message from the base case
process or a solution was found. The invariant genera-
tion process generates a set of candidate invariant from
predefined templates and constantly feeds the inductive
step process with them, as done recently by Beyer et
al. [19], which combines k -induction with continuously-
refined invariants. It is important to note that when the
inductive step finds a solution for an arbitrary value of
k, it sends a message to the base case process that checks
if the properties holds up to that value, before showing
the result.

7 Conclusions

This paper presented a new algorithm, called k -induction,
to prove correctness by mathematical induction of C pro-

grams. This algorithm has been implemented in the ES-
BMC tool, using a sequential and a parallel implemen-
tation. The main contributions of this work are the de-
sign, implementation, and evaluation of the k -induction
algorithm in a verification tool as well as the use of the
technique for the automated verification of reachabil-
ity and time constraints properties in heteregenous pro-
grams. To the best of our knowledge, this paper marks
the first application of the k -induction algorithm to a
broader range of C programs if compared to existing im-
plementations of k -induction-based verification.

To validate the k -induction algorithm, experiments
were performed involving several benchmarks, of which
the sequential k -induction was able to successfully ver-
ify 70% of the benchmarks in 52839 seconds, and the
parallel k -induction was able to correctly verify 80%, in
35763 seconds, which gives a speedup of roughly 32%
faster than its sequential version. Given a fixed timeout,
this speedup can also improve the quality of the results,
because more programs can be verified if their verifica-
tion would otherwise be interrupted by the time limit.

Additionally, we compare the sequential and paral-
lel implementation of the k -induction algorithm against
the CPAChecker tool using the SV-COMP 2015 bench-
marks. In summary, ESBMC’s sequential k -induction
was able to successfully verify 59% in 1224634 seconds,
ESBMC’s parallel k -induction was able to correctly ver-
ify 60%, in 1384773 seconds, and CPAchecker was able
to successfully verify 45% of the benchmarks in 1041696
seconds which, although faster, gives less coverage than
ESBMC’s sequential or parallel k -induction by 14% and
15%, respectively.

Last but not least, our k -induction algorithm was
able to prove and falsify safety properties and tempo-
ral constraints in a bicycle computer. In the two pro-
posed approaches, the parallel implementation of the k -
induction produced better results, with the largest num-
ber of benchmarks being successfully verified in less time.

For future work, we intend to investigate whether re-
dundant computations (or constraints) in the k -induction
algorithm can be avoided, possibly by using the results
of already completed steps using the Green solver inter-
face [48].
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