
ESBMCQtOM : A Bounded Model Checking
Tool to Verify Qt Applications

Mário Garcia, Felipe Monteiro, Lucas Cordeiro and Eddie de Lima Filho

Electronic and Information Research Centre, Federal University of Amazonas, Brazil

Abstract We integrate a simplified model of the Qt framework, named
as Qt operational model (QtOM), into the efficient SMT-based context-
bounded model checker (ESBMC++), which results in ESBMCQtOM . In
particular, ESBMCQtOM is a bounded model checking tool to verify Qt-
based applications, which focuses on the verification of code properties,
such as invalid memory access and containers usage, through pre- and
postconditions, data usage evaluation, and simulation features. Experi-
mental results show that ESBMCQtOM can be effectively and efficiently
applied to verify Qt-based consumer electronics applications.

1 Introduction

Currently, in order to be competitive, consumer electronics companies tend to
provide devices with reduced prices, which are produced in large scale. As a
consequence, profit margins tend to be small, which, in turn, acts as a feedback
to the production process. In particular, such products must be as robust and
bug-free as possible, given that even medium product-return rates tend to be
unacceptable. This way, it is important to adopt reliable verification methods,
with the goal of ensuring system correctness and avoiding losses [1].

Model checking [1] is an interesting approach, due to the possibility of auto-
mated verification, which makes such a process cheap and simple. Nonetheless,
the employed verifier should provide support regarding target language and sys-
tem properties, which even include linked libraries and development frameworks.
For instance, a checker based on satisfiability modulo theories (SMT), such as
the efficient SMT-based context-bounded model checker (ESBMC++) [2], can
be employed to verify C/C++ code, but it does not support specific frameworks,
such as Qt [3]. The same happens to Java PathFinder [4], with respect to multi-
media home platform applications [5] and programs developed for the Android
operating system [6]. The former are even verified with a specific test suite,
which relies on a specialized library; however, such a problem could be overcome
through an abstract representation of the associated libraries, known as opera-
tional model (OM) [7]. Indeed, it must approximate the behavior of the original
modules to provide the same inputs and outputs to the main application.

The present work provides a Qt framework OM, which checks properties
related to Qt modules, named as Qt Operational Model (QtOM). QtOM was
integrated into ESBMC++, which gave rise to ESBMCQtOM , in order to verify
specific properties in Qt/C++ programs. It is worth noticing that the com-
bination between ESBMC++ and OMs has been previously applied to verify

Qt/C++ programs [8]; however, the present work largely extended that, in order
to verify specific properties related to Qt structures, via pre and postconditions.
Besides, two real-world applications were included in the current benchmark set.

Contributions. The present paper extends a previously published work [8].
Here, implementation and usage aspects are tackled and, in particular, QtOM
now includes new features from the Qt Essentials modules [3], in order to verify
two Qt-based applications: Locomaps [9] and GeoMessage [10], which were not
part of the previous benchmark set [8]. Besides, sequential and associative Qt
containers [2] were also included into QtOM. To the best of our knowledge, there
is no other bounded model checker for Qt-based programs, regarding consumer
electronics devices. All benchmarks, OMs, tools, and experimental results, asso-
ciated with the current evaluation, are available on a supplementary web page1.

2 Qt Operational Model (QtOM)

QtOM strictly provides the same behavior of the Qt framework, while presenting
a simplified implementation focused on property verification [8], and can be split
into functionality modules [3]. The QtOM Core module [3], as also happens to
Qt, contains all non-graphical core classes (including containers) and presents a
complete abstraction for the graphical user interface part.

QtCore also comprises container classes, which implement template-based
containers for general purpose, similar to what is offered by the standard tem-
plate libraries (STL). For instance, QVector<QWidget> or QStack<QWidget>
could be used for implementing a dynamic array of QWidgets. The former is
similar to the STL counterpart, while the latter provides a last in, first out
semantics with new methods, such as QStack::push().

Fig. 1 shows the integration of QtOM into ESBMC++, i.e., ESBMCQtOM ,
where gray boxes represent the respective OM, the white ones show inputs and
outputs, the dotted ones belong to ESBMC++, and elements connected through
dotted arrows represent the components used to build QtOM. The first step is
the parser, where ESBMC++ translates the input code into an intermediate
representation (IR) tree, where each language structure is correctly identified,
by means of QtOM. The latter considers each library and its associated classes,
including attributes, method signatures, and function prototypes, through asser-
tions, as shown in Fig. 2. Indeed, assertions are of paramount importance, given
that they ultimately allow formal property verification.

Hence, QtOM aids the parser process to build a C++ IR with all necessary
assertions to verify Qt-specific properties. After that, the remaining verification
flow is normally carried out, as described by Cordeiro et al. [11].

It is clear that the usefulness of the proposed methodology relies on the
fact that QtOM correctly represents the original Qt libraries. In that sense,
all developed QtOM modules were manually verified and exhaustively compared
with the original ones, in order to guarantee the same behavior. Besides, although
QtOM is a new implementation, it consists in constructing a simplified model
of the related libraries, using the same language and through the original code
and documentation, which tends to reduce the resulting number of errors.

1 http://esbmc.org/qtom/

C++
Parser

Property
holds up to
bound k

Property
violation

Counterexample

Verification
Successful

Qt
Operational

Model

Qt/C++
Source
Code Scan

Adding
assertions

Extract/Identify
structure/properties Qt

Documentation

GOTO
Converter

Symbolic
Execution

SMT
Solver

Logical
Context

IR Type
Checked

GOTO
Program

SSA
Form

Logical
Formula

Scan

Figure 1: Connecting QtOM to ESBMC++ architecture.

Even so, one may also argue that conformance testing regarding OMs [12]
would be a better approach, which is true; however, that option is not available
in the present case, albeit it is an interesting possibility for future work.

…

QtGUI

QtCore

Qt Documentation

class Q_CORE_EXPORT QFile : public
QFileDevice !
{ !
 ... !
 QString fileName() const; !
 void setFileName(const QString &name); !
 ... !
};

Adding
assertions

…
QtGUI O. M.

QtCore O. M.
Qt Operational Model

class QFile { !
 ... !
 void setFileName(const QString & name){ !
 __ESBMC_assert(!name.isEmpty(), !
 "The string must not be empty"); !
 __ESBMC_assert(!this->isOpen(), !
 "The file must be closed"); !
 } !
 ... !
};

Extract/Identify
structure/properties

Figure 2: QtOM development process.

3 QtOM Features

Through the integration of QtOM into ESBMC++, ESBMCQtOM is able to
properly identify Qt/C++ programs and verify all default properties that it can
handle, such as under- and overflow arithmetic, pointer safety, memory leaks,
array bounds, and atomicity [2]. Additionally, in order to ensure the correct usage
of the Qt methods, pre- and postconditions check the following properties:

– Invalid memory access. QtOM assertions ensure that only valid memory
addresses are accessed, through operations with arrays, objects, and pointers.

– Time-period values. Some Qt features, such as those offered by the QTime
class, need time-period specifications to be properly executed. This way,
QtOM ensures that only valid time parameters are considered.

– Access to missing files. The Qt framework provides a set of libraries to
handle files (e.g., QIODevice and QFile). As a consequence, QtOM checks
the access and manipulation of all handled files, in a given program.

– Null pointers. QtOM also covers pointer manipulation, by adding asser-
tions to ensure that NULL pointers are not used in invalid operations.

– String manipulation. Unicode character string representations and a set
of methods to handle them are provided by the QString class. As such
structures are widely used by several Qt classes and Qt-based applications,
QtOM checks pre and postconditions, for each method from that library,
with the goal of ensuring correct string manipulation.

– Container usage. The QtCore module provides a set of template-based
container classes to create collections and provide uniform data management.
Due to that, QtOM ensures the correct usage of such structures, as well as
their manipulation through specialized methods.

4 QtOM Usage

In order to verify C++ programs based on the Qt framework, users must call
the ESBMC++ v1.25.4 command-line version, using

esbmc <file>.cpp --unwind <k> -I <path-to-QtOM> -I <path-to-C++-OM>,

where <file>.cpp is the Qt/C++ code to be verified, < k > is the maximum loop
unrolling, and <path-to-QtOM> and <path-to-C++-OM> are the locations of
the QtOM files and the C++ OM [2], respectively. Thenceforth, the verification
process is completely automatic, i.e., if no bug is found, up to a k-depth unwind-
ing, then ESBMCQtOM reports VERIFICATION SUCCESSFUL; otherwise, it
reports VERIFICATION FAILED, along with a counterexample, which contains
all necessary information for detecting and reproducing the respective error.

5 Verifying Qt Applications with ESBMCQtOM

5.1 Locomaps Application

ESBMCQtOM was applied to verify a Qt sample application called Locomaps [9],
which demonstrates satellite, terrain, street maps, tiled map service planning,
and Qt Geo GPS Integration, among other features. By means of a unique
source code, such an application can be cross-compiled and run on Mac OS X,
Linux, and Windows. It contains two classes and 115 Qt/C++ code lines, using
five different APIs from the Qt framework: QApplication, QCoreApplication,
QDesktopWidget, QtDeclarative, and QMainWindow.

5.2 GeoMessage Application

Another verification was performed on a real-world Qt application called Geo-
Message simulator, which provides messaging for applications and system com-
ponents, in the ArcGIS platform [10]. It receives XML files as input and gen-
erates, in different frequencies, User Datagram Protocol (UDP) broadcast data-
grams, as an output to ArcGIS’s applications and system components.

GeoMessage is also cross-platform and contains 1209 Qt/C++ code lines,
using 20 different Qt APIs, which cover several features, such as events, file

handling, and widgets. It is worth noticing that GeoMessage uses QMutex and
QMutexLocker, which are related to the Qt Threading module (classes for concur-
rent programs). Such classes were used to lock/unlock mutexes, in GeoMessage,
and, most importantly, ESBMCQtOM is able to properly verify their structures;
however, it does not provide full support to the Qt Threading module yet.

5.3 Verification Results

During the verification of Locomaps and GeoMessage, the following properties
were checked: array-bound violations, under- and overflow arithmetic, division by
zero, pointer safety, and other specific properties defined in QtOM (cf. Section 3).
Furthermore, ESBMCQtOM was able to fully identify the verified source code,
using five different QtOM modules for Locomaps and twenty for GeoMessage, i.e.,
one for each original counterpart. The verification process was totally automatic
and took approximately 6.7 seconds, for generating 32 verification conditions
(VCs) for Locomaps, and 16 seconds, regarding 6421 VCs for GeoMessage, on a
standard PC desktop. Additionally, ESBMCQtOM was able to find similar bugs
in both applications, which were confirmed by the respective developers.

Fig. 3 shows a code fragment from Locomaps, which uses the QApplication
class present in the QtWidgets module. In that particular case, if the argv pa-
rameter is not correctly initialized, then the constructor called by object app
does not execute properly and the application crashes (see line 2, in Fig. 3).
In order to verify this property, ESBMCQtOM checks two assertions regarding
(input) parameters, as can be seen in Fig. 4 (see lines 4 and 5), while evaluating
them as preconditions. A similar problem was also found in the GeoMessage
application. One way to fix such a bug is to check, with conditional statements,
whether argv and argc are valid arguments, before using them in an operation.

1 int main (int argc , char ∗argv []) {
2 QApplication app (argc , argv) ;
3 return app . exec () ;
4 }

Figure 3: Code fragment from the main file of the Locomaps benchmark.

6 Conclusions

ESBMCQtOM was presented as an SMT-based BMC tool, which employs an op-
erational model (QtOM) to verify Qt-based applications. In particular, QtOM
comprises a simple representation of Qt, including several pre- and postcondi-
tions, data storage evaluation (e.g., container checks), and simulation features
(e.g., string and file manipulation), which are used to check code properties, such
as invalid memory access, time-period values, and container usage.

1 c l a s s QApplication {
2 . . .
3 QApplication (int & argc , char ∗∗ argv){
4 ESBMC assert (argc > 0 , ‘ ‘ I n v a l i d parameter ’ ’) ;
5 ESBMC assert (argv != NULL, ‘ ‘ I n v a l i d po in t e r ’ ’) ;
6 th i s−>s t r = argv ;
7 th i s−> s i z e = s t r l e n (∗ argv) ;
8 . . .
9 }

10 . . .
11 } ;

Figure 4: Operational model for the QApplication() constructor.

Additionally, a Qt touch screen program for browsing maps, satellite, and
terrain data [9] and another application that provides messaging for the ArcGIS
platform [10] were successfully verified, in the context of consumer electronics
devices. For the best of our knowledge, there is no other approach, employing
BMC, that is able to verify Qt-based applications. For future work, the developed
QtOM will be extended (support to more modules), with the goal of increasing
the Qt framework coverage. Besides, conformance testing procedures will be
developed for validating QtOM, which could also be applied to Qt modules.

References

1. B. Berard, M. Bidoit, A. Finkel: Systems and Software Verification: Model-
Checking Techniques and Tool. Springer Publishing, 2010.

2. M. Ramalho et al. SMT-Based Bounded Model Checking of C++ Programs. In:
ECBS, pp. 147–156, 2013.

3. The Qt Framework. http://www.qt.io/qt-framework/ April, 2015.
4. P. Mehlitz, N. Rungta, W. Visser: A Hands-on Java Pathfinder Tutorial. In: ICSE,

pp. 1493–1495, 2013.
5. J. Piesing: The DVB Multimedia Home Platform (MHP) and Related Specifica-

tions. Proceedings of the IEEE 94(1), pp. 237–247, 2006.
6. H. van der Merwe et al. Execution and Property Specifications for JPF-Android.

ACM SIGSOFT Software Engineering Notes 39(1), pp. 1–5, 2014.
7. H. van der Merwe et al. Generation of Library Models for Verification of Android

Applications. ACM SIGSOFT Software Engineering Notes 40(1), pp. 1–5, 2015.
8. F. Monteiro, L. Cordeiro, E. de Lima Filho: Bounded Model Checking of C++

Programs Based on the Qt Framework. In: GCCE, pp. 179–180, 2015.
9. Spatial Minds and CyberData Corporation: Locomaps. https://github.com/craig-

miller/locomaps [accessed 10-September-2015].
10. Environmental Systems Research Institute: GeoMessage Simulator.

https://github.com/Esri/geomessage-simulator-qt [accessed 15-September-2015].
11. L. Cordeiro, B. Fischer, J. Marques-Silva: SMT-based bounded model checking for

embedded ANSI-C software. IEEE TSE 38(4), pp. 957–974, 2012.
12. P. de la Cámara, J. Castro, M. Gallardo, P. Merino: Verification support for

ARINC-653-based avionics software. JSTVR 21(4), pp. 267–298, 2011.
13. J. Soulié: C++ Language Tutorial. cplusplus.com. [accessed December-2015].

