
ar
X

iv
:1

00
3.

38
30

v1
 [

cs
.L

O
]

19
 M

ar
 2

01
0

Bounded Model Checking of Multi-threaded Software
using SMT solvers

Lucas Cordeiro
University of Southampton

lcc08r@ecs.soton.ac.uk

Bernd Fischer
University of Southampton

b.fischer@ecs.soton.ac.uk

ABSTRACT
The transition from single-core to multi-core processors has
made multi-threaded software an important subject in com-
puter aided verification. Here, we describe and evaluate an
extension of the ESBMC model checker to support the veri-
fication of multi-threaded software with shared variables and
locks using bounded model checking (BMC) based on Sat-
isfiability Modulo Theories (SMT). We describe three ap-
proaches to model check multi-threaded software and our
modelling of the synchronization primitives of the Pthread
library. In the lazy approach, we generate all possible in-
terleavings and call the BMC procedure on each of them
individually, until we either find a bug, or have systemat-
ically explored all interleavings. In the schedule recording
approach, we encode all possible interleavings into one sin-
gle formula and then exploit the high speed of the SMT
solvers. In the underapproximation-widening approach, we
reduce the state space by abstracting the number of state
variables and interleavings from the proofs of unsatisfiabil-
ity generated by the SMT solvers. In all three approaches,
we use partial-order reduction (POR) techniques to reduce
the number of interleavings explored. Experiments show
that our approaches can analyze larger problems and sub-
stantially reduce the verification time compared to state-of-
the-art techniques that combine classic POR methods with
symbolic algorithms and others that implement the Counter-
Example Guided Abstraction Refinement technique.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Model check-
ing; F.3.1 [Specifying and Verifying and Reasoning
about Programs]: Mechanical verification

General Terms
Computer-Aided Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Keywords
Formal Software Verification, SAT Modulo Theories, Multi-
core systems

1. INTRODUCTION
Embedded computer systems are used in a wide range of

sophisticated applications, such as mobile phones or set-top
boxes providing internet connectivity. The functionality de-
manded in such applications has increased significantly and
an increasing number of functions are implemented in soft-
ware rather than hardware. Thus, multi-core processors with
scalable shared memory have become popular in embedded
systems. In turn, the verification of the software design and
the correctness of its multi-threaded implementations has
become increasingly difficult.

Bounded model checking (BMC) has already been success-
fully applied to verify embedded software and discover subtle
errors in real designs [6]. BMC generates verification condi-
tions (VCs) that reflect the exact path in which a statement
is executed, the context in which a given function is called,
and the bit-accurate representation of the expressions. Prov-
ing the validity of these VCs remains a major performance
bottleneck in verifying embedded software, despite attempts
to cope with increasing system complexity by applying SMT
(Satisfiability Modulo Theories) [5, 9, 13].

Recently, there have been attempts to extend BMC to
the verification of multi-threaded software [14, 17, 18, 24].
The main challenge is the state space explosion problem,
as the number of interleavings grows exponentially with the
number of threads and program statements. However, two
important observations help us: (i) SMT-based BMC finds
counter-examples very quickly [9] and (ii) SMT solvers pro-
duce unsatisfiable cores that allow us to remove logic that is
not relevant to a given property [20]. Grumberg et al. [16]
realized that the unsatisfiable cores generated by the solvers
can also be used to control the number of allowed interleav-
ings of the given set of processes. They propose an algorith-
mic method based on Boolean Satisfiability (SAT) and BMC
to model check a multi-process system based on a series of
under-approximatedmodels. However, this method does not
combine classic partial-order reduction (POR) methods with
symbolic algorithms, which limits its usefulness for analyz-
ing and verifying multi-threaded software. It has also not
been applied in conjunction with SMT solvers.

In our prior work [9], we extended the encodings from
previous SMT-based bounded model checkers [5, 13] to pro-
vide more accurate support for variables of finite bit width,
bit-vector operations, arrays, structures, unions and point-

http://arxiv.org/abs/1003.3830v1

ers. Here, we develop three approaches to tackle complexity
problems in model checking multi-threaded C software. In
the lazy approach, we extend the BMC procedure of single-
threaded software to multi-threaded software by wrapping it
inside a straightforward generate-and-test loop, which gen-
erates all possible interleavings and calls the BMC proce-
dure on each of them individually. We stop this loop either
when we find a bug, or have systematically explored all inter-
leavings. In the scheduling recording approach, we explore
systematically the control-flow graph (CFG) of each thread
and encode all the possible execution paths into one single
formula, which is then fed into the back-end SMT solver.
In our third approach, we extend the under-approximation
and widening (UW) algorithm proposed in [16] with the pur-
pose of addressing the verification of real-world C code using
different background theories and SMT solvers.

We also implement partial order reduction algorithms [3]
in our three approaches and propose a comprehensive SMT-
based BMC procedure to support the checking of multi-
threaded programs that utilize the synchronization primi-
tives of the POSIX Pthread Library [21]. To our knowl-
edge, this work marks the first application of the UW algo-
rithm combined with POR techniques to model check non-
trivial multi-threaded C software. Experiments obtained
with ESBMC show that our approaches can analyze larger
problems and substantially reduce the verification time com-
pared to state-of-the-art techniques that combine classic POR
methods with symbolic algorithms and others that imple-
ment the Counter-Example Guided Abstraction Refinement
(CEGAR) technique.

2. BOUNDED MODEL CHECKING OF
MULTI-THREADED SOFTWARE

In BMC, the program to be analyzed is modelled as a state
transition system, which is built by extracting its behaviour
from the CFG. This graph is used as part of a translation
process from program text to single static assignment (SSA)
form. Each thread is modelled as a CFG where nodes rep-
resent program statements and edges represent transitions.
A state transition system M = (S,R, S0) is an abstract ma-
chine that consists of a set of states S (where S0 ⊆ S rep-
resents the set of initial states) and transitions R between
states, i.e., for each γ ∈ R, γ ⊆ S × S. A state s ∈ S con-
sists of the value of the program counter pc and the values of
all program variables. An initial state s0 assigns the initial
program location of the CFG to the pc. We identify each
transition γ = (si, si+1) between two states si and si+1 with
a logical formula γ(si, si+1) that captures the constraints on
the values of the program counter and the program variables.

As a running example, we consider the C program in Fig-
ure 1, which consists of two threads that are created using
the Pthread library [21]. Note that our example contains a
subtle bug (array lower bound) in line 9, because function
nondet uint() might return non-deterministically a negative
integer number and as a result the assert macro (line 10)
fails. Figure 2 shows the CFG representation of the two
threads TX and TY . After creation, they are at the con-
trol points TX0

and TY0
respectively, and since x == 2 (see

line 3 of Figure 1), both tests x > 2 and x > 3 are false.
If we schedule TX first, it will not be enabled, and we can
transition to the next state only by switching to TY and ex-
ecuting only the program statement Y1 (i.e., x = 3, see line

18) before terminating. If we continue exploring the remain-
ing interleavings, we schedule TY first, and the execution of
Y1 makes the test x > 2 in line 7 true, thus enabling TX

to progress and transition through X0 and X1, i.e., we ex-
ecute program statements x = 3, a[i] = ∗((int∗)arg), and
assert(i >= 0 && i < N)). Note that, as in [14] we do
not model context switches inside the execution of individ-
ual statements, to avoid exploring additional interleavings.
This approach is safe as long as statements only read or write
a single global variable, but is an under-approximation to
programs that contain statements involving multiple global
variables. However, with the benchmarks that are publicly
available, we have not encountered any problems in practice.

1 #include <pthread . h>
2 #define N 10
3 int a [N] , i , j =1, x=2;
4 int nondet uint () ;
5 void ∗Tx(void ∗ arg)
6 {
7 i f (x>2)
8 {
9 a [i]=∗((int ∗) arg) ; //X0

10 assert (i>=0 && i<N) ; //X1
11 }
12 }
13 void ∗Ty(void ∗ arg)
14 {
15 i f (x>3)
16 a [j]=∗((int ∗) arg) ; //Y0
17 else

18 x=3; //Y1
19 }
20 int main ()
21 {
22 pthr ead t id1 , id2 ;
23 int arg1=10, arg2=20;
24 i=nondet uint () ;
25 pth r ead c r ea t e(&id1 , NULL, Tx, &arg1) ;
26 pth r ead c r ea t e(&id2 , NULL, Ty, &arg2) ;
27 }

Figure 1: A multi-threaded C program with violated
property.

T x 0 : x > 2

T x 1 : a [i] = 1 0 ;

T x 2 : a s s e r t (i > = 0 & & i < N) ;

S T A R T _ T H R E A D

E N D _ T H R E A D

T R U E
F A L S E

T y 0 : x > 3

T y 1 : a [j] = 2 0 ; T y 2 : x = 3 ;

S T A R T _ T H R E A D

E N D _ T H R E A D

T R U E F A L S E

Figure 2: Control-flow graph of two threads.

Formally, given a transition system M, a property φ, and
a bound k, BMC unrolls the system k times and translates
it into a verification condition ψ such that ψ is satisfiable iff

φ has a counterexample of depth less than or equal to k. The
model checking problem associated with SMT-based BMC
for checking linear-time temporal logic (LTL) properties is
then formulated by constructing the logical formula:

ψ
k =

constraints
︷ ︸︸ ︷

I (s0) ∧
n∧

j=1

k−1∧

i=0

γj (si, si+1)∧

property
︷ ︸︸ ︷
n∧

j=1

Pj (sk) (1)

where Pj (sk) represents a LTL property φ in step k of
thread j, I is the function for the set of initial states of
M and γj (si, si+1) is the function of the transition relation
of thread j at time steps i and i + 1. Hence, the formula
∧n

j=1

∧k−1

i=0
γj (si, si+1) represents the set of all executions

of n threads up to the length k or less. Pj (sk) is derived
from the property being checked and represents the condi-
tion that it is violated by a bounded execution of thread j of
length k or less. Note that formula (1) encodes all allowed
interleavings of the given threads.

2.1 Lazy Approach
Conceptually, the simplest way to extend a bounded model

checker for single-threaded software to the multi-threaded
case is to wrap it inside a straightforward generate-and-test
loop: we just need to generate all possible interleavings and
call the BMC procedure on each of them individually, until
we either find an error, or have systematically explored all
interleavings.

X 0

X 1

Y 0

Y 0

Y 1

Y 1 X 0 X 1

(b)

(a)

Y 1

X 0 X 1

Y 1 X 0 X 1

Figure 3: (a) All possible thread interleavings in
Figure 2 (b) The actual thread interleavings after
using information from the front-end.

On the face of it, this seems to be naive: the number of
interleavings can grow very quickly (see Figure 3(a) for all
possible interleavings in the running example), and we need
to invoke the model checker several times, which might slow
down the verification process.

However, there are several observations that make this
approach worthwhile. First we can obviously generate each
interleaving, model check it, and stop the generation when
we find the first error. In practice, if the program contains
any errors, they will be exhibited in a substantial fraction of
the interleavings, if not all (experience of [23] for real appli-
cations), so that we only need to explore a small part of the

search space. Second, we obviously do not need to gener-
ate the source code of all possible interleavings. Instead, we
keep in memory the nodes of all unexplored execution paths
and expand them one path at a time. We then construct the
VCs for the chosen execution path according to formula (1)
and feed it into the SMT solver to check for satisfiability.
Third, and most important, we can use information from
the front-end to reduce both the number of interleavings to
be explored and the size of the formulas sent to the SMT
solver. In particular, during the symbolic execution we ex-
ploit which transitions are enabled in a given state to drive
the exploration of the interleavings.

In our running example, the transitions from TX0
to TX1

and from TY 0
to TY1

are disabled because we initially have
x = 2. This rules out all interleavings that start with ei-
ther X0 or Y0 and only leaves those that bypass TX entirely,
or start with Y1. Assuming that we explore the thread TX

first, in the first iteration we thus build the VCs only for
the program statement Y1. We then pass the formula (1)
to the SMT solver and check its satisfiability. If it is satis-
fiable, we have found a property violation and we can stop
the process. Here, however, it is not satisfiable and we con-
tinue to the next iteration by selecting an unexplored path.
In the second iteration, we explore TY first, and select pro-
gram statement Y1, and after that we explore TX and select
program statements X0 and X1. Again, we pass the corre-
sponding version of formula (1) to the SMT solver. Since
this is now satisfiable, we can stop the exploration of the
execution paths.

In summary, we guide the symbolic execution between the
threads and systematically explore all the possible execution
paths in a lazy way. This approach can find bugs fast, but
as the front-end might invoke the SMT solver repeatedly,
once for each possible execution path, it can suffer perfor-
mance degradation, in particular for correct programs where
we need to explore all possible interleavings. The invocation
procedure itself is slow and the formula needs to be passed
from front-end to back-end several times. Moreover, exe-
cution paths that share the same program statements will
be unnecessarily checked several times. However, as each
formula corresponds to one possible path only, its size is rel-
atively small compared to the schedule recording approach
described in the next section and can thus be handled easily
by the SMT solver without requiring too much memory.

2.2 Schedule Recording Approach
State-of-the-art SMT solvers are built on top of SAT solvers

to speed up the performance by exploiting the support for
“conflict clauses” and non-chronological backtracking [25].
In the schedule recording approach we leverage this and
avoid invoking the SMT solver multiple times. We use the
symbolic execution engine as before to systematically ex-
plore the interleavings, but now we add schedule guards to
record in which order the scheduler has executed the pro-
gram. We then encode all execution paths into one for-
mula, which is finally fed into the SMT solver. However,
the number of threads and context switches can grow very
large quickly, and easily “blow-up” the solver. Given this,
there is a clear trade-off between usage of time and memory
resources to model check multi-threaded software.

Figure 4 illustrates our schedule recording encoding ap-
plied to the example in Figure 2. Since control-flow tests
cannot influence the state (as the front-end hoists side-effects

out of the tests), we only need to add guards to effective
statements, i.e., assignments and assertions. Similarly, we
only need to record effective context switches (ECS), i.e.,
context switches to an effective statement. These are shown
as dashed arrows in Figure 4. Finally, we define an ECS block
as a sequence of program statements that are executed with
no intervening ECS, and give each block a number. Each
effective program statement is then prefixed by a schedule
guard tsi = j where i is the ECS block number and j is
the thread identifier. Its intuitive interpretation is that the
guarded statement can only be executed if thread j is sched-
uled in the i-th ECS block. The value of tsi is set by the
SMT solver, and determines the order in which the program
statements are executed. For example, the guard at TY 2

thus encodes that Y1 can only be executed if TY runs in the
first ECS block. Note that schedule guards are only nec-
essary but not sufficient conditions for the execution of a
statement. For example, TY 1 has the same guard as TY 2,
but Y0 cannot be executed using any viable schedule. The
guards can also be combined conjunctively and disjunctively
to encode more involved schedules. For example, the guard
of both TX1 and TX2 corresponds to a schedule in which TY

ran before switching to TX .

T x 0 : x > 2

T x 1 : t s 1 = = 2 & & t s 2 = = 1
-> a [i] =10 ;

T x 2 : t s 1 = = 2 & & t s 2 = = 1
- > a s s e r t (i > = 0 & & i < N) ;

S T A R T _ T H R E A D

E N D _ T H R E A D

T R U EF A L S E

T y 0 : x > 3

T y 1 : t s 1 = = 2
-> a [j] =20 ;

T y 2 : t s 1 = = 2
- > x = 3 ;

S T A R T _ T H R E A D

E N D _ T H R E A D

T R U E F A L S E

E C S b l o c k 2

E C S b l o c k 1

c o n t r o l - f l o w

e f f ec t i ve con tex t
s w i t c h (E C S)

Figure 4: Schedule encoding of the example in Fig-
ure 2.

The schedule guards are added by the front-end when pro-
gram statements are executed symbolically and become part
of the produced verification conditions. The thread selec-
tion variable is a free variable that the SMT solver will try
to instantiate with all possible concrete values. The thread
number value is a constant that corresponds to the thread
identifier. As an example, if the SMT solver chooses ts1 = 2
and ts2 = 1, then the program statement X0, X1, Y0, and
Y1 are all enabled in principle, but which ones are executed
depends on the values of the control-flow tests x > 2 and
x > 3. Note that the ordering of statements within a thread
is of course still ensured by the program order semantics, so
that X1 will not be executed before X0. Consequently, all
the combinations of the thread selection variables will pro-

duce only two different interleavings as follows: {Y1} and
{Y1, X0, X1} (cf. Figure 3(b)).

Given this, we can define a schedule SCH to determine
which interleavings will be considered and encode the guards
in formula (1) as:

ψ
k =

constraints
︷ ︸︸ ︷

I (s0) ∧
n∧

j=1

k−1∧

i=0

γ
′
j (si, si+1)∧

property
︷ ︸︸ ︷
n∧

j=1

Pj (sk)∧

schedule
︷ ︸︸ ︷

k−1∧

i=0

SCH (si)

(2)
where γ′

j represents the modified transition relation incor-
porating the schedule guards added by the front-end and
SCH (si) represents a constraint on the schedule. If we do

not add any constraints, then
∧k−1

i=0
SCH (si) = true and all

possible interleavings are considered. However, if we want
to apply more aggressive POR techniques, we can add con-
straints to SCH in order to force the removal of interleavings
that do not contribute to checking a given property. In our
running example, we can add the constraint ts1 = 2 and
ts2 = 1 to remove the interleaving {Y1} (see Figure 3(b)),
which does not contribute to check the assertion in line 10
of Figure 1.

2.3 UW Approach
The core idea of the under-approximation and widening

(UW) approach is to consider a series of under-approximations
of a given model by encoding additional literals into the
verification condition ψ and by extracting the proof objects
generated from an SMT solver [11]. We define ψ′ as an un-

derapproximated model of ψ, i.e., ψ′ = ψ ∧
∧i=0

n
li where

l1, l2, . . . , ln are additional literals that guard the program
statements of each thread. Similar to the schedule guards
described in the previous section, these literals also control
the symbolic execution: a program statement is executed
only if the literal and its corresponding guard are enabled.
Therefore, we can see that if ψ is unsatisfiable, then ψ′ is
also unsatisfiable, i.e., there is no assignment to the literals
l1, l2, . . . , ln that make ψ′ satisfiable. However, it is possible
that ψ is satisfiable while ψ′ is not, due to the additional lit-
erals. Thus, ψ′ can be thought of as an underapproximation
of ψ and each satisfying assignment of ψ′ is also a satisfying
assignment to ψ. These additional literals then allow us to
guide the widening process according to the variables that
participate in the proof of unsatisfiability produced by the
SMT solver. In the formal description, we rewrite formula
(1) as

ψ
k =

constraints
︷ ︸︸ ︷

I (s0) ∧
n∧

j=1

k−1∧

i=0

γ
′
j (si, si+1)∧

property
︷ ︸︸ ︷
n∧

j=1

Pj (sk)∧

UWmodel
︷ ︸︸ ︷
∧

∀i∈T

∧

∀j∈I

lij

(3)
where lij ∈ L are literals that encode the program state-
ments of each thread. We denote the set of threads by T ,
the set of program statements S, and the set of control lit-
erals by L. In the example of Figure 2, T = {TX , TY },
S = {X0, X1, Y0, Y1}, and L = {lX0

, lY0
}. Note that the way

that we encode the underapproximation differs from [16].
The authors in [16] encode an underapproximation using
m × n control literals, where m is the number of control
points that guard each program statement and n is the num-

ber of processes. In our encoding, we use the same guards
as in the schedule recording approach as control literals, we
use lX0

= (ts1 = 2) && (ts2 = 1) and lY0
= (ts1 = 2). We

also use information from the front-end (as described in Sec-
tion 2.1) to reduce substantially the number of control liter-
als required. If we were to include a control literal for each
statement as in [16], then our solution might not scale in
practice to large software systems.

The main difference between the schedule recording and
the UW approaches is that schedule remains fixed and is by
default set to true while the UW model is updated based
on the information extracted from the proof and is initially
set to false. The widening process then works as follows.
Initially, each literal in L is set to be false, because we aim
to minimize the number of interleavings. At every state, we
only consider the thread with the smallest index that has
enabled transitions and only expand those. In our running
example, we first execute program statement Y1 because the
tests x > 2 and x > 3 are false and consequently no other
thread has enabled transitions. As the global variable x
is set initially to 2 (line 3), at the first step we consider
that only program statement Y1 is expanded from the ini-
tial state and build formula (3) by encoding Y1 statement as
lY0

⇒ (x = 3). After that, we invoke the SMT solver to ex-
tract the unsatisfiable core and check that lY0

participated
in the proof of unsatisfiability. In the second iteration of our
algorithm, we remove lY0

from L in order to continue to the
next iteration so that lY0

can now become either true or false
(while the others must remain false). Afterwards, we exe-
cute symbolically program statements X0;X1;Y0 and build
formula (3). We check that lX0

participated in the proof of
unsatisfiability. At the next iteration, we remove lX0

from
L, execute symbolically program statements Y0;X0;X1 and
build formula (3). At this iteration, we have found a vio-
lation of the property and the UW procedure terminates;
otherwise the procedure would continue until none of the
additional literals in L participate in the proof of unsatis-
fiability. It means that the procedure does not rely on the
underapproximation itself and concludes that the property
holds.

2.4 Partial Order Reduction
In the modelling of multi-threaded software, we consider

that any of the threads j ∈ T is able to make a transition
and then we have to compute all states for which a thread
j exists, (i.e.,

∧n

j=1
γj (si, si+1)). The problem is that the

number of states to be explored can grow dramatically with
the number of program statements and threads. The pur-
pose of the Partial-Order Reduction (POR) technique [1, 8,
15, 22] is to reduce the number of states that have to be
explored. This is done in a way that if the property holds
on the reduced model, it also holds on the original model.

In our SMT-based BMC framework, as threads communi-
cate only through global variables, we apply partial order re-
duction (POR) techniques at two levels in our algorithm. At
the first level, we apply the visible instruction analysis POR
(VI-POR) [22], which removes the interleavings of instruc-
tions that do not affect the global variables, i.e., we remove
transitions which are independent from transitions made by
any other thread. An instruction is visible if it accesses a
global variable, and it is invisible otherwise. At the second
level, we apply the read-write analysis POR (RW-POR) [8]
in which two (or more) independent interleavings can be

Access Relations Read-read Read-write Write-write

Same variable Equivalent Non-equivalent Non-equivalent

Different variables Equivalent Equivalent Equivalent

Table 1: Read-write analysis of interleavings equiv-
alence between visible instructions.

safely merged into one. In order to implement RW-POR, we
compute the sets of variables written (WRj) and read (RDj)

by each of the threads. If WRj ∩
(
⋃

k 6=tRDk ∪WRk

)

= ∅

and RDj ∩
⋃

k 6=t
WRk = ∅, i.e., if the intersection between

the set of visible variables that are written and read by
thread j and all other threads is empty, then we only ex-
plore the successors generated by executing j and all other
transitions can be safely ignored.

There are six possible combinations of visible instructions
of different threads, as shown in Table 1. There are three
particular situations to consider when we generate the inter-
leavings: (i) two read operations will not modify the state,
so they will always generate equivalent interleavings, (ii)
two program statements accessing different variables are in-
dependent w.r.t. their execution states, thus these two pro-
gram statements always generate equivalent interleavings
with both execution orders, (iii) two instructions access-
ing same variable (i.e., with read-write and write-write re-
lations) will generate non-equivalent interleavings. In these
cases, the read-write relation actually causes read-write races
and the write-write relation causes the write-write races.
In summary, only two types of relations will generate non-
equivalent interleavings, while all other four types of rela-
tions generate equivalent interleavings. Those redundant
interleavings are simply removed in our approach.

Both PORs described above work best in conjunction with
an alias analysis. However, at this point in our work, we
do not have one implemented. We thus assume that the
actual thread parameters are not aliased to global variables
or to each other. In addition, we do not remove redundant
interleavings originating from pointer aliasing.

3. MODELLING SYNCHRONIZATION
PRIMITIVES IN PTHREAD

This section presents our modelling of the synchronization
primitives of the Pthread library [21]. We assume that the
library function implementations are correct and focus our
effort only on verifying client programs that use them. We
thus provide an instrumented model of the Pthread func-
tions and use this to model check the client code. We show,
in our experiments, that our modelling is able to detect in-
correct use of the functions and is also able to detect blocking
operations that can lead to global deadlocks.

3.1 Modelling Mutex Locking Operations
The Pthread library supports two functions to implement

mutual exclusion between threads, pthread mutex lock and
pthread mutex unlock. The argument to these functions is
a C data structure called mutex that, in our modelling, has
two states,“locked”and“unlocked”. The pthread mutex lock
locks the mutex if it is unlocked; otherwise it blocks the
current thread until the mutex is released and can then be
locked successfully again. The pthread mutex unlock un-
locks the mutex that was locked previously by the same

thread.
Execution paths are considered to be blocked on a mu-

tex when the thread tries to lock a mutex that has already
been locked by other threads. Such blocking paths are also
called non-wait-free paths. In order to model mutex oper-
ations, we apply the notion of wait-free paths as proposed
initially in [24]. However, in contrast to [24], our approach is
able to model check multi-threaded programs that make use
of mutexes, can handle more than two threads, can detect
deadlocks, and does not require the user to run the model
checker twice in order to detect different types of bugs (“reg-
ular” and concurrency bugs).

To explain how mutexes are encoded in our SMT-based
BMC framework, we consider the example in Figure 5. In
this example, both threads TA and TB lock and unlock the
same mutex m. The execution paths A0;A1;B0;B1 and
B0;B1; A0;A1 are unblocked while the others are blocked
paths. However, instead of blocking the execution paths
starting with A0;B0 and B0;A0, we simple ignore the state
of the mutex, so that we do not block the remaining instruc-
tions, and just lock it (again). In pthread mutex unlock,
we simply check if the mutex is already locked and if so, we
release the lock; otherwise, we have detected an error.

A 0

A 1

B 0

B 1

B 0

A 0

B 0

A 0 A 1

B 1

A 1

B 1

S T A R T _ T H R E A D

A 0 : l o c k (m)

A 1 : u n l o c k (m)

E N D _ T H R E A D

S T A R T _ T H R E A D

B 0 : l o c k (m)

B 1 : u n l o c k (m)

E N D _ T H R E A D

Figure 5: Execution paths blocking on a mutex.

This modelling is sufficient to find bugs related to data
races. However, it is not able to detect deadlocks. In order
to detect global deadlock situations caused by the wrong use
of the mutexes, we need to look in more detail at the possible
states that a thread can be in with our modelling: (i) Join
state: The thread is waiting for thread termination; (ii) Lock
state: The thread is waiting for a mutex to be unlocked; (iii)
Wait state: The thread is waiting for a signal or broadcast
to wake up; (iv) Exit state: The thread has already exited;
(v) Free state: The thread is not in any of the above four
states and is free to execute its instructions. A thread is
blocked if it is in one of the join, lock or wait states, and
is supposed to be running if it is not in exit state. Global
deadlock occurs if there is no running thread in the free state,
i.e., the number of blocked threads is equal to the number
of running threads. In order to model deadlock, counts of
both blocked threads and running threads are maintained
with global variables. Figure 6 presents our modelling of
pthread mutex lock to detect global deadlock with mutexes.
We define mutex lock field and mutex count field as a C
macro in lines 1 and 3 respectively.

We use the count field of the pthread mutex t data struc-
ture to count the number of threads that are in the lock
state due to this mutex, and trds in run to check the global
number of threads that are currently running. Initially, the
mutex is unlocked and we only lock it after the first call to
pthread mutex lock. In subsequent calls, we increase the

1 #define mutex l o ck f i e l d (a)
2 ((a) . data . l o c k)
3 #define mutex count f i e l d (a)
4 ((a) . data . count)
5 int pthread mutex lock (pthread mutex t ∗mutex)
6 {
7 stat ic Bool unlocked = 1 ;
8 extern unsigned int t r d s i n r un ;
9 i f (! deadlock)

10 {
11 atomic begin () ;
12 unlocked = (mutex l o ck f i e l d (∗mutex)==0);
13 i f (unlocked)
14 mutex l o ck f i e l d (∗mutex)=1;
15 else
16 mutex count f i e l d (∗mutex)++;
17 atomic end () ;
18

19 atomic begin () ;
20 i f (! unlocked)
21 {
22 i f (! mutex l o ck f i e l d (∗mutex))
23 mutex count f i e l d (∗mutex)−−;
24 deadlock = (mutex count f i e l d (∗mutex)
25 <t r d s i n r un) ;
26 assert (deadlock) ;
27 }
28 atomic end () ;
29 }
30 return 0 ;
31 }
32 int pthread mutex unlock(pthread mutex t ∗mutex)
33 {
34 atomic begin () ;
35 assert (mutex l o ck f i e l d (∗mutex)) ;
36 mutex l o ck f i e l d (∗mutex)=0;
37 atomic end () ;
38 return 0 ;
39 }

Figure 6: Modelling mutex lock and unlock opera-
tions to detect global deadlock.

count field, allow context switches, check if the mutex was
unlocked, and then assert count < trds in run. If the as-
sertion fails, a global deadlock was detected (i.e., a thread
is blocked by a lock operation on a mutex and the required
mutex never gets unlocked by the thread that owns it, either
because the locking thread has exited or because it has been
blocked by another operation). If the assertion holds, we
then eliminate this execution as described above. The mod-
elling of the pthread mutex unlock, which is similar to [24],
is shown at the bottom of Figure 6.

3.2 Modelling Conditional Waiting
In the Pthread library, we consider functions from con-

ditional waiting: pthread cond wait, pthread cond signal,
and pthread cond broadcast. The arguments to the func-
tion pthread cond wait are two data structures called cond
andmutex where, in our modelling, cond has also two states,
“locked” and “unlocked”. The others functions have only
the argument cond. Our modelling of the conditional wait-
ing operation also employs the notion of wait-free execution
paths. The function pthread cond wait is used to block the
thread on a condition variable and the blocked thread is
awakened only if another thread calls signal or broadcast.
If there are several threads that are blocked on a condition

variable, then the pthread cond signal call unblocks at least
one of them (but there is no guarantee of which one will be
woken up due to the scheduling policy) while the function
pthread cond broadcast call unblocks all threads currently
blocked on the specified condition variable.

Figure 7 shows our modelling for the wait operation prim-
itive. We consider that initially there is no deadlock (see line
4) and whenever a thread calls pthread cond wait, we atom-
ically lock the condition variable cond, assert that the mutex
is currently locked, and then release the mutex so that other
threads that access thatmutex can make progress (i.e., wait-
free execution). Afterwards, we allow context switches and
we then check whether the number of threads in wait state
(i.e., threads that are waiting for a signal or broadcast to
wake up) is less than the total number of the threads that
are currently running.

1 int pthread cond wait (pthr ead cond t ∗cond ,
2 pthread mutex t ∗mutex)
3 {
4 stat ic Bool deadlock=0;
5 extern unsigned int t r d s i n r un ;
6 i f (! deadlock)
7 {
8 atomic begin () ;
9 c on d l o c k f i e l d (∗ cond)=1;

10 assert (mutex l o ck f i e l d (∗mutex)) ;
11 mutex l o ck f i e l d (∗mutex)=0;
12 c ond nwa i t e r s f i e l d (∗ cond)++;
13 atomic end () ;
14 atomic begin () ;
15 i f (c o nd l o c k f i e l d (∗ cond))
16 {
17 deadlock = (c ond nwa i t e r s f i e l d (∗ cond) <

18 t r d s i n r un) ;
19 assert (deadlock) ;
20 }
21 assume (deadlock &&
22 c o nd l o c k f i e l d (∗ cond)==0);
23 atomic end () ;
24 mutex l o ck f i e l d (∗mutex)=1;
25 }
26 }
27 int pth r ead cond s i gna l (pthr ead cond t ∗cond)
28 {
29 atomic begin () ;
30 c o nd l o c k f i e l d (∗ cond)=0;
31 c ond nwa i t e r s f i e l d (∗ cond)−−;
32 atomic end () ;
33 return 0 ;
34 }

Figure 7: Modelling conditional waiting and signal
operations to detect global deadlock.

In order to model signal operations, we simply release the
condition variable and decrement the number of threads that
were locked due to the specified condition variable. The
modelling of the conditional signal operation is shown in
Figure 7 as well.

In order to model broadcast operations, we create an addi-
tional global variable called broadcast id, which records the
number of broadcast operations that have executed and also
gets incremented inside the function pthread cond broadcast.
In the wait operation the thread firstly records the current
broadcast id and is then forced to make context switches to
other threads. When the context is switched back to the

current thread, an assertion checks if a broadcast operation
has occurred by checking whether the current value of vari-
able broadcast id is greater than the recorded broadcast id.
The deadlock is detected if there is no execution path with
broadcast operations.

4. EXPERIMENTAL EVALUATION
We have implemented the lazy, schedule recording, and

UW approaches described in Section 2 in our ESBMC1 (Ef-
ficient SMT-Based Bounded Model Checker) tool that sup-
ports the SMT logics QF AUFBV as well as QF AUFLIRA
from the SMT-LIB [26]. In our experiments, we have used
ESBMC v1.3 together with the SMT solver Z3 [11].

The experimental evaluation of our work consists of two
parts. In Section 4.1, we compare our approaches against
the Monotonic Partial Order Reduction (MPOR) [18] and
Peephole Partial Order Reduction (PPOR) [27] that are im-
plemented in a SMT-based bounded model checker using
the Yices SMT solver [12]. In Section 4.2, we compare our
approaches against SATABS version 2.4 [7] connected to Ca-
dence SMV [19], which is a state-of-the-art C model checker
and supports the verification of multi-threaded software with
shared variables using the CEGAR technique. All experi-
ments were conducted on an otherwise idle Intel Xeon 5160,
3GHz server with 4 GB of RAM running Linux OS. For all
benchmarks, the time limit has been set to 3600 seconds for
each individual property. All times given are wall clock time
in seconds as measured by the unix time command through
a single execution.

4.1 Comparison to MPOR and PPOR
We use the dining philosophers model to evaluate our

approaches against MPOR and PPOR. Since the bench-
marks used in [18] are not available, we re-implemented
them as described there. An implementation is available
at users.ecs.soton.ac.uk/lcc08r/esbmc. Each philoso-
pher has its own local variables, and they communicate only
through a global shared array of forks. This version guar-
antees the absence of deadlocks. As in [18], we also check
two properties: (i) whether all philosophers can eat simul-
taneously (this property does not hold, i.e., the verification
condition is unsatisfiable) and (ii) whether all philosophers
have eaten at least once (this property holds, i.e., the verifi-
cation condition is satisfiable). The authors in [18] run their
experiments on a workstation with 2.8 GHz Xeon processor
and 4GB of RAM memory running Linux OS. In order to
make the results comparable, we scale their times in Table 2.
We give both original (in brackets) and scaled timings.

Table 2 shows the detailed results of the comparison be-
tween MPOR, PPOR, and the three ESBMC approaches.
The first column #L gives the number of lines of code, while
the second column #T reports the total number of threads.
The Time column provides the time in seconds while the col-
umn #I provides the total number of generated interleavings
and the column #IF the total number of failed interleavings.
The column Iter gives the number of iterations to prove or
disprove the property in the UW approach.

As we can see in Table 2, our approaches perform equiva-
lently to MPOR to check the first property of the model until
we set the number of philosophers to 5. If we continue in-
creasing the number of philosophers, MPOR performs better

1Available at http://users.ecs.soton.ac.uk/lcc08r/esbmc/

MPOR PPOR Lazy Schedule UW

Module #L #T Time Time Time #I/#IF Time Time Iter

1 din phil2 unsat 63 2 0.2 (0.2) 0.1 (0.1) 0.2 2/0 0.2 0.2 1

2 din phil3 unsat 63 3 0.8 (0.9) 1.0 (1.1) 0.5 6/0 0.4 0.5 1

3 din phil4 unsat 63 4 5.0 (5.3) 41.9 (44.9) 2 24/0 1.6 1.6 1

4 din phil5 unsat 63 5 21.4 (22.9) 138.7 (148.6) 11.1 120/0 8.3 8.7 1

5 din phil6 unsat 63 6 48.8 (52.3) 470.4 (504.4) 74 720/0 115.8 115.4 1

6 din phil7 unsat 63 7 150.8 (161.6) TO 574.1 5040/0 TO TO 0

7 din phil2 sat 63 2 0.1 (0.1) 0.1 (0.1) 0.2 2/2 0.2 0.4 3

8 din phil3 sat 63 3 1.2 (1.3) 0.3 (0.3) 0.2 6/6 0.5 1.6 4

9 din phil4 sat 63 4 8.9 (9.5) 3.6 (3.8) 0.2 24/24 1.8 2.6 5

10 din phil5 sat 63 5 88.4 (94.7) 57.6 (61.7) 0.3 120/120 8.8 33 6

11 din phil6 sat 63 6 294.4 (315.4) 2130.8 (2283) 0.3 720/720 105.6 105.2 1

12 din phil7 sat 63 7 1136.8 (1218) TO 0.3 5040/5040 TO TO 0

Table 2: Results of the comparison between MPOR, PPOR, lazy, schedule, and UW ESBMC

than our approaches. However, our three approaches per-
form better than PPOR to check the first property. In ad-
dition, our lazy ESBMC scales significantly better than the
other approaches to check the second property of the dining
philosophers model, i.e., whether all philosophers have eaten
at least once. We also show in column #I/#IF that all inter-
leavings generated by our lazy ESBMC are satisfiable. Our
UW and schedule ESBMC also performs better than MPOR
and PPOR until we set the number of philosophers to 6. In
summary, our lazy approach outperforms both MPOR and
PPOR for those benchmarks that generate satisfiable for-
mulae and is still comparable to MPOR and PPOR when
the generated formulae are unsatisfiable.

4.2 Comparison to SATABS
In order to evaluate our approaches against SATABS, we

used a number of multi-threaded programs taken from stan-
dard benchmark suites (see Table 3). Programs 1-12 are an
implementation of the dining philosophers as described in
Section 4.1. In the dining philosophers implementation, we
set the number of philosophers (threads) to 2, 3, . . . , 7 and
compare the runtime performance of the three approaches
against SATABS. The programs 13-22 are taken from the
benchmark suite of the INSPECT tool [28]. This suite con-
tains programs with two or more threads as well as mutex
and condition synchronization primitives from the Pthread
library. The programs 23 and 24 are taken from the Helgrind
benchmark suite [2] and they contain concurrency bugs re-
lated to lock and unlock operations. It is important to note
that most of these benchmarks contain data dependencies
among the threads (i.e., the threads access the global vari-
ables).

Table 3 shows the detailed results of the comparison be-
tween UW, Lazy, and schedule ESBMC as well as SATABS.
We do not run the programs 19-22 with SATABS because
it does not support the condition synchronization primitive.
It is also important to point out that the verification times
of the programs 1-12 in Table 3 differ from Table 2 because
instead of checking a single property, here we check prop-
erties related to mutex operations and array bounds, which
can be automatically generated by both tools, SATABS and
ESBMC. Hence, the column #P gives the number of prop-
erties to be verified for each multi-threaded C program. The
Time column provides the time in seconds to check all prop-

erties of a given program and Failed indicates how many
properties failed during the verification process. Here, prop-
erties can fail for two reasons: either due to a time out (TO)
or due to memory out (MO).

As we can see in Table 3, our lazy ESBMC approach
performs significantly better than the other approaches on
benchmarks that contain bugs (i.e., the formula sent to the
SMT solver is satisfiable). However, if there is no bug in the
benchmark, then our schedule ESBMC approach performs
better than the UW and lazy ESBMC, but not as good as
SATABS for the dining philosophers benchmark. This indi-
cates that our SMT-based BMC procedures do not scale well
for problems of increasing complexity, i.e., for a large num-
ber of threads and data dependencies among the threads.
However, SATABS times out for programs 17 and 18, and
provides false results for programs 7-12, 15, 23, and 24, of
which the last two contain deadlocks due to the incorrect use
of lock and unlock operations. Based on that, we conclude
that SATABS does not seem to explore all interleavings and
also does not add additional checks for detecting deadlocks,
which explains the better scaling for the dining philosophers
benchmark.

We can see that our UW ESBMC algorithm outperforms
SATABS in most of the multi-threaded programs from Ta-
ble 3, except for the programs 5, 6, 10, 11, and 12. How-
ever, in these programs SATABS provides false results as
discussed above. In any case, it is important to note that
when we enabled the proof generation feature of the SMT
solver to extract the unsatisfiable cores, we always observed
memory overhead and corresponding slowdowns, as also re-
ported previously in [10]. Additionally, we observed that
the performance of the UW ESBMC procedure can be sig-
nificantly improved if we use heuristics to update the set of
additional literals in L to be used at the next iteration of
the algorithm. However, at this point in time, we do not
investigate further alternative ways of updating the set L.
We set the maximum size of the unsatisfiable core to contain
500 control literals since the SMT solver Z3 fails with a seg-
mentation fault when there are thousands of literals. This
situation occurs only with the dining philosophers model
when we set the number of philosophers to 6 or more. We
reported this bug to the Z3 developers and they were already
aware of this problem.

SATABS UW Schedule Lazy

Time #P Time #P Time #P Time #P #I

Module #L #T T
o
ta
l

P
a
ss
ed

V
io
la
te
d

F
a
il
ed

T
o
ta
l

P
a
ss
ed

V
io
la
te
d

F
a
il
ed

It
er

T
o
ta
l

P
a
ss
ed

V
io
la
te
d

F
a
il
ed

T
o
ta
l

P
a
ss
ed

V
io
la
te
d

F
a
il
ed

#
I
/
#
IF

1 din phil2 unsat 63 2 26 13 0 0 0.3 28 0 0 1 0.2 28 0 0 0.3 28 0 0 2/0

2 din phil3 unsat 63 3 26 13 0 0 0.6 28 0 0 1 0.5 28 0 0 0.7 28 0 0 6/0

3 din phil4 unsat 63 4 26 13 0 0 2.3 28 0 0 1 1.7 28 0 0 2.7 28 0 0 24/0

4 din phil5 unsat 63 5 26.2 13 0 0 12.3 28 0 0 1 9.4 28 0 0 14 28 0 0 120/0

5 din phil6 unsat 63 6 26.4 13 0 0 142 28 0 0 1 123.8 28 0 0 91.7 28 0 0 720/0

6 din phil7 unsat 63 7 27.1 13 0 0 TO 0 0 28 0 MO 0 0 28 719.2 28 0 0 5040/0

7 din phil2 sat 63 2 30.1 18 0 0 0.5 28 1 0 3 0.3 28 1 0 0.2 28 1 0 2/2

8 din phil3 sat 63 3 28.4 18 0 0 2.2 28 1 0 4 0.7 28 1 0 0.2 28 1 0 6/6

9 din phil4 sat 63 4 28.4 18 0 0 3.05 28 1 0 5 2.4 28 1 0 0.2 28 1 0 24/24

10 din phil5 sat 63 5 28.6 18 0 0 42.5 28 1 0 6 14.4 28 1 0 0.3 28 1 0 120/120

11 din phil6 sat 63 6 27.8 18 0 0 180 28 1 0 1 177.5 28 1 0 0.3 28 1 0 720/720

12 din phil7 sat 63 7 28.9 18 0 0 MO 28 1 0 0 MO 28 1 0 0.3 28 1 0 5040/5040

13 carter01 ok 58 2 25 2 0 0 0.3 4 0 0 1 0.3 4 0 0 0.3 4 0 0 2/0

14 lazy01 ok 48 3 3 1 0 0 0.2 4 0 0 1 0.2 4 0 0 0.3 4 0 0 6/0

15 phase01 ok 34 1 23 0 1 0 0.2 4 0 0 1 0.2 4 0 0 0.2 4 0 0 2/0

16 stateful01 ok 47 2 2 1 0 0 0.2 4 0 0 1 0.2 4 0 0 0.2 4 0 0 2/0

17 stateful06 ok 59 2 TO 0 0 2 0.2 5 0 0 1 0.2 5 0 0 0.2 5 0 0 2/0

18 stateful20 ok 61 3 TO 0 0 2 5.7 5 0 0 1 3.3 5 0 0 0.7 5 0 0 6/6

19 sync01 ok 62 2 - - - - 0.2 4 0 0 1 0.3 4 0 0 0.3 4 0 0 2/0

20 sync01 bad 62 2 - - - - 0.3 3 1 0 1 0.3 3 1 0 0.3 3 1 0 2/1

21 sync02 ok 73 2 - - - - 0.3 4 0 0 1 0.3 4 0 0 0.3 4 0 0 2/0

22 sync02 bad 73 2 - - - - 0.3 3 1 0 1 0.3 3 1 0 0.3 3 1 0 2/1

23 tc10 rec lock bad 49 1 0.3 7 0 0 0.3 8 2 0 1 0.3 8 2 0 0.3 8 2 0 1/1

24 tc14 laog bad 45 5 20 17 0 0 TO 0 0 28 2 TO 0 0 28 0.8 10 18 0 120/120

Table 3: Results of the comparison between SATABS, UW, schedule, and lazy ESBMC

5. RELATED WORK
SMT-based BMC is gaining popularity in the formal veri-

fication community due to the advent of sophisticated SMT
solvers built over efficient SAT solvers [11]. Ganai and Gupta
describe a verification framework for BMC which extracts
high-level design information from an extended finite state
machine (EFSM) and apply several techniques to simplify
the BMC problem [13]. However, the authors use only the
theory of integer and real arithmetic, which does not re-
flect precisely the ANSI-C semantics. Armando et al. also
propose a BMC approach using SMT solvers for ANSI-C
programs [5], but they only make use of linear arithmetic,
arrays, records and restricted bit-vectors arithmetic and, as
a consequence, their SMT-CBMC prototype does not ad-
dress important constructs of the ANSI-C language.

Qadeer and Rehof present a pragmatic method to discover
bugs in concurrent software in which the program analysis is
restricted to executions with a bounded number of context
switches [23]. However, this method is incomplete since it
considers the verification up to a given fixed context bound.
In addition, the authors do not apply it to realistic and large
concurrent software benchmarks and the integration of this
context-bounded model checking algorithm into the explicit
state model checker ZING [4] is left for future work. Ra-
binovitz and Grumberg describe an extension of CBMC to
concurrent C programs [24], which translates C threads into
SSA form and adds constraints for a bounded number of

context-switches, as described in [4]. This approach, how-
ever, is limited to two threads and it requires additional
constraints to bound the number of context switches and
allowed interleavings into the formula to be sent to a SAT
solver.

Ganai and Gupta describe a lazy method for modelling
multi-threaded concurrent systems using shared variables [14],
but this method is restricted to two threads. Gupta et al. [18]
extend [14, 17] by supporting more than two threads and
by combining dynamic partial order reduction with sym-
bolic state space exploration. However, this method is in-
complete since it considers the concurrency semantics up to
the bounded depth as in [4, 24]. Grumberg et al. propose
an algorithmic method based on SAT and BMC to model
check a multi-process system based on a series of under-
approximated models [16]. This approach, however, does not
integrate partial order reduction algorithms to reduce redun-
dant interleavings and it does not address the problem of
model checking real-world embedded software in multi-core
environments.

To the best of our knowledge, there is no work that consid-
ers a comprehensive SMT-based BMC formulation to verify
multi-threaded software using a set of under-approximations
and widening models as well as the integration of partial
order reduction algorithms into the UW framework. In con-
trast to [14, 24], our method can handle more than two
threads and can detect deadlock caused by the mutexes and

conditions operations. Our main contribution is an algo-
rithmic method and corresponding tools to verify multi-
threaded software using SMT in order to combat the ver-
ification complexity.

6. CONCLUSIONS AND FUTURE WORK
Despite the large body of (theoretical) research in the ver-

ification of concurrent systems, there are only few tools that
analyze multi-threaded programs with shared variables. In
this work, we presented an extension of the ESBMC model
checker to support the verification of multi-threaded soft-
ware with shared variables, mutexes and conditions using
an SMT-based BMC framework. We also described three
approaches UW, lazy and eager SMT-based BMC imple-
mented with partial-order reduction methods in which the
final formula is well suited for using with the SMT solvers.
Our experimental results show that our UW ESBMC ap-
proach outperforms the CEGAR approach implemented in
the SATABS model checker. With the addition of deadlock
detection in our modelling, we can find bugs that other pre-
vious approaches are not able to find. Moreover, our lazy
ESBMC, which adds concurrency constraints lazily and in-
crementally, is able to find bugs quickly in non-trivial bench-
marks. In future, we would like to explore in more depth
the partial-order reduction methods, configure ESBMC for
compatibility with any given compiler to break statements
with multiple global variables, and investigate heuristics to
update the set of additional literals in our UW ESBMC al-
gorithm.
Acknowledgments. We thank D. Kroening for the fruitful dis-

cussions about the starting point of this work and J. Rathke for

many helpful discussions about multi-process systems. We also

thank S. Yiu for his work in his MSc Thesis [29] on model checking

concurrent programs with SAT. We thank J. Colley, D. Nicole,

R. Silva, and R. Quigley for their comments on a draft version.

7. REFERENCES
[1] E. Clarke, O. Grumberg, and D. Peled. Model

Checking. The MIT Press, Cambridge, MA, 2000.

[2] Helgrind: a thread error detector. http://valgrind.org/.

[3] R. Alur et al. Partial-order reduction in symbolic
state-space exploration. FMSD, 18(2):97–116, 2001.

[4] T. Andrews et al. Zing: Exploiting program structure
for model checking concurrent software. In CONCUR,
pp. 1–15, 2004.

[5] A. Armando, J. Mantovani, and L. Platania. Bounded
model checking of software using SMT solvers instead
of SAT solvers. Int. J. Softw. Tools Technol. Transf.,
pp. 69–83, 2009.

[6] A. Biere. Bounded model checking. In Handbook of
Satisfiability, pp. 457–481. 2009.

[7] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav.
SATABS: SAT-based predicate abstraction for
ANSI-C. In TACAS 2005, LNCS 3440, pp. 570–574,
2005.

[8] B. Cook, D. Kroening, and N. Sharygina. Symbolic
model checking for asynchronous boolean programs. In
SPIN, pp. 75–90, 2005.

[9] L. Cordeiro, B. Fischer, and J. Marques-Silva.
SMT-based bounded model checking for embedded
ANSI-C software. In ASE, pp. 137–148, 2009.

[10] L. M. de Moura and N. Bjørner. Proofs and
refutations, and z3. In LPAR, 2008.

[11] L. M. de Moura and N. Bjørner. Z3: An efficient SMT
solver. In TACAS, LNCS 4963, pp. 337–340, 2008.

[12] B. Dutertre and M. L. d. The Yices SMT solver. Tool
paper, http://yices.csl.sri.com/documentation.shtml.

[13] M. K. Ganai and A. Gupta. Accelerating high-level
bounded model checking. In ICCAD, pp. 794–801,
2006.

[14] M. K. Ganai and A. Gupta. Efficient modeling of
concurrent systems in BMC. In SPIN, LNCS 5156, pp.
114–133, 2008.

[15] P. Godefroid. Partial-order Methods for the
Verification of Concurrent Systems: An Approach to
the State-explosion Problem. PhD thesis, 1995.

[16] O. Grumberg, F. Lerda, O. Strichman, and
M. Theobald. Proof-guided
underapproximation-widening for multi-process
systems. In POPL, pp. 122–131, 2005.

[17] V. Kahlon, S. Sankaranarayanan, and A. Gupta.
Semantic reduction of thread interleavings in
concurrent programs. In TACAS, LNCS 5505, pp.
124–138, 2009.

[18] V. Kahlon, C. Wang, and A. Gupta. Monotonic
partial order reduction: An optimal symbolic partial
order reduction technique. In CAV, pp. 398–413, 2009.

[19] K. McMillan. The Cadence SMV Model Checker.
http://www.kenmcmil.com/smv.html.

[20] K. L. McMillan and N. Amla. Automatic abstraction
without counterexamples. In TACAS, LNCS 2619, pp.
2–17, 2003.

[21] F. Mueller. A library implementation of posix threads
under unix. In USENIX, pp. 29–41, 1993.

[22] D. Peled. All from one, one for all: on model checking
using representatives. In CAV, pp. 409–423, 1993.

[23] S. Qadeer and J. Rehof. Context-bounded model
checking of concurrent software. In TACAS, LNCS
3440, pp. 93–107, 2005.

[24] I. Rabinovitz and O. Grumberg. Bounded model
checking of concurrent programs. In CAV, LNCS 3576,
pp. 82–97, 2005.

[25] J. P. Marques-Silva and K. A. Sakallah. Grasp - a new
search algorithm for satisfiability. In ICCAD, pp.
220–227, 1996.

[26] SMT-LIB. The Satisfiability Modulo Theories Library.
http://combination.cs.uiowa.edu/smtlib.

[27] C. Wang, Z. Yang, V. Kahlon, and A. Gupta. Peephole
partial order reduction. In TACAS, pp. 382–396, 2008.

[28] Y. Yang. Inspect: A Framework for Dynamic
Verification of Multithreaded C Programs.
http://www.cs.utah.edu/∼yuyang/inspect/.

[29] S. Yiu. Model Checking Concurrent Programs with
SAT. MSc thesis, Southampton, 2009.

http://valgrind.org/
http://yices.csl.sri.com/documentation.shtml
http://www.kenmcmil.com/smv.html
http://combination.cs.uiowa.edu/smtlib
http://www.cs.utah.edu/~yuyang/inspect/

	1 Introduction
	2 Bounded Model Checking of * Multi-threaded Software
	2.1 Lazy Approach
	2.2 Schedule Recording Approach
	2.3 UW Approach
	2.4 Partial Order Reduction

	3 Modelling Synchronization Primitives in Pthread
	3.1 Modelling Mutex Locking Operations
	3.2 Modelling Conditional Waiting

	4 Experimental Evaluation
	4.1 Comparison to MPOR and PPOR
	4.2 Comparison to SATABS

	5 Related Work
	6 Conclusions and Future Work
	7 References

