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ABSTRACT
Lua is a programming language designed as scripting language,
which is fast, lightweight, and suitable for embedded applications.
Due to its features, Lua is widely used in the development of
games and interactive applications for digital TV. However, dur-
ing the development phase of such applications, some errors may
be introduced, such as deadlock, arithmetic overflow, and divi-
sion by zero. This paper describes a novel verification approach
for software written in Lua, using as backend the Efficient SMT-
Based Context-Bounded Model Checker (ESBMC). Such an ap-
proach, called bounded model checking - Lua (BMCLua), consists
in translating Lua programs into ANSI-C source code, which is
then verified with ESBMC. Experimental results show that the
proposed verification methodology is effective and efficient, when
verifying safety properties in Lua programs. The performed ex-
periments have shown that BMCLua produces an ANSI-C code
that is more efficient for verification, when compared with other
existing approaches. To the best of our knowledge, this work is
the first that applies bounded model checking to the verification
of Lua programs.

1. INTRODUCTION
Lua is a powerful and lightweight language, which was designed
to extend functionalities of other programming languages [30],
such as NCL [51], C/C++ [52], Java [49], and Ada [7]. It has
been used in several consumer electronics applications, ranging
from games for interactive digital TV to critical applications [6].
Lua is also the scripting language used in Ginga [17], which is a
middleware standard developed for the Japanese-Brazilian Digital
TV System [48].

As in other languages, errors may also occur in Lua programs,
such as deadlock, arithmetic overflow, and division by zero, among
other types of violations. During (and after) the software devel-
opment phase, tests are carried out with the goal of detecting
possible errors, which can occur during program execution. One
possible alternative for testing is verification with formal meth-
ods [4], which applies mathematical models to the analysis of com-
plex systems. Indeed, even a program with a single input integer
has 232 possible input values, which makes manual test a laborious
task. Therefore, as an alternative, formal verification techniques
could be applied in order to provide an efficient verification with
significant time reduction during program validation. Further-
more, the related mathematical models are based on mathemati-
cal theories, such as Boolean Satisfiability (SAT) and Satisfiabil-
ity Modulo Theories (SMT). One of the most popular tools used
in formal verification of ANSI-C/C++ code is the Efficient SMT-
Based Context-Bounded Model Checker (ESBMC) [14], whose ar-
chitecture is based on bounded model checking (BMC) and SMT.

Indeed, the use of ESBMC, in this work, is due to the fact that
it is one of the most efficient BMC tools to deal with bit-vector
programs, as indicated in the last editions of the competition on
software verification [15], [38], [39]. Nonetheless, there are other
tools, like the C bounded model checker (CBMC) [13] and the
low-level bounded model checker (LLBMC) [35], which are based
on SAT and SMT, respectively.

The motivation for the present research is the need for develop-
ing an (efficient) program translator, in order to model check Lua
programs based on satisfiability modulo theories. This is highly
desirable, given that errors in Lua scripts may cause problems dur-
ing program execution and even result in system reset, depending
on the underlying platform. Particularly, this kind of test is very
suitable for consumer electronics (CE) and helps avoid software
refactoring and recall of CE devices.

As a result, it is possible to detect errors, probably caused by
code violations, such as arithmetic overflow, which might lead to
failures. Experimental results, regarding the proposed approach,
show that BMCLua produces an ANSI-C code that is more ef-
ficient for verification than that provided by another program
translator, Lua to Cee [34], which allows the conversion of Lua
to ANSI-C. Indeed, Lua to Cee produces an extensive ANSI-C
code, with many dependencies and function calls to the Lua API,
which increases unnecessarily the complexity of the verification
process. Experimental results also show that the performance of
the bounded model checking - Lua (BMCLua) tool is comparable
to that of ESBMC using standard benchmarks from literature [14].

1.1 Contributions
Given the current knowledge in software verification, this paper
marks the first application of BMC to Lua programs. It is worth
noting that the present paper extends a previously published
work, in order to support a wide range of Lua constructs and syn-
tax [28]. Indeed, the BMCLua version described and evaluated
here has been significantly improved and uses the most recent sta-
ble versions of the chosen BMC tool and SMT solver. In brief, we
make four major contributions:

i. we extend benefits of SMT-based context-bounded model
checking for Lua programs, to detect more failures than
other existing approaches, while keeping lower rates of false
results; although SMT-based context-bounded model check-
ing is not a novel technique, we have not seen in the litera-
ture its application to verify Lua programs.

ii. this work marks the first application of formal verification
through model checking to Lua-based scripting programs.



iii. we provide an effective and efficient tool implementation
(BMCLua) to support the checking of several Lua programs.
BMCLua tool and all benchmarks used during the evalua-
tion process are available at https://sites.google.com/

site/bmclua/.

iv. we provide an extensive experimental evaluation of our ap-
proach against Lua to Cee [34] using well-known Lua bench-
marks. Such evaluation has shown that our present ap-
proach outperforms the existing ones with respect to the
number of correct results.

1.2 Organization of this work
The present work is organised as follows. Firstly, fundamental
aspects regarding the Lua programming language and its basic
structures and syntax, is provided. Next, section 2.2 presents
the ESBMC tool, highlighting its main features. Next, the re-
lated work is discussed in section 2.2.1. Then, in section 2.3, the
ANTLR tool is tackled, given that it is used here for the devel-
opment of the BMCLua translator, as described in section 3. Ex-
perimental results are presented in section 5 and consider widely
known benchmarks, which were previously used for the core BMC
tool [14]. Finally, section 6 draws conclusions and discusses future
research topics.

2. BACKGROUND
This section describes the basic concepts for understanding Lua
programming language and the techniques used to perform formal
verification of Lua programs.

2.1 Lua Programming Language
Lua is widely used for the development of games and interactive
digital TV applications [18]. Indeed, it is an extension language
that can be used by other languages, such as ANSI-C/C++ [27]
and NCL [1, 51], which is one of the reasons of its popularity. Lua
is interpreted, although it always precompiles the input source
code to an intermediate form, which is then run. Besides, its
interpreter was developed in ANSI-C, which makes it compact,
fast, and able to run in a wide collection of devices, ranging from
small systems up to high-performance network servers [30].

Lua is powerful, due in part to its set of available libraries, which
allows functionality extension, both through Lua code and ex-
ternal libraries written in ANSI-C [30]. This feature favours its
integration with other programming languages, such as ANSI-
C/C++, Ada, and Java [33]. Besides, it can be easily ported to
any computing environment, mainframes, and other processors.
In contrast to many programming languages, programs written
in Lua are fast to be executed and its ability to be integrated into
many other languages makes it very attractive for the develop-
ment of interactive applications focused on digital TV [6], [18], [48].

During the development of this work, some difficulties were iden-
tified, when verifying Lua programs. In particular, Lua is not
strongly typed, that is, it is not required to associate a data type
during variable declaration; the variable can bind to objects of
different types during the execution of the program, which thus
makes it hard to model the variable word-length and then check
its related properties (e.g., arithmetic overflow). Furthermore, as
the same variable can receive different data types, the translation
procedure becomes particularly complex. The table type also in-
curs a certain level of complexity, because it is used to create
other structures, in the same way as struct in ANSI-C. Moreover,
functions are particularly difficult to translate, because they can
be used as objects or elements of tables.

2.2 ESBMC
Cordeiro, Fischer, and Marques-Silva [14] presented the ESBMC
tool as an efficient approach for verifying ANSI-C embedded pro-
grams, which is based on bounded model checking and SMT
solvers. Indeed, ESBMC is able to verify properties on single-
and multi-thread programs such as deadlock, arithmetic overflow,
division by zero, array bounds, among other types of violations.

In summary, ESBMC is able to model an input program from a
state-transition system. Thus, consider a transition system with
states defined as M = (S, T, S0), where S0 ⊆ S, T ⊆ S × S, S is
a set of states, S0 is a set of initial states, and T is a transition
relation. Hence, given a transition system M , a property φ, and
a limit k, ESBMC unfolds the system k times and transforms
the result into a verification condition (VC) ψ, such that ψ is
satisfiable if, and only if, φ has a counterexample of length less
than or equal to k.

One can note that, with this approach, it is possible to generate
VCs to check for properties and to perform an analysis on the
program’s control-flow graph (CFG), which is generated by ES-
BMC, in order to determine the best solver for a certain class
of VCs and also to simplify the formula-deployment procedure.
In general, ESBMC converts an ANSI-C/C++ program into a
GOTO program, that is, it converts expressions, such as switch
and while, into GOTO instructions, which are then symbolically
simulated by the GOTO symex. Thus, a single static assignment
(SSA) model is generated, with static-value assignments to prop-
erties and, based on them, two sets of quantifier-free formula are
created: C for the constraints and P for the properties. The two
sets of formula are then verified by an appropriate SMT solver
thus, if there is a property violation, a counterexample interpre-
tation is performed and the identified error is reported; otherwise,
the related property is valid, up to k iterations.

The verification process of ESBMC is completely automatic, mak-
ing it ideal for efficient testing of real-time embedded software,
even in automated environments. It is worth noting that ESBMC
has also been successfully extended to perform formal verification
of C++ programs [47], Qt-based applications [36, 23, 37], and
CUDA programs [44, 45, 46]. However, this work distinguishes
from the rest, since it is the first to propose a translation proce-
dure of the source code, which enables the use of not only ESBMC
as verifier, but also others model checkers that support verifica-
tion of ANSI-C code.

2.2.1 Related Work on Model Checking Lua
The work about CBMC, which was presented by Clarke, Kroen-
ing, and Lerda [13], showed the suitability of model checking
regarding ANSI-C programs. Its main difference regarding ES-
BMC lies on the backend, that is, instead of using a SAT solver,
ESBMC uses different background theories and pass verification
conditions to a SMT solver [14]. It is worth noting that CBMC
performs SAT based verification over its internal GOTO interme-
diate representation, and not directly on ANSI-C itself, as well
as, ESBMC. Falke, Merz, and Sinz [35] also introduced LLBMC,
which performs verification in C/C++ programs, using the Low-
Level Virtual Machine (LLVM) intermediate language. The work
about Java PathFinder (JFP), presented by Havelund and Press-
burger [24], is also worth noting, due to the fact that it was the
inspiration for the development of the translator module present
in BMCLua, once it performs a translation of Java programs into
Promela in order to apply model checking to Java programs [25].

Regarding Lua code verification, Lua checker [31] stands out as



a tool for analysing Lua code and is restricted to variables and
constants. Lua Development Tools (LDT) [31] consist in a sim-
ple plug-in for static analysis, whose main applications are syntax
highlighting and refactoring. Lua Inspect [31], in turn, infers val-
ues. Both LDT and Lua inspect are based on Metalua [21], which
is an extension to Lua and provides features as AST compilation
and syntax parsing. Lua Analysis in Rascal (Lua AiR) [31] per-
forms code analysis as a pipeline, where the input Lua script is
parsed (with a module generated by Rascal, through a Lua Gram-
mar) into a parse tree, which is matched to an AST. The latter is
used for type checking and is annotated with scope information.
It is worth noting that a CFG is generated from the mentioned
AST, which is used for fixed-point computations.

Model
Checker

Supported
Language

Intermediate
Language

Based on

CBMC C - SAT solver

LLBMC C/C++ LLVM SMT solver

JPF Java PROMELA SAT solver

Lua Checker Lua - -

LDT Lua - Metalua

Lua Inspect Lua - Metalua

Lua AiR Lua - Rascal

BMCLua Lua ANSI-C SMT solver

Table 1: Comparison regarding the presented related work.

In addition, regarding code translators, there is also a tool called
Lua To Cee [34], which allows the conversion of Lua code into
ANSI-C code, using the Lua API. Unfortunately, Lua To Cee
produces an extensive ANSI-C code with many dependencies to
Lua API, as aforementioned, which unnecessarily increases the
complexity of the verification process. Table 1 shows a simple
comparison among the mentioned work and the present proposal.
When comparing with the previously mentioned tools, one can
note that the proposed work is the first to use BMC techniques
for checking Lua programs. Besides, regarding approaches spe-
cific to Lua, BMCLua incurs no extension to the base language
and employs an intermediate representation, which is related to
the original one, that is, ANSI-C. Indeed, Lua is implemented in
ANSI-C.

[h!]

1 grammar Lua ;
2
3 chunk : block EOF # blockChunk
4 ;
5 block : stat∗ r e t s t a t ? # statBlock
6 ;
7 stat
8 : ’ ; ’
9 | v a r l i s t ’=’ e x p l i s t # assignMul

10 | f u n c t i o n c a l l
11 | l a b e l
12 | ’ break ’ # breakStat
13 | ’ goto ’ NAME # gotoStat
14 | ’ do ’ block ’ end ’ # doStat
15 | ’ whi le ’ exp ’ do ’ block ’ end ’ # whi l eStat
16 | ’ r epeat ’ block ’ u n t i l ’ exp # repeatStat
17 | ’ i f ’ exp ’ then ’ block
18 ( ’ e l s e i f ’ exp ’ then ’ block )∗
19 ( ’ e l s e ’ block )? ’ end ’ # i f S t a t
20 | ’ f o r ’ NAME ’=’ exp ’ , ’ exp ( ’ , ’ exp )? ’ do ’ block
21 ’ end ’ # fo rS ta t
22 | ’ f o r ’ namel i s t ’ in ’ e x p l i s t ’ do ’ block
23 ’ end ’ # fo r InS ta t
24 | ’ f unc t i on ’ funcname funcbody # func t i onSta t
25 | ’ l o c a l ’ ’ f unc t i on ’ NAME funcbody
26 | ’ l o c a l ’ namel i s t ( ’=’ e x p l i s t )? # varLocal
27 ;
28
29 // LEXER
30 INT : [0−9]+ ;
31 FLOAT : [0−9]+ ’ . ’ [0−9]∗ [ eE ] [+−]? D ig i t+ ;
32 COMMENT : ’−−[[ ’ .∗? ’ ] ] ’ ;
33 NEWLINE : ’\ r ’ ? ’\n ’ −> sk ip ;

Figure 1: Grammar fragment illustrating some Lua features.

2.3 ANTLR
Another Tool for Language Recognition (ANTLR) [43] is a tool
used to generate lexicon and syntax analyzers, which is able to
automate the construction of language recognizers and allows the
creation of grammars for specific language syntaxes. From a gram-
mar, as shown in Fig. 1, ANTLR can automatically generate Java
classes, which implement the necessary features of lexical (lexer)
and syntactic (parser) analyzers.

2.3.1 Translation
The basic translation operation in ANTLR, shown in Fig. 2, is
performed in two steps: the lexical analysis and the syntactic
analysis.

Figure 2: Basic translation flow in ANTLR.

In the lexical analysis stage, using the class lexer created by
ANTLR, a set of input characters (Lua code) produces a sequence
of symbols, called tokens. Those tokens are standard text seg-
ments repeated in a text, which have a common meaning, as the
slash symbol separating day, month and year, in a date.

In the syntactic analysis (or parsing) stage, the class parser, also
generated by ANTLR, from a specific grammar, uses the token
flow produced by the class lexer, in order to generate an output
response, according to the code syntax. Thus, it is possible to
generate an abstract syntax tree (AST), which is used to perform
analysis and manipulation of language instructions, by means of
depth-first search (DFS) [16]. The classes associated with AST,
which was generated by the parser, are shown in Fig. 3.

Figure 3: Classes generated from an AST.

In order to perform the translation of code fragments, ANTLR
uses search mechanisms able to respond to events, which are trig-
gered by the in-depth parsing performed in the related AST. In
addition, a search mechanism called visitor [43], which was used in



this work and is shown in Fig. 4, allows the control of DFS events,
enabling the generation of a structured text output by means of
the method println in the class System.out, present in Java.

Figure 4: Example of a search procedure using visitor.

3. RESEARCH DESIGN AND METHODOLOGY
BMCLua is a translator suitable for model checking Lua pro-
grams. The current version of BMCLua is modular, structured,
and the mentioned translator module was developed with ANTLR,
which allows automated generation of the modules lexer and parser,
from a formal backus naur form (BNF) grammar [32]. In fact,
BNF is widely used in the development of compilers. In addition,
this approach simplifies and standardizes the translator develop-
ment.

Translator 

Lua 
Code 

Lexer Parser Visitor 

Lua 
Grammar 

Interpret 
Counterexample 

Verification Successful 

BMC 
Checkers 

Property 
holds up 
to bound k 

Property 
violation 

ANSI-C 
Code 

Figure 5: Overview of the BMCLua architecture.

Fig. 5 shows the current BMCLua architecture, which is based on
BNF grammars. Indeed, BMCLua translator is based on the Lua
Grammar component, which describes the valid rules for the Lua
syntax. From this grammar, the classes lexer and parser are built.
Moreover, the visitor output interface [43] allows the generation
of ANSI-C code from Lua code. Finally, BMC checkers, such as
ESBMC, CBMC, and LLBMC represent the model-verification
tools, which are able to check the ANSI-C code generated by the
translator. As aforementioned, in order to assess the effectiveness
of our approach, we have applied ESBMC in our experimental
results, due to its performance highlighted in the last edition of the
International Competition on Software Verification (SV-COMP
2016) [9].

Fig. 6 shows an illustrative example of the translation, verifica-
tion, and interpretation steps, which are all automatically per-
formed by BMCLua, in order to model check Lua programs. Note
that the Lua code is translated into an ANSI-C code, which usu-
ally adds more code lines to the translated program. Note further

Figure 6: Illustrative example using BMCLua.

that the counterexample informs the code line and the violation
in the original Lua program.

4. METHODS
In order to accomplish formal verification of Lua programs, via
BMC, it is necessary to use an intermediate representation of
the original source code. Thus, the BMCLua translator con-
verts a Lua program into an equivalent ANSI-C code. Later,
that same ANSI-C code will be automatically verified by ESBMC.
Such an approach allows the use of different model checkers (e.g.,
CPAChecker [20], CBMC [13] and LLBMC [35]) as back-ends for
the BMCLua translator.

Figure 7: BMCLua translation flow.

The BMCLua translator was developed with the ANTLR tool [43],
which allows the generation of Java classes for analysers. In-
deed, such an approach favours integration with BMCLua. Fig. 7
presents the BMCLua translation flow. In this diagram, one can
note the Java classes associated to modules lexer and parser,
which were built from a BNF grammar.

block ::= stat

stat ::= varlist “ = ” explist
| functioncall | label | “break”
| “do” block “end”
| “while” exp “do” block “end”

exp ::= “nil” | “false” | “true” | number | string
| exp binop exp | unop exp

Figure 8: Notation example for the Lua grammar component.

Fig. 8 shows an example of the Lua grammar notation, which
consists of a set of rules describing the Lua syntax. In this exam-
ple, a rule block represents a block of executable Lua instructions.
In addition, the respective rule can contain one or many instruc-
tions, whose syntax is specified by rule stat. However, a rule stat,
defined in Lua grammar, specifies the syntax of a Lua language
instruction. For instance, the syntax of a while structure is spec-
ified as “while” exp “do” block “end”, where while, do and end are
key-words that define the repetition structure, and exp and block
represent grammar rules. The rule block is recursively called, in
order to form the Lua language structure (see Fig. 8).

The visitor [43] mechanism from ANTLR allows the generation
of a structured output corresponding to the associated ANSI-C
code. Indeed, LuaV isitor uses the AST structure for generating



an output text, with ANSI-C syntax and functionally equivalent
to the input Lua code. A translation example is shown in Fig. 9.
In the current version, for instance, the translation of multiple
assignments results in a set of simple assignment instructions, in
ANSI-C, with a type declaration according to the assigned value.
Table 2 shows what is either fully or partially supported by the
BMCLua tool. It is worth noting that partially supported struc-
tures are under development.

1 function t e s t e (N)
2 i = 0
3 r e t = 0
4 i f N > 1 then
5 for i = 1 , N do
6 r e t = re t + (Nˆ1)
7 end
8 end
9 return r e t

10 end
11
12 n = 2
13 y = t e s t e (n)

(a) Lua code

1 #include<s td i o . h>
2 #include<a s s e r t . h>
3 #include <math . h>
4
5 int t e s t e ( int N){
6 int i = 0 ;
7 int r e t = 0 ;
8 i f (N > 1){
9 for ( i = 1 ; i <= N; i++){

10 r e t = re t + pow(N, 1 ) ;
11 }
12 }
13 return r e t ;
14 }
15
16 void main (){
17 int n = 2 ;
18 y = t e s t e (n ) ;
19 }

(b) ANSI-C code
Figure 9: Translation example using BMCLua.

Lua Structure Supported

Primitive types (e.g., numbers) Yes
Relational and logical operators Yes
Unary operators Yes
Simple and multiple assignments Yes
Control structures Partial
Function definition Partial

Table 2: Lua syntactic components supported by BMCLua.

Besides the partially implemented syntax, BMCLua translator
does not convert library functions yet: coroutine, metatable, pack-
age, math, i/o, and debug. Actually, the function declaration used
in Lua is kept, when converting to ANSI-C, without implementing
the function code, given that the associated call is not verified by
the BMC tool. In a future research, ANSI-C equivalent functions
will be implemented, in such a way that function code, syntax,
and parameters are completely verified.

The equivalency between the produced ANSI-C code and the orig-
inal Lua code is guaranteed through black-box testing techniques:
if the execution of the ANSI-C program produces the same result
obtained with the Lua script, for the same input set. Therefore,
for each code file translated from Lua to ANSI-C, a functional
check of the ANSI-C program, generated by the translator, is
performed, as described in previous work [29].

4.1 Translated Structures
In order to translate a Lua program into an ANSI-C program, an
analysis of Lua language structures is performed by means of the
AST tree generated by the parser, which is defined in terms of
the BNF grammar. An example of a typical AST tree is shown
in Fig. 10.

As already mentioned, the Lua language is not strongly typed [30].
Indeed, users do not need to assign any type to any variable, i.e.,
values of different types can be assigned to the same variable,
as shown in Fig. 11a. With the goal to overcome this, during
the translation procedure, BMCLua creates new variables, in the
ANSI-C code, if the value of a new type is assigned to the same
variable in the Lua code, as shown in Fig. 11b.

Figure 10: Example of an AST tree from BMCLua.

1 var = 10
2 var = 10.12
3 var = ‘ ‘BMCLua ’ ’

(a) Lua code

1 #include <s t r i n g . h>
2 int var ;
3 double var1 ;
4 char∗ var2 ;
5 void main (){
6 var = 10 ;
7 var1 = 10 . 1 2 ;
8 var2 = ‘ ‘BMCLua ’ ’+’ \0 ’ ;
9 }

(b) ANSI-C code
Figure 11: Example of the Lua code translation.

The translator is able to convert common control structures, such
as if, while, for, do, and repeat. Such a translation takes place
during the modification of the respective command delimiters of
each structure, for its equivalent in ANSI-C. For instance, the
translation of the structure “if exp then block end”, in which the
respective AST tree is shown in Fig. 12a, is simplified by replacing
keywords then and end by parentheses and brackets. This way,
the translation procedure results in an if structure, where syntax
corresponds to “if (exp) { block }”, as shown in Fig. 12b.

(a) AST tree correspondent to
an if structure

1 i f ( j != 0){
2 i n i = f a l s e ;
3 }

(b) ANSI-C code
Figure 12: Example of the Lua code translation, which contains
an if structure.

For BMCLua, the table structure, which can represent vectors,
lists, and records is translated into a more simplified vector struc-
ture. Fig. 13a shows a Lua program, which implements a table
structure, and Fig. 13b shows the resulting translation, as a vector
structure in ANSI-C.

1 loca l array={
2 [0 ]=2 ,
3 [1 ]=4 ,
4 [2 ]=8 ,
5 [3]=10
6 }
7 for i = 0 , 3 do
8 print ( array [ i ] )
9 end

(a) Lua code

1 int i ;
2 void main (){
3 int array [ 4 ] = {
4 2 ,
5 4 ,
6 8 ,
7 10} ;
8 for ( i =0; i <=3; i=i +1){
9 print ( array [ i ] ) ;

10 }
11 }

(b) ANSI-C code
Figure 13: Example of the Lua code translation, which contains
a table structure.



In the example shown in Fig. 14, the table structure corresponds
to an array type and the tableconstructor node corresponds to the
structure declared in the source code shown in Fig. 13a.

Figure 14: AST tree related to the array structure from Fig. 13a.

In addition to the mentioned structures, BMCLua also translates
function structures. However, while the Lua language allows a cer-
tain function to return multiple values, BMCLua supports only
functions that return single values. A translation of the func-
tion structure is shown in Fig.15. From the ANTLR parser, an
AST tree is generated (see Fig.14), which allows the conversion
of functions by the translator. By means of the parlist rule, from
the funcbody node, the parameters of the respective function are
stored in a linked list, in order to be used in the function call trans-
lation process. Furthermore, all values, returned by the function,
can be listed in the explist node.

1 function dobro (x )
2 d = 2 ∗ x
3 return d
4 end
5 y = dobro (2)

(a) Lua code

1 double d ;
2 double dobro ( int x){
3 d = 2 ∗ x ;
4 return d ;
5 }
6 void main (){
7 y = dobro ( 2 ) ;
8 }

(b) ANSI-C code
Figure 15: Lua code translation example, which contains a func-
tion structure.

Figure 16: Example of verification result using BMCLua.

4.2 Verification
The next stage of BMCLua is the verification of ANSI-C code
generated by the translator. The verification module, which uses a
BMC tool, is responsible for checking ANSI-C code and generating
a counterexample, if a violation is found (e.g., division by zero).

In this particular case, if a violation is found, then BMCLua shows
a list of states that lead to the violation, and also the code line
where it was detected.

An example of verification result produced by BMCLua is shown
in Fig. 16. As can be seen, in code line 3, a violation occurred due
to a division by zero. Indeed, such a problem was detected and
reported as a violated property, showing that the variable m must
be different than zero and reporting the code line number, where
the violation was found. Such verification process was carried out
as described by Cordeiro et al. [14].

4.3 Interpretation
From the verification process of an ANSI-C code, ESBMC gener-
ates an output text that is processed in the interpretation stage.
At this point, based on this output, BMCLua identifies the cor-
rect line and the error type in the respective Lua source code.
Such identification is accomplished through a sorted list, with
Lua code line numbers. Besides, its respective correspondence
w.r.t the ANSI-C source code is kept in the translator. As an il-
lustration of this feature, Fig. 17 shows ANSI-C code produced by
the BMCLua translator, where each ANSI-C code line contains a
comment that informs the respective line, in the Lua source code.
In fact, the source code in Fig.17 corresponds to the translation
of what is shown in Fig.13a.

1 ˜/bmclua java −j a r bmclua . j a r exemplo . lua
2 −show −showln
3 −showlnlua −no−check−esbmc
4

5 1 − int i ;
6 2 − void main (){
7 3 − int array [ 4 ] = {2 ,4 ,8 , 10} ; // lua code : 1
8 4 − for ( i =0; i <=3; i=i +1){ // lua code : 2
9 5 − print ( array [ i ] ) ; // lua code : 3

10 6 − } // lua code : 2
11 7 − }

Figure 17: Translation result with information of correspondent
lines in Lua code.

5. RESULTS AND DISCUSSION
An experimental evaluation was carried out, with the goal to eval-
uate the efficiency and effectiveness of the BMCLua tool1. Such
experiments consist in verifying standard well-known algorithms
(i.e., benchmarks) used to test software performance. Indeed,
the primary purposes of such experiments are (1) to evaluate the
trustworthy of the translation process, (2) to evaluate the BM-
CLua’s performance against ESBMC, in order to check how much
the translation procedure affects the time and correctness of the
verification process, and (3) to compare BMCLua results against
a state-of-the-art Lua translator, which in this case is Lua to Cee
tool. We have used an evaluation approach similar to Alessan-
dro et al. [3], however, in the present research, the Bellman-Ford,
Prim, BublleSort, SelectionSort, Factorial, and Fibonacci algo-
rithms were also used. The Bellman-Ford algorithm [26, 5] is
commonly applied to the solution of the shortest path problem,
with application in network routers, in order to determine the
best route for data packages. As Bellman-Ford, the Prim algo-
rithm [5], [12] is graph search algorithm for minimum spanning
trees, whose goal is to find the shortest connection. The Bub-
bleSort [16] and the SelectionSort [50] algorithms sort objects by
means of iterative permutation of adjacent elements, which are
initially disordered. The InsertSort algorithm [50], in turn, builds
a sorted array, one element at a time, by scanning the input array

1Available at https://sites.google.com/site/bmclua/



from left to right. The Factorial is a recursive algorithm, which
computes the factorial of a certain natural number. Concluding
the list, the Fibonacci is an iterative algorithm for computing the
Fibonacci sequence. Such benchmarks are the same used to eval-
uate performance and accuracy regarding ESBMC [14].

5.1 Environment
The mentioned experiments were performed on a desktop plat-
form, with a clock of 2.5 GHz and 2 GB of RAM. The execution
time of each algorithm was measured in seconds, using the class
ManagementFactory from package java.lang [19]. Indeed, it al-
lows the measurement of CPU allocation times, deducting I/O
intervals and other shared tasks performed during program exe-
cution.

5.2 Results
Different loop limits were tested, for each algorithm in the bench-
mark set, in order to perform an appropriate evaluation of BM-
CLua. For instance, regarding the Bellman-Ford algorithm, array
bounds ranging from 5 to 800 elements were used. Thus, it was
possible to estimate the associated processing time due to the in-
crease in the number of elements per array, based on the number
of iterations.

In Table 3, the obtained results are shown. L is the number
of Lua code lines, B shows the upper limit for loop iterations,
that is, the number of array elements plus 1, TE is the elapsed
processing time, in seconds, for verifying the associated ANSI-C
code, using ESBMC, and TL is the elapsed processing time, in
seconds, for verifying the input Lua code, using BMCLua. TL
also considers the translation time (Lua to ANSI-C), in addition
to the verification time of the resulting source code. This way, it
is clear that TL will always be greater than TE. Indeed, TL and
TE are used as performance-comparison metrics for the translated
ANSI-C source code and the original benchmark code written in
ANSI-C, respectively. For each experiment, one single property
is verified.

The standard benchmarks use the assert function, available in
both Lua and ANSI-C/C++, in order to verify a certain prop-
erty. Thus, during the translation process from Lua to ANSI-C,
the assert instruction is directly converted, so that the verification
engine is able to check for a single safety property. In addition, all
benchmarks underwent a black-box test procedure known as func-
tional testing, in order to evaluate the trustworthy of the trans-
lation procedure. Thus, the same inputs were manually applied
to the Lua programs and their (respective) translated ANSI-C
programs, and we then checked their outputs equivalency. As a
result, such test ensures that all benchmarks were successfully
translated by BMCLua tool.

Values regarding columns TL and TE, for the Bellman-Ford and
InsertSort algorithms, reveal that the proposed methodology presents
a verification time comparable to that provided by ESBMC, that
is, the elapsed time for verifying the input Lua code is similar to
that of ESBMC, for an equivalent counterpart in ANSI-C. How-
ever, one can also note that, for the other benchmarks, the elapsed
verification times presented by BMCLua are much higher than the
ones presented by ESBMC, if the largest bound limits are consid-
ered (number of array elements).

For instance, when the number of elements is increased, the Prim
algorithm executions results in a wide difference between the ver-
ification time presented by both verifiers. This occurs because
the conversion from Lua to ANSI-C involves many more vari-

ables than the original benchmark, in ANSI-C. This is a com-
mon problem in automated code conversion, since the resulting
code is not properly optimised [2]. In the future, some algorithm-
optimisation techniques, such as common sub-expression elimi-
nation and constant propagation [2], will be applied, in order to
optimize the ANSI-C code generated by the translator. Such an
approach has the potential to reduce the verification time pre-
sented by the BMC tools. Nevertheless, the associated verifica-
tion times are still very similar, when small element numbers are
considered and, for the initial range, they are even lower than one
second.

Algorithm L B TE TL

Bellman-Ford

46 6 < 1 < 1
46 11 < 1 < 1
46 16 < 1 < 1
46 21 < 1 < 1
46 401 1 2
46 801 2 3

Prim

70 5 < 1 < 1
70 6 < 1 < 1
70 7 < 1 < 1
70 8 < 1 < 1
70 9 < 1 < 1
70 201 26 27
70 401 65 114

BubbleSort

29 13 < 1 < 1
29 36 3 5
29 51 6 10
29 71 12 19
29 141 56 85
29 201 123 191

SelectionSort

31 13 < 1 < 1
31 36 1 2
31 51 3 4
31 71 5 7
31 141 23 31
31 201 49 70

Factorial

11 51 < 1 < 1
11 101 < 1 < 1
11 151 < 1 < 1
11 201 < 1 < 1
11 401 1 1
11 801 3 6
11 2001 26 38

Fibonacci

20 5001 < 1 1
20 8001 1 2
20 10001 2 3
20 50001 9 14
20 80001 15 22
20 100001 19 28

InsertSort

21 21 < 1 < 1
21 26 < 1 < 1
21 51 < 1 < 1
21 101 5 6
21 201 32 33
21 401 219 220

Table 3: Experimental results for the BMCLua tool.

As already mentioned, the verification time presented by BMCLua
will always be higher than what is provided by ESBMC alone,
due to the translation and also the interpretation (regarding the
counterexample) procedures. All tests, for each benchmark, were
performed with the same code, which can be seen in column L.
This was done in order to plot consistent curves w.r.t. processing



time and number of array elements, which can be seen Fig. 18.
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Figure 18: Performance (in seconds) of the verification process
with ESBMC and BMCLua, for the respective algorithms.

Indeed, one can notice that the Fibonacci algorithm presents a
processing time that increases almost linearly with the number of
elements. However, the BublleSort, SelectionSort, and InsertSort
algorithms present an exponential tendency. This way, in gen-
eral, the increase in processing time will be much higher with a
larger number of elements, which naturally leads to research effort
regarding the mentioned optimization techniques [2].

Finally, it is worth noting that, in all experiments, BMCLua did
not report any false-positive or false-negative results, which shows
its correctness regarding the verification of Lua programs.

5.3 Comparison with Lua To Cee
Comparing the translation results provided by Lua To Cee and
BMCLua, it was noticed that Lua to Cee generates ANSI-C code
with much more lines, including many functions from the Lua API
(e.g., lua pushnumber, lua setfield, lc nextra) than the one output
by BMCLua. Indeed, ANSI-C source code generated by BMCLua
does not use any additional function from the Lua API, which
makes it more legible and, consequently, simplifies the verification
process. Furthermore, the verification of ANSI-C code generated
by Lua To Cee was not possible using ESBMC (or any other BMC
tool), due to the fact that many functions in the generated ANSI-
C source code belong to specific libraries that are not available in
the library set of such model checkers.

Table 4 shows a quantitative comparison regarding code lines pro-
duced by BMCLua and Lua To Cee. E indicates the upper limit
for loop iterations, that is, the number of array elements plus 1,
LB denotes the number of Lua code lines produced by BMCLua,
and LC denotes the number of Lua code lines produced by Lua
To Cee.

Algorithm E LB LC

Bellman-Ford
6 46 596
21 46 776
801 46 10136

Prim
5 70 741
8 70 795

401 70 5475

BubbleSort
13 29 419
71 29 531
201 29 798

SelectionSort
13 31 418
71 31 537
201 31 803

Factorial
51 11 245
401 11 245
2001 11 245

Fibonacci
5001 20 288
50001 20 288
100001 20 288

InsertSort
21 21 399
101 21 639
401 21 1539

Table 4: Comparative results of code translation performed by
BMCLua and Lua To Cee.

The benchmarks presented in Table 3 are used for performing
translation comparisons. For the benchmarks Bellman-Ford, Prim,
BubbleSort, SelectionSort, and InsertSort, the number of code
lines produced by Lua To Cee increase significantly with the num-



ber of array elements, except for the benchmarks Factorial and
Fibonacci, which do not use arrays (the produced ANSI-C code
lines remain constant). However, note that, in all cases, the num-
ber of code lines produced by Lua To Cee is much higher than
what is output by BMCLua. In conclusion, BMCLua produces a
much more feasible ANSI-C code for formal verification.

6. CONCLUSIONS
The present work reached the planned goal, which consisted in
developing a tool able to translate Lua code into ANSI-C and
verify that through ESBMC. At the time this paper was written,
it was the first reference regarding the use of BMC techniques for
verifying Lua programs, by providing a complete and comprehen-
sive methodology. Besides, this work is one of the few that tackle
the verification of a language that is not strongly typed.

The experimental results confirmed the effectiveness of the pro-
posed architecture, despite its performance reduction due to the
increase in verification processing times, when Lua programs with
many elements (in the associated structures) are used. In all tests
cases regarding the adopted benchmarks, 55.81% presented a veri-
fication time 66.44% greater than that provided by ESBMC. How-
ever, this can be minimised with optimisations in the BMCLua
translation module [2]. Additionally, BMCLua was able to detect
all property violations in the verified benchmarks, without report-
ing any false-positive or false-negative results, since the k upper
bound is known for those benchmarks. The performed experimen-
tal results also show that BMCLua produces more efficient and
effective ANSI-C code for software verification, when compared
with Lua To Cee.

It is worth noting that the present work can help increase ro-
bustness regarding consumer electronics devices, such as games,
set-top boxes, and mobile devices, which are implemented using
the Lua programming language. Indeed, it can be integrated into
current software development processes, with the potential to re-
duce errors in Lua programs. As a consequence, the development
phase itself can be shortened, given that many potential problems
would be found earlier.

The main goal of the present research is to reach a high coverage
degree regarding the Lua language syntax. Thus, one possible
future work is to provide support to type conversion, function
call, and declaration of functions present in Lua and NCLua li-
braries. Furthermore, the number of SMT-solver options can be
increased (e.g., Z3), for instance, with the incorporation of the
SMT-LIB API [8] to the proposed BMCLua framework. Finally,
the BMCLua tool could be integrated into existing development
environments, through plug-ins that would allow developers to
validate Lua code on the fly.
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