
SMT-Based Context-Bounded Model Checking for Embedded
Systems: Challenges and Future Trends

Lucas C. Cordeiro
Electronic and Information Research Center

Federal University of Amazonas, Brazil
Email: lucascordeiro@ufam.edu.br

Eddie B. de Lima Filho
Science, Technology, and Innovation Center

for the Industrial Pole of Manaus, Brazil
Email: eddie@ctpim.org.br

ABSTRACT
The dependency on the correct functioning of embedded systems
is rapidly growing, mainly due to their wide range of applications,
such as micro-grids, automotive device control (e.g., airbag con-
trol), health care, surveillance, mobile devices, and consumer elec-
tronics. Their structures are becoming more and more complex
and now require multi-core processors with scalable shared mem-
ory, in order to meet increasing computational power demands.
As a consequence, reliability of embedded (distributed) software
becomes a key issue during system development, which must be
carefully addressed and assured. Normally, state-of-the-art verifi-
cation methodologies for embedded systems generate test vectors
(with constraints) and use assertion-based verification and high-
level processor models, during simulation; however, other addi-
tional challenges have been raised: the need for meeting time and
energy constraints, handling concurrent software, dealing with
platform restrictions, evaluating implementation-structure choices,
and supporting new software architectures and legacy designs
(usually written in low-level languages). The present paper dis-
cusses challenges, problems, and recent advances to ensure cor-
rectness and timeliness regarding embedded systems. Reliabil-
ity issues, in the development of micro-grids and cyber-physical
systems, are then considered, as a prominent (bounded) model
checking application.

1. INTRODUCTION
Generally, embedded computer systems perform dedicated func-
tions with high degree of reliability. They are used in a variety of
sophisticated applications, which range from entertainment soft-
ware, such as games and graphics animation, to safety-critical
systems, such as nuclear reactors and automotive controllers [1].
Embedded systems are ubiquitous, in modern day information
systems, and are also becoming increasingly important in our so-
ciety, especially in micro-grids, where reliability and carbon emis-
sion reduction are of paramount importance [2], and in cyber-
physical systems (CPS), which demand short development cycles
and again high-level of reliability [3, 4]. As a consequence, human
life has also become more and more dependent on the services
provided by this type of system and, in particular, their success
is strictly related to both service relevance and quality.

Figure 1 shows some examples of embedded systems, which typ-
ically consist of a human-machine interface (e.g., keyboard and
LCD), a processing unit (e.g., real-time computer system), and
an instrumentation interface (e.g., sensor, network, and actuator)
[1]. Indeed, many current embedded systems, such as unmanned
aerial vehicles (UAVs) [5] and medical monitoring systems [6], be-
come interesting solutions only if they can reliably perform their
target tasks. For instance, UAVs are a trend on military mis-
sions, due to the absence of pilots; however, an incorrect plan
execution may also cost human lives, which is unacceptable. In

Figure 1: An embedded system is part of a well-specified
larger system (intelligent product).

addition, wrong disease diagnosis or condition-evaluation reports
have the potential to compromise patients’ health, with serious
consequences.

Besides, when physical interaction with the real world is needed,
which happens in CPS, additional care must be taken, mainly
when human action is directly replaced, as in vehicle driving.
Regarding the latter, even human-in-the-loop feedback control
can be employed [7], which then raises deeper concerns related
to the reliability of human behavior modeling and system imple-
mentation. Consequently, it is important to go beyond design
correctness and also address behavior correctness, which may be
performed by incorporating system models.

A number of distinctive characteristics might influence the embed-
ded system development and verification process, which include:
mass production and static structure, functionality determined
by software in read-only memory, multi-core processors with scal-
able shared memory, and limited amount of energy. Addition-
ally, the increasing computational power and decreasing size and
cost, which are common to the area of computer processors, are
enabling system designers to move more features to software do-
main, which consequently leads to difficulties in verifying design
correctness, since stringent constraints imposed by the underly-
ing hardware (e.g., real-time, memory allocation, interrupts, and
concurrency) must be considered during verification [8].

2. BOUNDED MODEL CHECKING (BMC)
Bounded Model Checking (BMC) based on Boolean Satisfiability
(SAT) was originally proposed to verify hardware designs [9, 10].
Indeed, Biere et al. were able to successfully verify large digital
circuits with approximately 9510 latches and 9499 inputs, leading
to BMC formulae with 4×106 variables and 1.2×107 clauses to be
checked by a standard SAT solver. BMC based on Satisfiability



Modulo Theories (SMT) [11], in turn, was originally proposed to
deal with increasing software verification complexity [12].

In general, BMC techniques aim to check the violation of a given
(safety) property at a given system depth, as shown in Figure 2.
Indeed, given a transition system M, which is derived from the
control-flow graph of a program, a property φ, which represents
the program correctness and/or the system’s behavior, and an
iteration bound k, which limits the loop unrolling, data struc-
tures, and context-switches, BMC techniques thus unfold the sys-
tem k times, in order to convert it into a verification condition
ψ, expressed in propositional logic or in a decidable-fragment of
first-order logic, such that ψ is satisfiable if and only if φ has a
counterexample of depth less than or equal to k.

Figure 2: Bounded Model Checking.

From the practical point of view, SAT-based or SMT-based BMC
procedures have been successfully applied to verify a large num-
ber of hardware and software systems, including digital circuits
and single- and multi-threaded programs. Those BMC techniques
were able to find subtle bugs in real digital and embedded software
systems, as reported in the available literature [13, 14, 15, 16, 17].
Nonetheless, the main criticism with respect to BMC techniques
relies on completeness, since they are able to prove system cor-
rectness only if an upper bound k is known, i.e., a bound that
unfolds all loops and recursive functions to their maximum possi-
ble depth.

Due to that limitation, BMC tools are typically susceptible to ex-
haustion of time or memory limits, when checking complex circuit-
implementations or programs with loops, whose bounds are too
large or cannot be statically determined.

2.1 Induction-based Verification of C Programs
One promising approach to achieve completeness, in BMC tech-
niques, is to prove that an invariant (assertion) is k -inductive [18,
19]. The main challenge, however, of such an approach relies
on computing and strengthening inductive invariants from pro-
grams. In particular, loop invariants, which were computed from
programs under verification, must be inductive (and not just in-
variant) for the corresponding verification conditions to be valid,
i.e., induction cannot determine the invariance of a non-inductive
assertion [20]. As a consequence, even if k -induction procedures
successfully compute such assertions, which are indeed invariant,
those must be inductive, so that verifiers can automatically prove
program correctness.

There are several invariant-generation algorithms that discover
linear and polynomial relations among integer and real variables,
in order to provide loop invariants and also discover the mem-
ory “shape”, in programming languages with pointers [21, 22].
The current literature also reports successful applications of k -
induction based verification algorithms for hardware and software
systems, using invariant generation and strengthening, mostly
based on interval analysis.

Novel verification algorithms for proving correctness of (a large
set of) C programs, by mathematical induction, in a completely

automatic way (i.e., users do not need to provide the loop in-
variant) were recently proposed [23, 24, 25, 26, 27]. Additionally,
k -induction based verification was also applied to ensure that (re-
stricted) C programs (1) do not contain violations related to data
races [28], considering the Cell BE processor, and (2) do respect
time constraints, which are specified during the system design
phase [18]. Apart from that, the k -induction algorithm is also
a well-established technique in hardware verification, where it is
easily applied, due to the monolithic transition relation present in
such designs [18, 19, 29].

Nonetheless, there is still little evidence, in the available liter-
ature, that model checking hardware and software systems, us-
ing k -induction (and invariants), can be efficiently exploited in
embedded-system verification. That happens due to the distinc-
tive characteristics mentioned earlier, which influence the embed-
ded system development and also the employed verification pro-
cesses. Additionally, there is still a lack of studies for embedded
software verifiers to exploit the combination of different invari-
ant generation and strengthening algorithms, including analysis
to discover linear inequalities, polynomial equalities and inequal-
ities, and invariants about memory and variable aliasing [20].

2.2 Incorporating System Models to Automated Ver-
ification Procedures

It is worth noticing that, currently, SMT-based BMC approaches
check code properties in real programs, which basically address
programing-language issues and general correctness, without tak-
ing into account target applications or system behavior. Such a
statement is important, since, as already mentioned, many system
features are being moved to software domain, which then requires
schemes that do not only check if the source code is correctly
written, but also if it will properly respond in real environments
or under external problems. For instance, the anti-lock braking
system software of a vehicle model can be bug free, but it may
not work correctly if a sensor is damaged.

Indeed, research in software verification is now incorporating such
considerations, during checking processes, and some schemes al-
ready use knowledge about the system to be verified and the un-
derlying hardware. Recently, a verification tool for digital sys-
tems was proposed, which is called digital system verifier (DSVer-
ifier) [31] and is able to aid engineers to check overflow, limit
cycle, output error, timing, stability, and minimum phase, con-
sidering finite word-length (FWL) effects. Additionally, DSVeri-
fier checks closed-loop systems with uncertain models considering
FWL effects, which are typically represented as hybrid systems,
i.e., the controller is digital but the controlled agent (plant) is a
physical and continuous system. Here, the verification procedure
has to consider the interaction between a continuous plant and a
digital (and sampled) controller with FWL effects, which can be
connected using different control system configurations. Indeed,
DSVerifier is a useful test tool, which takes into account different
realization forms (e.g., direct forms, delta forms, and transposed
forms) and other implementation restrictions to explore the design
space. Ultimately, if the system requirements are not met with a
given configuration, an analysis of the provided error report may
suggest another setup.

Scratch is another example of a software model checker, which
uses knowledge about the system to be verified and the underly-
ing hardware, for detecting races related to direct memory access
(DMA), in the Cell BE processor [28]. That tool also uses BMC,
in order to detect DMA races, and BMC with k -induction, which
aims to prove the absence of races. If support to other DMA



operations were added, Scratch could be adapted to different ar-
chitectures, i.e., the same techniques would be employed, but with
a different system behavior/knowledge.

3. VERIFICATION CHALLENGES
State-of-the-art verification methodologies for embedded systems
generate test vectors (with constraints) and use assertion-based
verification and high-level processor models, during simulation [30,
32], as shown in Figure 3.

Figure 3: Verification methodologies for embedded sys-
tems.

In particular, the main challenges regarding the verification of
embedded systems lie on improving coverage, where more system
functions are verified, reducing verification time, i.e., pruning the
state-space exploration during verification, and incorporating sys-
tem models, which allow specific checks regarding system behav-
ior and not only code correctness. Additionally, embedded system
verification raises additional challenges, such as

1. time and energy constraints;

2. handling of concurrent software;

3. platform restrictions;

4. legacy designs; and

5. support to different programming languages and interfaces;

Indeed, the first two aspects are of extreme relevance in micro-
grids and cyber-physical systems, in order to ensure reliability,
which is a key issue for (smart) cities, industries, and consumers,
and the third one is essential in systems that implement device
models, such as digital filters and controllers, which present a be-
havior that is highly dependent on signal inputs and outputs and
whose deployment may be heavily affected by hardware restric-
tions. The fourth aspect is inherent to a large number of em-
bedded systems from telecommunications, control systems, and
medical devices. Finally, the last one is related to the evolution
of development processes and technologies, which may delay the
application of suitable verification approaches.

4. RESEARCH PROBLEM (RP)
This position paper tackles five major problems in computer-aided
verification for embedded systems, which are (partially) open in
current published research.

(RP1) provide suitable encoding into SMT [11], which may ex-
tend the background theories typically supported by SMT solvers,
with the goal of reasoning accurately and effectively about realis-
tic embedded programs.

(RP2) exploit SMT techniques to leverage bounded model check-
ing of multi-threaded software, in order to mitigate the state-
explosion problem due to thread interleaving.

(RP3) prove correctness and timeliness of embedded systems, by
taking into account stringent constraints imposed by hardware.

(RP4) incorporate knowledge about system purpose and asso-
ciated features, which aims to detect system-level and behavior
failures.

(RP5) provide tools and approaches capable of addressing differ-
ent programming languages and application interfaces, with the
goal of reducing the time needed to adapt current verification
techniques to new developments and technologies.

Section 5 outlines contributions toward these research problems.

5. CURRENT ACHIEVEMENTS AND FUTURE
TRENDS

(RP1) Cordeiro, Fischer, and Marques-Silva proposed the first
SMT-based BMC for full C programs, called Efficient SMT-Based
Context-Bounded Model Checker (ESBMC) [17], which was later
extended to support C++98 programs [36], CUDA programs [37],
and Qt-based consumer electronics applications [38]. This ap-
proach was also able to find undiscovered bugs related to arith-
metic overflow, buffer overflow, and invalid pointer, in standard
benchmarks, which were later confirmed by the benchmarks’ cre-
ators (e.g., NOKIA, NEC, NXP, and VERISEC) [15, 17]. Other
SMT-based BMC approaches have also been proposed and imple-
mented [14], but the coverage and verification time of all existing
ones are still limited to specific classes of programs, especially
for those that contain intensive floating-point arithmetic and dy-
namic memory allocation [33, 34]. One possible research direc-
tion is to bridge the gap between BMC tools and SMT solvers to
propose background theories and develop more efficient decision
procedures, in order to handle specific classes of programs.

(RP2) The SMT-based BMC approach proposed by Cordeiro,
Fischer, and Marques-Silva was further developed to verify cor-
rect lock acquisition ordering and the absence of deadlocks, data
races, and atomicity violations in multi-threaded software based
on POSIX and CUDA libraries [15, 37], considering monotonic
partial-order reduction [49] and state-hashing techniques, in or-
der to prune the state-space exploration [39]. Recent advances for
verifying multi-threaded C programs have been proposed to speed
up the verification time, which significantly prune the state-space
exploration [35, 40]; however, the class of concurrent programs
(e.g., CUDA, OpenCL, and MPI) that can be verified is still very
limited. One possible research direction is to further extend BMC
of multi-threaded C programs via Lazy Sequentialization [35], in
order to analyze unsatisfiability cores [41] with the goal to remove
redundant behaviour or to analyze interpolants [42] to prove non-
interference of context switches.

(RP3) Novel approaches to model check embedded software us-
ing k -induction and invariants were proposed and evaluated in
the literature, which demonstrate its effectiveness in some real-life
embedded-system applications [23, 25, 26, 28]; however, the main
challenge still remains open, i.e., to compute and strengthen loop
invariants to prove program correctness and timeliness in a more
efficient and effective way, in order to be competitive with other
model-checking approaches. In particular, invariant-generation
algorithms have substantially evolved over the last years, with
the goal of discovering inductive invariants of programs [21, 22]
or continuously refine them during verification [24]; however, there
is still a lack of studies for exploiting the combination of differ-
ent invariant-generation algorithms (e.g., interval analysis, linear
inequalities, polynomial equalities and inequalities) and how to



strengthen them during verification, in order to ensure system
robustness w.r.t. implementation aspects.

(RP4) State-of-the-art SMT-based context-BMC approaches were
extended to verify overflow, limit cycle, time constraints, stabil-
ity, and minimum phase, in digital systems. Indeed, digital fil-
ters and controllers [31, 43, 44] were tackled, in order to specify
system-level properties of those systems, using linear-time tem-
poral logic [45]. In particular, a specific UAV application was
tackled, with the goal to verify its attitude controllers [46]. In
general, however, there is still a lack of studies to verify system-
level properties related to embedded systems; emphasis should be
given to micro-grids [2] and cyber-physical systems [4], which re-
quire high-dependability requirements for computation, control,
and communication. Additionally, the application of automated
fault detection, localization, and correction techniques to digital
systems represents an important research direction to make BMC
tools useful for embedded systems engineers [50].

(RP5) Although ESBMC [17] was extended to support C/C++
and some variants, new application interfaces and programming
languages are often developed, which require suitable software ver-
ification tools. Indeed, it would be interesting if a new program-
ming language model could be loaded, which along with a BMC
core could check different programs. Some work towards that was
already presented by Sousa, Cordeiro, and Filho [51], which em-
ployed operational models for checking Qt-based programs from
consumer electronics. In summary, the BMC core (in that case,
ESBMC) is not changed, but instead an operational model, which
implements the behavior and features of Qt libraries, is used for
providing the new code structure to be checked. Such research
problem is closely related to the first one (RP1) and has the
potential to devise a new paradigm in software verification.

Lastly, yet importantly, BMC tools like CBMC [13], ESBMC [47,
48], and LLBMC [14] represent the most prominent approaches
for verifying C programs, as observed in the Intl. Competition
on Software Verification [33, 34], where verifiable (correctness and
violation) witnesses are of extreme importance for evaluating soft-
ware verifiers [52, 53].

6. CONCLUSIONS
This paper presented the main challenges related to the verifica-
tion of design correctness, in embedded systems, and also raised
some important side considerations. In particular, it empha-
sizes that stringent constraints imposed by the underlying hard-
ware (e.g., real-time, memory allocation, interrupts, and concur-
rency), along with system behavior models, must be considered
during verification. Additionally, there is little evidence that
model checking embedded software using k -induction (and in-
variants), which extends BMC-based approaches from falsification
to verification, can be applied to formally verify correctness and
timeliness of embedded systems.

Given that software complexity has significantly increased in em-
bedded products, there are still some (recent) advances to stress
and exhaustively cover the system state space, in order to verify
low-level properties that have to meet the application’s deadline,
access memory regions, handle concurrency, and control hardware
registers. Besides, there is a trend towards incorporating knowl-
edge about the system to be verified, which may take software
verification one step further, where not only code correctness will
be addressed, but also full system reliability. Finally, it seems
interesting to provide behavioral models when new application
interfaces or programming language features are used, in order

to extend the capabilities of current verification tools, without
changing the core BMC module.

As future work, the main goal of this research is to extend BMC as
a design and verification tool for achieving correct-by-construction
embedded system implementations. Special attention will be given
to cyber-physical systems and modern micro-grids, considering
small-scale versions of a distributed system, so that reliability and
other system-level properties (e.g., carbon emission reduction in
smart cities) are amenable to automated verification, probably
through behavior models.

Acknowledgment
The authors thank M. Dangl for reviewing a draft version of
this paper. This research was supported by CNPq 475647/2013-0
grant.

7. REFERENCES
[1] H. Kopetz: Real-Time Systems - Design Principles for

Distributed Embedded Applications. Real-Time Systems
Series, Springer, ISBN 978-1-4419-8236-0, pp. 1–376, 2011.

[2] Xua X., Jiaa H., Wanga D., Yub D., Chiangc H.: Hierarchical
energy management system for multi-source multi-product
microgrids In: Renewable Energy, v. 78, pp. 621–630, 2015.

[3] Lee E.: Cyber-physical Systems: Design Challenges. In:
International Symposium on Object Oriented Real-Time
Distributed Computing, pp. 363–369, 2008.

[4] Lee E.: The Past, Present and Future of Cyber-Physical
Systems: A Focus on Models. In: Sensors 15(3): pp.
4837–4869, 2015.

[5] Groza A., Letia I., Goron A., Zaporojan S.: A formal
approach for identifying assurance deficits in unmanned
aerial vehicle software In: Progress in Systems Engineering,
Springer, pp. 233–239, 2015.

[6] Cordeiro L., Fischer B., Chen H., Marques-Silva J.:
Semiformal Verification of Embedded Software in Medical
Devices Considering Stringent Hardware Constraints. In:
International Conference on Embedded Software and
Systems, pp. 396–403, 2009.

[7] Munir S., Stankovic J. A., Liang C.-J. M., Lin S.: Cyber
Physical System Challenges for Human-in-the-Loop Control.
In: 8th International Workshop on Feedback Computing, pp.
1–4, 2013.

[8] Kroening D., Liang L., Melham T., Schrammel P.,
Tautschnig M.: Effective Verification of Low-Level Software
with Nested Interrupts. In: Design, Automation and Test in
Europe, pp. 229–234, 2015.

[9] Biere A., Cimatti A., Clarke E., Zhu Y.: Symbolic Model
Checking without BDDs. In: Tools and Algorithms for
Construction and Analysis of Systems, LNCS 1579, pp.
193–207, 1999.

[10] Biere A., Heule M., van Maaren H., Walsh T., eds.:
Handbook of Satisfiability. Volume 185 of Frontiers in
Artificial Intelligence and Applications., IOS Press, 2009.

[11] Barrett C., Sebastiani R., Seshia S.A., Tinelli C.:
Satisfiability Modulo Theories. In: Volume 185 of Frontiers in
Artificial Intelligence and Applications. IOS Press, pp.
825–885, 2009.

[12] Armando A., Mantovani J., Platania L.: Bounded Model
Checking of Software Using SMT Solvers Instead of SAT
Solvers. In: SPIN Workshop on Model Checking Software,
LNCS 3925, pp. 146-162, 2006.

[13] Clarke E., Kroening D., Lerda F.: A Tool for Checking
ANSI-C Programs. In: Tools and Algorithms for the



Construction and Analysis of Systems. LNCS 2988, Springer
Berlin Heidelberg, pp. 168–176, 2004.

[14] Merz F., Falke S., Sinz C.: LLBMC: Bounded Model
Checking of C and C++ Programs using a Compiler IR. In:
International Conference on Verified Software: Theories,
Tools, Experiments. LNCS 7152, pp. 146–161, 2012.

[15] Cordeiro L., Fischer B.: Verifying Multi-threaded Software
using SMT-based Context-Bounded Model Checking. In:
International Conference on Software Engineering. pp.
331–340, 2011.

[16] Ivanicic F., Shlyakhter I., Gupta A., Ganai, M.K.: Model
Checking C Programs using F-Soft. In: International
Conference on Computer Design: VLSI in Computers and
Processors, pp. 297–308, 2005.

[17] Cordeiro L., Fischer B., Marques-Silva J.: SMT-based
Bounded Model Checking for Embedded ANSI-C Software.
IEEE Trans. Software Eng. 38(4), pp. 957–974, 2012.

[18] Eén, N., Sörensson, N.: Temporal Induction by Incremental
SAT Solving. Electronic Notes in Theoretical Computer
Science 89(4), pp. 543 – 560, 2003.

[19] Sheeran M., Singh S., St̊almarck G.: Checking Safety
Properties using Induction and a SAT-solver. In:
International Conference on Formal Methods in
Computer-Aided Design. Springer-Verlag, pp. 108–125, 2000.

[20] Bradley A., Manna Z.: The calculus of computation -
decision procedures with applications to verification. In:
Springer, pp. I-XV, pp. 1–366, 2007.

[21] ParisTech M.: PIPS: Automatic Parallelizer and Code
Transformation Framework. Accessed 21 February 2016

[22] Henry J., Monniaux D., Moy M.: PAGAI: A Path Sensitive
Static Analyser. In: Electronic Notes in Theoretical
Computer Science, pp. 15–25, 2012.

[23] Gadelha M., Ismail H., Cordeiro L.: Handling Loops in
Bounded Model Checking of C Programs via k-Induction. In:
International Journal on Software Tools for Technology
Transfer (to appear), 2015.
http://dx.doi.org/10.1007/s10009-015-0407-9

[24] Beyer D., Dangl M., Wendler P.: Boosting k-Induction with
Continuously-Refined Invariants. In: International
Conference on Computer-Aided Verification, LNCS 9206, pp.
622–640, 2015.

[25] Brain M., Joshi S., Kroening D., Schrammel P.: Safety
Verification and Refutation by k-Invariants and k-Induction.
In: International Symposium on Static Analysis, LNCS 9291,
pp. 145–161, 2015.

[26] Rocha H., Ismail H., Cordeiro L., Barreto R.: Model
Checking Embedded C Software using k-Induction and
Invariants. V Brazilian Symposium on Computing Systems
Engineering, pp. 90–95, 2015.

[27] Donaldson A., Haller L., Kroening D., Rümmer, P.:
Software Verification using k-Induction. In: International
Symposium on Static Analysis. LNCS 6887, pp. 351–368,
2011.

[28] Donaldson A., Kroening D., Rümmer P.: SCRATCH: A
Tool for Automatic Analysis of DMA Races. In: ACM
Symposium on Principles and Practice of Parallel
Programming. ACM, pp. 311–312, 2011.

[29] Große D., Le H., Drechsler R.: Induction-based Formal
Verification of SystemC TLM Designs. In: International
Workshop on Microprocessor Test and Verification, pp.
101–106, 2009.

[30] Behrend J., Lettnin D., Gruenhage A., Ruf J., Kropf T.,
Rosenstiel W.: Scalable and Optimized Hybrid Verification of
Embedded Software. In: J. Electronic Testing 31(2): pp.

151–166, 2015.

[31] Ismail H., Bessa I., Cordeiro L., Lima Filho E., Chaves
Filho J.: DSVerifier: A Bounded Model Checking Tool for
Digital Systems. In: International SPIN Symposium on
Model Checking of Software, LNCS 9232, pp. 126–131, 2015.

[32] Lettnin D., Nalla P. K., Behrend J., Ruf J., Gerlach J.,
Kropf T., Rosenstiel W., Schönknecht V., Reitemeyer S.:
Semiformal Verification of Temporal Properties in
Automotive Hardware Dependent Software. In: Design,
Automation and Test in Europe, pp. 1214–1217, 2009.

[33] D. Beyer Status report on software verification -
(competition summary SV-COMP). In: Tools and
Algorithms for the Construction and Analysis of Systems,
LNCS 8413, pp. 373–388, 2014.

[34] D. Beyer: Software Verification and Verifiable Witnesses -
(Report on SV-COMP 2015). In: Tools and Algorithms for
the Construction and Analysis of Systems, LNCS 9035, pp.
401-416, 2015.

[35] Inverso O., Tomasco E., Fischer B., La Torre S., Parlato G.:
Bounded Model Checking of Multi-threaded C Programs via
Lazy Sequentialization. In: International Conference on
Computer-Aided Verification, LNCS 8559, pp. 585-602, 2014.

[36] Ramalho M., Lopes M., Sousa F., Marques H., Cordeiro L.,
Fischer B.: SMT-Based Bounded Model Checking of C++
Programs . In: International Conference on Engineering of
Computer-Based Systems, pp. 147–156, 2013.

[37] Pereira P. Albuquerque H., Marques H., Silva I., Carvalho
C., Santos V., Ferreira R., Cordeiro L.: Verifying CUDA
Programs using SMT-Based Context-Bounded Model
Checking. In: ACM Symposium on Applied Computing,
Software Verification and Testing Track, pp. 1648-1653, 2016.

[38] Sousa F., Cordeiro L., Lima Filho E.: Bounded Model
Checking of C++ Programs Based on the Qt Framework. In:
Global Conference on Consumer Electronics, pp. 179–180,
2015.

[39] J. Morse. Expressive and Efficient Bounded Model Checking
of Concurrent Software. University of Southampton, PhD
Thesis, 2015.

[40] Zheng M, Rogers M, Luo Z, Dwyer M, Siegel S. CIVL:
Formal Verification of Parallel Programs. In: International
Conference on Automated Software Engineering, pp.
830–835, 2015.

[41] Grumberg O., Lerda F., Strichman O., Theobald M.:
Proof-guided underapproximation-widening for multi-process
systems. In: Symposium on Principles of Programming
Languages, pp. 122–131, 2005.

[42] K. McMillan: Widening and Interpolation. In: International
Symposium on Static Analysis, LCNS 6887, pp. 1, 2011.

[43] Bessa I., Abreu R., Cordeiro L., Filho J.: SMT-Based
Bounded Model Checking of Fixed-Point Digital Controllers).
In: Annual Conference of the Industrial Electronics Society,
pp. 295–301, 2014.

[44] Abreu R., Cordeiro L., Filho E.: Verifying Fixed-Point
Digital Filters using SMT-Based Bounded Model Checking.
In: XXXI Brazilian Symposium on Telecommunications,
2013. http://dx.doi.org/10.14209/sbrt.2013.57

[45] Morse J., Cordeiro L., Nicole D., Fischer B.: Model
Checking LTL Properties over ANSI-C Programs with
Bounded Traces. In: Software and System Modeling 14(1):
pp. 65–81, 2015.

[46] Bessa I., Ismail H., Cordeiro L., Chaves Filho J.:
Verification of Fixed-Point Digital Controllers Using Direct
and Delta Forms Realizations. In: Design Automation for
Embedded Systems (to appear), 2016.



[47] Morse J., Cordeiro L., Nicole D., Fischer B.: Handling
unbounded loops with ESBMC 1.20. In: Tools and
Algorithms for the Construction and Analysis of Systems.
LNCS 7795, Springer Berlin Heidelberg, pp. 619–622, 2013.

[48] Morse J., Ramalho M., Cordeiro L., Nicole D., Fischer B.:
ESBMC 1.22. In: Tools and Algorithms for the Construction
and Analysis of Systems. LNCS 8413, Springer Berlin
Heidelberg, pp. 405–407, 2014.

[49] Kahlon V., Wang C., Gupta A.: Monotonic Partial Order
Reduction: An Optimal Symbolic Partial Order Reduction
Technique. In: International Conference on Computer-Aided
Verification, LNCS 5643, pp. 398–413, 2009.

[50] Alves E. , Cordeiro L., Lima Filho E.: Fault Localization in
Multi-Threaded C Programs using Bounded Model Checking.
In: Brazilian Symposium on Computing Systems
Engineering, pp. 96-101, 2015.

[51] Garcia M. , Sousa F., Cordeiro, L., Lima Filho E.:
ESBMCQtOM : A Bounded Model Checking Tool to Verify Qt
Applications. In: International SPIN symposium on Model
Checking of Software (to appear), 2016.

[52] Beyer D., Dangl M., Dietsch D., Heizmann M., Stahlbauer
A.: Witness validation and stepwise testification across
software verifiers. In: ESEC/SIGSOFT Foundations of
Software Engineering, pp. 721–733, 2015.

[53] Rocha H., Barreto R., Cordeiro L., Dias Neto A.:
Understanding Programming Bugs in ANSI-C Software
Using Bounded Model Checking Counter-Examples. In:
International Conference on Integrated Formal Methods,
LNCS 7321, pp. 128-142, 2012.


