
Memory Management Test-Case Generation of C

Programs using Bounded Model Checking

Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

Federal University of Amazonas

{herberthb12,lucasccordeiro}@gmail.com

{rbarreto}@icomp.ufam.edu.br

Abstract. We describe a novel method to automatically generate and verify mem-

ory management test cases for unit tests, which are based on assertions extracted

from safety properties typically generated by bounded model checking (BMC)

tools. In particular, the proposed method checks for properties related to pointer

safety, memory leaks, and invalid deallocation. To investigate our method’s ef-

fectiveness, we developed a tool called Map2Check that adopts the ESBMC

model checker and the CUnit testing framework. Additionally, Map2Check pro-

vides an integration of BMC tools with unit testing frameworks, which helps

developers not very familiar with formal methods to verify large C programs.

We use Map2Check to perform an empirical evaluation over publicly available

benchmarks and compare the results to recognized tools, e.g., Valgrind’s Mem-

check, CBMC, LLBMC, CPAChecker, Predator, and ESBMC. Experimental re-

sults show that our proposed method detects at least as many memory manage-

ment defects as existing tools; and it does not report any false positive and nega-

tive. We compared Map2Check with tools on the Competition on Software Verifi-

cation 2014 (SVCOMP), in the MemorySafety category. Map2Check would have

the same score than the 1st place and it would win the 2st place when ranking the

evaluated tools on memory consumption.

1 Introduction

Nowadays, software applications need to be developed quickly, mainly due to the short
time-to-market. However, programmers make mistakes, e.g., writing a given system
requirement incorrectly. In this sense, the application of verification and testing are in-
dispensable techniques to the development of high-quality software. Integrating formal
program verification and testing has been adopted as a widely recognized solution to im-
prove the software quality. This integration aims to alleviate the weaknesses from these
strategies [8, 13, 15], e.g., in software testing a significant human effort is required to
generate effective test cases and as a result, subtle bugs are difficult to detect by testing
and that can cause significant overhead after the target software is deployed. Accord-
ing to Kebrt and Sery [17], the adoption of software model checking technologies in
the industrial development process is still very slow. This is caused by two main rea-
sons: limited scalability to large software and missing tool-supported integration into
the development process.

In the last few years, we have observed a trend towards the application of formal ver-
ification techniques to the implementation level. Bounded Model Checking (BMC) is
going into this direction since it has been successfully applied to reason about low-level
ANSI-C/C++ programs [5, 9, 19]. The main challenge in model checking is how to deal

2 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

with both the state space explosion problem and the lacking of integration with other
test environments more familiar to practitioners [6]. One possible solution to tackle
these problems is to explore features already provided by the model checking com-
munity (e.g., identification of safety properties) for test case generation. According to
Baier and Katoen [1], safety properties are often characterized as “nothing bad should

happen”. In particular, the violation of a safety property can be detected by monitoring
the run-time system execution.

The verification of memory management is an important task to avoid unexpected
behavior of the programs, e.g., pointer safety violation results in an invalid address,
which might produce an incorrect result of the program and not necessarily a crash; a
memory leak does not immediately produce an easily visible symptom, i.e., a crash or
the output of a wrong value. However, memory leaks typically remain unobserved until
they consume a large portion of the memory available in a system; and these might lead
to a negative impact in other application running on the same system [7]. Due to the
serious consequences and common occurrence of memory management errors, there
are still open research fields to improve the error detection.

In this study, we describe a novel method to automatically integrate formal verifi-
cation techniques with testing environments. The proposed method generates automati-
cally memory management test cases for structural unit tests, which are based on asser-
tions from safety properties generated by BMC tools. As a consequence, our proposed
method aims to improve the unit testing environment, adopting features from (bounded)
model checkers. Additionally, the proposed method adopts source code instrumentation
to monitor and gather data from the program’s executions, aiming to verify the gener-
ated test cases, and thus, detecting violations of safety properties from the analyzed
program. Note that this method checks the program out of the BMC tools flow, given
that they do not handle well pointers and pointers arithmetic [2].

The BMC is adopted as verification condition (VC) generator that translates a pro-
gram fragment and its correctness property into logical formula. The VC has the prop-
erty that if it is valid, then the program fragment satisfies its correctness property [12].
In this study, we use the Efficient SMT-Based Context-Bounded Model Checker (ES-
BMC) [9], which derives VCs using two recursive functions that compute assump-
tions or constraints (i.e., variable assignments) and properties (i.e., safety conditions
and user-defined assertions). Both functions accumulate the control flow predicates to
each program point and use that to guard both the constraints and the properties, so that
they properly reflect the program’s semantics. It is worth noting that ESBMC does not
require the user to annotate the programs with pre/post-conditions to generate the VCs,
but allows the user to state additional properties using assert-statements.

The proposed method is a complementary technique for the verification performed
by state-of-the-art BMC tools. Our method aims to check for properties related to
pointer safety, memory leaks, and invalid free. Additionally, the proposed method pro-
vides trace of memory addresses, which has already been executed at the current point
of the program, in case of property violation. This trace of memory guides developers
directly to the locations, where the memory management errors are identified. Most
existing initiatives have been proposed to verify the memory management of C pro-
grams ([7, 19, 22]). However, those initiatives do not support the integration between
testing and verification in an environment, where a software engineer can extend the
analysis of the program through APIs and include new BMC and unit testing tools. The
proposed method also provides an API library of functions, which helps developers to

Memory Management Test-Case Generation of C Programs 3

extend the tests generated by our proposed method, e.g., by using functions from API to
write new assertions (i.e., test cases) in a specific point of the analyzed program to val-
idate pointers operations. In this study, we adopted the C programming language since
it is the standard language to implement different kinds of software, including critical
software [21].

To evaluate the effectiveness of our proposed method, we adopted ESBMC [9]
and the CUnit testing framework [18], and we implemented the method in a proto-
type tool called Map2Check. Note that any other BMC and unit testing tool could
be used together with our approach. We performed an empirical evaluation on pub-
licly available benchmarks from the Competition on Software Verification (SV-COMP
2014) [2], in particular the MemorySafety category. We also compare our proposed
method with other tools, such as: Valgrind’s Memcheck [22], CBMC [5], LLBMC [19],
CPAChecker [4], Predator [11], and ESBMC [9]. The experimental results of the pro-
posed method have shown to be effective, detecting 95.08% of the correct results, i.e.,
if a property satisfy its specification or is violated. Our method, in comparison to the
results of the SV-COMP 2014, would have the same score than the 1st place.

2 Preliminaries

This section presents the ESBMC, discuss about safety properties, and software testing
using CUnit.

2.1 Efficient SMT-Based Bounded Model Checking (ESBMC)

ESBMC is a Context-Bounded Model Checker based on Satisfiability Modulo Theories
(SMT) solvers, which is used for ANSI-C/C++ programs [9]. ESBMC verifies single-
and multi-threaded programs and checks for properties related to arithmetic under- and
overflow, division by zero, out-of-bounds index, pointer safety, deadlocks, and data
races. In ESBMC, the verification process is completely automated and does not require
the user to annotate programs with pre- or post-conditions. ESBMC converts ANSI-
C/C++ programs into equivalent GOTO-programs, which simplify statement represen-
tations (e.g., replacement of while by if and goto statements). The GOTO-program is
symbolically executed by the GOTO-symex, which generates a single static assignment
form that is later converted into a first-order logic formula and then checked by an SMT
solver. If a property violation is found, a counterexample is provided by ESBMC, which
assigns values to the program variables for reproducing the respective error.

2.2 Safety Properties

Informally, a property in linear time specifies the allowable (or desired) behavior of a
system [1]. If a system fails to satisfy a safety property, then there exists a finite exe-
cution that exhibits this failure. Consequently, checking the correctness of the system
related to the safety properties is a means to validate the system’s behavior.

Definition 1 (Safety Property) Given a transitions system TS = (S , S 0, E), let B ⊂ S

be a set of bad states such that S 0 ∩ B = ∅, we may say that TS is safe in relation to B,

denoted by TS |= AG ¬B if there is no path in the transition system from the initial state

S 0 up to bad state B. Otherwise we say TS is not safety, denoted by TS 6|= AG¬B [1].

4 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

ESBMC is able to automatically infer safety properties from the C programming
language such as arithmetic under- and overflow, memory safety, array bounds, atom-
icity and order violations, deadlock and data race. In this study, however, we use ES-
BMC VCs generator to check for memory safety as follows: VCs to check for safety
pointers, i.e., checking if the pointer does reference to a correct object (represented by
SAME OBJECT) and also checks if a pointer is NULL or invalid object (represented
by INVALID POINTER); and VCs for dynamic memory allocation, ESBMC checks
if the arguments to malloc, free functions, or dereferencing operations are a dynamic
object (represented by IS DYNAMIC OBJECT) and if the argument to any free, or
dereferencing operation is still a valid object (VALID OBJECT).

2.3 Software Testing with CUnit

Software testing is the process of executing a program to find faults [20]. A success-
ful test is the one that can determine the test cases for which the program under test
fails. A test case consists of a test data analysis associated with an expected result of
the software specification. Unit tests are typically written based on a set of test cases
to ensure that the program meets its design and behaves as expected. In this study,
we create unit tests to analyze the software specification together with their test data.
In particular, we adopt the CUnit framework to develop unit tests. CUnit allows soft-
ware engineers to create unit tests in a more efficient way by favoring better orga-
nization and code reuse. CUnit supports full C and provides a set of assertions for
testing logical conditions (e.g., CU ASSERT PTR EQUAL for pointers). The suc-
cess or failure of these assertions is tracked by the framework, and can be viewed
when a test run is complete. The typical sequence of steps for using CUnit is as fol-
lows1: (1) Write functions for tests (and init/cleanup, if necessary); (2) Initialize
the test registry - CU initialize registry(); (3) Add suites to the test registry -
CU add suite(); (4) Add tests to the suites - CU add test(); (5) Run tests using
an appropriate interface, e.g. CU console run tests; (6) Cleanup the test registry
- CU cleanup registry.

3 Map2Check Method

In this section, we present the Map2Check method for memory management test case
generation for C programs. Map2Check is an improvement from the FORTES (FOR-

mal unit TESt generation) method [23], which explores the safety properties generated
by BMC tools to create test cases. However, FORTES does not generate memory man-
agement test case. The Map2Check tool2 is available to freely download under GPL
license. Figure 1 shows an overview of our proposed method, where the boxes and the
arrows with dashed lines represent, respectively, the components updated or inserted by
Map2Check and its execution flow.

To explain the main steps of our proposed method, we use the program 960521 −
1 false-valid-free.c from the SV-COMP’14; this program belongs to the category Mem-

orySafety [2] (see Figure 2). We use this program as a running example since 55.6% of
the tools in the MemorySafety category are not able to find the property violation.

1 http://cunit.sourceforge.net/doc/introduction.html#usage
2 https://sites.google.com/site/map2check/

Memory Management Test-Case Generation of C Programs 5

Fig. 1: Flow structure of the proposed method.

1 # i n c l u d e < s t d l i b . h>
2

3 i n t ∗a , ∗b ;
4 i n t n ;
5

6 # d e f i n e BLOCK SIZE 128
7

8 vo id foo ()
9 {

10 i n t i ;
11 f o r (i = 0 ; i < n ; i ++)
12 a [i] = −1;
13 f o r (i = 0 ; i < BLOCK SIZE − 1 ; i ++)
14 b [i] = −1;
15 }

16

17 i n t main ()
18 {
19 n = BLOCK SIZE ;
20 a = mal loc (n ∗ s i z e o f (∗ a)) ;
21 b = mal loc (n ∗ s i z e o f (∗ b)) ;
22 ∗b++ = 0 ;
23 foo () ;
24 i f (b [−1])
25 { / ∗ i n v a l i d f r e e (b was i t e r a t e d) ∗ /
26 f r e e (a) ; f r e e (b) ; }
27 e l s e
28 { f r e e (a) ; f r e e (b) ; } / ∗ d i t t o ∗ /

29

30 re turn 0 ;
31 }

Fig. 2: C program 960521 − 1 false-valid-free.c from SVCOMP’14

3.1 Step 1: Identification of safety properties

Map2Check adopts ESBMC for identification of safety properties. ESBMC receives
a C program as an input parameter and an option --show-claims, which shows all
safety properties that ESBMC automatically generates from the original C program.
In the ESBMC context, a claim is the same as a safety property. Claims generated
automatically by ESBMC do not necessarily correspond to errors, but they are just
potential flaws in the program. One needs to determine, through further analysis, if

6 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

some claim actually corresponds to an error. Figure 3 shows an example of a claim
automatically generated. In this example, claim 1 states a potential lower bound of the
dynamic object “a” in the line 12 of the function foo. All claims are stored to be used
in the next steps.

$ esbmc --64 --no-library --show-claims
 960521-1_false-valid-free.c
file 960521-1_false-valid-free.c: Parsing
Converting
Type-checking 960521-1_false-valid-free
Generating GOTO Program
Pointer Analysis
Adding Pointer Checks
Claim 1:
 file 960521-1_false-valid-free.c line 12 function foo
 dereference failure: dynamic object lower bound
 !(POINTER_OFFSET(a) + i < 0) || !(IS_DYNAMIC_OBJECT(a))

Fig. 3: Step 1 - Identification of safety properties.

3.2 Step 2: Extract information from safety properties

The second step checks the result produced in step 1 as follows: (i) identification of the
claim; (ii) comments about the claim (e.g., dereference failure: dynamic object upper
bound); (iii) the code line number where the claim occurred (e.g., Line = 26); and
(iv) the property identified by that claim (e.g., !(POINTER OFFSET((void *)b) < 0)
|| !(IS DYNAMIC OBJECT(b))). The proposed method then classifies data provided
in the claims via regular expressions to find all relevant information.

3.3 Step 3: Translation of safety properties

This step aims to translate claims provided by ESBMC to assertions into the C pro-
gram; these claims have specific functions that are only executed by ESBMC (e.g.,
INVALID-POINTER). This function checks if a pointer is NULL or an invalid object.
Thus, the proposed method translates the claims to check them without ESBMC inter-
vention. The translator translates each ESBMC function using a grammar parse for the
claims. The identification of each claim, and its respective components, are passed as
input to the translator, which applies the appropriate rules (e.g., rewrite the function
return according to source code) to convert the claims into functions that can be exe-
cuted by the C program that is being analyzed, without ESBMC intervention. Aiming
the function execution, Map2Check provides a library to the C program that provides
the support to execute the functions generated by the translator.

3.4 Step 4: Memory tracking

The memory tracking aims to extend the FORTES verification in the sense of pointer
safety. The identification of pointers and invalid objects allow us to analyze invalid

Memory Management Test-Case Generation of C Programs 7

free and memory leak. The memory tracking consists of two phases: (1) identify and
track variables in the analyzed source code, as well as, the variable operations and
assignments, and (2) instrument the source code with specific functions for monitoring
the memory addresses and the addresses pointing by these variables according to the
program execution.

Algorithm 1 shows how to identify and track variables. The runtime complexity of
this algorithm is O(n2), where n is the number of the nodes in an Abstract Syntax
Tree (AST) of the analyzed program. We use the following terms to explain our al-
gorithm: Object, which means that the analyzed variable is a pointer or dynamically
allocated variable; Simple Variable, which are variables that are not pointers; and Map-

ping, which means that the variable is being identified and their characteristics and
operations (declaration and assignments) have been extracted and saved.

Input: Abstract Syntax Tree (AST)
Output: The map of the variables

1 begin
2 compound func = Not specified
3 foreach node IN the AST do
4 if type(node) == FuncDef then
5 compound func = get the sub tree from node
6 foreach subNo FROM compound func == Decl do getDataFromVar(subNo, 0) ;

7 end
8 else if type(node) == Decl then getDataFromVar(node, 1) ;

9 end
10 Function getDataFromVar(node, enableGlobalSearch)
11 if type(node) is a pointer then
12 if node has an Assigment then Mapping the data from getNodeData (node) ;
13 if enableGlobalSearch then
14 searchVarAssigInAllFunctions (node)

15 else
16 searchAssigIn (compound func, node)
17 end

18 else
19 Mapping the data from getNodeData (node)
20 end

21 end

22 end

Algorithm 1: Gather the variables to memory track

The input of the Algorithm 1 is an Abstract Syntax Tree (AST), which is gen-
erated from the analyzed C program. Map2Check adopts Pycparser3 that parses the C
code into an AST. The algorithm runs each node in the AST and for each node, it is
identified the local scope (i.e., the program functions (line 4)) and global scope (line 8).

Line 8 of the algorithm starts the mapping of the program global variables. This
mapping identifies if the AST node refers to a declaration of a variable, which is in-
dicated by the type Decl in the AST. Line 8 calls the function getDataFromVar
which takes two parameters, node and enableGlobalSearch. The parameter node
is the current AST node that contains the declaration of a variable to be mapped and
enableGlobalSearch is a Boolean value. In this particular case, True indicates that a

3 Available at https://github.com/eliben/pycparser

8 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

search is performed in all functions of the program to track variable assignments iden-
tified in the node. In the same sense, Line 4 of the Algorithm 1 identifies if the current
AST node refers to a program function to perform a mapping of the AST node refers to
a declaration of a variable, but in this case only in that function.

The function getDataFromVar from the algorithm (line 10) consists of identi-
fying whether or not the variable being mapped is a pointer and then it extracts the
variable data. If the variable is not a pointer, it just executes the mapping of the vari-
able. The mapping is performed by gathering and listing data provided by the function
getNodeData (in line 19). The function getNodeData receives as input the node being
analyzed and it obtains the following data: (i) the line number in the source code where
the variable is located; (ii) the variable name; (iii) the scope/function name where the
variable is located; and (iv) if the object is dynamic.

In line 11 if the variable is a pointer, then it performs the object mapping (using
the function getNodeData) only if the statement identified in the analyzed node also
includes an assignment. In other case, the mapping is performed only after the first
assignment. Thus, the method avoids mapping uninitialized pointers, which may con-
tain garbage memory. Additionally, a search is performed to track pointer assignments
(operations, allocation, and deallocation of memory) according to its scope (line 13).
If the object is in the global scope, then a search is performed in all program func-
tions (line 14); otherwise, the search is performed only in the scope where the object is
located (line 16).

The second phase is to instrument the source code with functions that will moni-
tor the memory addresses and the addresses pointed by the variables according to the
program execution. For each line identified in the mapping (of the previous phase) for
the analyzed program, the proposed method inserts, after the identified line, the func-
tion mark map MF, where this function receives as input the mapped data for that line.
The function mark map MF manages a list (called of LIST LOG) of variables, which
contains: the memory address; the memory address that points to; the identifier of its
scope; an identifier if it is dynamic; the identifier if was executed the free function;
and the line number of the source code. The list LIST LOG has the trace of memory
addresses already executed at the current point of the program. In Map2Check, we de-
veloped a C library that contains specific functions, which allow the execution of the
function mark map MF as well as the functions previously mentioned in Section 3.3.

The verification of the analyzed properties is performed by applying the functions
from the Map2Check library, as shown in the following list. The functions in items 3
and 4 are generated as test case by Map2Check and are not provided from ESBMC
claims, as well as, Map2Check provides test cases for union operation to check for
dynamic memory address overwriting.

1. IS VALID DYN OBJ MF. This function identifies if a dynamic object is valid.
In this case, the method searches in the list LIST LOG by the memory address
pointed to by the variable that is being traced. If the memory address is found, the
method adopts these checks: (1) the method searches in the list to identify if the
memory address pointed was previously traced; and (2) the method searches in the
list by the attribute that identifies if the variable is still a dynamic object.

2. IS VALID POINTER MF. This function searches in the list LIST LOG only
by the memory address pointed to by the analyzed variable to identify if the variable
is pointing to a valid address. If the memory points to a dynamic object, then it
verifies if it is a valid object using the function IS VALID DYN OBJ MF.

Memory Management Test-Case Generation of C Programs 9

3. INVALID FREE. This function identifies whether a given dynamic object can be
released/deallocated from the memory properly, for instance, using the free func-
tion from the C programming language. The library calls the function IS VALID
DYN OBJ MF to identify if the dynamic object is valid.

4. CHECK MEMORY LEAK. The function identifies if, in the end of the pro-
gram, some allocated memory was not released. This function searches in the list
LIST LOG the memory addresses that are still dynamic, checking the attribute that
identifies whether a given object is dynamic. If it is identified in that point of the
program that there is some dynamic object, then the functions identify this as a
memory leak.

Table 1 shows an example of the tracking memory execution of the analyzed pro-
gram (see Figure 2). In this execution of the proposed method, we identified that the
analyzed program has an invalid free in line 28. This happens because in line 22, the
variable b was iterated, as shown in ID = 4 and Points to = 0xb44034 of the Table 1.
Thus, the invalid free has been presented in line 28 and showing in ID = 260 of the table
since the memory address that the pointer points to is not a valid request from a block
of memory from the heap, as shown in ID = 4 and Is Dynamic = 0 in Table 1.

ID Memory Address Memory Address Points to Scope Is Dynamic Is Free Line Number

260 0x601050 0xb44034 global 0 1 28

259 0x601060 0xb44010 global 0 1 28

...

133 0xb44034 (nil) global 0 0 14

...

6 0xb44010 (nil) global 0 0 12

5 0x7fff39f18a2c (nil) foo 0 0 10

4 0x601050 0xb44034 global 0 0 22

3 0x601050 0xb44030 global 1 0 21

2 0x601060 0xb44010 global 1 0 20

1 0x601058 (nil) global 0 0 4

Table 1: The result to apply the tracking memory in the analyzed program.

3.5 Step 5: Code instrumentation with assertions

This step aims to create test cases, based on assertions, which are included in the source
code with their respective safety property/claim generated by ESBMC and also by
Map2Check. This step adds an assertion to verify the safety property, which is iden-
tified in Step 2 (see Section 3.2) and Step 4 (see Section 3.4). This assertion can be a
simple assertive provided by the C language or an assertion of a unit testing framework.
This step identifies the source code line from each identified property, in order to add an
assertion in a previous line, which is identified by the property in the source code being
verified. For instance, in the program of Figure 2, the following assertion is added to
line 28: ASSERT(INVALID FREE(LIST LOG, (void *)(intptr t)(b), 28)).

10 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

3.6 Step 6: Implementation of the tests

This step applies the model to the analyzed program for tests execution. The method has
two models: Using only C assertions, the method inserts the include to Map2Check
library in the new instance of the analyzed program. This model is very simple and
useful while debugging a program to check a property violation; and the model for CU-
nit, this model is useful when one needs more options/statements for unit testing. In this
CUnit model, we apply a template provided by the method in the analyzed program that
has the following items: (i) includes for CUnit and Map2Check library in the analyzed
C program; (ii) the setup CUnit functions; (iii) functions that contain test cases, which
will be tested; and (iv) the new function main that will be executed by CUnit.

The CUnit libraries are extracted from the template as well as the Map2Check li-
brary. The includes from the analyzed C program are copied from its original C code.
The setup CUnit functions are used from the template. The proposed method renames
the function main to testClaims, because the new function main and its content is taken
from the template. This new function (main to CUnit) calls the setup CUnit functions
and the function testClaims (old function main). The result is a new instance of the
analyzed program, which is ready to be tested and executed by the CUnit framework.
Note that our method can also be applied to other unit testing frameworks; however,
one needs to create a template for code generation.

3.7 Step 7: Execution of the tests

In this last step, Map2Check provides two options: (1) executing the test cases using
assertions from the C programming language or (2) executing the test cases using as-
sertions from a unit test framework. To explain the result of this step, we adopt here the
second option. Thus, CUnit runs the tests in the new program that has test cases gen-
erated from ESBMC and Map2Check safety properties, thus validating each assertion.
Basically, the test cases are analyzed over the execution of the new instance of the ana-
lyzed program, where each test case generated by the proposed method can pass or fail.
Each test failure is reported by the framework in the end of the new program execution.
Figure 4 shows the result of the Map2Check.

It is worth noting that the test cases are analyzed over program execution, thus it is
possible to improve the program coverage adopting different test inputs to the program.
For instance, adopting the PathCrawler tool [25] that automatically generates test inputs
for functions written in ANSI-C. PathCrawler is based on dynamic analysis and uses
constraint logic programming to solve a (partial) path predicate and find test inputs.

4 Experimental Evaluation

This section describes the planning, design, execution, and the analysis of the results of
an empirical study to evaluate the proposed method, when applied to the verification of
standard ANSI-C benchmarks and, additionally, a comparison to the tools: Valgrind’s
Memcheck [22], CBMC [5], LLBMC [19], CPAChecker [4], Predator [11], and ES-
BMC [9]. The experiments are conducted on an Intel Core i7-2670QM CPU, 2.20GHz,
32GB RAM with Linux OS. The proposed method is implemented in a tool called
Map2Check using ESBMC.

Memory Management Test-Case Generation of C Programs 11

VIOLATED PROPERTY

 Type : Invalid FREE

 Location: In the line {28}

 Last Use: In the line {22}

FAILED

 1. mf_960521-1_false-valid-free.c:108

INVALID_FREE(LIST_LOG, (void *)(intptr_t)b,28)

Run Summary: Type Total Ran Passed Failed Inactive

 suites 1 1 n/a 0 0

 tests 1 1 0 1 0

 asserts 516 516 515 1 n/a

Elapsed time = 1.880 seconds

Fig. 4: The result of the use of Map2Check.

4.1 Planning and Designing the Experiments

This empirical evaluation checks the ability of Map2Check to generate and verify test
cases related to memory management. We investigate the following research questions:

RQ1: Are the test cases generated by Map2Check enough to identify a given defect in
the analyzed program?

RQ2: How was the ability (the execution of instrumented functions) of Map2Check to
verify the test cases?

RQ3: How is the Map2Check’s ability to detect memory management defects com-
pared to existing tools?

To answer these three research questions, we consider 61 ANSI-C programs from
the MemorySafety category of the SV-COMP’14 benchmark [2]. In this case, we only
consider programs related to the memory safety category. In this category, the properties
to be verified are: (i) p valid-free - All memory deallocations are valid; (ii) p valid-
deref - All pointer dereferences are valid; and (iii) p valid-memtrack - All allocated
memory is tracked, i.e., pointed to or deallocated.

In SV-COMP benchmarks, some programs adopt specific functions, e.g., the Mem-

orySafety category has the VERIFIER nondet int() function that models non-
deterministic integer values. In Map2Check, we implement a function to simulate the
nondeterministic integer values; our implementation returns a random number (0 or 1)
from an array according to the following distribution: 30% to 0 and 65% to 1. One could
argue that this approach depends on luck to have a correct program coverage to vali-
date the assertions. This could be true, but we adopt this simulation of non-determinism
since in our preliminary tests, it was enough to detect 70% of the properties violations.

We conducted the evaluation as follows: (1) Application of Map2Check (see Sec-
tion 3), adopting the model with only C assertions to identify the first property violation
in the analyzed program. (2) Application of the Valgrind/MemCheck with the following
options: --leak-check = yes --undef-value-errors = yes. (3) The results of
the application of the tools: CBMC, LLBMC, CPAChecker, Predator, and ESBMC are
taken literally from [2], because the options adopted to execute all tools in this experi-
ment are the same and the hardware used is similar. It is worth noting that it is necessary

12 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

to compile the program to run Valgrind/MemCheck; therefore we adopt the nondeter-
ministic function implemented in the Map2Check library.

For the Map2Check and Valgrind/MemCheck, each program in the category is ex-
ecuted 3 times, because of the nondeterministic behaviour. It is important to note that
from these 3 executions, we always consider the execution classified as FAILED (if
any), i.e., an execution that the tool has identified a property violation.

4.2 Experiment’s Execution and Results Analysis

After executing the benchmarks, we obtained the results shown in Table 2, where each
row of this table means: (1) name of the tool (Tool); (2) total number of programs that
satisfies the specification identified by the tool (Correct Results); (3) total number of
programs that the tool identified an error for a program that fulfills the specification
(False Negatives); (4) total number of programs that the tool did not identify the error
(False Positives); (5) total number of programs that the tool failed to compute verifica-
tion result, without resources, program crash or the tool exceeded runtime verification
of 15 min (Unknown and TO); (6) the execution time in minutes of the verification for
all programs in the category (Time).

Tool CPAChecker Map2Check Valgrind CBMC Predator LLBMC ESBMC
Correct Results 59 58 57 46 43 31 7
False Negatives 0 0 0 8 0 0 0
False Positives 0 0 0 2 12 0 36
Unknown and TO 2 3 4 5 6 30 18
Time 23.33min 190.98min 151.57min 200min 76.66min 416.66min 139.06min

Table 2: Result of tools evaluation using SVCOMP’14 benchmark.

To answer research question RQ3 (see Section 4.1), Table 2 shows that Map2Check
has found 95.08% of correct results, while CPAChecker has found 95.72%, Valgrind
has found 93.44%, and the other tools could detect only less than 76% of the correct
results. Note that Map2Check did not generate any false positive and false negative
results. Map2Check has generated 3 unknown and timeout results. We believe that this
is, in part, because of the concrete execution of the program. In future, we plan to adopt
a static verification based on abstract domain [24] to improve verification time.

With respect to research questions RQ1 and RQ2, we can infer that Map2Check
has generated and verified successful test cases. Taking into account RQ1, Map2Check
was able to generate correct test cases to identify a given defect in the analyzed program
and not generated incorrect assertions in the test cases that could result a false alarm in
the test execution. We also identified for RQ2 that the execution of the instrumented
functions worked properly, since the instrumented functions supported the execution of
the test cases without incorrect results.

The results presented in Table 2 shows that Map2Check can be adopted as a comple-
mentary technique for the verification performed by BMC tools. Map2Check can pro-
vide support for the program analysis, mainly when BMC tools cannot, usually because
of time-out; or when there are false negative or false positive. If we compare the re-
sults of ESBMC to Map2Check, ESBMC identified 7 correct results while Map2Check
identified 58 where, in this case, Map2Check may be seen as a complement to ESBMC.

Memory Management Test-Case Generation of C Programs 13

5
10

50
100

500
1000

5000
10000
20000

5 10 15 20 25 30 35 40 45 50 55 60
Programs from SVCOMP 2014 in Memory Safety Category

M
e

m
o

ry
(M

B
)

Tools CBMC CPAChecker ESBMC LLBMC Map2Check Predator Valgrind

Fig. 5: Memory consumed by the tools in the programs.

In the same way, ESBMC had 18 Unknown and Time-out results, but Map2Check was
able to analyze 15 of those programs without Unknown or Time-out results.

Analyzing the memory consumption by the tools in each program of the SVCOMP
2014 benchmark. We identified that Map2Check is the 2nd tool that consumes less
memory (total of 3680.69 MB); the 1st is Predator tool (total of 1600 MB), as shown
in Figure 5. Analyzing this figure, we identified that from 32th program (the vertical
line in the Figure 5) there was an increase of the memory consumption to more than
50 MB from 5 of the 7 analyzed tools. However, Map2Check in 95% of the programs
has consumed about 50 MB. Thus, Map2Check did not have considerable variation
w.r.t memory consumption, which is different from other tools, e.g., LLBMC consumed
more than 10.000 MB for specific programs.

Note that Map2Check consumes less memory than ESBMC since it adopts ESBMC
only to generate the claims, which consumes about 20 MB. In 53% of the programs,
Map2Check consumed less memory, except for Predator. However, Map2Check iden-
tified 25% more correct results than Predator. We believe that the Map2Check mem-
ory consumption can be improved because only for the test cases generation was used
78.98% (i.e., 2907.16 MB) of total memory. Therefore, optimizing the translation of
claims would have significant impact in reducing the memory consumption.

We observe that the runtime verification of Map2Check was 54.16% faster than
LLBMC and 4.5% than CBMC, as shown in Table 2. Note that the time to generate
the claims is about 1s, which is included in Table 2. Importantly, even though the ver-
ification time of Map2Check was higher than the other tools. Map2Check only not
identified less correct results, and generated less Unknown and TO than CPAChecker
tool. We believe that Map2Check total verification time, in turns, could be explained by
the concrete execution of the nondeterministic programs.

One could argue that concrete execution should be much faster than the symbolic
execution performed by the tools adopted in this experiment. In part this could be ex-
plained by the strategy adopted to unwind loops and their respective loop exit condition,
where benchmarks use the function VERIFIER nondet int() in loop structures.
The Map2Check implementation returns a random number (0 or 1) from an array ac-
cording to the following distribution: 30% to 0 and 65% to 1. Thus, a BMC could com-

14 Herbert Rocha, Raimundo Barreto, and Lucas Cordeiro

plete the program verification faster than the Map2Check that depends on a random
function to determine the stopping condition of a loop.

To analyze the evaluation of Map2Check in the context of the SVCOMP’14 [2] in
the MemorySafety category, we need to take into account the same rules adopted in the
SVCOMP’14. For instance, the scores that could be ranked with negative points, e.g.,
an incorrect TRUE is equal to −8 points. For more details, see Beyer [2]. Therefore,
Map2Check could achieve the 1st place of the SVCOMP’14 in the MemorySafety cat-
egory with a score of 95 points, where actually in the SVCOMP’14 the 1st place was
CPAChecker with the same score of 95 points; 2th place was LLBMC with a score of
38 points; and 3th place was Predator with a score of 14 points.

Recently, we had participated of SV-COMP 2015 with Map2Check tool in the Mem-

orySafety category (see the competition report in [3]). The main differences were: in
SV-COMP 2014 the total file was 61 and in SV-COMP 2015 was 205; and the scores
was updated to penalize incorrect results, which thus rules out testing and BMC tools.
Map2Check won the 6th from 9 tools. Map2Check overcame tools as Forester [14],
Seahorn [16] and CBMC [5]. Analyzing the Map2Check results in SV-COMP 2015,
we identify that Map2Check is the 4nd tool that consume less time (total of 8.400s)
and memory (total of 70.000 MB). Map2Check generated 0 false positives and 15 false
negative. These incorrect answers produced by our tool in the competition are due to
bugs in the implementation. Since the tool submission, we have fixed some bugs, and
considerably improved the implementation. Taking into account only the correct results
(the programs that satisfies the specification identified by the tool). Map2Check would
win the 2nd place, where the total number of correct programs was 165 from 205; the
total time of the verification was 2.100s; and the memory consumption was 9.100 MB.

These results, albeit preliminary in nature, strongly suggest that our method can
be effective in generating and checking test cases of memory management for C pro-
grams. Additionally, Map2Check reports traces that guide developers to the locations
where the memory management errors are. We thus argue that Map2Check integrates
test and verification. The test is based on dynamic analysis and assertion verification.
The assertions contain a set of specifications (for the validation of memory blocks).
This verification is similar to the one performed by Delahaye et al. [10], where Pre-Post
conditions based on formal program specification are translated into executable C code.

5 Conclusions and Future Work

In this study we presented a novel method to generate and verify automatically mem-
ory management test cases for structural unit tests, which are based on assertions from
safety properties generated by BMC tools of C programs. The proposed method checks
properties such as: pointer safety, memory leaks, and invalid free. The main purpose of
this study is to integrate unit testing with model checkers, focusing on memory manage-
ment defects; therefore, disseminating the application of formal methods and helping
developers not very familiar with this subject to verify large C programs.

We also presented Map2Check, a prototype tool that implements our method. The
experimental results have shown to be very effective. Map2Check has found 95.08% of
correct results, while CPAChecker has found 95.72%, Valgrind has found 93.44%, and
the other tools could detect only less than 76% of the correct results. For future work,
we intend to improve the verification runtime and precision of the proposed method by
adopting program invariants and static verification based on abstract domain [24].

Memory Management Test-Case Generation of C Programs 15

References

1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

2. Beyer, D.: Status report on software verification (competition summary SV-COMP 2014).

In: TACAS. pp. 373–388,. Springer (2014)

3. Beyer, D.: Competition on Software Verification (SV-COMP) - Results of the Competition.

Available at http://sv-comp.sosy-lab.org/2015/results/MemorySafety.table.html (2015)

4. Beyer, D., Keremoglu, M.E.: CPAchecker: A Tool for Configurable Software Verification.

In: CAV. pp. 184–190. Springer-Verlag (2011)

5. Clarke, E., Kroening, D., Lerda, F.: A Tool for Checking ANSI-C Programs. In: TACAS. pp.

168–176. Springer (2004)

6. Clarke, E.M.: 25 years of model checking. chap. The Birth of Model Checking, pp. 1–26.

Springer-Verlag (2008)

7. Clause, J., Orso, A.: LEAKPOINT: pinpointing the causes of memory leaks. In: ICSE. pp.

515–524. ACM (2010)

8. Comar, C., Kanig, J., Moy, Y.: Integrating formal program verification with testing. In: ERTS

(2012)

9. Cordeiro, L., Fischer, B., Marques-Silva, J.: SMT-Based Bounded Model Checking for Em-

bedded ANSI-C Software. In: TSE. pp. 957–974. IEEE (2012)

10. Delahaye, M., Kosmatov, N., Signoles, J.: Common Specification Language for Static and

Dynamic Analysis of C Programs. In: SAC. pp. 1230–1235. ACM (2013)

11. Dudka, K., Peringer, P., Vojnar, T.: Predator: A shape analyzer based on symbolic memory

graphs. In: TACAS. pp. 412–414. Springer Berlin Heidelberg (2014)

12. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: Generating compact verification

conditions. In: POPL. pp. 193–205. ACM (2001)

13. Groce, A., Joshi, R.: Extending model checking with dynamic analysis. In: VMCAI. pp.

142–156. Springer (2008)

14. Holik, L., Hruska, M., Lengal, O., Rogalewicz, A., Simacek, J., Vojnar, T.: Forester. Avail-

able at http://www.fit.vutbr.cz/research/groups/verifit/tools/forester/ (2015)

15. Holzer, A., Schallhart, C., Tautschnig, M., Veith, H.: FShell: Systematic Test Case Genera-

tion for Dynamic Analysis and Measurement. In: CAV. pp. 209–213. Springer (2008)

16. Kahsai, T., Gurfinkel, A., Navas, J.A.: SeaHorn - A software verification tool. Available at

https://bitbucket.org/lememta/seahorn/wiki/Home (2015)

17. Kebrt, M., Sery, O.: Unitcheck: Unit testing and model checking combined. In: ATVA. pp.

97–103. Springer (2009)

18. Kumar, A.: CUnit. Available at: http://cunit.sourceforge.net/ (2014)

19. Merz, F., Falke, S., Sinz, C.: LLBMC: bounded model checking of C and C++; programs

using a compiler IR. In: VSTTE. pp. 146–161. Springer-Verlag (2012)

20. Myers, G.J., Sandler, C.: The Art of Software Testing. John Wiley & Sons (2004)

21. Nagarakatte, S., Zhao, J., Martin, M.M., Zdancewic, S.: CETS: compiler enforced temporal

safety for C. In: ISMM. pp. 31–40. ACM (2010)

22. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary instru-

mentation. In: PLDI. pp. 89–100. ACM (2007)

23. Rocha, H., Cordeiro, L., Barreto, R., Netto, J.: Exploiting Safety Properties in Bounded

Model Checking for Test Cases Generation of C Programs. In: SAST. pp. 121–130. SBC

(2010)

24. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-Kamp, P.:

Proving termination and memory safety for programs with pointer arithmetic. In: IJCAR. pp.

208–223. Springer (2014)

25. Williams, N., Marre, B., Mouy, P., Roger, M.: Pathcrawler: Automatic generation of path

tests by combining static and dynamic analysis. In: EDCC. pp. 281–292. Springer (2005)

