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Abstract. Context-bounded model checking has successfully been used
to verify safety properties in multi-threaded systems automatically, even
if they are implemented in low-level programming languages like ANSI-
C. In this paper, we describe and experiment with an approach to ex-
tend context-bounded model checking to liveness properties expressed in
linear-time temporal logic (LTL). Our approach converts the LTL for-
mulae into Büchi-automata and then further into C monitor threads,
which are interleaved with the execution of the program under test.
This combined system is then checked using the ESBMC model checker.
Since this approach explores a larger number of interleavings than nor-
mal context-bounded model checking, we use a state hashing technique
which substantially reduces the number of redundant interleavings that
are explored and so mitigates state space explosion. Our experimental
results show that we can verify non-trivial properties in the firmware of
a medical device.

1 Introduction

Model checking has been used succesfully to verify actual software (as opposed
to abstract system designs) [25, 2, 5, 1, 6], including multi-threaded applications
written in low-level languages such as ANSI-C [9, 23, 17]. In context-bounded
model checking, the state spaces of such applications are bounded by limiting the
size of the program’s data structures (e.g., arrays) as well as the number of loop
iterations and context switches between the different threads that are explored
by the model checker. This approach is typically used for the verification of safety
properties expressed as assertions in the code, but it can also be used to verify
some limited liveness properties such as the absence of global or local deadlock.

However, many important requirements on the software behavior can be ex-
pressed more naturally as liveness properties in a temporal logic, for example
“whenever the start button is pressed the charge eventually exceeds a minimum
level”. Such requirements are difficult to check directly as safety properties; it is
typically necessary to add additional executable code to the program under test
to retain the past state information. This amounts to the ad hoc introduction of
a hand-coded state machine capturing (past-time) temporal formulae.
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Here, we instead we use context-bounded model checking to validate multi-
threaded C programs directly against (future-time) temporal formulas over the
variables and expressions of the C program under test. Thus, if the C variables
pressed, charge, and min represent the state of the button, and the current and
minimum charge levels, respectively, then we can capture the requirement above
with the linear-time temporal logic (LTL) formula G({pressed} -> F {charge
> min}). We check these formulas following the usual approach [7, 14], albeit
with a twist: we convert the negated LTL formula (the so-called never claim
[13]) into a Büchi automaton (BA), which is composed with the program under
test; if the composed system admits an accepting run, the program violates the
specified requirement. We check the actual C program however, rather than its
corresponding BA. We thus convert the LTL’s BA further into a separate C
monitor thread and check all interleavings between this monitor and the pro-
gram using ESBMC [9], an off-the-shelf, efficient bounded model checker for
ANSI-C. We bound the execution of the monitor thread in such a way that it
still searches for loops through accepting states after the program has reached
its own bound. We thus consider the bounded program as the finite prefix of an
infinite trace where state changes are limited to this finite prefix; this gives us
a method to check both safety and liveness uniformly within the framework of
bounded model checking.

Our approach avoids any imprecision from translating the C program into
a BA, but the monitor has to capture transient behaviour internal to the pro-
gram under test. The monitor and the program communicate via auxiliary vari-
ables reporting the truth values of the LTL formula’s embedded expressions.
Our tool automatically inserts and maintains these and also uses them to guide
ESBMC’s thread exploration. Nevertheless, our approach requires that the un-
derlying bounded model checker must be able to accommodate deep interleavings
of the monitor thread with the program threads. We have thus implemented a
state hashing strategy which eliminates multiple examinations of identical parts
of the state space and improves ESBMC’s performance.

Our paper makes three main contributions. First, it describes the first mech-
anism, to the best of our knowledge, to verify LTL properties against an unmodi-
fied C code base. Second, since ESBMC is a symbolic model checker based on the
satisfiability modulo theory approach, it also describes the first symbolic LTL
model checker that does not use binary decision diagrams (BDDs). Third, it is
the first application of the concept of state hashing to symbolic model checking.

2 From LTL to Monitor Threads

2.1 Linear-time Temporal logic

Linear-time temporal logic (LTL) is a commonly used specification logic in model
checking [3, 15, 16], which extends propositional logic by including temporal
operators. The primitive propositions of our LTL are side-effect-free boolean C
expressions over the global variables of the C program.



Context-Bounded Model Checking of LTL Properties for ANSI-C Software 3

Definition 1. Our LTL syntax is defined over primitive propositions, logical
operators and temporal operators as follows:

φ ::= true | false | {p} | !φ | φ1 && φ2

| φ1 || φ2 | φ1 -> φ2 | (φ)
| Fφ | Gφ | φ1Uφ2 | φ1Rφ2

The logical operators include negation (!), conjunction (&&), disjunction (||)
and implication (->). The temporal operators are “in some future state (even-
tually)” (F), “in all future states (globally)” (G), “until” (U) and “release” (R).
Here, p is a side-effect-free boolean C expression, and φ1Uφ2 means that φ1 must
hold continuously until φ2 holds; φ2 must become true before termination. The
other temporal operators can be defined in terms of U, as shown below.

We are only interested in temporal formulae which are closed under stutter-
ing; following Lamport [19], we thus do not provide an explicit “next state” op-
erator X. Our LTL expressions are thus insensitive to refinements of the timestep
to intervals less than those required to capture the ordering of changes in the
global state. The timesteps however only need to be sufficiently fine to resolve
any potentially dangerous interleavings of the program. For efficiency reasons we
assume interleavings only at statement boundaries and assume sequential con-
sistency [18], but options to ESBMC allow us also to use a finer-grained analysis
to detect data races arising from interleavings within statement evaluations.

We use a linear-time rather than a branching-time approach and thus there
are no explicit path quantifications (i.e., CTL∗-style operators A and E). There
is, however, an implicit universal quantification over all possible interleavings
and program executions. In this formulation we have the following identities: 1

φ = false U φ
F φ = true U φ
G φ = !F !φ

φ1 R φ2 = ! ( ! φ1 U ! φ2 )

We interpret a possibly multi-threaded C program as a Kripke structure
whose state transitions are derived from the possibly interleaved execution se-
quence of C statements and whose valuations are the possible values of the pro-
gram’s global variables. Since we have implemented a bounded model checker,
all (bounded) programs will either deadlock or terminate in finite time. We use
a separate run of ESBMC to assure deadlock freedom and formally extend the
behaviour of deadlock-free programs with an infinite sequence of timesteps which
leave all global variables unchanged. Thus every program that is scheduled gen-
erates an infinite sequence of states. We finally describe the desired liveness
property φ as an LTL expression in the above syntax and then check that there
are no possible infinite sequences of program states for which ! φ holds.

1 This differs from the notation of [20], which has X φ = false U φ
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2.2 Büchi Automata

Büchi automata (BA) are finite-state automata over infinite words first described
by Büchi [4]. We follow Holzmann’s presentation [14] and define a BA as a tuple
B = (S, s0, L, T, F ) where S is a finite set of states, s0 ∈ S the initial state of
the BA, L a finite set of labels, T ⊆ (S × L× S) a set of state transitions and
F ⊆ S a set of final states. B may be deterministic or non-deterministic. A run
is a sequence of state transitions taken by B as it operates over some input. A
run is accepted if B passes through an accepting state s ∈ F infinitely often
along the run.

A number of algorithms exist for converting an LTL formula to a BA ac-
cepting a program trace [11, 24, 12]. We use the ltl2ba [11] algorithm and
tool, which produces smaller automata than some other algorithms. Figure 1
illustrates the BA produced from the example LTL formula in the introduction.
Input symbols are propositions composed from the primitive C-expressions used
in the LTL.

init !{pressed}||{charge > min}  

T0_2

true  {charge > min}  

true  

init true  

2

!{charge > min}&&{pressed}  

!{charge > min}  

Fig. 1. The left BA accepts the example from the introduction, G({pressed} -> F

{charge > min}). The right BA is its negation, used for the never claim in our monitor

2.3 Monitor threads

In our context, a monitor is some portion of code that inspects program state
and verifies that it satisfies a given property, failing an assertion if this is not
the case. A monitor thread is a monitor that is interleaved with the execution
of the program under test. This allows it to verify that the property holds at
each particular interleaving of the program, detecting any transient violations
between program interleavings.

Monitor threads have been employed in SPIN to verify LTL properties against
the execution of a program [14]. A non-deterministic BA representing the nega-
tion of the LTL property, the so-called never claim, is implemented in a Promela
process which will accept a program trace that violates the original LTL prop-
erty. SPIN then generates execution traces of interleavings of the program being
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verified, and for each step in each trace runs the Promela BA. This is called a
synchronous interleaving.

In this work we employ a similar mechanism to verify LTL properties by
interleaving the program under verification with a monitor thread, detailed in
Section 3.2.

3 Model-Checking LTL Properties with ESBMC

3.1 ESBMC

ESBMC is a context-bounded model checker for embedded ANSI-C software
based on SMT solvers, which allows the verification of single- and multi-threaded
software with shared variables and locks [10, 9]. ESBMC supports full ANSI-C,
and can verify programs that make use of bit-level, arrays, pointers, structs,
unions, memory allocation and fixed-point arithmetic. It can reason about arith-
metic under- and overflows, pointer safety, memory leaks, array bounds viola-
tions, atomicity and order violations, local and global deadlocks, data races, and
user-specified assertions.

In ESBMC, the program to be analyzed is modelled as a state transition
system M = (S,R, s0), which is extracted from the control-flow graph (CFG).
S represents the set of states, R ⊆ S × S represents the set of transitions (i.e.,
pairs of states specifying how the system can move from state to state) and
s0 ⊆ S represents the set of initial states. A state s ∈ S consists of the value
of the program counter pc and the values of all program variables. An initial
state s0 assigns the initial program location of the CFG to pc. We identify each
transition γ = (si, si+1) ∈ R between two states si and si+1 with a logical
formula γ(si, si+1) that captures the constraints on the corresponding values of
the program counter and the program variables.

Given the transition system M, a safety property φ, a context bound C and
a bound k, ESBMC builds a reachability tree (RT) that represents the program
unfolding for C, k and φ. We then derive a VC ψπk for each given interleaving
(or computation path) π = {ν1, . . . , νk} such that ψπk is satisfiable if and only
if φ has a counterexample of depth k that is exhibited by π. ψπk is given by the
following logical formula:

ψπk = I(s0) ∧
k∨
i=0

i−1∧
j=0

γ(sj , sj+1) ∧ ¬φ(si) (1)

Here, I characterizes the set of initial states of M and γ(sj , sj+1) is the transi-
tion relation of M between time steps j and j+1. Hence, I(s0)∧

∧i−1
j=0 γ(sj , sj+1)

represents executions of M of length i and ψπk can be satisfied if and only if for
some i ≤ k there exists a reachable state along π at time step i in which φ is
violated. ψπk is a quantifier-free formula in a decidable subset of first-order logic,
which is checked for satisfiability by an SMT solver. If ψπk is satisfiable, then φ
is violated along π and the SMT solver provides a satisfying assignment, from
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which we can extract the values of the program variables to construct a counter-
example. A counter-example for a property φ is a sequence of states s0, s1, . . . , sk
with s0 ∈ S0, sk ∈ S, and γ (si, si+1) for 0 ≤ i < k. If ψπk is unsatisfiable, we
can conclude that no error state is reachable in k steps or less along π. Finally,
we can define ψk =

∧
π ψ

π
k and use this to check all paths. However, ESBMC

combines symbolic model checking with explicit state space exploration; in par-
ticular, it explicitly explores the possible interleavings (up to the given context
bound) while it treats each interleaving itself symbolically. ESBMC implements
different variations of this approach, which differ in the way they exploit the
RT. The most effective variation simply traverses the RT depth-first, and calls
the single-threaded BMC procedure on the interleaving whenever it reaches an
RT leaf node. It stops when it finds a bug, or has systematically explored all
possible RT interleavings.

3.2 Checking LTL properties against a C program

As discussed in Section 2.3, an LTL property can be verified against a program by
interpreting the corresponding BA over the program states along the execution
path. We apply this approach to a C code base by implementing the BA in C
which is then executed as a montior thread, interleaved with the execution of
the program. This involves three technical dimensions: the conversion of the BA
to C, the interaction of the monitor thread with the program under test, and
the control of the interleavings.

The monitor thread itself is not interleaved with the program in a special
manner as in SPIN, but instead is treated as any other program thread. We use a
counting mechanism to ensure that the BA thread operates on the program states
in the right sequential order. This approach can be slower than a synchronous
composition, but it requires no fundemental changes to the way that ESBMC
operates as it uses only existing features.

Implementing a Büchi automata in C. We follow the SPIN approach of
inverting the LTL formula being verified so that the BA accepts execution traces
which violate the original formula. We then modified the ltl2ba tool to convert
its usual Promela output to C, which uses some ESBMC built-ins.

The C implementation of the BA (see Figure 2 for the code corresponding
to the BA in Figure 1) consists of an infinite loop (which will be unrolled the
appropriate number of times, see below for details) around a switch statement on
the state variable that branches to code which atomically (lines 18, 46) evaluates
the target state of the transition. The non-deterministic behavior is simulated by
attempting all transitions from a state non-deterministically (lines 24, 27, 36),
after which guards on each transition evaluate whether the transition can be
taken (lines 25, 28, 37). These guards use ESBMC’s assume statements, which
ensure that transitions not permitted by the current state of the program under
test are not explored.

To determine when the BA has accepted a program trace, we first await a
time where the program has terminated — given that we operate in the context
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of bounded model checking this is guarenteed as any infinite loop is unrolled only
to the length of the bound. Detection of thread deadlock is already performed by
ESBMC [9]. Once the program terminates, its state never changes. The BA loop
is run a second time with the final program state as input, recording the number
of times it passes through each state (lines 44-45). If a loop through an accepting
state exists it will be visited more than once and an assertion in the monitor
thread will be fired showing that the BA accepted the trace. This technique
places a constraint on the unwind bound of the BA loop, that it is sufficient for
any such loop to be detected. Setting this bound to twice the number of states
in the BA permits it to pass through every state twice on the largest possible
loop.

This acceptance criteria operates on the principle that, should some program
state need to be reached for the LTL formula to hold, then it needs to have
happened by the time that the program bound has been reached. This can be an
overapproximation of the program being verified, as there can be circumstances
where that program state could be reached if the program bound were higher.

Several practical issues are addressed to ensure the BA is sound. The evalu-
ation of the next state to transition to is executed atomically, ensuring that the
BA always perceives a consistent view of program state. We also yield execution
(line 17) before the BA inputs a program state to force new interleavings to be
explored. Certain utility functions are provided to allow a program test harness
to start the BA and check for acceptance at the end of execution (not shown).

Interacting with the existing code base. LTL formulas allow verification
engineers to describe program behavior with propositions about program state.
To describe of the state of a C program, we support the use of C expressions
as propositions within LTL formulas. Any characters in the formula enclosed in
braces are interpreted as a C expression and as a single proposition within LTL.
The expression itself may use any global variables that exist within the program
under test as well as constants and side-effect free operators. The expression
must also evaluate to a value that can be interpreted as a boolean under normal
C semantics.

For example, the following liveness property verifies that a certain input con-
dition results in a timer increasing:

!G(({pressed key == 4} && {mstate == 1}) -> F{stime > ref stime})

and the following safety property checks a buffer bound condition:

!G({buffer size != 0} -> {next < buffer size})

Within the BA (Figure 2) these expressions are required for use in the guards pre-
venting invalid transitions from being explored. We avoid using the expressions
directly in the BA and instead ESBMC searchs the program under verification
for assignments to global variables used in a C expression, then inserts code to
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1 char __ESBMC_property___cexpr_0 [] = "pressed ";

2 bool __cexpr_0_status;

3 char __ESBMC_property___cexpr_1 [] = "charge > min";

4 bool __cexpr_1_status;

5
6 typedef enum {T0_init , accept_S2 } ltl2ba_state;

7 ltl2ba_state state = T0_init;

8 unsigned int __visited_states [2];

9 unsigned int __transitions_seen;

10 extern unsigned int __transitions_count;

11
12 void ltl2ba_fsm(bool state_stats) {

13 unsigned int choice;

14 while (1) {

15 choice = nondet_uint ();

16 /* Force a context switch */

17 __ESBMC_yield ();

18 __ESBMC_atomic_begin ();

19 __ESBMC_assume(__transition_count <=

20 __transitions_seen + 1);

21 __transitions_seen = __transition_count;

22 switch(state) {

23 case T0_init:

24 if (choice == 0) {

25 __ESBMC_assume ((1));

26 state = T0_init;

27 } else if (choice == 1) {

28 __ESBMC_assume ((! __cexpr_1_status &&

29 __cexpr_0_status ));

30 state = accept_S2;

31 } else {

32 __ESBMC_assume (0);

33 }

34 break;

35 case accept_S2:

36 if (choice == 0) {

37 __ESBMC_assume ((! __cexpr_1_status ));

38 state = accept_S2;

39 } else {

40 __ESBMC_assume (0);

41 }

42 break;

43 }

44 if (state_stats)

45 __visited_states[state ]++;

46 __ESBMC_atomic_end ();

47 }

48 }

49 return;

Fig. 2. C implemention of the Büchi automaton for the formula !G({pressed} -> F

{charge > min}).
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update a Boolean variable corresponding to the truth of the expression (lines
2, 4) immediately after the symbol is assigned to. In case multiple propositions
update on the same variable, re-evaluations are executed atomically. All modifi-
cations are performed on ESBMC’s internal representation of the program and
do not alter the code base.

Synchronous Interleaving. An impediment of operating the monitor thread
containing the BA as a normal program thread is that it is not guarenteed always
to receive a consistent series of input states—that is, it is entirely possible for the
BA not to be scheduled to run after an event of interest, and thus not perform
a state transition it should have. This is clearly an invalid action when one
considers it in terms of a BA skipping an input symbol. While such interleavings
can occur it is also guarenteed that there will be interleavings where the BAa is
run often enough to observe all relevant program states.

To handle this the BA discards interleavings where the propositions have
changed more than once but the BA has not had opportunity to run and interpret
them (lines 19–21 in Figure 2). We maintain a global variable (line 10) counting
the number of times that the C expressions forming propositions in the LTL
formula have been re-evaluated, keep a corresponding counter (line 9, 21) within
the BA, and use an assume statement to only consider traces where the the
global counter has changed at most once since the last time the BA ran.

4 Optimizing State Space Exploration

The context-bounded approach has proven to be effective for model checking
multi-threaded software, with a small number of context switches allowing us
to explore much of the system behavior. However, our approach to verifying
programs against LTL properties requires frequent context-switching between
monitor and program threads, which makes a greater context bound necessary.
We implemented state hashing in ESBMC to eliminate redundant interleavings
and reduce the state space to be explored. This is also the first work to our
knowledge where state hashing has been used in conjunction with symbolic model
checking.

The driving force behind our approach to state hashing is that during the ex-
ploration of the RT of multi-threaded software many interleavings pass through
identical RT nodes, i.e., nodes that represent the same global and thread-local
program states, respectively, and differ only in the currently active thread.
Only one of these nodes need be explored, as the reachability subtrees of all
other nodes will be identical. As an example, consider a simple multithreaded
C program shown in Figure 3 and its corresponding RT shown in Figure 4.
The RT consists of the nodes ν0 to ν16, where each node is defined as a tuple
ν = (Ai, Ci, si, 〈lji , G

j
i 〉nj=1)i for a given time step i. Here, Ai represents the cur-

rently active thread, Ci the context switch number, and si the current (global
and local) state. Further, for each of the n threads, lji represents the current
location of thread j and Gji represents the control flow guards accumulated in



10 Jeremy Morse, Lucas Cordeiro, Denis Nicole, Bernd Fischer

thread j along the path from lj0 to lji (although these are not shown in Figure 4).
Notice how the transitions originating from node ν1 as those originating from ν7,
produce the same program states. When we explore the node ν7, we can simply
eliminate the transitions that originate from it — provided that we realise that
we have already explored another identical RT node. We thus maintain a set of
hashes representing the states of RT nodes that we have already explored.

1 #include <pthread.h>

2
3 int x=0, y=0;

4
5 void* t1(void* arg) {

6 x++;

7 return NULL;

8 }

9
10 void* t2(void* arg) {

11 x++;

12 return NULL;

13 }

14
15 void* t3(void* arg) {

16 y++;

17 return NULL;

18 }

19
20 int main(void) {

21 pthread_t id1 , id2 , id3;

22 pthread_create (&id1 ,NULL ,t1,NULL);

23 pthread_create (&id2 ,NULL ,t2,NULL);

24 pthread_create (&id3 ,NULL ,t3,NULL);

25 return 0;

26 }

Fig. 3. A simple multi-threaded C program.

4.1 Hashing symbolic states

In explicit-state model checking, state hashing takes a state vector containing the
current values of all program variables, and applies a hash function to compute
a hash value that can then be stored to indicate a particular state has been
explored.

Unfortunately, state hashing is not so simple for symbolic model checking,
as the state vector does not simply contain values but is defined symbolically
by the calculations and constraints that make up the variable assignments in
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ν0 : t0,0,x=0,y=0

(L3, L6, L9)

ν1 : t1,1,x=1,y=0

(L5, L6,L9)

ν2 : t2,2,x=2,y=0

(L5, L8, L9)

ν5 : t3,2,x=1,y=1

(L5, L6, L11)

ν7: t2,1,x=1,y=0

(L3, L8,L9)

ν8 : t1,2,x=2,y=0

(L5, L8, L9)

ν10 : t3,2,x=1,y=1

(L3, L8, L11)

ν12: t3,1,x=0,y=1

(L3, L6,L11)

ν13: t1,2,x=1,y=1

(L5, L6, L11)

ν15: t2,2,x=1,y=1

(L3, L8, L11)

ν3: t3,3,x=2,y=1

(L5, L8, L11)
ν6 : t2,3,x=2,y=1

(L5, L8, L11)

ν9: t3,3,x=2,y=1

(L5, L8, L11)

ν11: t2,3,x=2,y=1

(L5, L8, L11)
ν14: t3,3,x=2,y=1

(L5, L8, L11)

ν16: t1,3,x=2,y=1

(L5, L8, L11)

Fig. 4. Reachability tree for the program in Figure 3 Dashed edges represent transitions
that can be eliminated by the state hashing technique.

the underlying static single assignment (SSA) form of the program. We thus
implement a two-level hashing scheme: we use a node-level hash that represents
a particular RT node, and a variable level hash that represents the constraints
affecting a particular assignment to a variable. Since each new RT node can only
change the (symbolic) value of at most one variable, the two-level hashing scheme
reduces the compoutational effort, as it allows us to retain the hash values of
the unchanged variables.

The node-level hash is created by taking the variable-level hashes of all vari-
ables in the current node and concatenating them, together with the program
counter values of all existing threads, into a single data vector. This vector is
then fed to a hashing function. Variable-level hashes are more complex. Within
ESBMC, assignments are defined by an expression representing the calculation
and the variable name it is assigned to. For each symbolic assignment encoun-
tered in the RT exploration we calculate a hash of the expression and record it
with the variable name. This hash is created by serialising each operator and
value in the expression to a data representation (i.e., a series of bytes) into a
vector, which is then hashed.

For example, Figure 3 contains several assignments to the global variable
x using the ++ operator (converted to a + internally). ESBMC automatically
performs constant propagation and effectively converts the example to an explicit
state check. We represent the first serialised increment expression as the text:

(+,(constant(0)),(constant(1)))

This demonstrates one of the simplest encodings of data possible with this
method. Any set of operations on constant values can also be expressed in this
manner. However such expressions are not yet symbolic — to support this we
represent nondeterminstic values with a prefix and unique identifier. We also rep-
resent the use of existing variables in expressions with its current variable hash.
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To demonstrate this, reconsider Figure 3 and assume the x variable is initialised
to a nondeterministic value. The expressions representing the two increments of
the x variable then become:

(+, (nondet(1)), (constant(1)))

(+, (hash(#1)), (constant(1)))

where #1 represents the hash value of the first expression. Significantly, no thread
specific data is encoded in this representation, meaning that the same serialised
representation is produced for whichever order of threads increments the x vari-
able. This means the hash of any assignment is a direct product of all nondeter-
ministic inputs, constant values and operators that represent the constraints on
the assignment.

This method is limited however by the ordering of assignments — if the
original example in Figure 3 had instead a thread that increased the x variable
by 2, and another that increased x by 3, then at the end of execution the variable
hash of x would be different depending on the thread ordering, even though the
effective constraints on x for every interleaving are identical. This also affects
arrays (including the heap, which is modelled as an array) and unions.

4.2 Selection of hash function

As hashing is a lossy abstraction of a tree node, we risk computing two identical
hashes for two distinct nodes. Should this occur one node will be successfully
explored and its hash stored; but when the other is explored we will discover
its hash already in the visited states set, and incorrectly assume it has already
been visited. This would cause an unexplored portion of the state space to be
discarded.

We require a hash function that takes a stream of characters as input (seri-
alised expressions) and produces a small output. We simply chose SHA256 [22]
hashes due to its relatively large output bitwidth (compared to other hash func-
tions) and its certification for use in cryptographic applications, aspects that
assure us the likelihood of collisions is extremely low.

5 Experimental Evaluation

We have tested the work described here against a series of properties defining the
behavior of a pulse oximeter firmware, which is a piece of sequential software that
is responsible for measuring the oxygen saturation (SpO2) and heart rate (HR)
in the blood system using a non-invasive method [8]. The firmware of the pulse
oximeter device is composed of device drivers (i.e., display, keyboard, serial, sen-
sor, and timer) that are hardware-dependent code, a system log component that
allows the developer to debug the code through data stored on RAM memory,
and an API that enables the application layer to call the services provided by
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the platform. The final version of the pulse oximeter firmware has approximately
3500 lines of ANSI-C code and 80 functions.

Here we report the results of verifying the pulse oximeter code against five
liveness properties of the general form

G(p -> F q)

i.e., whenever an enabling condition p has become true, then eventually the
property q is enabled. We formulated a test harness for each portion of the
firmware being tested to simulate the activity that the LTL property checks. We
then invoked ESBMC with a variety of loop unwind and context switch bounds
to determine the effectiveness of state hashing. We also ran these tests against
versions of the firmware deliberately altered to not match the LTL formula to
verify that failing execution traces are identified.

All tests were run on the Iridis 3 compute cluster 2 , with a memory limit of
4Gb and time limit of 4 hours to execute. The results are summarized in Table
5. Here, #L column contains the line count of the source file for the portion of
firmware being tested, P/F records whether the test is expected to Pass or Fail,
k the loop unwinding bound and C the context-bound specified for the test.

We then report the results for the original version of ESBMC (v1.16, which
will be available from www.esbmc.org) and the version with state hashing, re-
spectively. For each version, we report the verification time in seconds, the num-
ber #I and #FI of generated and failing interleavings, respectively, and the
result. Here, + indicates that ESBMC’s result is as expected (i.e. all its inter-
leavings were verified successfully if the test is expected to pass, and at leasat
one interleaving is found to violate the LTL property if the test is expected to
fail), while − indicates a false negative (i.e., ESBMC fails to find an existing
violation of the LTL property). TO indicates the check ran out of time and MO
indicates it ran out of memory.

We first observe that ESBMC is generally able to verify all positive test cases,
although it sometimes times out with increasing bounds. The situation is less
clear for the tests designed to fail. Here, smaller unrolling and context switch
bounds allow to correctly identify failing interleavings, but are sometimes not
sufficient to expose the error (e.g., up btn), and small increases in the unrolling
bound generally require larger increases in the context bounds to expose the
error, leading to time-outs or memory-outs in most cases. However, state hashing
improves the situation, and allows us to find even deeply nested errors.

Comparing the figures between tests performed with state hashing and those
without, we see that the total number of interleavings generated is often sig-
nificantly reduced by state hashing. Out of all tests that completed the median
reduction was 56%, the maximum 80% and minimum 13%. In all cases the use
of state hashing reduced the amount of time required to explore all reachable
states.
2 1008 Intel Nehalem compute nodes, each with two 4-core processors, up to 45Gb

of RAM per node, and InfiniBand communications. For each test we used only one
core of one node.
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Original run With state hashing

Test name #L P/F k C Time (s) #I / #FI Result Time (s) #FI / #I Result

start btn 856

Pass 1 20 207 7764/0 + 67 2245/0 +
Pass 1 40 199 7764/0 + 71 2245/0 +
Pass 2 20 2740 55203/0 + 479 11409/0 +
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 236 6719/231 + 81 1919/91 +
Fail 1 40 244 6719/231 + 94 1919/91 +
Fail 2 20 1344 29840/0 − 299 6911/0 −
Fail 2 40 N/A0 0/0 MO N/A 0/0 MO

up btn 856

Pass 1 20 78 3775/0 + 32 1385/0 +
Pass 1 40 83 3775/0 + 37 1385/0 +
Pass 2 20 2777 102566/0 + 898 41389/0 +
Pass 2 40 14400 0/0 TO 6012 111335/0 +
Fail 1 20 90 3775/0 − 35 1385/0 −
Fail 1 40 82 3775/0 − 33 1385/0 −
Fail 2 20 2743 102564/0 − 914 40938/0 −
Fail 2 40 14400 0/0 TO 4832 69275/3422 +

keyb start 50

Pass 1 20 9668 92795/0 + 4385 49017/0 +
Pass 1 40 9767 92795/0 + 4489 49017/0 +
Pass 2 20 14400 0/0 TO 14400 0/0 TO
Pass 2 40 14400 0/0 TO 14400 0/0 TO
Fail 1 20 9795 92795/321 + 4836 49017/321 +
Fail 1 40 9924 92795/321 + 4914 49017/321 +
Fail 2 20 14400 0/0 TO 14400 0/0 TO
Fail 2 40 14400 0/0 TO 14400 0/0 TO

baud conf 178

Pass 1 20 18 485/0 + 16 419/0 +
Pass 1 40 17 485/0 + 16 419/0 +
Pass 2 20 2440 39910/0 + 971 17500/0 +
Pass 2 40 2635 39910/0 + 1078 17500/0 +
Fail 1 20 18 485/56 + 17 419/56 +
Fail 1 40 18 485/56 + 16 419/56 +
Fail 2 20 2583 39910/2002 + 1010 17500/880 +
Fail 2 40 2851 39910/2002 + 1139 17500/880 +

serial rx 584

Pass 1 20 334 5454/0 + 194 3108/0 +
Pass 1 40 324 5454/0 + 212 3108/0 +
Pass 2 20 10959 62332/0 + 4494 29257/0 +
Pass 2 40 14400 0/0 TO 70 627/0 +
Fail 1 20 215 3286/273 + 137 2030/257 +
Fail 1 40 211 3286/273 + 135 2030/257 +
Fail 2 20 3768 20917/0 − 1846 11388/0 −
Fail 2 40 14400 0/0 TO 14400 0/0 TO

Table 1. Timings and results from testing LTL properties against pulse oximeter
firmware

6 Related Work

SPIN [13] is a well known software model checker that operates on concurrent
program models written in the Promela modelling language. It operates with
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explicit state and uses state hashing to reduce the quantity of state space it
explores. SPIN also allows users to specify a LTL formula to verify against the
execution of a model by using BA in a similar manner to this work. While SPIN
is well established as a model checker the requirement to re-model codebases in
Promela can be time consuming.

Java PathFinder is a Java Virtual Machine (JVM) that performs model
checking on Java bytecode. It also operates with explicit state and uses state
matching to reduce the search space, but can also operate symbolically for the
purpose of test generation and coverage testing. Verification of LTL formula can
be achieved with the JPF-LTL extension which uses BA and method invocation
monitoring to inspect the execution of the model.

7 Conclusions and future work

Context-bounded model checking has been used successfully to verify multi-
threaded applications written in low-level languages such as ANSI-C. However,
the approach has largely been confined to the verification of safety properties.
In this paper, we have extended the approach to the verification of liveness
properties given as LTL formulas against an unmodified code base. We follow the
usual approach of composing the BA for the never claim with the program, but
work at the actual code level. We thus convert the BA further into a seperate C
monitor thread and check all interleavings between this monitor and the program
using ESBMC. We use a state thashing scheme to handle the large number of
interleavings and counter state space explosion.

The initial results are encouraging, and we were able to verify a number of
liveness properties on the firmware of a medical device; in future work, we plan to
extend the evaluation to a larger code base and wider variety of properties. The
state hashing proved to be very useful, cutting verification times by about 50%
on average. We expect that an improved hashing implementation (e.g., removing
serialisation) will yield even better results. However, our approach still has some
limitations. The (indiscriminate) composition of the monitor thread with the
program under test leads to a very large number of interleavings taht need to be
explored, despite the improvements that the state space hashing provides. We
thus plan to implement a special thread scheduling algorithm in ESBMC that
schedules the monitor after changes to the observed variables and so achieves
the effect of synchronous composition.
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LNCS 2102, pages 53-65. 2001.

[12] Anping He, Jinzhao Wu and Lian Li An Efficient Algorithm for Transforming
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