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Abstract—Memory corruption bugs continue to plague low-
level systems software, generally written in unsafe programming
languages. In order to detect and protect against such exploits,
many pre- and post-deployment techniques exist. In this position
paper, we propose and motivate the need for a hybrid approach
for the protection against memory safety vulnerabilities, com-
bining techniques that can identify the presence (and absence)
of vulnerabilities pre-deployment with those that can detect and
mitigate such vulnerabilities post-deployment. Our proposed hy-
brid approach involves three layers: hardware runtime protection
provided by capability hardware, software runtime protection
provided by compiler instrumentation, and static analysis pro-
vided by bounded model checking and symbolic execution. The
key aspect of the proposed hybrid approach is that the protection
offered is greater than the sum of its parts — the expense of post-
deployment runtime checks is potentially reduced via information
obtained during pre-deployment analysis. During pre-deployment
analysis, static checking can be guided by runtime information.

I. INTRODUCTION

Memory errors in low-level systems software written in
unsafe programming languages such as C or C++ represent one
of the main problems in computer security [1]. In particular,
in the MITRE ranking [2], the top ten vulnerabilities include
four types of memory errors. Microsoft reports that around
70% of all security updates in their products address memory
issues [3], and Google reports a similar number regarding bugs
in the Chrome Browser [4].

Techniques to detect memory errors can be broadly classi-
fied in two categories: detecting and removing vulnerabilities
before deployment [5]-[8], or detecting and mitigating them
post deployment [9]-[17]. Post-deployment techniques neces-
sarily run as part of the executed code, i.e., at runtime. Pre-
deployment techniques are more diverse, including runtime
techniques designed to be used as part of testing and static
techniques that directly analyze the source code. Runtime
techniques are exact because they check a set of concrete
behavior defined by a set of given inputs. Conversely, static
techniques aim to check all possible program behaviors but
necessarily approximate this due to a lack of context and the
well-known state-explosion problem (i.e., scalability limita-
tions). Compared to static techniques, runtime techniques can
be more generally applicable, but they may still introduce
unacceptable overhead for post-deployment and can make
software more susceptible to denial of service attacks due
to preventive program termination even in the cases of non-
critical bugs.

The result is a set of techniques with varying coverage and
performance profiles (summarized in Section II). Listing 1
gives a C program demonstrating the trade-offs. It contains
a stack-use-after-return vulnerability (lines 13 and 26) and

a subobject-bounds vulnerability (line 6). The code contains
features that expose limitations of existing analysis techniques,
as described next.

Listing 1. Code example demonstrating trade-offs between techniques.

1 #define LEN 1000000

2 struct my_type {intx array[LEN]; int* num;} var;
3 woid fun (int index) {

4 int a = 13;

5 // overflows subobject bound for index=LEN

6 var.array[index] = &a;

7 )

8 wvoid fun2() { int unused_var; int a = 15; }

9 int main(int argc, char xargv[]) {

10 // large loop hard for bounded model checking
11 for (int i=0; i <= LEN; i++) fun(i);

12 // accesses expired local variable ’a’ of ’fun’
13 printf ("$d\n", xvar.arrayl[0]);

14 int a = atoi(argv[l]), b = atoi(argv[2]);

15 int ¢ = atoi(argv[3]), d = atoi(argvi4]);

16 // function call to ’fun2’ depends on

17 // complex constraint on program’s inputs

18 if(a == 2«b + c*d) fun2();

19 // depending on the compiler design of

20 // the call stack, this may leak

21 // local variable "a’ of ’fun2’

22 // as it may be placed at the same address

23 // as variable ’‘a’ in line 4

24 // (e.g., happens when compiled with Clang

25 // without optimisation flags or -00)

26 printf ("$d\n", xvar.array([0]);

27 return 0;

28}

No single protection mechanism detects both vulnerabilities.
The stack-use-after-return vulnerability in Listing 1 can be
detected by the runtime software-level protection tools (e.g.,
SoftBoundCETS [9], [18] and AddressSanitizer [6]; see below
for details), but these mechanisms fail to detect the subobject
buffer overflow vulnerability. Conversely, hardware protection
(provided by CHERI’s hardware capabilities PureCap model
[17], [19] as described below) is capable of detecting the
subobject buffer overflow vulnerability but not the stack-use-
after-return vulnerability. Any runtime mechanisms requires
suitable inputs (lines 14 and 15) to be given to be used
during pre-deployment, and its ability to detect errors depends
directly on those inputs (line 18). The static bounded model
checking approach (as implemented in the ESBMC tool [8],
[20] described below) can detect both vulnerabilities, but it
struggles to cope with the large loop bound (line 11).

The above motivates the development of a hybrid framework
that can provide consistent software security at an optimal
(i.e., controlled) performance cost. Our focus is on combining
techniques across different deployment stages. In particular,
we are interested in leveraging capability hardware to provide
post-deployment security without a major performance sacri-



fice. Combining techniques is of course not a new idea. For
example, the Frama-C framework is built on the concept of
combining a variety of techniques, including pre- and post-
deployment [21]. However, in contrast to our proposed frame-
work, Frama-C is not fully automatic and does not make use of
runtime hardware protection. Furthermore, we provide novel
ideas for a fine grained combination of static and runtime
techniques (Sections IV-B, IV-C and IV-D), that we think
will reduce the penalty associated with achieving security.
Other attempts at combining techniques to achieve greater
program safety include [22]-[24]. However, none of these
combine the full range of pre- and post-deployment methods
that we propose, nor do they utilise our ideas relating to
the manner of combining these techniques. We are proposing
a paradigm shift from the “all or nothing” in terms of the
method of software protection strategy to a flexible hybrid
verification approach, combining hardware safety guarantees
with optimisable software hardening.

Consequently, the proposed hybrid framework must incor-
porate three essential cooperating components:

1) Capability hardware that efficiently protects against a
subset of memory vulnerabilities at runtime in hardware.

2) Ahead-of-compilation formal verification tooling capa-
ble of proving the program’s safety in certain cases .

3) A software hardening engine that can instrument the
program with the software safety checks that a) are not
yet provided by the capability hardware and b) are not
proved to be “safe” by the formal verification tool.

Therefore, the proposed hybrid framework covers both soft-
ware protection modes: pre-deployment and post-deployment.

A typical trade-off is that between security and cost. The
high cost of software hardening has often been prohibitive.
This framework addresses this by: (i) leveraging new hardware
protection to move most expensive software checks to hard-
ware; (ii) utilizing static analysis tools to prove that certain
software checks are not required; and (iii) enabling the com-
plementary application of automated testing techniques (e.g.,
fuzzing) during pre-deployment to increase the likelihood that
bugs are resolved at this more cost-effective stage. All three
points are achieved without compromising the overall security
guarantees.

In this position paper, we present an experimental analysis
(Section III) that demonstrates that these techniques (or at
least some tools representing them) are complementary in
the sense that no tool catches all vulnerabilities that at least
one tool can catch. We then propose a hybrid framework
(Section IV) that aims to combine techniques but also, most
interestingly, provides an opportunity for cooperation. Our
goal is to combine techniques that (i) work with legacy
code, (ii) do not require modification to the source code, and
(iii) provide a low barrier to adoption. This goal guides our
choice of memory protection techniques (and tools) in this
work. Currently we are implementing the proposed hybrid
framework (see Section IV for current implementation status).

Tools based on Bounded Model Checking (BMC) are capable of formally
proving safety of bounded executions of the given program (i.e., “partial
safety”). Also it is often possible to explore the entire state space of the
given program (i.e., when all possible executions of the given program are
bounded) and produce a formal proof of program’s safety.

II. MEMORY PROTECTION TECHNIQUES

There are two main approaches to detecting memory errors
pre-deployment — runtime techniques that aim to identify
potential errors but with a high overhead, restricting them
to pre-deployment test runs, as well as static techniques
that explore the possible behaviors of the program without
executing it. The main approach to providing protection post-
deployment is to check memory accesses to ensure that they
are safe — this may be via compiler-level instrumentation or via
hardware support with new technologies that go beyond the
traditional page table-based protection (e.g., Intel MPX [25],
MPK [26], or hardware capabilities [17]). Post-deployment
usually provides strong assurance against vulnerabilities but
discovery of vulnerabilities (or false positives) at the post-
deployment stage can lead to considerable disruptions. Below
we outline the main techniques for runtime and static analysis.

A. Runtime Analysis

Checking memory access at runtime requires additional
work. There is a trade-off between the amount of security
provided and the level of overhead required. Often, techniques
with large overheads are deemed incompatible with post-
deployment except in the most security-critical settings.

Runtime checks may occur in the software or hardware. In
software, such checks are typically inserted by the compiler.
However, how this is performed and the overhead/coverage
profile varies between tools. Alternatively, checks may be
supported by unique hardware mechanisms. In this work, we
consider three runtime analysis tools that are some of the most
widely used runtime protection tools utilising the Clang/LLVM
toolchain which we consider to be the integral part of our
hybrid framework introduced in Section IV:

o AddressSanitizer (ASan) [6]: This tool uses a com-
bination of shadow memory and so-called red zones
with poisoning to detect spatial errors and a special
memory allocator that provides address quarantine to
detect temporal errors (with extra checks behind options).
Developers suggest that ~ 2x slowdown is standard.

o SoftBoundCETS? (SB) [9], [18]: This tool tracks point-
ers’ metadata (e.g., base, bound) using shadow space
inspired mechanisms (instead of fat pointers) and uses
this to insert checks into LLVM IR code to detect spatial
and temporal errors. Experimental results [18] report
average ~ 2.16x slowdown (up to 4x).

e The pure capability model of CHERI (PureCap) : The
CHERI model [17] implements memory access capa-
bilities enforced by the hardware. A capability is a
token giving access to a particular area of the virtual
address space. In the PureCap model of CHERI, each
pointer of a C/C++ program is represented by a capability
that carries metadata about the buffer bounds, access
rights, etc. CHERI also implements a hybrid model [19]
that allows the coexistence of regular pointers (without
any hardware-level protection guarantees) and capabilities
that have to be declared explicitly. One of the advantages
of PureCap is that it provides protection at the hardware
level rather than intermediate levels that rely on correct

2 Available on GitHub, https:/github.com/santoshn/softboundcets-34


https://github.com/santoshn/softboundcets-34

implementation of compilers/machine code translation.
Limitations include the need for specialized hardware and
an increase in pointer sizes (~ 2x) and corresponding
increase in memory consumption.

A limitation of runtime techniques for pre-deployment
checking is the need for concrete inputs. One method for
addressing this is fuzzing [27], which attempts to find inputs
that produce specific behaviors.

B. Static Analysis

Static techniques analyze the source code itself, searching
the possible set of execution traces. There are, broadly, two
main approaches: breadth-first bounded-model checking [28]
unrolls the program, representing the reachability of a partic-
ular state by any path as a verification condition; and depth-
first path-based symbolic execution [29] encodes a single path
through the program as a set of symbolic constraints. Memory
safety is cast as reachability of an unsafe state, and a satisfying
assignment to the produced verification condition represents a
counter-example, e.g., a set of inputs that leads to the error.

In this work, we consider two static analysis tools since
they have been achieving high positions in recent software
verification (SV-COMP [30]) and software testing (Test-Comp
[31]) competitions, and they both utilise the Clang/LLVM
toolchain (this is essential for the hybrid framework we
propose in Section IV):

¢ ESBMC [8], [20]: This is a bounded-model checker uti-
lizing Clang to transform C programs into an intermediate
GOTO language. This is then symbolically executed,
producing verification conditions for SMT solvers.

o FuSeBMC [32], [33]: injects labels into C programs for
tracking code coverage and uses a combination of white-
box fuzzing and ESBMC to find inputs that reach those
labels (while also checking for vulnerabilities).

III. EXPERIMENTAL ANALYSIS

To establish the complementary nature of existing tools, we
performed an experimental analysis® with the selected tools
using benchmarks taken from the memory safety category of
SV-COMP [34], which contain various open-source applica-
tions, e.g., bftpd, which is an FTP server for Unix systems.
Given our aim of establishing that tools are complementary, let
us highlight existing evidence from the most recent SV-COMP
competitions [35] which immediately shows that different
techniques find different errors. Our experimental analysis is
divided into two parts: 1) quantitative, where we determine
how many vulnerabilities can be detected by the compared
tools (see Tables I and II), and 2) qualitative, where we
establish the types of vulnerabilities that can or cannot be
handled by the given tool (see Table III). We further split our
quantitative analysis between benchmarks with given inputs
(Section III-A) and those without given inputs (Section III-B)
as the appropriate tools differ. For benchmarks that require
inputs, it is difficult to accurately compare static and runtime
tools, since for runtime tools to be able to detect an error, they
would require the precise inputs that trigger the error.

3Scripts and data available at https:/github.com/scorch-project/analysis.

TABLE I
SV-COMP BENCHMARKS WITH NO REQUIRED INPUTS. FN STANDS FOR
FALSE NEGATIVE - WHERE A TOOL FAILS TO IDENTIFY A GENUINE BUG.
FP STANDS FOR FALSE POSITIVE.

Technique Correct | Incorrect | Timeout
H (FN+FP) ‘

ASAN 159 13 (13+0) 6
SB 152 20 (19+1) 6
PureCap 145 24 (24+0) 9
ASAN + SB 166 6 (5+1) 6
Runtime (combined) 166 6 (5+1) 6
ESBMC 130 5 (1+4) 43
FuSeBMC 133 4 (1+3) 41
Static (combined) 132 5 (1+4) 41

A. Programs with No Required Input

We run all tools on the 178 memory-safety benchmarks
from SV-COMP, where no input is required. We set the time
limit of each run to 900 seconds (the time limit used at
SV-COMP). These benchmarks are representative of a broad
cross-section of essential vulnerabilities. They vary in size
and complexity but are generally small, focusing on the vital
vulnerability while being indicative of real-world scenarios.

The results are in Table 1. The combined rows represent the
results that could be achieved by running the tools as a portfo-
lio and taking the output to be “bug” if any tool returns “bug”,
“safe” if no tool returns “bug” and at least one tool returns
“safe”, and timeout otherwise. Note that every tool detects
a different set of vulnerabilities. Runtime techniques detect
more than static techniques, which is unsurprising as there is
only a single behavior to analyze. However, static techniques
detect some vulnerabilities, which runtime techniques fail to
detect. One interesting case is a potential stack-use-after-scope
vulnerability that is not triggered in the program but presents
a future vulnerability detected by static techniques but not by
runtime techniques.

Combining all three runtime tools (in the manner described
above) produces six incorrect verdicts. The interesting cases
are the false negatives due to ASAN failing to detect invalid
memory cleanup (SB and PureCap do not handle memory
leaks) and a false positive from SoftBoundCETS falsely re-
porting a bug due to a lack of support for the C library function
memcpy.

On the other hand, ASAN detects nine bugs that SB and
PureCap do not detect, and for SB this number is 6. In contrast,
PureCap did not detect any unique vulnerabilities (but should
ultimately have a better performance profile).

In terms of performance, the current PureCap implemen-
tation used in the analysis is a prototype software model
(emulating capability hardware) that does not give realistic
performance numbers. Therefore, we compare the runtime
overhead of ASAN and SB. The mean overhead for ASAN
was 4.10x and for SB it was 4.46x but there was significant
variance - 27.91 for ASAN and 96.23 for SB. We note that
the amount of overhead introduced in safe benchmarks is sig-
nificantly lower (2.33x£0.28 for ASAN and 1.01z £ 0.04 for
SB) than the unsafe ones (7.54x+64.4 and 12.27x+226.29).
This is due to the relatively short runtime of the evaluated
benchmarks (0.11s 4-0.23s and 0.14s + 0.25s) in comparison
to the overhead introduced by the termination procedure after
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TABLE 11
SV-COMP BENCHMARKS WITH INPUTS.
Technique Correct | Incorrect | Timeout
(FN+FP)
ESBMC 107 3 (3+0) 17
FuSeBMC 116 2 (240) 9
Combined 116 2 9

finding a vulnerability.

The static techniques demonstrated significantly more time-
outs even though each program had a single path. Both tools
were able to produce the correct verification outcomes in
the majority of the cases. However, they produced incorrect
verdicts in around 3% of benchmarks. In one of the cases both
ESBMC and FuSeBMC could not detect a comparison of freed
pointers. In 5 cases, ESBMC produced incorrect answers: in
the case mentioned above as well as in four others where
it reported a bug in a safe code due to wrongly identifying
freeing memory twice in case of using structures featuring
bit fields. FuSeBMC repeated 4 (including the comparison
of freed pointers) out of these five incorrect verdicts. As a
result, the combination of both tools, yields one more incorrect
outcome (i.e., five overall) than FuSeBMC alone as ESBMC
returns an incorrect “unsafe” verdict for a safe benchmark for
which FuSeBMC provides a correct outcome. This is a general
limitation of the ahead-of-compilation verification tools since
they need to assume (i.e., approximate) the behaviour of the
underlying hardware.

B. Programs Requiring Input

We run ESBMC and FuSeBMC on the 127 unsafe bench-
marks from the SV-COMP memory safety category, where
input is required (using the same timeout of 900 seconds for
each run). The results are in Table II. Both FuSeBMC and
ESBMC returned incorrect verdicts for two benchmarks (un-
detected memory leaks). The bugs were not detected because
ESBMC and FuSeBMC do not provide an implementation
of a C library function atexit. Also, ESBMC crashed on
one of the benchmarks. At the same time, ESBMC reached
the timeout in 8 more cases (17 vs 9). (ESBMC does not
produce any unique outcomes, while FuSeBMC detects 9
unique vulnerabilities thanks to its white-box fuzzer.) For
the unsafe verdicts, both ESBMC and FuSeBMC produced
counter-examples (i.e., inputs) violating memory safety. Such
inputs can be introduced into the original code (and possibly
combined with the described runtime verification techniques)
for further testing.

C. Vulnerability Analysis

We have identified issues, posing various degree of security
risk, that cannot be detected by at least one of the tools used
during experiments. Also we identified program features that
can be problematic for cross-platform compatibility. These are
summarized in Table III and briefly discussed below.

a) Subobject-buffer-overflow: ASAN and SB do not
track subobject bounds, so do not detect these vulnerabilities.
PureCap has an additional option (requiring extra checks) that
can detect subobject bounds. However, in some cases, this
leads to more false positives, e.g., when performing pointer
arithmetic on a pointer to a subobject [36].

b) Use-after-free: PureCap cannot detect this vulnerabil-
ity as the current stable release only supports spatial safety.
There is an experimental release based on CHERIvoke [37],
which quarantines freed memory, but (for performance rea-
sons) this does not handle use-after-free, rather the more
specific use-after-reallocate vulnerability.

c¢) Stack-use-after-return:  PureCap explicitly does
not handle stack exploits, which would require complex
(and expensive) revocation mechanisms. ASAN does
not support this by default, since it may significantly
slow down* the resulting executable. (In order to
enable this, one needs to set an environment variable
ASAN_OPTIONS=detect_stack_use_after_returnzl.)

d) Stack-use-after-scope: PureCap cannot handle these
stack-based vulnerabilities. SB cannot detect this as the scop-
ing information is not handled during its instrumentation phase
at the intermediate level of the LLVM compiler.

e) Double-free: This is an example of a temporal mem-
ory safety vulnerability that the Cornucopia [38] extension of
PureCap could detect, but the stable version does not.

f) Memory-leaks: SB and PureCap do not explicitly track
memory and cannot detect this class of vulnerability.

g) Unions: PureCap does not support some program
features. For example, due to separating pointers from other
data and the larger pointer sizes, PureCap can incorrectly
report buffer-overflow when unions are used.

h) Library Functions: It is worth noting that all mecha-
nisms require access to the source code of any library functions
in some way. SB and ESBMC provide mechanisms that allow
the behavior of library calls to be emulated. SB, ASAN,
and PureCap require external code to be compiled with the
appropriate checks to provide coverage (and PureCap requires
compatibility due to the different pointer sizes). ESBMC will
over-approximate the behavior of library calls, but this can
lead to many spurious false positives.

D. Summary

Our experimental analysis supports the motivation that
runtime and static techniques can complement each other for
pre- and post-deployment protection. Interestingly, PureCap
provides a subset of safety guarantees that are expected to be
very cheap, suggesting a hybrid setup where PureCap handles
these cheap checks. In contrast, the rest are handled by in-
software checks — this is what we propose next.

IV. PROPOSED HYBRID FRAMEWORK

Our proposed hybrid framework is illustrated in Fig. 1. This
combines static and runtime protection mechanisms to offer
protection at both pre- and post-deployment stages.

The framework utilizes the LLVM toolchain for (i) the
insertion of assertions, (ii) the translation of C code for
static analyzers, and (iii) the compilation to PureCap ISA.
Conveniently, the selected tools already use this toolchain.

We aim to provide the union of protection coverage as
‘cheaply’ as possible. Here cost can mean two things. Firstly,
the framework should be as portable as possible to minimise
development and deployment cost. Therefore, the goal is to

“https://docs.microsoft.com/en-us/cpp/sanitizers/error-stack-use-after-
return?view=msvc-170



TABLE III
FEATURES SUPPORTED BY DIFFERENT PROTECTION METHODS.

[ Feature [ ASAN [ SB[ PureCap (RISC-V) [ ESBMC [ FuSeBMC |
Spatial Memory Safety
Subobject buffer overflow [ mo [ mo ] no/yes [ yes ] yes
Temporal Memory Safety
Use-after-free yes yes no yes yes
Stack use after return no/yes yes no yes yes
Stack use after scope yes no no yes yes
Double free yes yes no yes yes
Memory leaks yes no no yes yes
Program Features
Unions yes yes yes/no yes yes
Library functions H yes/no | yes/no yes/no H yes/no ‘ yes/no

CHERI C
Program
L 7 Spatial memory safety

l Temporal memory safety

clang
Use static properties
torefine runtlme > IR Custom assertions
checks - | (ASAN/SB)

back-end -

|

v
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Pre-Deployment | Post-Deployment
i
:
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' | I n I external
ESBMC | n libraries
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| I I> Remove
E | ] assertions in
! safe areas
iPartial Bug Report 1 Memory safety vmlatlcns
‘certificate (Test Case) !
Fig. 1. Proposed Hybrid Framework.

provide an architecturally independent framework, allowing
the same guarantees to be achieved across platforms. Thus,
compilation to PureCap will be optional, with runtime checks
performed by compiler-inserted assertions for non-capability
hardware. Secondly, the runtime performance impact should be
minimal. By combining techniques, we can select the cheapest
way to provide each check (noting that some methods are
incompatible with some compiler optimizations). Below we
outline the main directions where cooperation of different tech-
niques can lead to the development of such hybrid framework.
We have already made progress towards implementing this
framework by extending ESBMC with the support for CHERI
capability hardware [39]. This extension verifies programs
for different target hardware, utilising capabilities when the
hardware enables them and keeping the same safety guarantees
even when there are no dedicated hardware safety mechanisms.

A. Isolating Libraries

A problematic issue for all techniques is the interaction with
external libraries which may (i) not have their own runtime
protection, or (ii) be available for static analysis. We assume
various methods to compartmentalize the program and isolate

the protected code from external libraries that are not subject to
memory safety protection. Hardware memory capabilities [19]
are one of the most efficient technologies to achieve that, pro-
viding exception-less security domain transitions and efficient
cross-compartment communication through capabilities.

Many other compartmentalization abstractions can be used
for platforms that do not support hardware capabilities, relying
on various isolation mechanisms. These can be process-based
isolation leveraging page tables [40], [41]; VM-based isolation
using hardware-assisted virtualization [42], [43]; trusted exe-
cution environments [44], [45] and other ISA extensions such
as Intel MPK [46]-[49]; and finally software-only solutions
such as SFI [50]. These techniques offer various security/per-
formance trade-offs and generally require a particular porting
effort to manage data shared between compartments.

B. Certifying the Removal of Assertions

As well as detecting bugs, static tools can certify the absence
of specific bugs in some or all of the code to achieve partial
or complete certification. Here, k-induction [51], [52] can
be used to prove a safety property ¢ for any given depth
of the program’s state space. The main idea is to use an
iterative deepening approach and check, for each step k up to a
maximum value, that ¢ holds with in all states reachable within
k iterations and that if ¢ holds for £ iterations, it holds for
the subsequent unfolding of the system. The main challenge
of this approach relies on computing and strengthening loop
invariants, which must be inductive (and not just invariant)
to check the corresponding verification conditions [53]. Such
complete and partial certificates will be used to identify
runtime checks that can be further refined (e.g., simplified)
or removed (if they are proved to be no longer necessary). We
will also explore leveraging (cheap) assurances from PureCap
in this process by exploring whether (software-based) runtime
checks (i.e., assertions) can be removed when assuming the
protection offered by PureCap (during both pre- and post-
deployment stages).

C. Safe under Assumptions

Combining the two previous ideas and isolating unknown
code, we will also explore the isolation of safe code, e.g.,
where some safe code is statically shown safe under certain
assumptions (typically at entry) or invariants, we will insert
runtime checks to check those assumptions or invariants. We
may also be able to prove safety under additional assumptions,
e.g., replace a series of expensive runtime checks with fewer,



cheaper ones. Finally, information about isolation can be used
within the static analysis to modularise the checking process
to (partially) address the state-explosion issue.

D. Static Analysis to Support Capability Revocation

One of the main limitations of capability-based hardware
within the context of temporal memory safety is the need to
revoke permissions and the overhead this requires. We propose
using static analysis methods to identify when capabilities
should be revoked and insert these directly into the code.
For example, this should increase the number of use-after-free
bugs detectable by the CHERIvoke [37] extension of PureCap.

V. CONCLUSION

This paper motivates and describes a proposed hybrid
framework for memory safety protection. We analyze some
techniques and tools for providing memory safety protection
and identify areas in which they complement. We then propose
a hybrid framework that aims to achieve joint coverage as
cheaply as possible. Finally, we identify further research
directions to take advantage of the potential cooperation of
the combined techniques.
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