
LSVerifier: A BMC Approach to Identify Security
Vulnerabilities in C Open-Source Software Projects

Janislley Oliveira de Sousa12, Bruno Carvalho de Farias3, Thales Araujo da Silva2,
Eddie Batista de Lima Filho24, Lucas Carvalho Cordeiro23

1Sidia Institute of Science and Technology, Manaus, Brazil

2Federal University of Amazonas (UFAM), Manaus, Brazil

3University of Manchester, Manchester, United Kingdom

4TPV Technology, Manaus, Brazil

janislley.sousa@sidia.com, bruno.farias@manchester.ac.uk,

thales.tas@gmail.com, eddie.filho@tpv-tech.com,

lucascordeiro@ufam.edu.br

Abstract. Researchers continue to advance the state-of-the-art of software vul-
nerability analysis. Software validation and verification techniques are indis-
pensable tools for cultivating robust systems characterized by high levels of
dependability and reliability. Remarkably, the pressing concern of memory er-
rors in C software looms large in the landscape of systems security. This paper
introduces the innovative tool called LSVerifier, leveraging the bounded model
checking technique to effectively detect security vulnerabilities in C open-source
software. The proposed tool emerges as a pivotal asset for identifying vulnera-
bilities and generating an output report summarizing the software weaknesses
found. The method’s efficacy was validated through real-world applications.
The results show that LSVerifier was able to check complex open-source soft-
ware, identifying software issues that could potentially result in vulnerabilities.

1. Introduction
Developing software that is both secure and devoid of bugs presents a multifaceted and
highly intricate challenge, especially in the context of an increasingly connected and dig-
itized world [Rodriguez et al. 2019]. The implications of software vulnerabilities are not
merely confined to technical malfunctions but extend to potentially catastrophic conse-
quences. Airbus discovered a software vulnerability in the A400M aircraft, leading to
a crash in 2015. The fault, originating in the engine control units, caused the engines
to power off shortly after take-off [Guardian 2015]. Also, security researchers could re-
motely exploit a vulnerability in the Jeep Cherokee’s Uconnect infotainment system. By
gaining access to the system, they could take over various vehicle functions, including
engine and brakes [Wired 2015]. These examples highlight the growing importance of
software integrity and security in embedded systems and the Internet of Things (IoT).
Continuous monitoring, rigorous testing, adherence to best practices, and coordinated
vulnerability disclosure are essential to mitigate these issues.

The Common Weakness Enumeration (CWE) [MITRE 2023] community often
identifies vulnerabilities in programming languages, including C, and third-party libraries



used across various open-source projects. The C language is known for being powerful but
also tricky to use safely, especially regarding memory management. The C programming
language’s low-level nature and absence of safety checks make it susceptible to vulnera-
bilities such as buffer overflows, memory leaks, and insecure library usage [van Oorschot
2023]. Open-source projects, which may lack regular maintenance or expert review, are
particularly at risk. Modern tools and practices like static and dynamic code analysis can
mitigate some risks. Still, the complexity of C combined with the broad use of third-party
libraries claims for continuous vigilance in identifying and rectifying vulnerabilities. The
collaborative effort within the open-source community is crucial to address these issues,
highlighting the ongoing need for attention to security best practices.

Here, we introduce LSVerifier, which is a tool designed to help end users bet-
ter understand the security vulnerability issues in C open-source software projects, using
Bounded Model Checking (BMC) and Satisfiability Modulo Theories (SMT) to iden-
tify security bugs. It verifies all source-code files in a specific open-source module or
application. We implemented LSVerifier as a Python tool compatible with the efficient
SMT-based context-bounded model checker (ESBMC), whose goal is to examine exten-
sive open-source software. By analyzing files and functions individually and verifying
them with ESBMC, it seeks to uncover vulnerabilities, providing an output report of its
findings.

The remainder of this article is organized as follows. In Section 2, the essential
background is provided. Section 3 outlines the tool’s design, while Section 4 compre-
hensively demonstrates the tool’s functionalities through experiments. Lastly, Section 5
presents our conclusions and achievements.

2. Background
In this section, we present the concepts and technologies, addressing the aspects of their
fundamental structure and implementation essential for the LSVerifier tool.

2.1. Bounded Model Checking
BMC is a verification technique that detects errors up to a specified depth k by employing
boolean satisfiability (SAT) or SMT. However, without a known upper bound for k, BMC
cannot guarantee complete system correctness. It only explores a limited state space by
unwinding loops and recursive functions to a maximum depth. This bounded nature of
BMC makes it effective for uncovering fundamental errors in applications [Clarke et al.
2004, Merz et al. 2012, Gadelha et al. 2019, Ivancic et al. 2005], and properties under
verification are defined as follows:

BMCΦ(k) = I(s1) ∧

(
k−1∧
i=1

T (si, si+1)

)
∧

(
k∨

i=1

¬ϕ(si)

)
, (1)

where, I(s1) is the set of initial states for a system;
∧k−1

i=1 T (si, si+1) is the transition
relation between time steps i and i+ 1, encompassing the evolution of the system over k
steps; and

∨k
i=1 ¬ϕ(si) represents the negation of the property ϕ at state si, indicating a

violation of the given property within a bound k. Together, these components formulate
a problem that is satisfiable if and only if a counterexample of length k or less exists,
implying a violation of the specified property within the given bound.



2.2. The Underlying Checker
ESBMC [Gadelha et al. 2021], as employed in this study, is a robust and openly avail-
able tool that serves as our chosen BMC module for software verification. This mature
model checker is designed for the verification of programs written in C/C++, Kotlin, and
Solidity. ESBMC is equipped to automatically assess pre-defined safety properties and
user-specified assertions within programs, whose safety properties cover a range of con-
cerns such as array out-of-bounds, illegal pointer dereferences, integer overflows, and
division by zero. Additionally, ESBMC supports various language frontends, including
Clang for C/C++ and Soot via Jimple for Java/Kotlin, and implements Solidity’s grammar
production rules for Ethereum’s Solidity language. ESBMC is underpinned by state-of-
the-art incremental BMC techniques and k-induction proof-rule algorithms rooted in SMT
and constraint programming (CP) solvers. The ESBMC’s prowess has been demonstrated
in a variety of contexts. Indeed, it is recognized for its successful application in veri-
fying single and multi-threaded code, effectively identifying intricate bugs in real-world
software [Cordeiro and de Lima Filho 2016].

3. LSVerifier Tool
In the following sections, we will go through the architecture and key features of LSVeri-
fier, highlighting foundational principles and concepts for the implementation approach.

3.1. Architecture and Main Functionalities
LSVerifier conducts a comprehensive verification process, as shown in Figure 1. It speci-
fies the target source-code directory and the required LSVerifier configuration, including
solver, encoding, and verification methods. Subsequently, all .c files are listed and ex-
amined using ESBMC, which leads to creating a spreadsheet summarizing the obtained
results.

Figure 1. LSVerifier verification process.

The LSVerifier’s configuration parameters are categorized into five groups: (1)
file listing, (2) function verification, (3) outcome display, (4) ESBMC options, and (5)
invalid pointer retest. These parameters provide the necessary information for LSVerifier
to verify files and generate a final verification report. The available options are as follows:



• ’-e’ configures ESBMC regarding verification and options;
• ’-i’ provides a path for a file’s specific dependencies (library dependencies) that is

forwarded to ESBMC;
• ’-f’ enables verification in a function-by-function fashion;
• ’-v’ enables the verbose mode;
• ’-r’ enables the recursive mode, where all “.c” files in the existing sub-directories

are listed;
• ’-d’ enables verification on a specific directory;
• ’-fl’ enables verification in just a single file;
• ’-h’ shows the available options.

3.2. Implementation Details

The proposed tool was developed in Python version 3.8. It is released under the Apache
License 2.0 open-source software.

LSVerifier efficiently verifies software written in the C language, extending its
reach to third-party libraries. It processes software source code P in directory D using
configuration C. It starts by listing all .c files in D, doing this recursively based on the
configuration provided earlier. Each file’s declared functions F are then identified and
subsequently verified by ESBMC, looking for various property violations (e.g., pointer
safety, arithmetic overflow, and array bounds errors). Any violations found during this
procedure are communicated to a control script. Upon verification completion, a detailed
report is generated in a spreadsheet V .

LSVerifier aims to provide comprehensive support for the entire C11 standard [for
Standardization 2012], which stands as the prevailing standard for the C programming
language. This tool operates by identifying vulnerabilities in software through the simu-
lation of a finite program execution prefix encompassing all conceivable defined inputs.
The verification process also explicitly exploits interleavings, generating one symbolic
execution per interleaving. By default, LSVerifier checks for pointer safety, array out-of-
bounds, division by zero, and assertions a user specifies.

Some software modules may require specific dependencies to be manually listed
before using LSVerifier. All dependency paths must be included in a file and provided
using the parameter -i, with each dependency listed on a separate line, as illustrated in
Figure 2.

1 / u s r / i n c l u d e / g l i b − 2 . 0 /
2 / u s r / l i b / x86 64 − l i n u x −gnu / g l i b − 2 . 0 / i n c l u d e /
3 e x t c a p /
4 p l u g i n s / epan / e t h e r c a t /
5 p l u g i n s / epan / f a l c o b r i d g e /
6 p l u g i n s / epan / wimaxmacphy /
7 r a n d p k t c o r e /
8 w r i t e c a p /
9 epan / c r y p t /

10 . . .

Figure 2. An example of the dependency file used for the software Wireshark.



When analyzing an entire project, parameter configuration to define library de-
pendencies is required as an argument in the command line, as described below.

$ lsverifier -r -v -f -e "--unwind 1
--no-unwinding-assertions" -i dep.txt

Moreover, LSVerifier can verify specific “.c” files as illustrated below. With this
command, it will check all functions, which are passed as an input argument, as described
below.

$ lsverifier -v -f -fl main.c

In addition, the tool can verify specific properties, such as memory leaks, as de-
scribed below.

$ lsverifier -v -f -fl main.c -e "1 --memory-leak-check"

Figure 3 shows a counterexample for a division-by-zero, which informs file name,
verification status, function name, code-line number, and the type of software security
vulnerability found. This information is included in a report file and saved in a directory
“/output”.

Figure 3. Example of counterexample created by LSVerifier.

4. Experiments

All experiments described in this work were conducted on an Intel(R) Core(R) i7 CPU
9750H operating at 2.60 GHz, with 32 GB of RAM, and running the Ubuntu OS. As
benchmarking, we prepared a dataset consisting of five commonly used software modules
based on the C language: RUFUS, OpenSSH, CMake, Wireshark, and PuTTY. All open-
source software code used here was distributed under Open-source licenses (GNU GPL,
Apache, and MIT). More details for each program can be found in each benchmark’s
repository1.

The command below was used to run LSVerifier for the entire dataset’s software
to validate the proposed approach.

$ lsverifier -r -v -f -e "--unwind 1
--no-unwinding-assertions" -i dep.txt

1https://github.com/janislley/LSVerifier_Benchmarks

https://github.com/janislley/LSVerifier_Benchmarks


We were able to verify each function of each software module. The verification
process resulted in several property violations. Table 1 shows all property violations
found during our experiments. Most of them are related to the MITRE’s “Top 25” CWE
list [MITRE 2023](i.e., pointer dereference, division by zero, dynamic object violation,
and array bound violation). Also, the verification analysis consists of the number of vul-
nerabilities, the number of files, and functions verified according to memory consumption
and analysis time. The same table compares five software applications: VIM, RUFUS,
OpenSSH, Wireshark, and PuTTY, focusing on various metrics. PuTTY had the highest
number of violated properties, i.e., 2019, indicating a possible difference in complexity or
adherence to standards. Wireshark leads in the number of files and verified functions, i.e.,
2194 and 108824, respectively. OpenSSH, VIM, and RUFUS show moderate numbers,
while PuTTY’s count is low compared to its high number of property violations.

Table 1. Dataset analysis using LSVerifier tool.
Software Property violations Files analyzed Functions verified Overall time Peak memory usage
VIM 5 184 8804 406.02 s 36.46 MB
RUFUS 186 142 1575 101.59 s 32.6 MB
OpenSSH 337 286 3033 490.33 s 15.32 MB
Wireshark 122 2194 108824 39413.97 s 119.52 MB
PuTTY 2019 244 4575 91448.89 s 53.79 MB

LSVerifier maintained low peak-memory usage, and the overall verification time
exceeded our expectations, considering the number of files analyzed in each software.
The disparity between the overall time and the number of files/functions checked doesn’t
account for the inherent complexity of individual software code units. Some functions or
files may involve intricate logic, nested structures, or dependencies, leading to a higher
computational load during analysis. As a result, even if the number of files/functions is
similar, the time required to thoroughly assess each component can vary significantly.
Larger functions may require more time for analysis due to their complexity. Functions
with intricate conditional statements, loops, or extensive variable interactions may in-
crease computational time. The efficiency of CTAGS and the volume of information it
processes can contribute to variations in time. For instance, certain code structures might
lead to longer processing times due to the way CTAGS parses them.

Moreover, an investigation was conducted to determine the underlying causes of
property violations within each software module. Some may constitute vulnerabilities
and are often linked to instances where the source code semantics are undefined, such
as invalid access to pointers or arrays. During our analysis, various property violations
were discovered across different software. RUFUS presented property violations such
as array out of bounds, with three issues opened and fixed2 regarding imported libraries.
The Wireshark’s property violations, which are related to array out of bounds and invalid
pointers, were due to errors in the NPL third-party library, and a fix3 was provided to
remove this dependency. These findings emphasize the recurring theme of vulnerabilities
that come from third-party libraries. In addition, they clearly show the importance of
careful inspection and prompt resolution of such issues.

Our experimental results show that LSVerifier was effective when evaluating pub-

2https://github.com/pbatard/rufus/issues/1856
3https://gitlab.com/wireshark/wireshark/-/issues/17897

https://github.com/pbatard/rufus/issues/1856
https://gitlab.com/wireshark/wireshark/-/issues/17897


licly available benchmarks. Moreover, it provided a complete report with counterexam-
ples that can be used to reproduce the identified errors. One of our outstanding results
is using counterexamples to support engineers in writing security tests to further analyze
bugs.

5. Final Considerations
Demonstration
The source code, documentation, usage instructions, and installation information are
available in the LSVerifier’s repository4. Its demonstration will occur within a local en-
vironment running on a Linux machine. Its functionality will be showcased through the
following steps: (a) presentation of the tool’s execution parameters; (b) introduction of
the directory structure employed; (c) demonstration of its verification capabilities to iden-
tify property violations in C code that could lead to a security vulnerability; (d) detailed
showcasing and demonstration of the analysis report generated by it; and (e) presentation
of results (i.e., tables, figures, verification reports).

Conclusion
In this work, we presented LSVerifier, a new approach using a bounded model checker to
exploit security vulnerabilities in C open-source software projects. We described its func-
tionalities, evaluated its implementation, and showed experiments performed with real
software. In summary, third-party libraries are emerging as a main concern in software
security, with many issues detected by LSVerifier. The findings from counterexample logs
and bug report validations highlight the necessity for meticulous examination of functions
used in software, especially those involving pointers and arrays, as they present severe
limitations that may lead to serious security risks. Most of the vulnerabilities stem from
memory management mishaps in third-party libraries, which shows the urgent need for
developers to implement preventative measures. Through defensive programming prac-
tices, using memory-safe libraries, and the execution of boundary checks on memory
access, developers can focus on secure memory management and substantially mitigate
potential security vulnerabilities in their projects.

In terms of future work, there are several promising directions to explore. First,
the integration of a prioritization approach within LSVerifier can significantly enhance its
utility. This would involve developing algorithms to prioritize the checking of software
vulnerabilities based on their potential impact, thereby enabling developers to focus on
the most critical issues first. Second, we plan to implement a feature that allows users to
check for a specific class of vulnerabilities, such as buffer overflows or pointer dereference
failures. Ultimately, these improvements aim to make LSVerifier a more versatile and
effective tool for identifying and mitigating security risks in software projects, particularly
those associated with third-party libraries.

Acknowledgment
The authors are grateful for the support offered by the SIDIA R&D Institute in the Model
project. This work was partially supported by Samsung, using resources of Informatics
Law for Western Amazon (Federal Law No. 8.387/1991). Therefore, the present work
disclosure is in accordance as foreseen in article No. 39 of number decree 10.521/2020.

4https://github.com/janislley/LSVerifier

https://github.com/janislley/LSVerifier


References
[Clarke et al. 2004] Clarke, E., Kroening, D., and Lerda, F. (2004). A tool for checking

ansi-c programs. Lecture Notes in Computer Science, 2988:168–176.

[Cordeiro and de Lima Filho 2016] Cordeiro, L. C. and de Lima Filho, E. B. (2016). Smt-
based context-bounded model checking for embedded systems: Challenges and future
trends. ACM SIGSOFT Software Engineering Notes, 41(3):1–6.

[for Standardization 2012] for Standardization, I. O. (2012). Iso/iec 9899-2011: Program-
ming languages – c. ISO Working Group, Geneva, Switzerland.

[Gadelha et al. 2019] Gadelha, M., Monteiro, F., Cordeiro, L., and Nicole, D. (2019). ES-
BMC v6.0: Verifying C Programs Using k-Induction and Invariant Inference. In Tools
and Algorithms for the Construction and Analysis of Systems.

[Gadelha et al. 2021] Gadelha, M. R., Menezes, R. S., and Cordeiro, L. C. (2021). Es-
bmc 6.1: automated test case generation using bounded model checking. International
Journal on Software Tools for Technology Transfer, 23(6):857–861.

[Guardian 2015] Guardian, T. (2015). Airbus issues software
bug alert after fatal plane crash. Available at: https:
//www.theguardian.com/technology/2015/may/20/
airbus-issues-alert-software-bug-fatal-plane-crash. Ac-
cessed on 2023-07-25.

[Ivancic et al. 2005] Ivancic, F., Shlyakhter, I., Gupta, A., Ganai, M. K., Kahlon, V., Wang,
C., and Yang, Z. (2005). Model Checking C Programs Using F-SOFT. volume 2005,
pages 297 – 308.

[Merz et al. 2012] Merz, F., Falke, S., and Sinz, C. (2012). LLBMC: Bounded Model
Checking of C and C++ Programs Using a Compiler IR. In Proceedings of the
4th International Conference on Verified Software: Theories, Tools, Experiments,
VSTTE’12, page 146–161.

[MITRE 2023] MITRE (2023). 2023 cwe top 25 most dangerous software weaknesses.
Accessed: 2023-07-10.

[Rodriguez et al. 2019] Rodriguez, M., Piattini, M., and Ebert, C. (2019). Software verifi-
cation and validation technologies and tools. IEEE Software, 36(2):13–24.

[van Oorschot 2023] van Oorschot, P. C. (2023). Memory errors and memory safety: C as
a case study. IEEE Security & Privacy, 21(2):70–76.

[Wired 2015] Wired (2015). Hackers remotely kill a jeep on the highway—with
me in it. Available at: https://www.wired.com/2015/07/
hackers-remotely-kill-jeep-highway/. Accessed on 2023-07-25.

https://www.theguardian.com/technology/2015/may/20/airbus-issues-alert-software-bug-fatal-plane-crash
https://www.theguardian.com/technology/2015/may/20/airbus-issues-alert-software-bug-fatal-plane-crash
https://www.theguardian.com/technology/2015/may/20/airbus-issues-alert-software-bug-fatal-plane-crash
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

	Introduction
	Background
	Bounded Model Checking
	The Underlying Checker

	LSVerifier Tool
	Architecture and Main Functionalities
	Implementation Details

	Experiments
	Final Considerations

