Compressão de Sinais de Eletrocardiograma Utilizando Técnicas de Codificação Distribuída

Patrese Emiron B. de Souza¹, Eddie Batista L. Filho^{1,2}, Lucas C. Cordeiro^{1,3} e Waldir S. da Silva Júnior¹ ¹Universidade Federal do Amazonas (PPGEE/UFAM), Manaus-AM ²TPV Technology, Manaus-AM

³University of Manchester, Manchester-UK

Resumo— Sinais de eletrocardiograma (ECG) podem ser utilizados tanto para acompanhamento quanto diagnóstico de doenças cardíacas, o que depende de infraestruturas de armazenamento e transmissão. Entretanto, como memória e banda de transmissão são recursos finitos, torna-se necessário comprimir dados de ECG. Além disso, com relação ao monitoramento à distância, espera-se que o hardware utilizado seja simples e barato. O presente trabalho ataca o problema mencionado e propõe uma nova metodologia de compressão de sinais de ECG, onde experimentos com uma implementação desse paradigma mostraram que tal abordagem é possível e também eficaz, desde que alinhada às condições de cada caso específico.

Palavras-Chave—Codificação Distribuída, Compressão de ECG, Códigos Turbo, Teoria da informação.

Abstract—Electrocardiographic (ECG) signals can be used for both monitoring and diagnosis of diseases, which is also dependent on storage and transmission infrastructures. Nonetheless, as memory and transmission bandwidth are finite resources, it is necessary to compress ECG data. Additionally, with respect to remote monitoring, it is interesting for the target hardware to be simple and affordable. This work tackles the mentioned problem and proposes a new ECG compression methodology, where experiments with a real implementation showed that such an approach is feasible and also effective, as long as aligned with an application's specific conditions.

Keywords—Distribuited Source Coding, ECG compression, Turbo Codes, Information Theory

I. INTRODUÇÃO

Nas últimas décadas, a medicina tornou-se permeada por sistemas computacionais, tanto para acompanhamento e diagnóstico quanto para tratamento de pacientes. Tal revolução foi capitaneada pela engenharia biomédica, que tenta prover equipamentos capazes de processar dados com informações médicas. Com relação a essas, é possível citar os biossinais, como, por exemplo, eletrocardiograma (ECG), eletroencefalograma (EEG) e eletromiograma (EMG), os quais desempenham papel de extrema importância [1]. Dentre estes, é possível destacar o ECG, que representa impulsos elétricos enviados pelo sistema de condução do coração a fibras musculares [2]. Com o seu uso, é possível realizar o diagnóstico de diversas enfermidades, como arritmias, sobrecargas, áreas eletricamente inativas, bloqueio de ramo, angina e infarto do miocárdio [3].

Registros de ECG podem tanto ser adquiridos em consultórios quanto por equipamentos portáteis, como o Holter de ECG [4], quando existe a necessidade de registro por longos períodos de tempo. Entretanto, tais sinais podem ser capturados com muitas derivações [2], o que leva a altas exigências de circuitos (digitais) e memória. Além disso, como pode ser necessário transmitir tais exames, sistemas de comunicação são também utilizados. Devido a isso, vale ressaltar que tanto memória quanto banda de comunicação são recursos escassos, o que leva ao uso de técnicas de compressão.

Sistemas de codificação exploram dados de forma estatística, gerando então uma nova representação compacta destes, o que geralmente exige muito poder computacional em codificadores. Esse paradigma de alta complexidade de compressores é ideal para sistemas ponto-multiponto, porém, tal abordagem é problemática para sistemas multiponto-ponto, pois nestes é necessário utilizar metodologias de codificação com menor necessidade computacional. Essa percepção também é verdadeira para sistemas embarcados com baixo poder de processamento, como dispositivos do tipo Holter de ECG.

Nesse sentido, a comunidade científica tem produzido inúmeros trabalhos [5], [6], [7], [8], na maior parte relacionados à codificação de vídeo. Além disso, com a aplicação de conceitos de compressão distribuída de sinais (*Distribuited Source Coding-* DSC) [9], [10], transfere-se a maior parte da complexidade computacional associada para os respectivos decodificadores, causando assim uma inversão no paradigma de compressão tradicional. De fato, a DSC é a área de pesquisa que fornece ferramentas para a exploração de dependências estatísticas em decodificadores e a sua base está na aplicação de conceitos de *cosets*, conforme exposto por Forney [11].

Diferentemente de estudos concentrados na codificação de vídeo, este trabalho propõe uma metodologia de DSC para a compressão de sinais de ECG, na qual técnicas de préprocessamento também são utilizadas, como separação de períodos de ECG. Por fim, apresenta-se também uma abordagem sem canal de retorno entre decodificador e codificador [5], [6], [7], [8], [11].

Em resumo, as principais contribuições deste trabalho são um esquema DSC adequado a sinais de ECG, uma metodologia para transformação e separação de segmentos de ECG em planos de bits, o que possibilita processamento por um conjunto codificador-decodificador (*enCOder-DECoder* -CODEC) turbo, e operação sem a necessidade de canal de retorno.

Com isso, delineia-se o caminho para uma classe de codificadores de ECG baseada em fundamentos de DSC, com aplicação em sistemas embarcados e potencial para maior utilização por pacientes. Resultados experimentais com a metodologia desenvolvida mostraram que a sua utilização é possível e também apresenta características encorajadoras, apesar de resultados abaixo dos obtidos com implementações tradicionais, onde codificadores são os elementos de maior complexidade. Entretanto, com a redução de necessidade de recursos, sistemas embarcados mais simples podem ser utilizados.

Patrese Emiron Barbosa de Souza e Waldir Sabino da Silva Júnior, Pós-Graduação em Engenharia Elétrica, Universidade Federal do Amazonas (PP-GEE/UFAM), Manaus-AM, Brasil, e-mail: {patrese@aucontecnologia.com, waldirsabino@gmail.com}, Lucas Carvalho Cordeiro, University of Manchester, Manchester-UK e PPGEE/UFAM, Manaus-AM, Brasil, e-mail: lucas.cordeiro@manchester.ac.uk e Eddie de Lima Filho, TPV Technology e PPGEE/UFAM, Manaus-AM, Brasil, E-mail: eddie.filho@tpv-tech.com.

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2019, 29/09/2019–02/10/2019, PETRÓPOLIS, RJ

II. CONCEITOS DE DSC

A DSC é um problema importante na teoria da informação e a sua estrutura baseia-se em compactação de fontes de informações correlacionadas, que podem ou não se comunicar. Ao modelar a correlação entre fontes em decodificadores, com algum codificador de canal, a DSC é capaz de inverter a complexidade computacional [16] e, dessa forma, pode-se utilizar um codificador mais simples, onde menor quantidade de processamento é realizado.

Compressores tradicionais codificam conjuntamente fontes $X \in Y$, de modo a atingirem taxas próximas a entropia conjunta H(X,Y). Entretanto, David Slepian e Jack Wolf [9] definiram uma região de taxas maiores ou iguais à H(X,Y), quando a codificação de $X \in Y$ é realizada de forma separada e decodificada com informação auxiliar. Três anos depois da descoberta de Slepian e Wolf, Aaron Wyner e Jacob Ziv generalizaram o seu teorema para codificação com perdas, sugerindo um codificador constituído por um quantizador Q seguido de um codificador Slepian-Wolf. Portanto, X pode ser codificado com informação auxiliar Y [9].

Existem vários codificadores Wyner-Ziv práticos, sendo o apresentado por Girod *et al.* [5] um exemplo interessante. Conhecida também como arquitetura de *Stanford*, ela foi desenvolvida inicialmente para codificação de vídeo, utilizando somente um quantizador e um CODEC baseado em códigos turbo [5], [6], [7], com uma etapa adicional de transformação [5], [8]. Entretanto, este tipo de arquitetura, mostrada na Figura 1, apresenta uma característica indesejada: um canal de retorno, cujo objetivo é informar o número de bits de paridade para a recuperação de dados originais. De fato, isso representa a dificuldade de se modelar diferenças entre segmentos originais e estimativas recuperadas. Como resultado, o decodificador verifica a evolução da decodificação e, se esta não ocorrer corretamente, requisita mais bits de paridade, até que o dado original seja recuperado.

III. METODOLOGIA PROPOSTA PARA CODIFICAÇÃO DISTRIBUÍDA DE ECG

A metodologia proposta para codificação de ECG é baseada na arquitetura de *Stanford* e constituída pelas etapas básicas de pré-processamento e codificação Wyner-Ziv, com transformação ou processamento direto de amostras, além de utilização ou não de canal de retorno.

A. Pré-processamento

Sinais de ECG podem sofrer alterações durante exames, devido a condições de pacientes ou até mesmo problemas oriundos de sistemas eletrônicos. Portanto, existe a necessidade de pré-processamento, de maneira que sequências de períodos tornem-se mais semelhantes, o que melhora assim o desempenho de algoritmos de compressão [2]. No presente trabalho, essa etapa é composta por cinco passos: detecção de períodos de ECG, normalização, equalização DC, ordenação por similaridade e agrupamento, como mostrado na Figura 2.

A detecção de períodos de ECG identifica complexos QRSs [3], através de picos e larguras, onde a onda Q é geralmente a maior de todo o período, possuindo largura l, e o pico invertido da onda R é subsequente a esta [12]. Após a detecção de períodos, a técnica de normalização é aplicada, a qual escalona períodos para um tamanho comum, usando *splines* [13]. Porém, a etapa de reconstrução necessita das larguras originais desses períodos, que são enviadas como informação auxiliar, conforme mostrado na Figura 2. Depois da normalização, percebe-se que, em geral, períodos de ECG

ainda apresentam níveis médios diferentes (ver Figura 2) e uma equalização DC é necessária, através da fórmula

$$x_{i,k}^{DC} = x_{i,k} - (DC_k - DC_{min}),$$
(1)

onde $x_{i,k}^{DC}$ são amostras equalizadas *i* do *k*-ésimo período, $x_{i,k}$ são amostras originais, DC_k é o nível DC desse período e DC_{min} é o mínimo valor DC possível.

Depois da equalização DC, períodos adjacentes de ECG ainda continuam diferentes. De fato, pode haver períodos distantes no tempo e ainda muito semelhantes e, se eles estivessem próximos, isso geraria redundância que seria bastante explorada por codificadores. Tal problema pode ser resolvido com a aplicação da métrica de erro quadrático médio (*mean squared error* - MSE), entre cada período e o de menor variância. Sendo assim, este último é colocado na primeira posição, seguindo então por segmentos em ordem crescente de MSE, o que é calculado conforme

$$MSE_{k} = \frac{1}{L_{N}} \sum_{i=1}^{L_{N}} (x_{i,k} - x_{i,\sigma min})^{2}, \qquad (2)$$

onde $x_{i,k}$ são amostras *i* do *k*-ésimo período e $x_{i,\sigma min}$ são amostras do período com menor variância. As larguras, os níveis DC e as ordens originais são processados por um codificador aritmético e depois enviados ao respectivo decodificador, com informação para o processo de reconstrução.

Após a realização desses passos, períodos de ECG são separados em grupos de segmentos (*Group of Segments* - GoS), o que foi inspirado pela codificação distribuída de vídeo [5], com GoSs de tamanhos 3 e 5, onde o primeiro e último elementos são chamados de segmentos-chaves (*key segments* - KSs) e os do meio de segmentos Wyner-Ziv (*Wyner-Ziv segments* - WZSs). Os WZSs são enviados a um codificador turbo e os KSs a um codificador convencional, para posterior utilização como informação lateral em decodificação de WZSs, a partir da sua interpolação, conforme mostrado na Figura 3.

WZSs são quantizados e enviados a um codificador Wyner-Ziv baseado em códigos turbo, como o mostrado na Figura 4, ao passo que KSs são enviados a um codificador tradicional. Como KSs auxiliam a decodificação de WZSs, quanto mais correlação houver entre eles, melhor é o desempenho de codificação, o que justifica a etapa de pré-processamento.

IV. CODECS NOS DOMÍNIOS DA AMOSTRA E DA TRANSFORMADA

Após a etapa de pré-processamento, WZSs são enviados a um codificador Wyzer-Ziv baseado em códigos turbo, que os trata de duas formas possíveis: segmentos de ECG são diretamente utilizados, o que caracteriza o CODEC no domínio da amostra (CDA), ou colocados em linhas de uma matriz $M \times N$ para processamento pela transformada discreta do cosseno (*discrete cosine transform* - DCT) de tamanho 4×4 , cujo resultado é utilizado para se formarem 16 bandas de coeficientes e consiste no CODEC no domínio da transformada (CDT) [11]. As saídas dos dois esquemas então são separadas em planos de bits e enviadas ao codificador turbo da Figura 4.

A etapa de perfuração transmite bits de paridade organizados em padrões de perfuração, de acordo com solicitações através de um canal de retorno. A cada pedido, o padrão de perfuração é alterado e mais bits de paridade são enviados. A largura de perfuração utilizada neste trabalho foi de 32 bits, ou seja, criam-se grupos de 32 bits, em um dado plano.

O decodificador turbo recebe *bits* do codificador e da informação lateral, os quais são utilizados em cálculos de probabilidades *a posteriori*, utilizando para isso o algoritmo

Fig. 1. Arquitetura de codificação distribuída de vídeo de Stanford. Adaptado de Aaron e Girod [6].

Fig. 2. Etapa de pré-processamento da metodologia proposta.

Fig. 3. Geração de estimativas de WZSs, a partir de interpolação de KSs.

Máximum a posteriori probability (MAP). A informação extrínseca L_e (ver Figura 4) é transmitida ao decodificador seguinte como informação *a priori*, de maneira que na primeira codificação probabilidades iguais dos bits serem "0"ou "1"são consideradas, ou seja, a informação *a priori* inicialmente vale zero, e a após realização de cada decodificação é atualizada e ganha mais confiança, até um limite de 18 iterações.

Na recepção, o processamento inverso é realizado, sendo que a distribuição de probabilidade para os bits sistemáticos foi modelada como uma laplaciana e a para os bits de paridade como uma gaussiana. Entretanto, a decodificação turbo ocorre com estimativas de WZSs, através de interpolação de KSs (ver Figura 3), e bits de paridade recebidos, como se a decodificação "corrigisse" tais aproximações, de modo que os dados originais sejam obtidos.

V. REMOÇÃO DO CANAL DE RETORNO

Conforme informado na Seção II, a metodologia desenvolvida utiliza a arquitetura de *Stanford* [5], na qual existe um canal de retorno para a requisição de bits de paridade. Entretanto, tal abordagem é pouco eficiente e exige mais recursos de hardware, o que, por consequência, deixaria uma implementação prática mais cara.

Devido a isso, uma metodologia para o cálculo antecipado do número de bits de paridade foi desenvolvida, utilizando o esquema de perfuração já empregado. Em resumo, um estimador de taxas altera diretamente o padrão de perfuração, garantindo assim o envio único de uma quantidade suficiente de bits de paridade. Para isso, é necessário utilizar fundamentos de entropia de Shannon, conforme delineado na equação

$$H(p) = -p \, \log_2(p) + (1-p) \, \log_2(1-p), \tag{3}$$

que calcula a máxima taxa de bits na ocorrência de uma certa probabilidade de erro [14], onde H(p) é a entropia da mensagem com erro e p denota a probabilidade de erro de bit. O cálculo de p é realizado através da soma de todas as ocorrências de bits diferentes entre um plano de bits de um WZS original e outro estimado com KSs, que então é dividida

Fig. 4. CODEC Winer-Ziv baseado em códigos turbo.

pela largura de plano. Sendo assim, p representa, no cálculo da entropia, o ruído adicionado.

De fato, observa-se experimentalmente que quanto mais semelhança houver entre WZSs originais e estimativas com KSs, menor é o valor de p e menos bits de paridade são necessários. Como consequência, essa relação entre taxa de perfuração e taxa de erro p foi utilizada na estimativa, juntamente com a entropia.

Após cálculo da entropia H(p) no codificador, é possível determinar a capacidade de um canal, através da fórmula

$$C = 1 - H(p), \tag{4}$$

onde *C* denota a capacidade de um canal binário e H(p) a entropia do erro referente a um dado plano de bits. Entretanto, *C* é a melhor taxa possível e aplicações práticas sempre apresentarão valores menores. Sendo assim, conforme Lee, Tillo e Jeon [14], a taxa pode ser obtida através da inequação

$$R_c = \frac{k}{m+k} \le C,\tag{5}$$

onde *m* representa a quantidade de bits de paridade mínima que precisa ser enviada a um decodificador e a parcela k representa a largura do plano de bits associado. Logo, para um dado plano de bits de largura k, m bits de paridade são necessários. O termo *m* pode ser isolado e definido como

$$m = \frac{1-C}{C} k. \tag{6}$$

A pesar de se saber a mínima quantidade de bits a serem enviados, isso ainda não é suficiente, pois essa taxa precisa ser dividida entre blocos de perfuração. Uma solução aproximada foi encontrada, de forma empírica, de acordo com

$$T_b = \frac{k}{b} \log\left(1 + \frac{m}{k}\right) - \log(p),\tag{7}$$

onde b foi definido, após vários experimentos, como 64, m corresponde ao total de bits de paridade e p representa a probabilidade de bits errados entre WZSs originais e estimativas com KSs. O segundo logaritmo é um fator de segurança, que permite estimativas levemente superiores.

VI. AVALIAÇÃO EXPERIMENTAL

Esta Seção descreve os resultados dos experimentos realizados para avaliação da metodologia proposta, assim como apresenta uma discussão sobre estes e levanta características e fragilidades.

A. Objetivos

O objetivo dos presentes experimentos foi testar o esquema de codificação distribuída desenvolvido (ver Seção IV), o qual foi implementado com pré-processamento baseado em segmentação com GoSs de tamanhos 3 e 5. Para isso, sinais de ECG reais da base de dados *Massachussets Institute of Technology - Beth Israel Hospital of Boston* (MIT-BIH) foram utilizados [15]. Por fim, a metodologia de remoção do canal de retorno também foi testada, a qual foi implementada conforme mostrado na Seção V.

B. Descrição dos Experimentos

A base de dados utilizada foi a disponibilizada pelo MIT-BIH e a avaliação de desempenho utilizada foi baseada em razão de compressão (*compression ratio* - CR) e distorção (*percent ratio distortion* - PRD), calculadas respectivamente como

$$CR = \frac{b_{original}}{b_{comprimido}},\tag{8}$$

onde $b_{original}$ é o número de bits da representação original e $b_{comprimido}$ é o da representação comprimida, e

$$PRD = 100 \frac{\sqrt{\sum_{n=n-1}^{N} (x(n) - \hat{x}(n))^2}}{\sum_{n=n-1}^{N} (x(n) - \mu)^2},$$
(9)

onde x(n) representa a enésima amostra original, $\hat{x}(n)$ denota a enésima amostra recuperada e μ é a linha-base do conversor analógico-digital utilizado.

A Tabela I mostra resultados de *CR* e *PRD* dos algoritmos implementados neste estudo, apenas para WZSs, que foram: CDA, CDT e CDT sem canal de retorno. Os 100 primeiros períodos de ECG dos resgistros 101, 102, 109, 112, 118, 122, 214 e 220 foram codificados, por serem os mais utilizados na literatura. Para cada um dos algoritmos desenvolvidos, resultados com grupos de segmentos GoS-3 e GoS-5 são mostrados. KSs são considerados sem distorção no decodificador, tendo como objetivo a avaliação de compressão somente de WZSs. Os CODECs DSC1 e DSC2 são algoritmos que utilizam uma técnica baseada em quantização vetorial [16] e foram os únicos do tipo DSC encontrados na literatura, além dos apresentados neste trabalho. Os métodos propostos por Lee [17] e Fathi [18] são algoritmos tradicionais que realizam compressão através de transformada DCT e transformada Wavelet, respectivamente, ao passo que o JPEG2000 utiliza uma abordagem tradicional baseada em compressores de imagem [13].

XXXVII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT2019, 29/09/2019-02/10/2019, PETRÓPOLIS, RJ

TABELA I

COMPARAÇÃO DE DESEMPENHO (PRD X CR) ENTRE OS ALGORITMOS CDA, CDT, CDTR, CDT SEM RETORNO E ALGORITMOS DA LITERATURA [16], [17], [18], [13].

	101		102		109		112		118		122		214		220			
Algoritmo	CR	PRD	Média CR	Média PRD														
Lee [17]	23,86	2,09	25,91	1,39	19,89	0,76	23,82	1,00	19,83	2,04	21,3	1,05	19,97	1,15	20,06	2,81	21,83	1,53
Fathi [18]	28,40	3,40	27,50	2,20	-	-	30,00	2,90	-	-	-	-	-	-	-	-	-	-
JPEG2000 [13]	25,86	4,95	21,45	5,65	18,46	3,21	18,64	1,39	21,62	3,27	19,52	1,96	20,82	5,96	22,72	3,00	21,13	3,67
DSC1 [16]	25,86	5,79	21,45	9,4	18,46	4,08	18,64	4,29	21,62	3,28	19,52	5,9	20,82	7,04	22,72	3,84	21,16	5,45
DSC2 [16]	25,86	3,53	21,45	3,87	18,46	2,46	18,64	1,39	21,62	2,07	19,52	1,31	20,82	4,22	22,72	2,32	21,13	2,64
CDA GoS-3	20,55	4,56	28,50	8,99	13,61	4,10	19,69	1,86	20,05	3,24	19,99	2,46	19,75	5,88	20,60	3,45	20,34	4,31
CDA GoS-5	19,40	4,62	20,95	6,10	12,50	4,55	17,01	4,50	19,88	3,5	19,05	3,01	18,01	6,20	19,50	3,62	18,28	4,51
CDT GoS-3	28,36	4,34	23,00	3,85	21,91	4,95	20,00	1,53	23,83	2,85	19,61	1,77	20,77	5,63	25,03	2,43	23,06	3,41
CDT GoS-5	26,35	4,55	23,02	3,97	14,95	4,13	18,00	3,58	17,19	2,50	22,64	2,72	20,53	5,86	23,85	3,23	20,81	3,81
CDT GoS-3 sem retorno	14,34	2,09	22,66	4,19	21,07	5,87	21,97	3,54	19,72	2,09	18,66	2,1	15,56	4,3	20,78	2,55	19,34	3,34
CDT GoS-5 sem retorno	11,87	2,53	14,16	9,37	15,18	8,56	20,04	3,82	11,61	1,87	16,67	2,36	15,44	5,44	17,00	2,99	15,24	4,61

C. Resultados

Em resumo, nota-se que os resultados com GoS-3 são melhores que os com GoS-5, como já era esperado, devido à maior diferença entre WZSs e as estimativas calculadas com KSs. Além disso, a abordagem baseada em DCT é mais vantajosa, devido principalmente à sua característica de compactação de energia. As abordagens sem canal de retorno, por sua vez, tiveram desempenho inferior, pois o número de bits de paridade obtido é uma aproximação geralmente dimensionada acima do mínimo necessário, o que piora com o aumento do GoS utilizado.

Com relação aos outros métodos baseados em codificação distribuída, ou seja, DSC1 e DSC2, os algoritmos propostos apresentam resultados comparáveis e, em alguns casos, até mesmo melhores, quando se analisam CDT GoS-3 em relação ao DSC2 e CDT GoS-5 em relação ao DSC1. Com respeito a algoritmos tradicionais, os resultados são geralmente inferiores, a não ser quando a comparação é realizada com esquemas mais antigos, como baseado no algoritmo JPEG2000. Comparando-se com algoritmos de compressão tradicionais como os métodos desenvolvidos por S. Lee, Kim e M. Lee [17] e também Fathi e Faraji-kheirabadi [18], estes mostram resultados superiores, o que já era esperado, pois as taxas obtidas na compressão distribuída são sempre inferiores, conforme mostrado por Wyner-Ziv [10], e o grande ganho está no deslocamento da complexidade computacional.

Como recomendação geral, as versões sem canal de retorno são interessantes para sistemas reais, mas uma perda de desempenho é esperada. Entretanto, a redução de complexidade que pode ser alcançada é interessante, principalmente para sistemas embarcados de baixo custo, pois estes carecem de bateria além de menor poder computacional.

D. Ameaça à Validade

O codificador turbo tem função de codificação de fonte e considera-se que os bits de paridade estão livres de ruído, ao passo que os bits sistemáticos gerados pela interpolação de KSs possuem ruído em sua composição. De forma empírica, o ruído de interpolação foi modelado com uma distribuição laplaciana e, caso isso não aconteça, pode haver perda de desempenho.

VII. CONCLUSÕES

Esse estudo fornece uma metodologia de compressão de sinais de ECG, com base em conceitos de DSC, simples e adaptável a dispositivos embarcados e com baixa capacidade de processamento, que vai desde uma solução mais simples (CDA) até uma com boa relação taxa-distorção (CDT). Além disso, a metodologia sem utilização do canal de retorno, quando aliada ao CDT GoS 3, forneceu redução de desempenho moderada, aliada a uma grande simplificação do hardware necessário.

Os resultados obtidos são comparáveis aos apresentados pelas outras duas únicas técnicas baseadas em DSC existentes, quando o canal de retorno é utilizado, o que não acontece com a retirada deste. Entretanto, com um refinamento do preditor de taxa de bits de paridade, tal abordagem pode se tornar interessante, além de implementável, em casos práticos.

REFERÊNCIAS

- [1] W. Carneiro de Melo, E. B. de Lima Filho, and W. S. da Silva Júnior,
- W. Carneiro de Melo, E. B. de Lima Filho, and W. S. da Silva Júnior, "SEMG signal compression based on two-dimensional techniques," *BioMedical Engineering OnLine*, v. 15, n. 41, Apr 2016.
 E. B. de Lima Filho, N. M. M. Rodrigues, E. A. B. da Silva, M. B. de Carvalho, S. M. M. de Faria, and V. M. M. da Silva, "On ECG Signal Compression With 1-D Multiscale Recurrent Patterns Allied to Prepro-cessing Techniques," *IEEE Transactions on Biomedical Engineering*, v. 56, n. 3, pp. 896-900, Mar 2009.
 C. A. Pastore (Ed.), "Diretriz de interpretação de eletrocardiograma de repouso," *Arquivos Brasileiros de Cardiologia*, v. 80, n. II, pp. 1-18, 2003
- 2003.
- [4] O. A. Beraldo, Processamento digital do sinal de eletrocardiograma [4] O. A. Berado, *Processamento algitat do sinat de eletrocaratograma para aplicação em experimentos de fisiologia cardíaca*, Dissertação de Mestrado, Universidade de São Paulo, São Carlos, 2017.
 [5] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero, "Distributed video coding," *Proceedings of the IEEE*, v. 93, n. 1, pp. 71-83, Jan 2005.
 [6] A. Aaron and B. Girod, "Compression with side information using turbo and the metal state of the state of the state of the state."
- codes," in proc. of Data Compression Conference, Snowbird, USA, Apr 2002.
- [7] A. Aaron, S. Rane, R. Zhang, and B. Girod, "Wyner-Ziv coding for video: applications to compression and error resilience," in proc. of Data
- *Compression Conference*, Snowbird, USA, Mar 2003. A. Aaron, S. Rane, and B. Girod, "Wyner-Ziv video coding with hash-based motion compensation at the receiver," *in proc. of International* [8]
- [9] D. Slepian and J. Wolf, "Noiseless coding of correlated information sources," *IEEE Transactions on Information Theory*, v. 19, n. 4, pp. 471-480, Jul 1973.
- 471-480, Jul 1973.
 [10] A. Wyner and J. Ziv, "The rate-distortion function for source coding with side information at the decoder," *IEEE Transactions on Information Theory*, v. 22, n. 1, pp. 1-10, Jan 1976
 [11] C. Brites, J. Ascenso, and F. PEREIRA, "Improving transform domain wyner-ziv videocoding performance," *in proc. of International Conference on Acoustics, Speech and Signal Processing*, Toulouse, France, May 2006
- rence on Acoustics, Speech and Signal Processing, Toulouse, France, May 2006. M. Aboy, C. Crespo, J. Mcnames, J. Bassale, L. Jenkins, and B. Goldstein, "A Biomedical Signal Processing Toolbox," *in proc. of Biosignal*, 2002. [12] M.
- [13] A. Bilgin, M. Marcellin, and M. I. Altbach, "Compression of electro-cardiogram signals using JPEG2000," *IEEE Transactions on Consumer Electronics*, v. 49, n. 4, pp. 833-840, Nov 2003.
 [14] H. Lee, T. Tillo, and B. Jeon, "Hybrid Wyner-Ziv video coding structure for removing feedback channel," *in proc. of IEEE Pacific Rim Confe-*
- rence on Communications, Computers and Signal Processing, Victoria,

- rence on Communications, Computers and Signal Processing, Victoria, BC, Canada, Aug 2009.
 [15] G. B. Moody and R. G. Mark, "The impact of the MIT-BIH arrhythmia database," *IEEE Engineering in Medicine and Biology Magazine*, v. 20, n. 3, pp. 45-50, May 2001.
 [16] H.-T. Wu, W.-Y. Tsai, and W.-Wh. Chang, "Distributed source coding for real-time ECG signal monitoring," *IEICE Transactions on Information and Systems*, v. E97.D, n. 8, pp. 2157-2165, Aug 2014.
 [17] S. Lee and J. Kim and M. Lee," A Real-Time ECG Data Compression and Transmission Algorithm for an e-Health Device, IEEE Transactions on Biomedical Engineering, 2011.
 [18] Fatti Abdolhossein and Faraii-kheirabadi Eatemeh," *ECG compression*
- [18] Fathi, Abdolhossein and Faraji-kheirabadi, Fatemeh," ECG compression method based on adaptive quantization of main wavelet packet sub-bands, Journal of Signal, Image and Video Processing, 2016.