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Abstract—The implementation of digital filters in processors 

based on fixed-point arithmetic can lead to problems related to 

the finite word-length. In particular, the processing of signals in 

such filters can produce overflows and unwanted noise caused by 

quantization and round off effect during the accumulative 

addition and multiplication operations. In this paper, we describe 

a new approach to verify digital filters using an off-the-shelf 

bounded model checker called ESBMC, which supports full 

C/C++ and is based on satisfiability modulo theories solvers. In 

particular, we are able to verify the occurrence of overflows, limit 

cycles, and time constraints based on a discrete-time model 

implemented in C. The experiments show that the proposed 

approach can be used to verify potential problems in fixed-point 

implementation of digital filters and it can thus be effective in 

finding realistic design errors. 

Keywords—fixed-point filters, formal methods, bounded 

model checking. 

I.  INTRODUCTION 

Digital filters have been widely used for digital signal 
processing applications due to its reduced computational 
complexity and flexibility enabled by available digital signal 
processors (DSPs) and field programmable gate arrays 
(FPGAs). Recently, the availability of floating-point processors 
has substantially grown, but the reduced cost and the high 
speed of fixed-point processors still make it the choice for the 
embedded digital filters projects. However, fixed-point 
implementation leads to quantization nonlinearities, round off 
errors, and overflows caused by consecutives multiplications 
and additions operations using finite word-length; and these 
may affect the desired behavior of the filter. As an example, for 
direct form realizations, only a small change on filter 
coefficients due to parameter quantization can result in a large 
change in the location of the poles and zeros of the system [1]. 
In recursive digital filters, most known as infinite impulse 
response (IIR) filters, can present serious oscillations in the 
output even for a zero input signal, which is a phenomenon 
known as limit cycle. Finite impulse response (FIR) filters do 
not suffer from such limit cycle effects, but they may have 
other issues caused by the finite word-length limitations (e.g., 
overflows). There are many studies about the quantization and 
limit cycle in digital filters, and ways to reduce its effects, as 
previously reported in [2], [3].  

Apart from that, an important property to implement a 
digital filter for real-time applications is its time constraint. 
Modern microcontrollers and DSPs allow programming in 
high-level languages such as C. The filter program is compiled 
to low level instructions that consume clock cycles to be 
processed. That processing time must meet some constraints 
according to the system sample frequency and available buffer. 
Normally, the filter designers employ advanced tools to define 

filter parameters according to the desired operation in time and 
frequency domains, and use simulation software to validate 
their behavior under extensive tests. In most cases, they 
consider floating-point arithmetic in calculations. There are a 
few tools to simulate systems using fixed-point arithmetic [4], 
[5]. Search algorithms to determine the minimum bound of the 
word-length are also presented in [6] in which the authors 
adopt a simulation-based approach. However, testing and 
simulation can lead to a limited number of scenarios and inputs 
in the system, which thus do not exploit all possible behaviors 
that the system can exhibit. Hence, only frequency domain 
graphical analysis and simulation might not be sufficient to 
conclude about possible problems related to finite word-length 
implementation as well as time constraints of the filters. 

Recently, some alternative technique has been proposed for 
the verification of fixed-point implementations of IIR digital 
filters, which is based on bounded model checking (BMC) and 
suggests the use of modern satisfiability modulo theory (SMT) 
solvers [7]. The main idea behind SMT-Based BMC is to 
consider counterexamples of a particular length k and generate 
a first-order logic formula that is satisfiable if and only if such 
a counterexample exists [8]. In this paper, we describe the use 
of a general purpose SMT-based bounded model checker for 
embedded C/C++ software to verify potential issues caused by 
fixed-point arithmetic on recursive filters; it makes two major 
contributions. First, we consider the processing time of 
operations during the filter function unrolling to check for the 
maximum acceptable time of the filter operations. Second, we 
exploit BMC to verify the actual C code of the digital filter that 
is intended to be embedded into micro-controllers and DSPs; 
this is closer to the real implementation where specific C 
constructs (e.g., pointer arithmetic and comparisons) are used 
to implement the digital filter. Last but not least, the 
application of SMT-based BMC to digital filters might not be 
well known amongst DSP developers and so this work can 
potentially add value to them. 

II. FIXED-POINT FILTERS REALIZATION 

Digital filters can be defined as linear time-invariant 
discrete-time systems described by a difference equation as: 

���� = −��		y�n − k�
�

	��
+ ��	 	x�n − k�

�

	��
							�1� 

where y(n) is the output in instant n, y(n-k) is the output k steps 
in the past, x(n-k) are the inputs k steps in the past, ak are the 
coefficients for the past outputs, bk are the coefficients for the 
inputs, N is the feedback filter order, and M is the feedforward 
filter order. The design of a digital filter mainly consists of 
finding the values of the coefficients ak and bk that produce the 
expected frequency response. The filters are usually classified 
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according to their ideal frequency domain characteristics
out of the scope of this paper to show IIR and FIR filters 
design methods. This is a huge topic that is covered in standard 
digital signal processing books [1], [9]. There are many ways 
to implement (1) in hardware, or in software on a 
programmable digital computer depending on the realization 
structure of the system. The commonly known Direct Form I 
realization for IIR systems is shown in Fig. 1. For the 
demonstration of the proposed method, Direct Form I structure 
was chosen to be implemented in the C language.

Figure 1.  Direct Form I structure of IIR filter

In the realization of fixed-point digital filters, the 
coefficients and the results of intermediate computations suff
the effect of quantization and round off errors. Here, we have 
considered the round off quantizer Q(x); for this quantizer, the 
maximum error caused by rounding is 2-b-

number of bits that belongs to the fractional part.
where the result from an addition or multiplication exceeds the 
amount of bits available for the number representation, we say 
that there is an overflow. For the limit cycle verification, we 
allow the overflows to naturally happen. 
considered the two’s complement arithmetic so that when the 
overflow occurs, the result will wrap around. Fig. 2 shows the 
behavior of the round off quantizer and the effect of the two’s 
complement overflow wrapping around. 

Figure 2.  Round off quantizer of b bits with wrap around

To obtain a realistic model of the finite precision system, 
we consider the quantization of each numeric value in the 
system including inputs, coefficients, and results of arithmetic 
operations. Fig. 3 shows this model for a single

Figure 3.  Realistic model of a single-pole quantized filter
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we consider the quantization of each numeric value in the 
system including inputs, coefficients, and results of arithmetic 
operations. Fig. 3 shows this model for a single-pole filter.  

 
pole quantized filter. 

Here, we represent numbers in fixed
pair of digits separated by a decimal point. The digits to the left 
and right represent the integer and fractional part
respectively. We use the two’s complement to represent signed 
number in fixed-point processors. In this system, the real 
number X described by the 〈�
(bk-1 bk-2 … b1 b0 · b-1 b-2 … b-l) can be represented as:

� = −�	��2

The most significant bit -bk

maximum value representable by a number that consists of an 
integer part with k bits and a fractional part with 
2	�� − 2��, and the minimum value is
represented in Fig. 3 by the block Q rounds the numbers inside 
this range. If a number does not fit in this interval, then it 
indicates an overflow. During the verification of the filter, 
check the overflow as a failure in the system, or th
wraps around the result (as shown in Fig. 2)

III. SMT-BASED BMC

The basic idea of BMC is to check (the negation of) a given 
property at a given depth: given a transition system 
property ϕ, and a bound k, BMC
translates it into a verification condition (VC) 
satisfiable if and only if ϕ has a
than or equal to k. Standard SMT
whether ψ is satisfiable. In BMC 
limits the number of loop iterations and recursive
program. BMC thus generates VCs that reflect the exact path in
which a statement is executed, the context in which a given 
function is called, and the bit
expressions [8]. Proving the validity of the VCs arising
programs remains a major performance bottleneck, despite 
attempts to cope with increasing system complexity
applying SMT solvers. In this work, we used the
SMT-Based Bounded Model Checker (
verification engine since it was the most e
the last two software verification competitions 
ESBMC, the associated SMT
formulated by constructing the following logical formula

�� = �� ��⋀"#
$

%
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Here, ϕ is a safety property

initial states of M, and &' % ,  %)
between time steps j and j+1. 

represents the executions of M

ψ	can be satisfied if and only if for some 
reachable state at time step i in which 
satisfiable, then the SMT solver provides a satisfying 
assignment, from which we can
program variables to construct a counterexample.
counterexample for a property 
of states  �,  �, … ,  	 	with  � ∈
0 - . / �. If �3� is unsatisfiable, 
error state is reachable in k steps or less.

In this work, we propose the following steps for the design 
and verification of a digital filter. First, we 
parameters using the preferred methods 
(cf. [12]). After that, we estimate the out
input range to define the word
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k-1 is used for the sign. Thus, the 
maximum value representable by a number that consists of an 

bits and a fractional part with l bits is 
, and the minimum value is −2	��. The quantizer 

represented in Fig. 3 by the block Q rounds the numbers inside 
this range. If a number does not fit in this interval, then it 
indicates an overflow. During the verification of the filter, we 
check the overflow as a failure in the system, or the quantizer 
wraps around the result (as shown in Fig. 2).  

BMC OF DIGITAL FILTERS 

BMC is to check (the negation of) a given 
at a given depth: given a transition system M, a 

, BMC unrolls the system k times and 
translates it into a verification condition (VC) ψ such that ψ is 

has a counterexample of depth less 
MT solvers can be used to check 

In BMC of digital filters, the bound k 
limits the number of loop iterations and recursive calls in the 
program. BMC thus generates VCs that reflect the exact path in 
which a statement is executed, the context in which a given 

bit-accurate representation of the 
. Proving the validity of the VCs arising from 

remains a major performance bottleneck, despite 
attempts to cope with increasing system complexity by 

In this work, we used the Efficient 
Based Bounded Model Checker (ESBMC) tool as the 
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is a safety property (e.g., overflow), I is the set of 

)�4 is the transition relation of M 
j+1. Hence, �� ��∧⋀ ' % ,  %)�4$��%��  

M of length i. The above VC 

fied if and only if for some 8 - � there exists a 
in which ϕ is violated. If �3� is 

satisfiable, then the SMT solver provides a satisfying 
assignment, from which we can extract the values of the 

to construct a counterexample. A 
or a property ϕ is then defined as a sequence 

∈ 9�,  	 ∈ 9, and &' % ,  %)�4 for 
is unsatisfiable, then we can conclude that no 

steps or less.  

In this work, we propose the following steps for the design 
filter. First, we design the filter 

using the preferred methods (cf. [1], [9]) and tools 
. After that, we estimate the output range for a given 

input range to define the word-length to represent the fixed-
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point numbers. Once we define the word-length, we input the 
respective design parameters into the C filter model and then 
perform time analysis of filter operations using specific 
microprocessor architecture. Finally, we add assertions to the 
given C model to check for properties related to time 
constraints, under and overflow, and limit cycle. If we find an 
under and overflow, or a limit cycle violation, then we increase 
the word-length and call the verification engine again. If we 
find a time constraint violation, then it indicates that we have to 
decrease the word-length to improve the performance. 

A. Arithmetic Underflow and Overflow Verification 

During the design of a fixed-point filter, one needs to 
specify the number of integer and fractional bits. Firstly, one 
needs to estimate the output range of the filter for a given input 
range; this estimation is typically based on analytical- or 
simulation-based approaches. Several authors have proposed 
techniques to find the word-length for the coefficients of digital 
filters as in [13], [14]. However, to detect overflows in a digital 
filter with a given fixed-point word-length and expected input 
range, we add assertions into the quantizer block and configure 
the verification engine to use non-deterministic inputs in the 
specified range. For any result of addition or multiplication in 
the filter operation, if there exists a value that exceeds the 
range representable by the fixed-point, an assert statement 
detects it as an underflow or overflow violation. We generate a 
literal 1:;<=_?= to represent the validity of each addition and 
multiplication operation with the following constraint: 

1:;<=_?= ⟺ �A�B - CD� 	∧ �CD - AF��         (4) 

where FP is the fixed-point approximation for the result of the 
adders and multipliers; MIN and MAX are the minimum and 
maximum values that are representable for the given fixed-
point bit format (as we previously described in Section II). As a 
running example, let us consider a single pole system described 
by the following difference equation [1]: 

���� = −�	y�n − 1� + x�n�																						�5� 
This is a bounded-input bounded-output (BIBO) stable 

system in which the output is limited in amplitude to: 

|����| - IJKL � |ℎ	|
N

	��N
																									�6� 

where xmax is the maximum input value and hk is the impulse 
response of the system. For the Eq. (5) with a = -1/2, it can be 
shown that the summation of the norm of the impulse response 
converges to 2 using geometric series. For this particular 
example, if we consider an input in the range [-1, 1], the output 
will be [-2, 2] (i.e., we simply multiply the input range by 
∑|ℎ	|). If we have this for the implementation, one could 
choose to represent the fixed-point number using 2 bits for 
integer part including the sign and 4 bits for the fractional part. 
The resulting range for this particular format is [-2, 1.9375], 
with an error of ±0.03125. 

Using the proposed method, we apply the coefficients of (5) 
to the filter implemented in the C language and then define the 
number of bits for the integer and the fractional parts of the 
fixed-point number. If we run the verification engine by taking 
into account the input range [-1, 1], then it shows a 
counterexample in which the system gets an overflow for a 
particular sequence of inputs. It can be easily shown that an 
input sequence x = {1, 1, 1, 1, 1, 1} leads to an overflow in the 
output as shown in Table I. 

TABLE I.  EXAMPLE OF OVERFLOW IN FIXED-POINT FILTER 

n 1 2 3 4 5 6 

x(n) 1 1 1 1 1 1 

y(n) 1 1.5000 1.7500 1.8750 1.9375 1.96875* 

*. Considering 4 bits to fractional part, value is out of range [-2, 1.9375]                                                                                                                   

For this particular case, one could easily infer about the 
overflow by analyzing the impulse response summation or by 
simulating a constant step input. However, for high order 
systems, it can be difficult to precisely evaluate about the 
impulse response infinite summation or find an input sequence 
that leads to overflow, as also observed by [7]; this thus 
motivates the application of BMC to digital filters. 

B. Limit cycle Verification 

In an ideal stable filter, the output should asymptotically 
approach a steady-state level determined by the filter transfer 
function [15]. The limit cycle can manifest either as a steady 
oscillation or as a nonzero level in the output, even for a zero 
level input. This effect is caused by the round off errors and 
overflows during the filter operation. To verify the presence of 
limit cycle in a particular fixed-point filter realization, we 
configure the quantizer block routine by setting a flag variable 
on it to enable the wrap around on overflows. The expected 
behavior will be as shown in Fig. 2, which means that the 
verification engine is not expected to detect the overflow 
failures as in the previous case. Additionally, we configure the 
filter to use a zero input signal and a non-deterministic initial 
state for the previous outputs. We thus unroll the filter 
execution for a bounded number of entries and add an assert 
statement to detect a failure if a set of previous outputs states 
(that repeats during the zero-input response) is found. Note that 
this method is slightly different from that presented by Cox et 
al. [7], which aims at finding a limit cycle by comparing a 
window of the output with another window of the output within 
a bounded number of steps later. 

As an example, let us consider the same system described 
by the difference equation in (5). Here, we also model the 
system using 2 bits for the integer part and 4 bits for the 
fractional part as in the previous case, but now we set a zero 
input signal instead. If we execute the verification engine for 
the implemented model, then it finds a particular initial 
condition that leads the system to a limit cycle. In Table II, we 
present the response of the system for that particular condition. 
Note that the columns y2 and y10 represent the filter response in 
binary and decimal format, respectively. Due to the rounding 
on the fractional part of the fixed-point number, we can see in 
Table II that for a = 0.5 the output starts to repeat after n = 2. 
Similarly, for a = -0.5, we can see that it keeps a nonzero 
steady-state value instead of decaying to zero. 

TABLE II.  LIMIT CYCLES FOR SINGLE POLE FILTER 

a = 0.510 = 0.10002 a = -0.510 = 1.10002 

n y2 y10 n y2 y10 

-1 0.0010 0.125* -1 0.0010 0.125* 

0 1.0001 -0.0625 0 0.0001 0.0625 

1 0.0001 0.0625 1 0.0001 0.0625 

2 1.0001 -0.0625 2 0.0001 0.0625 

3 0.0001 0.0625 3 0.0001 0.0625 

*. Initial condition found as counterexample 
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C. Time Constraints Verification 

There are efficient structures for the implementation of 
filters such as Lattice form and filtering methods based on the 
Fast Fourier transform [1]. These methods aim to reduce the 
number of arithmetic operations and computations costs. 
However, the time-domain convolution methods based on 
direct forms are still prevalent, both in hardware and in 
software implementations, due to its simplicity. In real-time 
applications, filter receives data at the same rate it processes 
and outputs it. As a result, the verification of time constraints 
becomes necessary, especially in high order filters, which 
present more arithmetic operations and higher group delays.  

In the proposed approach, we use the filter model to check 
and assert about the maximum acceptable time for the filter 
operations to be processed. As an example, we implemented an 
IIR filter function and compiled it to run on a MSP430G2231, 
which is an ultra-low-power 16-bit RISC CPU based 
microcontroller [16]. If we configure the compiler to generate 
the assembly file and merge it together with C source code, 
then we can perform a worse case execution time (WCET) 
analysis in the IIR function. As an example, the code fragment 
shown in Fig. 4 is used to perform the multiplication of the bk 
coefficients with the previous entries in Eq. (1). Fig. 5 shows 
the code of Fig. 4 converted into some assembly instructions 
using the compiler CCS v4 [17]: 

sum += *b_ptr++ * *x_ptr--; 

Figure 4.  C code fragment of the digital filter. 

MOV.W @r9+,r12 5 cycles 

MOV.W @r9+,r13 5 cycles 

SUB.W #4,r10 5 cycles 

MOV.W 4(r10),r14 3 cycles 

MOV.W 6(r10),r15 3 cycles 

CALL #__fs_mpy  5 cycles 

MOV.W r7,r14 1 cycle 

MOV.W r8,r15 1 cycle 

CALL #__fs_add 5 cycles 

MOV.W r12,r7 1 cycle 

MOV.W r13,r8  1 cycle 

Figure 5.  Assembly instructions of the code fragment shown in Fig. 4. 

We can see that each instruction can take a different number 
of clock cycles to execute. Based on that information, we can 
compute how many clock cycles will be needed for each 
operation. For the MSP430G2231, the internal frequency is up 
to 16 MHz that gives a cycle time of 62.5 ns. Once we have the 
total time of the instructions, then we can use this to increment 
a timer variable and add an assert statement to detect any 
violation of time constraints. The value of the constraint can be 
easily estimated based on the sample rate of the system. If the 
system operates using a sample rate of 48 KHz (which is 
commonly used in digital audio systems), then it means that at 
every 20.8 microseconds a new data is obtained in the input, so 
the filter function has to process the output within this time. 
Formally, we generate a literal 1Q$J$RS to represent the validity 
of the time response with the following constraint: 

1Q$J$RS ⟺ ��B × U� - V�																								�7� 
where N is the number of cycles spend by the filter, T is the 
cycle time and D is the deadline. 

IV. EXPERIMENTAL EVALUATION 

This section is split into two parts. The experimental setup 
is described in Section IV-A while Section IV-B describes the 
results of verifying the digital filters benchmarks using the 
proposed approach. Note that we do not compare the proposed 
approach against that presented by [7] since here we model 
check the actual C code of the digital filters that are intended to 
be embedded into micro-controllers and DSPs; this is much 
closer to the real implementation where specific C constructs 
(e.g., pointer arithmetic and comparisons) are used to 
implement Eq. (1); and these make the VCs harder. 

A. Experimental Setup 

In Table III, we describe some filters chosen with different 
design types, number of feedback coefficients N, number of 
forward coefficients M, input range, and word-length. Note that 
the column Bits indicates the word-length for the integer and 
fractional parts of the fixed-point numbers including the bit for 
sign. Note further that the word-length for the fixed-point 
representation is estimated based on the ∑|ℎ	| summation and 
input range in order to obtain optimized filters in terms of 
reduced number of bits.  

For the evaluation of time constraints, we considered the 
restrictions of a 16 MHz processor operating on a system in 
which the sample rate is 48 KHz. Note that the sample rate of 
the system does not interfere in overflow and limit cycle 
conditions, since this is just a consequence of the fixed-point 
arithmetic. Here, we used ESBMC v1.21 (which is available at 
www.esbmc.org together with the benchmarks so that other 
researchers can reproduce the results) and configured it to use 
the SMT solver Z3 v3.2 [18] with the bit-vector arithmetic 
enabled since it produces fewer false alarms than integer and 
real arithmetic (as also observed by Cox et al. [7]). For each 
benchmark, we invoked the verification engine as follows: 

esbmc <file> --no-bounds-check --no-

pointer-check --no-div-by-zero-check 

Note that we disable the array bounds, pointer safety, and 
division by zero assertions since we are interested in checking 
only filter related properties as previously described in Section 
III. The above ESBMC call is thus used to check safety 
properties related to arithmetic underflow and overflow. To 
check for limit cycle and time constraints, we simply add the 
options --function limitCycle and --function 
timing to the above ESBMC call, respectively. 

All the experiments were conducted on an otherwise idle 
Intel Core i7-2600, 3.40 GHz with 24 GB of RAM running 
Fedora 64-bits. For all digital filters, the individual time limit 
has been set to 3600 seconds; the times given were measured 
using the time command. 

B. Experimental Results 

After selecting the digital filters, we used their parameters 
as input to the model implemented in C. Table III summarizes 
the results obtained for the filters that we verified using 
ESBMC. It shows the type of failures that we detected on each 
filter; and we classify them as OF for Overflow, LC for Limit 
Cycle, and TC for Time Constraint violation. The column Xsize 
shows the number of entries that are applied to the filter, which 
thus represents the unwinding bound of the program (i.e., the 
filter function). The verification time (given in seconds) is also 
shown for each type of failure assertion. Here, TO represents 
the time-outs (i.e., the tool is aborted after 3600 seconds). 
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TABLE III.  SUMMARY OF RESULTS FOR THE TESTED DIGITAL FILTERS* 

# Filter** N M ∑|hk| Input Bits Xsize Failures 
Verification Time (s) 

OF LC TC 

1 LP-IIR 2 1 2 [-1,1] <2,4> 6 OF, LC 39 4 <1 

2 LP-Butterworth-IIR 3 3 1.2 [-1.6,1.6] <2,5> 6 OF 579 634 <1 

3 LP-IIR 3 1 4 [-1,1] <3,4> 6 OF, LC 210 29 <1 

4 LP-IIR 3 1 1.56 [-1,1] <2,4> 6 - 110 51 <1 

5 LP-FIR 1 31 1.93 [-1,1] <2,6> 31 TC TO 98 1 

6 HP-ChebyshevI-IIR 3 3 1.33 [-1,1] <2,10> 6 - 853 2058 <1 

7 BP-Elliptic-IIR 3 3 1.24 [-1.0,1.0] <2,10> 6 LC 546 474 <1 

8 BS-Butterworth-IIR 3 3 1.81 [-1.1,1.1] <2,8> 6 OF 106 1299 <1 

9 BP-Elliptic-IIR 5 5 0.91 [-1.1,1.1] <1,8> 10 OF, LC 7 20 <1 

10 HP-Butterworth-IIR 5 5 1.58 [-1.27, 1.27] <2,6> 10 LC 2468 1508 <1 

11 BP-ChebyshevI-IIR 5 5 1.51 [-1.33, 1.33] <2,6> 10 - TO TO <1 

12 HP-Elliptic-IIR 7 7 5.39 [-1,1] <3,13> 14 TC 73 TO <1 

*.  Analyzed filters and software are available at www.esbmc.org 

**. LP – Lowpass, HP – Highpass, BP – Bandpass, BS – Bandstop 

  

As we can see in Table III, the proposed method can detect 
failures in digital filters independently of their type, order, or 
bit-width. However, the verification time tends to be higher for 
high order filters and for longest word-length formats since 
these lead to a harder VC, except for the benchmark HP-
Elliptic-IIR where we can conclude in few seconds that 
it does not contain any arithmetic underflow and overflow. 
Note that we time out to check for overflows in digital filter 5 
and 11, which contain a high number of forward and feedback 
coefficients, respectively. Note further that we time out to 
check for limit cycles in the digital filter 12, which contains the 
longest word-length of the fractional part. Apart from that, the 
time constraints are easily verified since it only consists of 
checking the time response of a sequential piece of code. 

V. CONCLUSIONS 

In this work, we proposed a new approach to detect failures 
in fixed-point digital filters using an off-the-shelf bounded 
model checker. It allows the designer to formally check the 
given implementation for a specific bit-width and it helps 
define the word-length to properly represent numbers. In 
particular, the proposed approach supports the designer to 
detect problems caused by the finite word-length such as 
overflows and limit cycles in IIR filters. The experimental 
results show that we can easily detect failures in low and 
medium orders digital filters with arbitrary bit-width. However, 
the verification of high order filters with longest word-length 
tends to be a hard problem due to the large state space 
exploration. Additionally, we contributed with a new method 
based on WCET analysis together with BMC to verify time 
constraints in digital filters. Since we have modeled and 
implemented the digital filters in the C language, the proposed 
approach could also be applied to other existing BMC tools by 
taking advantage of their robustness and efficiency. 
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