ESBMC v7.3: Model Checking C++ Programs
using Clang AST

Kunjian Song!, Mikhail R. Gadelha?, Franz Braufle', Rafael S. Menezes', and
Lucas C. Cordeiro?

! The University of Manchester, UK
{kunjian.song, rafael.menezes}@postgrad.manchester.ac.uk,
{franz.brausse, lucas.cordeiro}@manchester.ac.uk
2 Igalia, A Coruiia, Spain
mikhail@igalia.com

Abstract. This paper introduces ESBMC v7.3, the latest Efficient SMT-
Based Context-Bounded Model Checker version, which now incorporates
a new Clang-based C++ front-end. While the previous CPROVER-based
front-end served well for handling C++03 programs, it encountered
challenges keeping up with the evolving C++ language. As new language
and library features were added in each C++ version, the limitations
of the old front-end became apparent, leading to difficult-to-maintain
code. Consequently, modern C++ programs were challenging to verify. To
overcome this obstacle, we redeveloped the front-end, opting for a more
robust approach using Clang. The new front-end efficiently traverses the
Abstract Syntax Tree (AST) in-memory using Clang APIs and transforms
each AST node into ESBMC’s Intermediate Representation. Through
extensive experimentation, our results demonstrate that ESBMC v7.3
with the new front-end significantly reduces parse and conversion errors,
enabling successful verification of a wide range of C++ programs, thereby
outperforming previous ESBMC versions.
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1 Introduction

C++ is one of the most popular programming languages used to build high-
performance and real-time systems, such as operating systems, banking systems,
communication systems, and embedded systems [1l2]. However, memory safety
issues remain a major source of security vulnerabilities in C++ programs [3].
Fan et al. [4] created a dataset of C/C++ vulnerabilities by mining the Common
Vulnerabilities and Exposures (CVE) database [5] and the associated open-
source projects on GitHub, then curated the issues based on Common Weakness
Enumeration (CWE) [6]. According to their findings, two out of the top three
vulnerabilities are caused by memory safety issues: Improper Restriction of
Operations within the Bounds of a Memory Buffer (CWE-119) and Out-of-
bounds Read (CWE-125) [4].

The limitation of software testing resides in the user inputs [7]. Only a limited
number of execution paths may be tested since test cases involve human inputs
in the form of concrete values [§]. Unlike testing, formal verification techniques
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can be used more systematically to reason about a program, although they suffer
from the state-space explosion problem [9]. There is an increasing adoption of
formal verification techniques for C programs in the industry, e.g., Amazon has
been using model-checking techniques to prove the correctness of their C-based
systems in Amazon Web Services (AWS); this has positively impacted their code
quality, as evidenced by the increased rate of bugs found and fixed [10].

Formal verification of C++ programs is more challenging than C programs
due to the sophisticated features, such as the STL (Standard Template Libraries)
containers, templates, exception handling, and object-oriented programming
(OOP) paradigm [I]. The existing state-of-the-art verification tools for C++
programs only have limited feature support [I1]. For ESBMC, Ramalho et al. [12]
and Monteiro et al. [IT] initiated the support for C++ program verification. Since
then, ESBMC has undergone heavy development.

This research presents a significant improvement to ESBMC’s C++ verifica-
tion capabilities by introducing a new Clang-based front-end. Particularly, the
original contributions of this work are as follows:

— Complete Redesign: ESBMC’s C++ front-end has undergone a complete
overhaul and now relies on Clang [I3]. By leveraging Clang’s parsing and
semantic analysis capabilities [I4/T5], we check the input program’s Abstract
Syntax Tree (AST) using a production-quality compiler. This eliminates the
need for static analysis logic and ensures enhanced accuracy and efficiency.

— Object Models Details: We provide comprehensive insights into the object
models used to achieve seamless conversion of C++ polymorphism code
to ESBMC’s Intermediate Representation (IR). This improvement allows
ESBMC to handle C++ growth and its variants like CUDA [16].

— Simplified Type Checking for Templates: The new Clang-based front-
end greatly simplifies type checking for templates, streamlining ESBMC’s
ability to adapt to C++ advancements. Furthermore, this enhancement
facilitates the incorporation of C++ variants like CUDA.

By introducing these advancements, our work significantly enhances ESBMC’s
C++ verification capabilities, paving the way for more robust and efficient
verification of C++ programs and their variants.

2 Background

ESBMC'’s verification for C+4-03 programs reaches its maturity in version v2.1,
presented by Monteiro et al. [I1]. ESBMC v2.1 provides a first-order logic-based
framework that formalizes a wide range of C++ core languages, verifying the
input C++ programs by encoding them into SMT formulas. Since C++ Standard
Template Libraries (STL) contain optimized assembly code not verifiable using
ESBMC, ESBMC v2.1 tackled this problem using a collection of C++ operational
models (OM) to replace the STL included in the input program. The OMs are
abstract representations mimicking the structure of the STL, adding pre- and
post-conditions to all STL APIs [I7]. Combining these approaches, ESBMC v2.1
outperformed other state-of-the-art tools evaluated over a large set of benchmarks,
comprising 1513 test cases [I1]. Nonetheless, ESBMC v2.1 employs a Flex and
Bison-based front-end from CBMC [I§], which leads to hard-to-maintain code
and can hardly evolve to support modern C++11 features.
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Limitations of the old C++4 front-end The version of ESBMC in Monteiro
et al. [I1] uses an outdated CPROVER-based front-end [I8] with the following
limitations.

1. For the type-checking phase, ESBMC could not provide meaningful warnings
Or error messages.

2. It is inefficient at generating a body for default implicit non-trivial methods
in a class, such as C++ copy constructors or copy assignment operators.

3. The parser of the old front-end needs to be manually updated to cover the
essential C++ semantic rules [19], which leads to hard-to-maintain code to
keep up with the C++ evolution.

4. The old front-end contains excessive data structures and procedures auxiliary
to scope resolution and function type checking.

5. The type checker [19] of the old front-end only works with a CPROVER-based
parse tree and supports up to C++03 standard [20]. We find adapting it to
the new C++ language and library features difficult.

6. The old front-end uses a speculative approach to guess the arguments for a
template specialization and a map to associate the template parameters to
their instantiated values, which leads to hard-to-maintain and hard-to-debug
code in the case of recursive templates. Additionally, owing to its limited
static analysis, the old front-end could not provide any early warning when
there is a circular dependency on the templates.

These limitations combine to a point where the old front-end is too laborious
to maintain and extend for formal verification of modern C++ programs. We
propose the Clang-based approach to convert an input C++ program to ESBMC’s
IR to overcome these limitations.

3 Model Checking C++ Programs using Clang AST

Figure [I] illustrates ESBMC’s verification pipeline for C++ programs. The new
Clang-cpp front-end typechecks and converts the input C++ program (along with
the corresponding OMs) into the GOTO program representation [2T22]. Then
the GOTO program will be symbolically executed to generate the SSA form of
the program, thus generating a set of logical formulas consisting of the constraints
and properties. An SMT solver is used to check the satisfiability of the formulas,
giving a verdict VERFICATION SUCCESSFUL if no property violation is found
up the bound k or a counterexample in case of property violation.

3.1 Polymorphism

The traditional approach for achieving polymorphism makes use of virtual function
tables (also known as vtables) and virtual pointers (known as vptrs). While the
Clang AST, to the best of our knowledge, does not include information about
virtual tables or virtual pointers of a class, it nonetheless provides users with
enough information to enable them to create their vtables and vptrs. In the new
Clang-based C++ front-end, we reimplemented the vtable and vptr construction
mechanism following a similar approach from ESBMC v2.1, but with significant
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Fig.1: ESBMC architecture for C4++ verification. The grey block represents the
new Clang-based C++ front-end integrated into ESBMC v7.3.

class Bird {

1

2 public:

3 virtual int doit(void) { returm 21; }
YR

5

6 class Penguin: public Bird {

7 public:

s int doit(void) override { return 42; }
o}

10 int main(){

11 Bird *p = new Penguin();

12 assert(p->doit() == 42);

13 delete p;

14 return 0;

15 }

Fig. 2: Example of C++ classes with virtual functions.

simplifications based on the information provided in the Clang AST. Figure
illustrates an example of C++ polymorphism.

Figure [3illustrates the object models for the Bird and Penguin classes. The
new front-end adds one or more vptrs to each class. The vptrs will be initialized
in the class constructors, which set each vptr pointing to the desired vtable. The
child class contains an additional pointer pointing to a vtable with a thunk to the
overriding function. The thunk redirects the call to the corresponding overriding
function. In the case of multiple inheritances, the child class would have multiple
vtprs “inherited” from multiple base classes. The new front-end can also manage
a virtual inheritance, such as the diamond problem, which avoids duplicating
uptrs, referring to the same virtual table in an inheritance hierarchy. Line 2-4 in
Figure [4a] illustrates the dynamic dispatch is achieved using the vptr calling the
thunk, which in turn calls the desired overriding function in Figure [b] Line 9-11.
Note that the override specifier is a C++11 extension that the old front-end
could not support.
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Bird
Bird@Bird: vptr

Y

virtual_table::Bird@Bird
.doit(Bird*)=&tag.Bird::doit(Bird*)

Bird@Penguin: vptr .doit(Bird*)=&thunk::Penguin::doit(Bird*) [~ :

Penguin /v virtual_table::Bird@Penguin
~

Penguin@Penguin: vptr virtual_table::Penguin@Penguin

.doit(Penguin*)=&tag.Penguin::doit(Penguin*) <

Fig. 3: Object models for Bird and Penguin classes

1 int return_ value; 1 thunk::Penguin:: doit (Bird x):
2 return value = 2 int return_value;
3 *p—>Bird@Penguin 3 return_value =
4 —>doit (p) 4 Penguin :: doit (
5 assert(return_value =— 42) 5 (Penguinx*) this)
6 RETURN: return_ value
(a) GOTO program of the dynamic 7 END_FUNCTION
dispatch in Line 12 of Figure 8
9 Penguin:: doit (Penguinx*):
10 RETURN: 42
11 END_FUNCTION

(b) thunk redirecting the call to the
overriding function.

Fig.4: GOTO conversions of the overriding methods and dynamic dispatch.

3.2 Template

Template is a key feature in C++, allowing type to be passed as a parameter. The
template allows STL containers and generic algorithms to work with different C++
data types [23124]. The old front-end in ESBMC v2.1 implements the template
specialization based on Siek et al. [25JTT]. However, it produces a “CONVERSION
ERROR?” for the test case illustrated in Figure This benchmark is based on
the Friend18 example from the GCC test suite [26], which was added for Bug
10158 on GCC Bugzilla [27]. ESBMC v7.3 successfully verified this benchmark
and found the assertion’s property violation in Figure [fa] The verification result
is illustrated in Figure [fb] The example in Figure [5a] contains a C++-20 extension.
The foo function is defined in struct X, but gets called using an unqualified
name with explicit template arguments in main. ESBMC v2.1 failed to verify
it due to the “CONVERSION ERROR symbol “‘foo’ not found”. We also tried
this example with CBMC 5.88.1 [28], which aborted during type-checking, and
cppcheck v2.11.1 [29], which did not give any verification verdict.
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s
10 X<1234> bring;

1 #include <cassert>
2 template <int N> struct X 1 Violated property:
s A ] 2 file tmp2.cpp
4 template <int M> 3 line 13 column 3
5 friend int foo(X comst &) 4 function main
6 { 5 assertion
T return N * 10000 + M; ¢ foo <5678>(bring)!=12345678
8 + 7 return_value!=12345678
9 8
9

VERIFICATION FAILED

2 int main() { (b) Verdict for the template exam-

13 assert ( le
14 £00<5678> (bring) p
15 1=12345678) ;

16 }

(a) Example of C++ class template

Fig.5: ESBMC verified the Friend18 example from the GCC test suite. [26]

4 Experimental Evaluation

We used some benchmarks from Monteiro et al. [II] to evaluate ESBMC v7.3.
These benchmarks were used to assess ESBMC v2.1 in Monteiro et al. [I1].

We did not evaluate the test cases (TCs) that depend on the operational
models (OMs) in each benchmark. We only ran the TCs for core C++ language
features because the OMs for the new Clang-based C++ front-end are still under
development, e.g., exception handling support. Otherwise, running test cases for
sure to fail would be pointless due to a feature still being developed. Hence each
benchmark is a subset of the original benchmark, which only comprises TCs for
verifying core C++ language features. There are 352 benchmarks in total over 6
sub-benchmarks. The cpp-sub contains example programs from the book C++
How to Program [30]. The inheritance and polymorphism sub-benchmarks are
extracted from [II]. There are three sub-benchmarks for template specialization
- cbme-sub comes from the CBMC regressions [31]; gec-template-tests-sub were
extracted from the GCC template test suite [26]; template-sub is also from
benchmarks used in [II]. ¢pp-sub contains programs with mixed use of various
C++ language features combined with inheritance, polymorphism, and templates.

4.1 Objectives and Setup

Our evaluation framework is based on Python’s wnittest [32]. For each TC
in the test suite, we check whether the verification verdict reported by each
tool matches the expected outcome. TC passes when the tool reports a verdict
of “VERIFICATION SUCCESSFUL” on a program without any violation of
properties or reports “VERIFICATION FAILED” on an unsafe program that
violates a property. Such properties include arithmetic overflows, array out-of-
bounds, memory issues, or assertion failures. Our evaluation aims to answer the
following experimental questions:
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EQ1 (soundness): Can ESBMC give more correct verification results and a higher
pass rate than its previous versions?

EQ2 (performance): How long does ESBMC v7.3 take to verify C++ programs?

EQ3 (completeness): Does the tool complete the future work specified by Mon-
teiro et al. [I1]?

The experiment was set up in Ubuntu 20.04 with 32GB RAM on an 8-core
Intel CPU. The dataset, scripts, and logs are publicly available in Zenodo [33].
The accumulative verification time represents the CPU time elapsed for each tool
finishing all sub-benchmarks.

4.2 Results

Table[I]shows our experimental results. With a higher pass rate than ESBMC v2.1
over 5 out of 6 sub-benchmarks, ESBMC v7.3 successfully verified all benchmarks
and passed all test cases, confirming EQ1. As for ESBMC v2.1, the failed TCs
in cpp-sub are due to parsing or conversion errors, meaning the previous tool
version is unable to properly typecheck the input programs, probably due to
the weak parser, as described in Section [2| The failed TCs in inheritance and
polymorphism-sub contain a common feature of dynamically casting a pointer of
a child class with a base class containing virtual methods. ESBMC v2.1 could
not handle this type of casting, giving conversion errors.

ESBMC v2.1 has limited support for C++ templates, matching our expecta-
tions as reported by Monteiro et al. [I1]. The failed test cases in chme-template-sub
are the results of ESBMC v2.1 not able to handle the default template type
parameter or explicit template specialization combined with C++ typedef speci-
fier. The low pass rate of ESBMC v2.1 on gcc-template-tests-sub indicates that
the old version cannot verify test cases used by an industrial compiler. EQ3 is
affirmed through the experiment, as none of these problems persist in ESBMC
v7.3. Since one of the test cases in cpp-sub timed out against ESBMC v2.1 after
900 seconds, the actual verification time has been rectified to 149s; otherwise,
the cumulative verification time would be 1049s. As for the performance EQ2,
ESBMC v7.3 could verify all sub-benchmarks in 128s, faster than its previous
version, which affirms EQ2.

Overall, we have enhanced the template support in ESBMC v7.3, which
completed the future work by Monteiro et al. [I1]. In comparison to its previous
version, ESBMC v7.3 can provide more accurate results faster.

In addition to the pass rate and verification time in Table [1} we also assessed
each tool’s memory usage. Table [2[shows the cumulative maximum RSS (Resident
Set Size) for each benchmark using each tool under evaluation. Our metrics
collection approach is based on Python’s resource module, subprocess module
and unit test framework [32]. Compared to ESBMC v2.1, ESBMC v7.3 can verify
more test cases and uses less memory. The lower memory usage of v2.1 than v7.3
is due to lower pass rates for the TCs using templates, mainly because of v2.1’s
inadequacy to handle C++ templates. Many TCs failed due to CONVERSION
ERROR in ESBMC v2.1’s front-end and never even reached the solver in the
back-end. As a result, no verification effort was made for those TCs and hence
less memory was used.
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Table 1: Experimental results showing the pass rate for each sub-benchmark and
accumulative verification time. This experiment uses ESBMC with Boolector
SMT solver.

Sub-Benchmarks ESBMC-v2.1 pass rate| ESBMC-v7.3 pass rate
cpp-sub 91% 100%
inheritance-sub 79% 100%
polymorphism-sub 87% 100%
cbme-template-sub 92% 100%
gee-template-tests-sub 39% 100%
template-sub 100% 100%

Total verification Time 149.94s 128.796s

Table 2: Experimental results showing the cumulative maximum RSS (Resident
Set Size) for each sub-benchmarks. This experiment uses ESBMC with Boolector
SMT solver.

Sub-Benchmarks [ESBMC-v2.1 ESBMC-v7.3
cpp-sub 31477 MB 19385 MB
inheritance-sub 231 MB 845 MB
polymorphism-sub 722 MB 2373 MB
cbme-template-sub 650 MB 2295 MB
gce-template-tests-sub 395 MB 1387 MB
template-sub 207 MB 727 MB
Total memory 33682 MB 27012 MB

4.3 Performance Using Different SMT Solvers

ESBMC supports multiple SMT solvers in the back-end, such as Z3 [34], Bitwu-
zla [35], Boolector [36], MathSAT [37], CVC4 [38], and Yices [39]. We also
evaluated ESBMC v7.3 with various solvers over the same set of benchmarks.
Table [3| shows the total verification time and memory consumption for ESBMC
v7.3 using different solvers.

Overall, ESBMC v7.3 with Boolector is the fastest configuration that also
consumes the minimum amount of memory to verify all benchmarks. Among the
other solvers, the memory consumption of ESBMC v7.3 with Bitwuzla comes
near the Boolector configuration.

4.4 Threats to Validity

While developing the new C++ front-end, we found that the Clang AST does
not fully describe the correct order of constructors or destructors to be called in
the most derived class in a complex hierarchical inheritance graph, e.g., crossed
diamond hierarchy. We documented it under an umbrella issue, which is currently
in our backlog [40] on ESBMC GitHub repository [41]. ESBMC v2.1 mimics the
semantics of the APIs of C++ STL libraries using a set of operational models
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Table 3: Experimental results showing the total verification time and memory
consumption for ESBMC using different solvers.

Sub-Benchmarks|Boolector| CVC4 |MathSAT| Yices 73 Bitwuzla
Time 128.796s | 637.988s | 131.934s | 182.327s | 162.848s | 152.442
Memory 27012 MB (72281 MB|161608 MB|35589 MB[44028 MB|27124 MB

(OMs). The C++ front-end of ESBMC has been completely rewritten, and the
back-end has also undergone significant development and evolution since v2.1
was published in [IT], therefore it is questionable whether those OMs still work.
Our technical report [42] provides a summary of the pass rates.

5 Conclusion and Future Work

We present a new Clang-based front-end that converts in-memory Clang AST
to ESBMC’s IR. In our evaluation of ESBMC v7.3, we compared it to ESBMC
v2.1, specifically focusing on a subset of benchmarks to cover core C++ language
features. The results demonstrate significant progress with ESBMC v7.3, as it
successfully parses real-world C++ programs, including those from the GCC test
suite. Notably, it significantly reduces the number of conversion and parse errors
compared to the previous version, showcasing improved performance over the
sub-benchmarks for core language features.

While ESBMC effectively mimics the semantics of APIs of the STL libraries
using the OMs from ESBMC v2.1, we recognize the need for continuous im-
provement. As we endeavor to verify modern C++ programs, these OMs require
regular review and updates to align with the C++ standard used in the input
program. Accurate OMs are essential, as any approximation may lead to incorrect
encoding and invalidate the verification results. To further enhance our front-end
coverage and reduce the number of OMs we maintain, our future work will focus
on handling more C++ libraries.

Additionally, we aim to integrate various checkers, such as cppcheck [29],
into our testing framework to facilitate future evaluations. Our previous success
verifying a commercial C++ telecommunication application using ESBMC v2.1
has inspired further goals [43I1T]. With ESBMC v7.3 and beyond, we plan to
verify the C++ interpreter in OpenJDK as part of the Soteria project [44]
and contribute to benchmarks for the International Competition on Software
Verification (SV-COMP) [45].
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