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Abstract This paper describes the support for encoding C/C++ pro-
grams using the SMT theory of floating-point numbers in ESBMC: an
SMT-based context-bounded model checker that provides bit-precise
verification of C and C++ programs. In particular, we exploit the avail-
ability of two different SMT solvers (MathSAT and Z3) to discharge
and check the verification conditions produced by our encoding using
the benchmarks from the International Competition on Software Veri-
fication (SV-COMP). The experimental results show that our encoding
based on MathSAT is able to outperform not only Z3, but also other
existing approaches that participated in the most recent edition of SV-
COMP.
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1 Introduction

Over the years, computer manufacturers have experimented with different ma-
chine representations for real numbers [1]. The two basic ways to encode a real
number are the fixed-point representation, usually found in embedded micropro-
cessors and microcontrollers [2], and the floating-point representation, in partic-
ular, the IEEE floating-point standard (IEEE 754-2008), which has been adopted
by many processors [3, 4].

Each encoding can represent a range of real numbers depending on the word-
length and how the bits are distributed. A fixed-point representation of a number
consists of an integer component, a fractional component and a bit for the sign,
while the floating-point representation consists of an exponent component, a
mantissa component and a bit for the sign. Numbers represented using a floating-
point encoding have a much higher dynamic range than the fixed-point one
(e.g, a float in C has 24 bits of accuracy, but can have values up to 2127),
while numbers represented using a fixed-point representation can have a greater
precision than floating-point, but less dynamic range [5]. Furthermore, the IEEE
floating-point standard contains definition that have no direct equivalent in a
fixed-point encoding, e.g, two infinities (+∞ and −∞) and for signalling and



quiet NaNs (Not a Number, used to represent an undefined or unrepresentable
value), denormal numbers, rounding modes, etc.

In this paper, we present ESBMC, a bounded model checker that uses Sat-
isfiability Modulo Theories (SMT) solvers to verify single- and multi-threaded
C/C++ code [6, 7]. The tool is able to encode the programs using either fixed-
point arithmetics (using bitvectors) or floating-point arithmetic (using the SMT
theory of floating-point numbers [8]). Initially, ESBMC was only able to en-
code float, double and long double using a fixed-point encoding (used in a
wide range of applications in the verification of digital filters [9,10] and control-
lers [11, 12]); the lack of a proper floating-point encoding, however, meant that
ESBMC was not able to find an entire class of bugs, such as the one shown in
Figure 1.

1 int main ( )
2 {
3 f loat x ;
4 f loat y = x ;
5 assert ( x==y ) ;
6 return 0 ;
7 }

Figure 1: Simple floating-point program with a bug.

The program shown in Figure 1 will never fail if verified with a fixed-point
encoding. However, when using a floating-point encoding, x can be NaN and
comparing NaNs, even with themselves, is always false [3]. In this scenario, the
assertion in line 5 does not hold.

Support for verifying programs that rely on floating-point arithmetic is an im-
portant contribution to the software verification community, as it helps demon-
strate the applicability of SMT-based verification to real-world systems.

The main original contributions of this paper are:

– We describe the verification process in ESBMC from the C program to the
SMT formula encoding, including the solvers that support floating-point
arithmetic, special cases when encoding the program, unused operators from
the SMT standard and an illustrative example (Section 3).

– We demonstrate that our floating-point encoding based on MathSAT is able
to outperform not only ESBMC with Z3, but also all the other approaches
that participated in the most recent round of SV-COMP [13]. In particular,
ESBMC/MathSAT is able to verify 169 benchmarks in 9977.4 s, while ESB-
MC/Z3 verifies 127 in 44992.7 s. ESBMC was the most efficient verifier for
the floating-point subcategory in SV-COMP 2017, with 308 scores, followed
by Ceagle [14] (298 scores), and CBMC [15] (264 scores) (Section 4).



2 The Efficient SMT-Based Context-Bounded Model
Checker (ESBMC)

In this section, we present ESBMC, an open source, permissively licensed
(Apache 2), cross platform bounded model checker for C and C++ programs.
ESBMC was developed to perform bounded model checks on both sequential and
concurrent programs using a range of SMT solvers, and has a proven track of
bug finding in real-world applications [6,7,16]. The tool also implements a tech-
nique to prove the correctness of (some) unbounded programs: the k -induction
algorithm; this approach has been applied to a large number of benchmarks
and has produced more correct results than similar competing tools [17]. Fig. 2
shows the tool architecture. Rounded white rectangles represent input and out-
put; squared gray rectangles represent the verification steps.
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Figure 2: ESBMC architecture for floating-point verification.

ESBMC has two alternative front-ends to parse the input program and gen-
erate an an Abstract Syntax Tree (AST). There is the legacy CBMC-based
front-end that supports both C and C++, and a new clang-based front-end that
currently only supports C. The data types are created in the front-end when
parsing the code, setting variable types to either fixed-point or floating-point
for float, double and long double, depending on the options set by the user.
Bitvector representations of constants are also created by the frontend, according
to the fixed-point or floating-point semantics. The bitvector representation [7]
of other data types (e.g., int, char) were not changed by the work described in
this paper.

Regardless of the chosen front-end, the output is an AST that will be used by
the GOTO converter to generate a GOTO program, which has simplified control
flow and is suitable for bounded unwinding. The next step is the symbolic execu-
tion, when the GOTO program is executed (unrolling loops up to the bound k)
and converted to Static Single Assignments (SSA) [18] form. During the symbolic
execution, ESBMC aggressively tries to simplify the program; it propagates all
constants and solves any assertions that can be statically determined. This is an
important step for the verification; ESBMC can fully verify programs without
calling a solver, if the inputs are deterministic.



The SSA expressions are then encoded using the chosen SMT solver; ulti-
mately we are attempting to determine whether a formula, which is the dis-
junction of all possible errors, can be satisfied. If the SMT formula is shown
to be satisfiable, a counterexample is presented; if the formula is found to be
unsatisfiable, there are no errors up to the unwinding bound k, and this result
is presented. ESBMC supports 5 SMT solvers: Boolector (default) [19], Z3 [20],
MathSAT [21], Yices [22] and CVC4 [23]. In order to support and maintain this
number of solvers, an SMT layer was developed, in such way that the support
for new solvers, or new features like the floating-point support, only requires the
implementation of the specific API calls for each solver.

It is in this layer that most of our contribution is concentrated. We implemen-
ted the new floating-point API in the SMT layer and the corresponding function
calls for Z3 and MathSAT. The remaining solvers do not support floating-point
arithmetic so ESBMC aborts the verification if an user tries to use this func-
tionality with them.

3 Floating-point SMT Encoding

Here we describe our main contribution, the bit-precise encoding for ANSI-C pro-
grams using the SMT theory of floating-point. The SMT theory of floating-point
covers almost all the operations performed at program level so the conversion is
one-to-one and follows the encoding as described by Cordeiro et al. [7]. Given
that, we focus on the limitations of the SMT theory of floating-point (casts
to boolean types in Section 3.1 and the equality operator in Section 3.2) and
how they were circumvented. In this section we also show operators from the
SMT theory that are not being used in our implementation in Section 3.3 and
an illustrative example of verification using the SMT theory of floating-point
in Section 3.4; in this section we show the encoding and the counterexample
generated by ESBMC, and the models generated by the solvers.

The SMT floating-point theory is an addition to the SMT standard, first
proposed in 2010 by Rümmer and Wahl [8]. The current version of the theory
largely follows the IEEE standard 754-2008 [3] and formalises the floating-point
arithmetic, positive and negative infinities and zeroes, NaNs, comparison and
arithmetic operators, and five rounding modes: round nearest with ties choosing
the even value, round nearest with ties choosing away from zero, round towards
positive infinity, round towards negative infinity and round towards zero. There
are, however, some functionalities from the IEEE standard that are not yet
supported by the SMT theory as described by Brain et al. [24].

Encoding programs using the SMT floating-point theory has several advant-
ages over a fixed-point encoding, but the main one is the correct modeling of
ANSI-C/C++ programs that use IEEE floating-point arithmetic. We created
models for most of the current C11 standard functions [25]; floating-point ex-
ception handling, however, is not yet supported.

Currently, only two SMT solvers support the SMT floating-point theory:
Z3 [20] and MathSAT [21] and ESBMC implements the floating-point encoding



for both. In terms of the support from the solvers, Z3 implements all operat-
ors, while MathSAT implements all but two: fp.rem (remainder operator) and
fp.fma (fused multiply-add).

Both solvers offer two (non-standard) functions to convert floating-point
numbers to and from bitvectors: fp as ieeebv and fp from ieeebv, respect-
ively. These functions can be used to circumvent any lack of operators, and only
require the user to write the missing operators.

3.1 Casts to boolean

The SMT standard defines conversion operations to and from signed and un-
signed bitvectors, reals, integers and other floating-point types, but does not
define a conversion operation for boolean types. ESBMC, however, generates
these operations, as shown by the program in Figure 3. The program in Figure 3

1 int main ( ) {
2 Bool c ;
3 double b = 0 .0 f ;
4

5 b = c ;
6 assert (b != 0 .0 f ) ;
7

8 c = b ;
9 assert ( c != 0) ;

10 }

Figure 3: Program to demonstrate the casts to and from boolean generated by
ESBMC.

forces ESBMC to generate two casts: one from boolean to double in line 5 and
one from double to boolean in line 8. Figure 4a and Figure 4b present the SMT
formula generated by these lines, respectively. When casting from booleans to
floating-point numbers (Figure 4a), an ite operator is used, such that the result
of the cast is 1.0 if the boolean is true; otherwise the result is 0.0. When casting
from floating-point numbers to booleans (Figure 4b), we encode as a conditional
assignment: the result of the cast is true when the floating is not 0.0; otherwise
the result is false.

3.2 The fp.eq operator

Figure 4b also shows the second special cases when encoding ANSI-C programs.
When encoding the program, both assignments and comparison operations are
encoded using equalities. This must be changed, however, as the SMT standard
defines a custom operator for floating-point equalities, fp.eq operator:



(assert (= (ite |main::c|

(fp #b0 #b01111111111 #x0000000000000)

(fp #b0 #b00000000000 #x0000000000000))

|main::b|))

(a) SMT generated when casting from boolean to floating-point.

(assert (= (not (fp.eq |main::b|

(fp #b0 #b00000000000 #x0000000000000)))

|main::c|))

(b) SMT generated when casting from floating-point to boolean.

Figure 4: SMT formula generated by ESBMC to encode the casts to and from
boolean types in Figure 3.

:note

"(fp.eq x y) evaluates to true if x evaluates to -zero and y

to +zero, or vice versa. fp.eq and all the other comparison op-

erators evaluate to false if one of their arguments is NaN."

In this case, the operator is defined to handle the special symbols from the
IEEE floating-point standard, in particular, NaNs. It would not be correct to
use the ordinary operator equality for comparison; it should only be used for
assignments, while fp.eq is used for comparing floating-point numbers.

3.3 Unused operators from the SMT standard

When implementing the floating-point encoding, we did not use four operators
defined by the SMT standard: fp.max, fp.min, fp.rem and fp.isSubnormal,
instead we reimplemented them for enhanced perfomance:

1. fp.max: returns the larger of two floating-point numbers; equivalent to the
fmax, fmaxf, fmaxl functions. Our model of the functions is shown in Fig-
ure 5.

2. fp.min: returns the smaller of two floating-point numbers; equivalent to
the fmin, fminf, fminl functions. Our model of the functions is shown in
Figure 6.

3. fp.rem: returns the floating-point remainder of the division operation x/y;
equivalent to the fmod, fmodf, fmodl functions. Our model of the functions
is shown in Figure 7.



1 double fmax ( double x , double y ) {
2 // I f both argument are NaN, NaN i s returned
3 i f ( i snan ( x ) && isnan ( y ) ) return NAN;
4

5 // I f one arg i s NaN, the other i s returned
6 i f ( i snan ( x ) ) return y ;
7 i f ( i snan ( y ) ) return x ;
8

9 return ( x > y ? x : y ) ;
10 }

Figure 5: Model for fmax.

1 double fmin ( double x , double y ) {
2 // I f both argument are NaN, NaN i s returned
3 i f ( i snan ( x ) && isnan ( y ) ) return NAN;
4

5 // I f one arg i s NaN, the other i s returned
6 i f ( i snan ( x ) | | i snan ( y ) ) {
7 i f ( i snan ( x ) )
8 return y ;
9 return x ;

10 }
11

12 return ( x < y ? x : y ) ;
13 }

Figure 6: Model for fmin.

1 double fmod ( double x , double y ) {
2 // I f e i t h e r argument i s NaN, NaN i s returned
3 i f ( i snan ( x ) | | i snan ( y ) ) return NAN;
4

5 // I f x i s +i n f /− i n f and y i s not NaN, NaN i s returned
6 i f ( i s i n f ( x ) ) return NAN;
7

8 // I f y i s +0.0/−0.0 and x i s not NaN, NaN i s returned
9 i f ( y == 0 . 0 ) return NAN;

10

11 // I f x i s +0.0/−0.0 and y i s not zero , r e tu rn s +0.0/−0.0
12 i f ( ( x == 0 . 0 ) && ( y != 0 . 0 ) )
13 return s i g n b i t ( x ) ? −0.0 : +0.0 ;
14

15 // I f y i s +i n f /− i n f and x i s f i n i t e , x i s returned .
16 i f ( i s i n f ( y ) && i s f i n i t e ( x ) ) return x ;
17

18 return x − ( y ∗ ( int ) ( x/y ) ) ;
19 }

Figure 7: Model for fmod.



4. fp.isSubnormal: checks if a number is subnormal, i.e., a non-zero floating-
point number with magnitude less than the magnitude of that format’s smal-
lest normal number. A subnormal number does not use the full precision
available to normal numbers of the same format [3]. We could not find any
user case for it when modelling C11 standard functions.

3.4 Illustrative Example

As an illustrative example of the SMT encoding using the floating-point arith-
metic, Figure 8 shows the full SMT formula generated by ESBMC1 for the
program in Figure 1, as printed by Z3.

; declaration of x and y

(declare-fun |main::x| () (_ FloatingPoint 8 24))

(declare-fun |main::y| () (_ FloatingPoint 8 24))

; symbol created to represent a nondeteministic number

(declare-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24))

; Global guard, used for checking properties

(declare-fun |execution_statet::\\guard_exec| () Bool)

; assign the nondeterministic symbol to x

(assert (= |nondet_symex::nondet0| |main::x|))

; assign x to y

(assert (= |main::x| |main::y|))

; assert x == y

(assert (let ((a!1 (not (=> true

(=> |execution_statet::\\guard_exec|

(fp.eq |main::x| |main::y|))))))

(or a!1)))

Figure 8: SMT formula generated by ESBMC for the program shown in Figure 1.

1 ESBMC actually generates a slightly different SMT formula, which includes all the
symbols used for the memory model. The variable names are also more elaborate
as the generated SSA has to reflect different valuations of the variable: the variable
storage in memory, the thread to which the variable is associated, the specific thread
interleaving the variable is related to, and the valuation of the variable at different
points in the program. Each valuation is represented by a symbol (@, !, & and #) and
an index. They were omitted to make the formula easier to read.



The SMT formula contains all the symbol declaration (main::x and main::y),
nondeteministic symbols (nondetsymex::nondet0) and a boolean variable
(execution statet::\\guard exec), that evaluates to true if there is a prop-
erty violation in the program. The pervasive occurrence of FloatingPoint 8 24

derives from the exponent and mantissa lengths of single precision floats.

Both SMT solvers correctly find a failure model for the program; Z3 produces:

sat

(model

(define-fun |main::x| () (_ FloatingPoint 8 24)

(_ NaN 8 24))

(define-fun |main::y| () (_ FloatingPoint 8 24)

(_ NaN 8 24))

(define-fun |nondet_symex::nondet0| () (_ FloatingPoint 8 24)

(_ NaN 8 24))

(define-fun |execution_statet::\\\\guard_exec| () Bool

true)

)

and MathSAT produces:

sat

( (|main::x| (_ NaN 8 24))

(|main::y| (_ NaN 8 24))

(|nondet_symex::nondet0| (_ NaN 8 24))

(|execution_statet::\\guard_exec| true) )

This is the expected result from the verification of the program in Figure 1;
the program violates the assertion if x (and consequently y) is NaN. This happens
because x is left uninitialized.

The model generated by both solvers is converted back to SSA by ESBMC,
that prints the assignments that lead to a property violation2. Figure 9 shows the
counterexample presented by ESBMC when verifying the program in Figure 1,
using the floating-point arithmetic to encode the program. This is the counter-
example generated when verifying the program with MathSAT; the counter-
example generated by Z3 presents a positive NaN, but it is otherwise the same
(both solvers are correct and either a positive or a negative NaN will lead to a
property violation in the program). ESBMC also presents the IEEE bitvector
representation of the values assigned to the variables, whenever possible.

2 In comparison, no model is generated by the solver when verified using the fixed-
point arithmetic.



Counterexample:

State 1 file main3.c line 3 function main thread 0

main

----------------------------------------------------

main3::main::1::x=-NaN (11111111100000000000000000000001)

State 2 file main3.c line 4 function main thread 0

main

----------------------------------------------------

main3::main::2::y=-NaN (11111111100000000000000000000001)

State 3 file main3.c line 5 function main thread 0

main

----------------------------------------------------

Violated property:

file main3.c line 5 function main

assertion

(_Bool)(x == y)

VERIFICATION FAILED

Figure 9: Counterexample generated by ESBMC when verifying the program in
Figure 1.

4 Experimental Evaluation

This section is split into three parts. The description of benchmarks and setup is
described in Section 4.1, while Section 4.2 describes the experimental objectives.
In Section 4.3, we evaluate our encoding using two state-of-the-art SMT solv-
ers (MathSAT and Z3) and compare our best approach to other verifiers that
support floating-point arithmetic in Section 4.4.

4.1 Description of Benchmarks and Setup

We evaluate our approach using a set of verification tasks in the ReachSafety-
Floats sub-category of SV-COMP, which contains programs using floating-point
arithmetic [13]. As defined by the competition rules, we assume a 32-bit archi-
tecture and, for all benchmarks, we check the following property as specified by
the SV-COMP rules:

CHECK( init(main()), LTL(G, !call(__VERIFIER_error())) )



which means that from the main() function, we check the reachability of the
function VERIFIER error() through any possible program execution. If there
is a path from the program start to VERIFIER error(), the program contains
a bug.

All experiments were conducted on a computer with an Intel Core i7-
2600 running at 3.40GHz and 24GB of RAM under Fedora 25 64-bit. For
each benchmark, we set time and memory limits of 900 seconds (15 minutes)
and 16GB respectively. We provide a package with the latest version of ES-
BMC, all the benchmarks and the scripts to run the experiments at http:

//esbmc.org/benchmarks/pack-sbmf2017.tar.gz.

4.2 Objectives

Using the SV-COMP floating-point benchmarks given in Section 4.1, our exper-
imental evaluation aims to answer two research questions:

RQ1 (performance) does our encoding generate verifications conditions that can
be checked by state-of-the-art SMT solvers in a reasonable amount of time?

RQ2 (sanity) are the verification results sound and can their reproducibility be
confirmed outside of our verifier?

4.3 Solver Performance Comparisons

ESBMC ESBMC
(MathSAT v5.3.14) (Z3 v4.5.0)

Correct true 139 111

Correct false 30 16

Timeout 3 45

Total time (s) 9977.40 44992.76

Table 1: Comparative results of ESBMC using MathSAT v5.3.14 and Z3 v4.5.0.

Table 1 compares the results of ESBMC using both solvers on 172 benchmarks
from SV-COMP’17, using a fixed unwind approach. Here, Correct true is the
number of correct positive results (i.e., the tool reports SAFE correctly), Correct
false is the number of correct negative results (i.e., the tool reports UNSAFE
correctly), Timeout represents the number of time-outs (i.e., the tool was aborted
after 900 seconds) and Total time is the total verification time, in seconds. Bold
numbers represent better results. There is no case where ESBMC reports an
incorrect result or exhausts the memory, so we are omitting them from the
table.

When verifying the programs, ESBMC is able to statically verify 76 out of
the 172 benchmarks (44.18%). This is due to the fact that the these programs
are deterministic and, as described in Section 2, ESBMC is able to verify the
program without calling a solver.

For the programs that ESBMC requires a solver for the verification, the
verification time for both solvers is considerably longer when arrays are

http://esbmc.org/benchmarks/pack-sbmf2017.tar.gz
http://esbmc.org/benchmarks/pack-sbmf2017.tar.gz


present, in comparison to array-free programs. Given the set of benchmarks,
ESBMC/MathSAT is able to solve all but three (within the time limit), while
ESBMC/Z3 times-out for most array programs with an increased verification
time for the others.

ESBMC/Z3 also fails to verify the same 3 benchmarks as ESBMC/MathSAT.
The 3 programs3 were created by Delmas et al. [26] and try to calculate a sine
over a range of nondeteministic values, using an interpolation table. These pro-
grams assume a range of nondeterministic input and contains arrays, requiring
a great deal of time to find the solution.

We provide a table that includes the number of variables, the num-
ber of clauses as well as the number of conflicts on the package previ-
ously mentioned in Section 4.1. However, we are unable to draw conclu-
sions based on the provided numbers since we do not identify any pattern.
For instance, one of the benchmarks that cannot be solved by MathSAT,
sin interpolated bigrange tight true-unreach-call.c generates 545667
variables and 2240257 clauses, while 794852 variables and 3263282 clauses are
generated when verifying sin interpolated negation true-unreach-call.c

and the latter can be verified in 61.3 seconds.
We can, however, compare these numbers, generated by both solvers. It is

clear that MathSAT is more aggressively simplifying the program before bit-
blasting. The total numbers are: Z3 generates 1.4×1010 variables and 1.4×1010

clauses in 44992.76 seconds (12.5 hours), while MathSAT generated 1.21 × 107

variables 4.73 × 107 clauses in 9977.40 seconds (2.8 hours). In terms of total
numbers of conflicts, MathSAT generates 1.7× more conflicts than Z3. However,
Z3 was not able to finish the verification of 26.1% of the benchmarks, so this
number is at best an approximation of the real value (this is not true for the
number of variables and clauses, since they do not change during the execution
of the DPLL algorithm [27]).

4.4 Comparison to other Software Verifiers

ESBMC with MathSAT greatly outperforms Z3 when verifying the competition’s
benchmarks and was the solver we used for the competition. Figure 10 shows the
results of all verifiers on the ReachSafety-Floats sub-category of SV-COMP’17.

Figure 10 relates each tool score (y-axis) to the time spent during verifica-
tion, in seconds (x-axis). Note that verifiers which actually give incorrect results
can accumulate negative scores [13]. Using the fixed unwind approach, ESBMC
was able to verify all but the 3 benchmarks previously mentioned, with a fi-
nal score of 308 out of 316, in 5200 seconds, followed by Ceagle [14], with final
score of 298 int 15000 seconds, and CBMC [15], with a final score of 264 in
3000 seconds. ESBMC also competed with other approaches in the competition,
ESBMC-falsi, an incremental approach focused on finding bugs, ESBMC-incr,
an incremental approach that provides a successful answer when it unrolled all

3 sin interpolated index true-unreach-call.c,
sin interpolated bigrange loose true-unreach-call.c and
sin interpolated bigrange tight true-unreach-call.c
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Figure 10: ESBMC architecture for floating-point verification.

loops, and ESBMC-kind, that tries to find bugs and prove correctness using
induction [17]; these 3 approaches use Z3 as it performs better in other cat-
egories. The results from SV-COMP’17 are on par with the results presented
in Section 4.3, where MathSAT outperforms Z3 when verifying programs with
floating-point arithmetic.

These results allow us to answer both the research questions proposed in
Section 4.2. The first inquires after the performance of our solver. Under the
limits imposed by SV-COMP’17 (15 minutes and 16GB of RAM), ESBMC with
MathSAT or Z3 is able to verify 98.2% and 73.8% of the benchmarks, respect-
ively. The verification time is almost half of the presented in our results, due to
the fact that SV-COMP has faster processors [13].

The second research question enquiries about the soundness and reprodu-
cibility of the results. The benchmarks from SV-COMP are thoroughly tested
by all the verifiers, months before the actual competition, to ensure that all
the verdicts are correct. ESBMC was able to encode all benchmarks and no
wrong result was provided by our tool. However, SV-COMP still lacks the abil-
ity to automatically reproduce the counterexamples produced by verifiers in the
ReachSafety-Floats sub-category, mainly because of the availability of witness
checkers; these currently do not handle floating-point arithmetic [13].

5 Related Work

SMT solvers are an improving technology, being able to reason about ever grow-
ing formulas. These constant improvements feed the creation of a number of
SMT-based software verification tools to the extent that they are already being



applied in industry (e.g., Static Driver Verifier [28]). Here, we present other tools
that bridge the gap between a C/C++ program and the SMT solver.

Wang et al. [14] describe Ceagle, an automated verification tool for C pro-
grams. The tool applies 4 different approaches when verifying a program: (1) a
bounded model checker with a fixed unwind approach that uses SMT to check
for satisfiability; (2) a predicate lazy abstraction engine which verifies the pro-
gram with a predicate-based abstract model and uses CEGAR to refine spurious
counterexamples; (3) a structural abstraction engine which tries to reason about
the program behaviour based on the program structure; and (4) an execution en-
gine, which is executed when all parameters are deterministic. The tool competed
in SV-COMP’17 and was ranked 2nd, if we consider only the ReachSafety-Floats
sub-category. Ceagle was the only tool that was able to verify the 3 programs
that ESBMC/MathSAT could not handle under the 15 minutes constraint; it
was able to verify each one of them in less than 10 seconds.

Clarke et al. [15] describe CBMC, a C/C++ SAT/SMT bounded model
checker. ESBMC originated as a fork of this tool with an improved SMT backend
and support for the verification of concurrent programs using an explicit inter-
leaving approach. CBMC uses SAT solvers as their main engine, but offers sup-
port for the generation of an SMT formula for an external SMT solver. ESBMC
supports SMT solvers directly, through their APIs, along with the option to out-
put SMT formulae. CBMC also competed in SV-COMP’17 with a fixed unwind
approach, and was ranked 3rd in the ReachSafety-Floats sub-category.

Brain et al. [29] describe 2LS, C/C++ SAT/SMT bounded model checker.
2LS is a tool developed using the CPROVER framework [15] and aims to combine
a k -induction algorithm with abstract interpretation. As CBMC, 2LS uses SAT
solvers but instead of a fixed unwind approach, 2LS uses an incremental bounded
model checking approach, where it first checks for property violations for a given
bound, then tries to generate (and refine) invariants using abstract interpretation
and then builds a proof using the k -induction algorithm. 2LS competed in SV-
COMP’17 and was ranked 4th in the ReachSafety-Floats sub-category.

Compared to these tools, ESBMC is able to verify a program either using a
fixed unwind approach (as Ceagle and CBMC) or an incremental BMC (as 2LS).
Similar to Ceagle, ESBMC directly uses the solver API to encode the SMT
formula, but ESBMC supports more SMT solvers than Ceagle (in particular,
Ceagle only supports Z3).

Regarding the SMT solvers, after MathSAT and Z3, we expect the SMT
solver CVC4 to support the floating-point theory shortly, as the code appears to
be ready and waiting to be merged on its public repository. XSAT [30] is another
solver that claims to be a “fast floating-point satisfiability solver”: up to 700x
faster than MathSAT and Z3 on the benchmarks from the International SMT
competition. We were, however, unable to find the solver online to experiment
with it.



6 Conclusions and Future Work

This paper presents a BMC approach to encoding C programs using SMT
floating-point theory, evaluates the encoding using the SMT solvers that sup-
port this theory, and compares our approach with other existing floating-point
verification tools.

The encoding was implemented in ESBMC, an SMT-based bounded model
checker for C and C++ programs. ESBMC supports most of the current C11
standard functions and part of the floating-point environment behaviour; we cur-
rently support changing rounding modes, but floating-point exception handling
is not yet supported.

We evaluated the results using two state-of-art SMT solvers, MathSAT and
Z3, over a set of public benchmarks from the International Competition on Soft-
ware Verification (SV-COMP) and the results show that, when using MathSAT,
ESBMC is not only able to produce better results than Z3, but it is also able to
produce better results than all other verifiers in SV-COMP.

For future work, we intend to create our own floating-point backend, so we
are able to encode all the floating-point operations defined by the standard using
bitvectors; this will allow us to use all available SMT solvers that support QF BV
when verifying programs with floating-point numbers.

Regarding the benchmarks, although we have reported a favourable assess-
ment of ESBMC over a diverse set of floating-point benchmarks, this set of
benchmarks is still of limited scope and ESBMC’s performance needs to be as-
sessed on a larger benchmark set in future.
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