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Abstract. This paper presents optimization through counterexamples
(OptCE), which is a verification tool developed for optimizing target
functions. In particular, OptCE employs bounded model checking tech-
niques based on boolean satisfiability and satisfiability modulo theories,
which are able to obtain global minima of convex and non-convex func-
tions. OptCE is implemented in C/C++, performs all optimization steps
automatically, and iteratively analyzes counterexamples, in order to in-
ductively achieve global optimization based on a verification oracle. Ex-
perimental results show that OptCE can effectively find optimal solutions
for all evaluated benchmarks, while traditional techniques are usually
trapped by local minima.

1 Introduction

Optimization is a tool employed in several research fields, such as biology (e.g.,
biomolecular modeling energy functions) [1], computer science (e.g., complexity
reduction) [2], engineering (e.g., filter design for digital signal processing) [3], and
business (e.g., profit increase) [4], with the goal of obtaining maximum system
performance. Although there are several available optimization techniques (e.g.,
simulated annealing [5], particle swarm [6], and genetic algorithms [7]), their
main difficulty lies on locating the global minima of functions. As a consequence,
they often present suboptimal solutions, i.e., they are trapped by local minima,
which commonly lead to low performance [8].

The present work introduces a tool based on the counterexample-guided in-
ductive optimization (CEGIO) algorithms proposed by Araújo et al. [9,10], which
is named as Optimization through Counter-Examples (OptCE). Indeed, OptCE
is a tool instantiation of the approach developed by Araújo et al. [9], which
now presents further evaluation regarding other function classes (broader appli-
cability) and verifiers. OptCE is inspired by syntax-guided synthesis (SyGuS)
and performs inductive generalization based on counterexamples provided by
a verification oracle [11]. In particular, OptCE employs non-deterministic rep-
resentation of decision variables and then iteratively constrains the state-space
search based on counterexamples produced by boolean satisfiability (SAT) or



satisfiability modulo theories (SMT) solvers via inductive generalization, i.e.,
OptCE exploits the counterexample provided by the solver to achieve complete
global optimization [3] about an objective function.

The mentioned techniques (CEGIO) do employ model checking based verifi-
cation procedures to guide the global convergence and extract information from
counterexamples. Unlike meta-heuristic optimization techniques (e.g., genetic al-
gorithms and simulated annealing), CEGIO always finds the global minima for
all evaluated benchmarks, which is also true for the benchmarks evaluated by
Araújo et al. [9,10]. In addition, OptCE requires only one file with the specifi-
cation and constraints for a given objective function.

Although the resulting optimization times associated to the approach em-
ployed here are often higher than what is obtained with other traditional tech-
niques [10], the present inductive optimization technique based on the coun-
terexamples guarantees global coverage and is capable of handling convex and
non-convex functions, since it performs inductive generalization based on the
counterexamples provided by a verification oracle [12]. Our main novel contri-
butions are:

– Development of the first CEGIO-based tool that is able to perform global op-
timization of several function classes (e.g., convex, discontinuous, nonlinear,
and non-convex);

– Extensive experimental evaluation of the CEGIO algorithms;
– Comparison regarding optimization performances provided by different ver-

ifiers (CBMC [13] and ESBMC [14]) and SAT/SMT solvers (MathSAT [15],
Z3 [16], Boolector [17], and MiniSAT [18]).

Our experiments are based on a set of publicly available benchmarks and all
related tools, scripts, benchmarks, and results can be obtained online through
this link http://esbmc.org/benchmarks/optce.zip.

2 Inductive Optimization Based on Counterexamples

OptCE is an optimization tool based on CEGIO, which processes a function
through three basic steps: modeling, specification, and verification. In order to
illustrate the OptCE’s optimization process, we consider the adjiman test ob-
jective function in Eq. (1) and its minimization process.

f(x1, x2) = cos(x1)sin(x2)−
x1

x22 + 1
. (1)

In particular, the adjiman function is a non-convex, non-separable, and dif-
ferentiable function; it is defined on 2-dimensional space [19].

(i) Modeling. In the modeling step, the optimization problem is defined for a
cost function (e.g., Eq. (1)) and then its constraints are introduced, in order
to avoid the state-space explosion in model checking [20]. Regarding the



Eq. (1), the optimization problem with its associated restrictions is described
in Eq. (2).

min f(x1, x2)
s.t. −1 ≤ x1 ≤ 2

−1 ≤ x2 ≤ 1.
(2)

In particular, the optimization problems are modeled through the CEGIO
approach and using ANSI-C code, with the directive ASSUME, which repre-
sents the associated constraints and search space. The use of such directive
(e.g., __ESBMC_assume()) is illustrated in the code fragment as shown in
Figure 1.

(ii) Specification. This step consists in describing system behavior and proper-
ties to be checked, which results in a file according to the method proposed by
Araújo et al. [9,10]. Indeed, the property specification is stated with ASSERT
directives, which are used to check satisfiability and to control the verifica-
tion procedure, i.e., to search for violations of a given property, which, in
the present case, consists of finding a function value that is smaller than the
previous one. In summary, they represent calls to specific functions provided
by the verification engine and also entry points for the proposed optimiza-
tion. The mentioned resulting file contains the modeling and properties to be
checked, as shown in Figure 1 for the function adjiman. In this example, ES-
BMC is used as verification engine, where __ESBMC_assume() restricts the
state-space, according to the performed modeling, and __ESBMC_assert()
checks properties.

(iii) Verification. Finally, the C code generated in step 2 is checked by the
underlying verifier, which can return “verification successful” or “verification
failed”. When “verification successful” is obtained, it means that the code
is correct and no property has been violated; otherwise, “verification failed”
indicates that the verification engine has found a violation, i.e., a value
smaller than the previous one, for a particular target function. It is worth
noticing that when a violation is found, the associated counterexample, which
is usually provided by such tools, already indicates a smaller value. As a
consequence, this new limit can then be used for updating the respective
variable (i.e., f_i in the example shown in Figure 1), which might iteratively
lead to a minimum.

Araújo et al. [10] proposed three algorithms for the specification stage, which
are suitable for different situations: the Generalized Algorithm (CEGIO-G), the
Simplified Algorithm (CEGIO-S), and the Fast Algorithm (CEGIO-F). Figure 1
shows the specification for the function adjiman in CEGIO-G format, which can
also be applied to any function class (i.e., convex and non-convex ones). CEGIO-
S is suitable for functions about which we have some prior knowledge (e.g., semi-
and positive-definite functions) and uses that to generate several properties in
the specification step, which will be checked by the underlying verifier, with
potentially increased chance of violation and reduced optimization times. Finally,



#define p 1
#include "math2 . h"
int nondet_int ( ) ;
f loat nondet_float ( ) ;
int main ( ) {

f loat f_i = 69 ;
int x [ 2 ] , i ;
f loat X[ 2 ] ;
f loat f o b j ;
int l im [ 4 ] = {−1∗p , 2∗p , −1∗p , 1∗p } ;
for ( i = 0 ; i <2; i++){

x [ i ] = nondet_int ( ) ;
X[ i ] = nondet_float ( ) ;

}
for ( i = 0 ; i <2; i++){

__ESBMC_assume( ( x [ i ]>=lim [2∗ i ])&&(x [ i ]<=lim [2∗ i +1 ] ) ) ;
__ESBMC_assume( X[ i ] == ( f loat ) x [ i ] / p ) ;

}
f ob j = cos2 (X[ 0 ] ) ∗ s in2 (X[ 1 ] ) − (X[ 0 ] / (X[ 1 ] ∗X[ 1 ]+1 ) ) ;
__ESBMC_assume( fobj<f_i ) ;
a s s e r t ( fob j>f_i ) ;
return 0 ;

}

Fig. 1. C code after the specification step for the function adjiman.

CEGIO-F can be applied to convex functions and uses their properties to restrict
the associated state-space, according to the results presented by Araújo et al.
[10], which show considerable improvement regarding optimization times. Each
algorithm follows a fixed structure, which changes regarding only variable values.

3 OptCE: A Counterexample-Guided Inductive
Optimization Solver

OptCE can be regarded as a front-end for model checkers that process C pro-
grams through CEGIO, where decision variables, which are in charge of gener-
ating the smallest value of a function, are checked. Such a tool can be called
from a shell, via command line, and is able to optimize convex and non-convex
functions, where users only need to describe, in a file, the specification and con-
straints regarding them, through a few code lines. In summary, OptCE is based
on the CEGIO technique, which allows the discovery of global minima, while
other techniques are usually trapped by local ones.

3.1 OptCE Architecture

As shown in Figure 2, users need to provide an input .func file (cf. Sec. 3.2)
containing a function’s specification and constraints: this is the modeling phase.
Indeed, such a task reveals that some knowledge about the target problem is
necessary, in order to provide a correct basis.

The first step is the specification, which receives an input file and the desired
settings for optimization, such as verifier, solver, algorithm type, and precision.
In Figure 2, α represents the number of decimal places of a solution, which is



indicated by the user. Based on the provided inputs, OptCE generates a speci-
fication file in ANSI-C (cf. Figure 1), named as min_<function>.c.

Fig. 2. An overview of the proposed OptCE architecture.

During the first execution of Step 1, ρ, which is used to establish the solution
accuracy throughout the optimization process, is initialized with zero, which in-
dicates an optimization with integer precision solutions only (i.e., no decimal
digits are considered). In addition, an arbitrary minimum candidate is also con-
sidered, which is actually the algorithm’s initialization value and can be provided
by the user with the flag –-start-value; otherwise, it is randomly generated,
which is performed during the specification step.

During Step 2, the verification task occurs, i.e., the ANSI-C file with a func-
tion’s specification is checked by a verification engine, whose main output is a log
file with the respective verification result. If “verification failed” is obtained, that
means the underlying verification engine detected a property violation through
the inserted assertions and consequently generated a counterexample. In the CE-
GIO context, a property violation indicates that the minimum candidate is not
the global minimum for that value of ρ and then the tool flow proceeds to Step
3.

In Step 3, a .log file with the respective counterexample is used to obtain new
decision variables, which provide a new global minimum candidate lower than
the previous one, i.e., the initialization value or the minimum candidate of the
last OptCE iteration. Then, the new minimum candidate value is obtained (i.e.,
extracted and computed from the counterexample), and used to perform Step
1 again, starting a new iteration and generating a new specification file. Such a
procedure is iteratively performed until the verification step (Step 2) returns a
.log file with “verification successful”, which means that there are no decision
variables capable of finding a minimum value smaller than the current one,
considering the current value of the precision variable (ρ). When the verification
result is “verification successful”, OptCE proceeds to Step 4.



In Step 4, ρ is increased by one, i.e., the precision associated to the optimal
solution is increased by one decimal place, which is followed by a check that
evaluates whether it is smaller than or equal to the desired accuracy (indicated
by the user). If ρ is larger than α (the condition ρ ≤ α is false), OptCE has found
the solution (global minimum), considering the desired precision; otherwise, the
OptCE’s general flow (Steps 1-3) is repeated with the updated precision ρ, i.e.,
the algorithm returns to Step 1 and generates a new specification file.

3.2 Input File for OptCE

The present input file consists of two parts: function specification and associated
constraints, which are separated by a character “#” isolated in a row. At the top
of an input file, a function must be described with an ANSI-C variable assignment
ending with “;” and using variable fobj that represents the objective function
(see Figure 3). We summarize the OptCE input language in Figure 3.

Fml ::= Var | true | false| Fml ∧ Fml | . . . | Exp = Exp | . . .
Exp ::= Var | Const |Var [Exp] |Var [Exp][Exp] | Exp + Exp | . . .

Cmd ::= Var = Exp |Var = ∗ | Fml | sin2 (Var) | cos2 (Var)
| floor2 (Var)| sqrt2 (Var) | abs2 (Var)

Prog ::=Cmd ; . . . ;#Cmd ;

Fig. 3. OptCE input program language.

Eq. (3) presents the format adopted for constraint matrices, where the asso-
ciated number of lines indicates the amount of decision variables and columns 1
and 2 represent the lower and upper bounds, respectively.

x11 x12
x21 x22
. . .

xn1 xn2

 (3)

The constraints of the considered optimization problem (Eq. (2)) can be
represented by A = [ −1 2 ;−1 1] and an input file containing the entire opti-
mization problem (related to Eq. (2)) is illustrated in Figure 4.

f o b j = cos2 ( x1 )∗ s in2 ( x2 ) − ( x1 /( x2∗x2+1)) ;
#
A = [−1 2 ; −1 1 ] ;

Fig. 4. Input file for function adjiman.



3.3 OptCE Features

The current OptCE version allows us to define different configurations regarding
the optimization process (i.e., optimization algorithm and verification engine),
which is used to reduce optimization times. Thus, users have to add suitable flags
during a call via command-line. The following configurations are supported:

– BMC configuration: chooses between model checkers CBMC (–-cbmc)
and ESBMC (–-esbmc);

– Solver configuration: chooses between solvers Boolector (–-boolector),
Z3 (–-z3), MathSAT (–-mathsat), and MiniSAT (–-minisat);

– Algorithm configuration: chooses between the proposed algorithms, where
the flag –-generalized implements the CEGIO-G algorithm (cf. Sec. 2),
which is used when there is no prior knowledge about the objective func-
tion, the flag –-positive implements the CEGIO-S algorithm (cf. Sec. 2),
which is used when a function is semi- and positive-definite, and the flag
–-convex implements the CEGIO-F algorithm (cf. Sec. 2), which is used for
convex functions.

– Initialization: assigns an initial minimum candidate value (–-start-value
=value), which is random by default;

– Insert library: users can include their own library containing implementa-
tions of operators and functions used in the objective function’s description
(–-library=name-library);

– Timeout: configures the time limit, in seconds (–-timeout=value).
– Precision: sets the desired precision, i.e., the number of decimal places of

a solution (–-precision =value).

3.4 Optimizing via OptCE

The user must create a description input file to find the global minimum of a
function using the OptCE tool, as explained in subsection 3.2. Figure 5 shows
all possible OptCE calls with input file and set of properties. Here, we employ
the function adjiman to illustrate the use of OptCE, considering the input file
shown in Figure 4.

Fig. 5. OptCE configuration options.

Currently, OptCE supports two verifiers: CBMC [13] and ESBMC [21]. Op-
timization employing CBMC as model checker (–cbmc) uses MiniSAT as default



solver, while ESBMC (–-esbmc) uses MathSAT. In our evaluation, we also tried
to use the SMT solvers available in CBMC, but it failed to check all benchmarks
reported in Table 1 due to problems in the SMT back-end. Regarding ESBMC,
the user can choose between solvers Z3 (–-z3) or Boolector (–-boolector);
however, we did not further evaluate other SMT solvers (e.g., CVC4 and Yices).
Indeed, verification times vary according to the selected verifier and solver and,
as already mentioned, the user has the possibility to choose different configu-
rations. If a given user is unsure about which verifier and solver to select, then
a default choice would be to employ ESBMC with MathSAT or CBMC with
MiniSAT, given that they normally present the shortest execution times; how-
ever, our experimental evaluation does not conclusively show that they are the
best possible configurations (given the small benchmark set). As future work,
we intend to automatically select the verifier and solver pair, using machine
learning techniques that take into account objective functions, with a large set
of benchmarks. Indeed, such an approach is similar to the work done by Hutter
et al. [22], who apply a parameter optimization tool to improve SAT solvers
for large, real-world bounded model-checking instances, via automatic tuning of
decision procedures.

Another important parameter is the algorithm type, which can be –-convex,
for convex functions, –-positive, for semi- and definite-positive functions, and
–-generalized, for functions about which we do not have any prior knowl-
edge. Since Eq. (1) is not convex and it is not possible to ensure that it is non-
negative, the suggested setup uses flag –-generalized (./optCE adjiman.func
–-generalized).

Following the execution flow illustrated in Figure 5, the flag –-start-value
is used to specify the proposed algorithm’s initialization (./optCE <name>.func
–-start-value=20) and, when it is not adopted, such a value is assigned in a
random way. We noticed that variations regarding initialization values do not
significantly influence convergence times, since OptCE evaluates only the integer
part of the solutions, at the beginning of the optimization tasks. In addition,
checking with integer values is fast, it is normal to get “verification failed” in the
first round, and a “verification failed” result is generally faster than a “verification
successful” one, as also experimentally observed by Araújo et al. [9,10].

If the input function consists of arithmetic operators, then it is not mandatory
to use the flag –-library; however, when mathematical functions are present, it
is necessary to implement them in ANSI-C. Such implementations considerably
influence the verification results and the simpler they are, i.e., the smaller their
number of operations and loops is, the easier it is for the proposed approach to
conclude the verification tasks. In the case of the adjiman function, which uses
mathematical functions such as sin() and cos(), the library math2.h was created,
with our own implementation, which was included using the flag –-library
(./optCE adjiman.func –-library=math2.h). This library contains an improved
implementation of the original math.h, which includes pre- and post-conditions
to ensure that a (given) predicate holds before and after the execution of a
(given) math function, respectively.



Our mathematical functions in math2.h have the same name of the corre-
sponding elements in the ANSI-C library, except that we appended the character
2 (e.g., cos2(), sin2(), abs2()).

The –-timeout flag is used to interrupt optimization processes, if they reach
the indicated time limit (./optCE <name_function>.func –-timeout=3600).
Finally, the user has the option to define the OptCE’s solution accuracy, i.e.,
the –-precision flag indicates the number of decimal places of a solution. When
a reference value is not provided, OptCE finds a global minimum with 3 decimal
places, by default.

4 Experimental Evaluation

This section reports the performed experiments configuration and execution,
along with an analysis of the results obtained with OptCE.

4.1 Experimental Objectives

Our experiments have been carried out seeking answers to the following ques-
tions:

RQ1 (correctness) Is OptCE able to find the global minima of functions?
RQ2 (sanity check) Does the settings choice between BMC tools and solvers

influence optimization results?
RQ3 (performance) What are the advantages and disadvantages of OptCE, in

comparison with traditional optimization techniques?

4.2 Description of the Benchmarks

In order to evaluate the proposed tool and answer those research questions pre-
sented in section 4.1, a benchmark suite with 10 convex and nonconvex functions
was created, with functions related to optimization problems extracted from the
available literature [19]. They have different characteristics: continuous, differ-
entiable, separable, non-separable, scalable, non-scalable, uni-modal, and multi-
modal, including sine, cosine, polynomials, floor, sum, and square root. The cho-
sen benchmarks are shown in Table 1, as follows: benchmark name, optimization
domain, and global minimum.

All functions were used to evaluate the flag –-generalized, which imple-
ments the CEGIO-G algorithm (cf. Sec. 2). In order to evaluate the flag –-positive,
which implements the CEGIO-S algorithm (cf. Sec. 2), semi-definite positive
functions Booth, Himmelblau, and Leon were used. Lastly, functions Zettl, Ro-
tated Ellipse, and Sum Square were used to evaluate the flag –-convex, which
implements the CEGIO-F algorithm (cf. Sec. 2).

The results of the proposed approach were compared with the ones presented
by other techniques (i.e., genetic algorithm, particle swarm, pattern search, sim-
ulated annealing, and nonlinear programming), where all benchmarks were exe-
cuted with the MATLAB’s optimization toolbox (2016b) [23].



Table 1. Benchmark Suite.

# Benchmark Domain Global Minimum
1 Alpine 1 −10 ≤ xi ≤ 10 f(0, 0) = 0

2 Cosine −1 ≤ xi ≤ 1 f(0, 0) = −0.2

3 Styblinski Tang −5 ≤ xi ≤ 5 f(2.903, 2.903) = −78.332

4 Zirilli −10 ≤ xi ≤ 10 f(1.046, 0) ≈ −0.3523

5 Booth −10 ≤ xi ≤ 10 f(1, 3) = 0

6 Himmeblau −5 ≤ xi ≤ 5 f(3, 2) = 0

7 Leon −2 ≤ xi ≤ 2 f(1, 1) = 0

8 Zettl −5 ≤ xi ≤ 10 f(0.029, 0) = −0.0037

9 Sum Square −10 ≤ xi ≤ 10 f(0, 0) = 0

10 Rotated Ellipse −500 ≤ xi ≤ 500 f(0, 0) = 0

Similarly to the experiments performed by Araújo et al. [9,10], the elapsed
times presented in the following tables are related to the average CPU time mea-
sured with the times system call (POSIX system) of 20 consecutive executions
for each benchmark, where the measurement unit is always in seconds. Finally,
our experiments were set for obtaining the global minima with 3 decimal places
and were conducted on an otherwise idle computer equipped with Intel Core
i7-4790 CPU 3.60 GHz, 16 GB of RAM, and Linux OS Ubuntu 14.10.

4.3 Experimental Results

The experimental results are presented in four tables. Tables 2, 3, and 4 refer
to the benchmarks with the flags –-generalized, –-positive, and –-convex,
respectively. Table 5 refers to a comparison between OptCE v1.0 and other
traditional techniques. Each column of Table 2 is described as follows: column 1
is related to functions of the reference benchmark suite, columns 2, 3 and 4 are
related to the ESBMC v3.1.0 configuration with MathSAT v.5.3.13, Z3 v4.5.0,
and Boolector v2.2.0 solvers, respectively, and column 5 is related to the CBMC
v4.5 configuration with MiniSat v2.2.0.

Table 2. Execution times for the generic algorithm (CEGIO-G [10]), in seconds.

# ESBMC CBMC
MathSAT Z3 Boolector MiniSAT

1 1068 105192 3387 5344
2 4130 80481 5003 8509
3 443 37778 2027 2438
4 468 387 190 1143
5 7 1244 4016 2
6 12 14205 6217 4
7 5 2443 212 2
8 13 753 389 9
9 18 4171 4438 13
10 3 72 39 2

The overall minimum was found in all benchmarks, considering all combi-
nations between BMC tools and solvers. As presented by Araújo et al. [10],



those algorithms ensure the global minimum, considering the desired accuracy,
which was described in previous section; their proofs of convergence are pro-
vided in [10], which confirm the experimental results. The optimization times
varied significantly in Table 2, which makes it difficult to reason about the best
configuration; however, according to Figure 6, the total optimization time with
the configuration ESBMC + MathSAT (the best one) was 2.8 times faster than
the one presented by CBMC + MiniSAT, while the configuration ESBMC + Z3
presented the longest execution time, being 40 times longer than the best case.

Fig. 6. Histogram of the total optimization time for the adopted benchmark suite, in
logarithmic scale.

Another interesting observation regarding Table 2 is that although CBMC +
MiniSAT provided the second best performance, considering the entire bench-
mark suite, such a configuration was the best in 60% of the benchmarks, i.e., a
few cases required long run times, but they were exceedingly time consuming.
Benchmarks #1−4 are non-convex and presented long times when searching for
the global minima, considering all possible settings. Benchmarks#5−7 are semi-
and positive-definite functions, while #8− 10 are convex ones. Regarding them,
OptCE was able to find solutions using the algorithms CEGIO-S and CEGIO-F,
by providing, respectively, the flags –-positive and –-convex.

Nonetheless, in order to evaluate the implementation of CEGIO-G, all bench-
marks were optimized with the flag –-generalized. The experiments were re-
peated for different combinations of model checkers and SAT/SMT solvers, i.e.,
ESBMC was combined with three solvers (MathSAT, Z3, and Boolector) and
CBMC with MiniSAT only. Particularly, the combinations ESBMC + Math-
SAT and CBMC + MiniSAT presented results significantly better than the ones
provided by other configurations of OptCE, given that Boolector does not sup-
port floating-point arithmetic [17]. In particular, MathSAT (the one that ob-
tained the best results) supports both fixed- and floating-point arithmetic and,



surprisingly, the performance for floating-point optimization is significantly bet-
ter if compared to the fixed-point one. As a consequence, when using the flag
–-generalized, the configurations ESBMC + MathSAT and CBMC + Min-
iSAT are recommended.

Table 3 presents the results for the flag –-positive, which is suitable for
semi- and positive-definite functions. As a consequence, we used only benchmarks
#5−7, in this experiment. Those functions make use of modules with high even
powers, i.e., by mathematical inspection we can ensure that such functions can
not reach one global negative minimum. Table 3 compares the use of the flags
–-generalized and –-positive, for this class of problems. One may notice that
the implementation of the CEGIO-S algorithm with the flag –-positive does
indeed work, since optimization times were significantly reduced, if compared
to the flag –-generalized, in all possible configurations. This happens because
the solution search space is reduced, by ignoring the negative part.

Table 3. Execution times for the positive algorithm (CEGIO-S [10]), in seconds.

#
–-positive –-generalized

ESBMC CBMC ESBMC CBMC
MathSAT Z3 Boolector MiniSAT MathSAT Z3 Boolector MiniSAT

5 3 <1 1 3 7 1244 4016 2
6 4 1 1 2 12 14205 6217 4
7 3 <1 1 2 5 2443 212 2

The CEGIO-F algorithm implementation is assigned with the flag –-convex.
In order to evaluate its performance, benchmarks #8 − 10 were used, because
they are convex functions, and their results are presented in Table 4. The op-
timization times using a specific algorithm for this function class were consider-
ably lower than the times presented by the generalized algorithm. That happens
because, in this algorithm and with each performed check, the search space is
reduced according to the found global minimum candidate, which then decreases
verification and, consequently, optimization times.

Table 4. Execution times for the convex algorithm (CEGIO-F [10]), in seconds.

#
–-convex –-generalized

ESBMC CBMC ESBMC CBMC
MathSAT Z3 Boolector MiniSAT MathSAT Z3 Boolector MiniSAT

8 15 6 21 5 13 753 389 9
9 14 3 19 5 18 4171 4438 13
10 3 1 2 2 3 72 39 2

The best results using the proposed tool, for each benchmark, are presented
in Table 5, along with results for other techniques. The configuration column
shows the combinations regarding algorithm types (by the initials of flags “G”
for –-generalized, “P” for –-positive, and “C” for –-convex), BMC tools, and



solvers. The comparison is performed with traditional optimization techniques:
genetic algorithm (GA), particle swarm (ParSwarm), pattern search (PatSearch),
simulated annealing (SA), and nonlinear programming (NLP). All evaluated
benchmarks were executed 1000 times with the traditional techniques, using
MATLAB, and 20 times with CEGIO, using OptCE. The number of repetitions
was selected to ensure the convergence of hit rate for all algorithms.

Table 5. Experimental results for traditional techniques and the best proposed CEGIO
algorithms, in seconds.

# OptCE GA ParSwarm PatSearch SA NLP
Configuration R% T R% T R% T R% T R% T R% T

1 G + ESBMC + MathSAT 100 1068 29.1 1 22.2 3 16 4 0.4 1 4.8 9
2 G + ESBMC + MathSAT 100 4130 100 9 9.8 1 96.7 3 88.5 2 28.4 2
3 G + ESBMC + MathSAT 100 443 68.1 9 47.8 1 51.8 3 99.5 1 35.8 2
4 G + ESBMC + Boolector 100 190 95.7 9 53.9 1 98.8 3 74.4 1 62.5 2
5 P + ESBMC + Z3 100 < 1 100 10 100 2 100 6 93.5 1 100 2
6 P + ESBMC + Z3 100 1 42.4 9 43.9 1 26 3 21 1 35 2
7 P + ESBMC + Z3 100 < 1 84.4 1 80.3 2 1 7 24.3 1 100 4
8 C + CBMC + MiniSAT 100 5 100 9 48.1 1 99.8 4 26.4 1 100 3
9 C + ESBMC + Z3 100 3 100 9 71.5 1 100 4 96.9 1 100 2
10 C + ESBMC + Z3 100 1 100 9 100 2 100 7 99.8 1 100 2

OptCE’s hit rate is 100% for this benchmark suite, considering the domain
established in Table 1, for each benchmark. The present experiments show that
OptCE generally takes longer than other techniques, in order to locate the global
minima; however, its hit rate is always higher. In particular, the time results with
the flags –-positive (CEGIO-S) and –-convex (CEGIO-F) are similar to what
is provided by the other techniques, but with superior hit rates. The chosen
traditional optimization techniques, in many cases, failed to obtain solutions
for the adopted benchmarks, considering the established precision of 3 decimal
places. That happened because they are sensitive to non-convexity and, in many
cases, they get trapped by local minima, which resulted in sub-optimal solutions.
If only benchmarks 8, 9, and 10, in Table 1, are evaluated, which are convex
functions, the rate obtained by existing methods is 100%, since those functions
do not have local minima that can compromise their results.

In summary, the proposed technique can be used in any optimization prob-
lem, but there are always restrictions regarding the time and number of variables.
Usually, cost functions in practical problems are distance or power functions, i.e.,
they are semi- and positive-definite. Therefore, as OptCE has the CEGIO-S al-
gorithm implemented in its structure, which is specific to this function class, it
implies that OptCE is able to solve those particular optimization problems.

OptCE presents good performance with non-convex functions, if compared
to the traditional techniques, because the global minima are found in all bench-
marks. Traditional techniques, in turn, are lost at local minimum and return
sub-optimal solutions, which then reduces their hit rate.



The performance of OptCE using specific flags for convex and positive-
definite functions proved to be competitive, once the obtained execution times
were very close to the ones from other techniques, given that global minima were
found in all cases. Depending on the problem type, the number of solution deci-
mal places might be lower than the amount used in this experimental evaluation.
For those cases, execution times regarding the location of optimal solutions are
reduced, once there are fewer decimal places to check, which then implies fewer
verifications and fewer states to be considered.

5 Related Work

Since the earliest research with SMT application to solve optimization problems,
which was presented by Nieuwenhuis and Oliveras [24], several satisfiability-
theory based tools have emerged, with the purpose of solving optimization prob-
lems. Conversely, various SAT/SMT specialized solvers have been developed,
which employ optimization techniques in their engines to improve solving per-
formance (e.g., ABsolver [25], and CalCs [26]). Shoukry et al. [27] proposed
the Satisfiability Modulo Convex (SMC) Optimization [28] to solve satisfiability
problems over SMC formulas, which generalizes several formulas over Boolean
and nonlinear real arithmetic.

Recently, νZ [29] extended the SMT solver Z3 [16] for linear optimization
problems and Li et al. proposed the SYMBA algorithm [30], which is an SMT-
based symbolic optimization algorithm that uses linear real arithmetic theory
and SMT solvers, as black boxes. Similarly, OptiMathSat presented by Sebastiani
and Trentin [31] is also an optimization tool that extends MathSAT5 SMT solver
to allow solving linear functions in the boolean, rational, and integer domains,
or a combination of them. Although the OptCE tool presented in this study is
based on satisfiability theories, it does not employ SAT/SMT solvers directly, in
contrast to other techniques [29,30,31]. OptCE incorporates the model checking
approach and employs SAT- and SMT-based model checkers to model, specify,
and verify ANSI-C representations of optimization problems by exploiting the
counterexample provided by them.

Model-checking has already been employed to model and solve optimization
problems, in some previous studies. Trindade et al. [32,33] used the ESBMC
tool to solve optimization problems over booleans decision variables related to
hardware/software partition, in embedded systems. Araújo et al. [9,10] proposed
the CEGIO algorithms to globally optimize non-convex functions on the rational
domain, with adjustable precision.

Most previous studies related to SMT-based optimization can only solve lin-
ear problems over integer, rational, and Boolean domains, in specific cases. In-
deed, only a few studies [27] are able to solve non-linear problems, but they
are also constrained to convex functions. In contrast, this paper proposes a new
tool that implements the CEGIO algorithms [9,10] and is able to globally mini-
mize a wide variety of functions: linear or non-linear, convex or non-convex, and
continuous or discontinuous.



6 Conclusion

OptCE is a novel optimization tool that models a wide range of constrained
optimization problems (convex, nonlinear, and nonconvex) as a model checking
problem and inductively analyzes counterexamples, in order to achieve global op-
timization of functions, by employing SAT- or SMT-based verification. In partic-
ular, this tool is based on a class of optimization algorithms, named CEGIO, and
it is able to ensure the global optimal convergence with a given precision. OptCE
supports the following features: three different CEGIO algorithms (CEGIO-G,
CEGIO-S, and CEGIO-F), two state-of-art BMC tools (CBMC and ESBMC),
and four SAT/SMT solvers (MiniSAT, Boolector, Z3, and MathSAT).

Our experiments showed that OptCE achieved 100% of hit rate, being able
to ensure the global optimization. In contrast, other traditional techniques (GA,
PatSearch, ParSwarm, NLP, and SA) employed for comparison were usually
trapped by local minima. In addition, the experimental results indicated that
the most flexible CEGIO algorithm (CEGIO-G), which is suitable for every
function class supported by OptCE, presented times significantly longer than
the others from the CEGIO algorithms and traditional techniques, despite en-
suring the global optimization. Nonetheless, the other two CEGIO algorithms
(CEGIO-S and CEGIO-F), which are suitable for nonnegative and convex opti-
mization problems, respectively, were able to solve global optimization problems
with times similar to the ones provided by the traditional techniques, but with
superior hit rate.

OptCE is available for free download (Linux x86 version),1 including doc-
umentation, benchmarks, results, publications, and source code. Although the
OptCE’s time performance is slow, it has been and will be continuously im-
proved, given that verifiers and SAT/SMT solvers evolve, even with the inclusion
of new and adaptive techniques, such as machine learning [22]. Future work in-
cludes parallelization and state space partitioning, thus linearly reducing check-
ing times. We also intend to enhance our model-checking procedure for reducing
the verification time by means of automatic invariant generation [34,35].
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